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a b s t r a c t

Multi-instance learning, a commonly used technique in artificial intelligence for analyzing slides, can
be applied to diagnose thyroid cancer based on cytological smears. Since smears do not have mul-
tidimensional histological features similar to histopathology, mining potential contextual information
and diversity of features is crucial for better classification performance. In this paper, we propose
a pyramid multi-loss vision transformer model called PyMLViT, a novel algorithm with two core
modules to address these issues. Specifically, we design a pyramid token extraction module to acquire
potential contextual information on smears. The pyramid token structure extracts multi-scale local
features, and the vision transformer structure further obtains global information through the self-
attention mechanism. Furthermore, we construct multi-loss fusion module based on the conventional
multi-instance learning framework. With carefully designed bag and patch weight allocation strategies,
we incorporate slide-level annotations as pseudo-labels for patches to participate in training, thus
enhancing the diversity of supervised information. Extensive experimental results on the real-world
dataset show that PyMLViT has a high performance and a competitive number of parameters compared
to popular methods for diagnosing thyroid cancer in cytological smears.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Thyroid cancer is a relatively rare form of cancer that begins
n the cells of the thyroid gland [1,2]. It is becoming a leading
ause of disease burden worldwide, with its incidence and mor-
ality registering rapid growth of 169% and 87%, respectively, in
ecent years [3]. Benefitting from early diagnosis and treatment,
hyroid cancer patients have a nearly 98% five-year survival rate,
nd more than 95% survive a decade. As an easy, cost-effective,
nd minimally invasive technique, fine needle aspiration cytol-
gy (FNAC) has been a vital preoperative diagnostic modality
n evaluating thyroid cancer [4]. The pathologist looks at the
orphology of cells on a cytological smear collected by FNAC
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∗∗ Corresponding author at: Department of Neurology, China-Japan Union
ospital of Jilin University, Changchun, 130033, China.
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950-7051/© 2023 Elsevier B.V. All rights reserved.
under a microscope and looks for lesions or abnormalities in the
cells. However, its diagnosis is considered quite challenging given
that its symptoms are very similar to those of other diseases,
making precise diagnoses rely heavily on clinical experience and
the medical knowledge of pathologists. Deep learning (DL), a
form of artificial intelligence (AI) that uses algorithms to simulate
aspects of human decision-making, has recently gained much at-
tention [5,6]. With the development of DL-powered systems that
can deliver a faster and more consistent computer-aided diag-
nosis, many recent breakthroughs in cancer diagnosis have been
in the realm of slide-driven models [7–11]. Therefore, exploring
DL-based methods on FNAC cytological smears is significant for
developing thyroid cancer classification [12].

DL solutions for accurate and efficient cancer screening on
slides or smears are typically divided into exact and inexact
supervision [13]. For exact supervision, each sample has a label
corresponding to itself, and slide-level screening is the most
convenient and general method for diagnosis. It resizes the size
of smears for dimensionality reduction, treating the process as a
classification task in computer vision [14]. Then, a deep neural
network, such as a convolution neural network (CNN), is used

https://doi.org/10.1016/j.knosys.2023.110721
https://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2023.110721&domain=pdf
mailto:chenhc@jlu.edu.cn
mailto:congll18@mails.jlu.edu.cn
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Fig. 1. (a) Multi-scale adjacency features are crucial for the ViT model.
(b) Supervision information from patch-level features can further help optimize
the parameters of networks.

to provide the category predictions. Due to the information loss
with the resize operation, patch-level methods solve this problem
by cutting the smear into patches as the input of the CNN. In
addition, features from a CNN-based extractor are aggregated
or directly used for analysis [15,16]. Limited by challenges in
obtaining annotations of smears at the patch level, inexact super-
vision is appealing in medical image analysis scenarios, typically
including multiple instance learning (MIL) [17,18]. A series of
patches are cut from slides and formed into bags with the same
slide-level label, and bag-level features are obtained from CNN
with an attention network or addition operation [19]. Recent
advances in Vision Transformers (ViTs) have shown that self-
attention networks surpass conventional CNN models in most
vision works [20,21]. Its improved variants have the tremendous
potential to be an excellent feature extractor when applied to MIL
models [22,23].

Despite the success that ViT-based MIL models achieved in
istopathology classification tasks, there remain two challenges
n classifying cytological smears: Challenge I: Extracting multi-
cale features for analyzing smears is essential in the independent
iT model (Fig. 1(a)). Extracting multi-scale features has proven
o be an excellent way of analyzing slides or smears [24]. Some
ecent works combine CNN and ViT to capture global and local
nformation on images, thus improving the classification perfor-
ance of models with multi-scale features [25,26]. However, CNN
nd ViT models can produce predictions through different mech-
nisms and representations, and it is difficult to understand why
he model makes a particular prediction or diagnoses biases in the
ystem. Furthermore, it will increase both models’ computational
omplexity and memory requirements. Therefore, utilizing the
omplete ViT architecture to extract multi-scale features of the
mear can not only clarify the effectiveness of the design pattern
ut also has the potential to reduce the complexity of the model.
hallenge II: The training process of MIL lacks loss optimization
or patch-level smears (Fig. 1(b)). Most of the existing MIL-based
esearch on slide classification only focuses on bag-level supervi-
ion information [27,28]. However, compared to histopathology
lides, cytological smears lack hierarchical histological features,
esulting in insufficient supervised information for training. In
ontrast, due to the relatively uniform distribution of features
n cytological smears, the patch-level smear has the potential
nformation to supervise the training process with less noise.
herefore, simultaneously optimizing bag-level and patch-level
osses during training is crucial for the smear classification task.

To resolve these challenges in ViT-based MIL methods, we pro-
ose a novel method called Pyramid Multi Loss Vision
ransformer (PyMLViT) that aims to achieve multi-scale repre-
entations from a single input and consider the effect of patch-
evel information in the thyroid cancer classification task.
pecifically, for challenge I , we designed the pyramid token
2

xtraction module to extract multi-scale features from a cyto-
ogical smear using the variant ViT structure. A pyramid-shaped
oken generation unit is built using a selection mechanism with
ifferent receptive fields. Subsequently, a deep self-attention en-
oder converts tokens from different scales into high-dimensional
eature vectors. This module realizes the function of extracting
ulti-scale features from a single input by improving the token
election mechanism in ViT. For challenge II , we designed the
ulti-loss fusion module to trade off the bag-level and patch-

evel supervision information to better guide the optimized phase
f network parameters. A prediction from the attention layer and
lide-level annotation generates the bag-level loss. The patch-
evel loss consists of multiple scales, and the loss at each scale
s computed by predictions from patches and annotations from
he slide. The total loss is obtained by fusing the losses of these
wo levels according to reasonable weight values. In summary,
he contributions of this paper are as follows:

• A novel model called PyMLViT is proposed for thyroid can-
cer classification based on cytological smears. It is a high-
performance model with relatively fewer parameters,
codriven by the pyramid token extraction and multi-loss
fusion modules.

• In the pyramid token extraction module, we first design a
pyramid-shaped receptive field selection structure, which
can obtain tokens with various scale information. Then,
deep self-attention networks are used to sufficiently extract
multi-scale features from tokens.

• In the multi-loss fusion module, losses are first generated
from bag-level and patch-level features. Then, these two
losses are fused by different weights to obtain the total loss,
thereby optimizing the model parameter more reasonably.

• Extensive experiments on the in-house dataset compared
with the published popular methods demonstrate the ef-
fectiveness of PyMLViT. In addition, more in-depth analyses
illustrate its parameter quantity advantage compared to the
CNN model.

The remainder of this paper is organized as follows. Section 2
eviews previous work on related applications by existing AI
echnology. Section 3 presents our solution for classifying smears
ith pyramid token extraction and multi-loss fusion modules.
xperiments and detailed analysis are presented in Section 4, and
ection 5 concludes the paper.

. Related work

This section briefly reviews some previous popular methods
f intelligent disease classification, including vision transformer,
ultiple instance learning methods, and research on combining

hem.

.1. Vision Transformer (ViT)

The Google Brain team first proposed the Transformer model,
radually replacing RNN models such as long short-term memory
s the preferred model for solving natural language processing
asks [29]. Inspired by this, the vision transformer has been
roposed recently, and it is a transformer targeted at vision pro-
essing tasks such as image classification [20]. An image is split
nto fixed-size patches, each of which is then linearly embedded,
osition embeddings are added, and the high-dimensional em-
edded representation is fed to a standard transformer encoder.
urthermore, a typical approach usually adds an extra learnable
‘classification token’’ to the sequence for performing classifi-
ation. Many scholars have used it to analyze cytopathology
r histopathology because of its outstanding ability for feature
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Fig. 2. An overview of the PyMLViT architecture. (a) Input: One of a bag consists of random patches from the cytological slide. (b) Pyramid token extraction module:
The image is split and reconstructed using multiple scale-specific masks to form a new input, which is then converted into multi-scale features using a transformer
encoder. (c) Multi-loss fusion module: The bag-level features generated by the attention mechanism are trained using slide-level annotations, while the patch-level
features are trained using pseudo-labels from the slide. (d) Output: In the training phase, multiple losses are calculated and backpropagated; in the testing phase,
only the bag-level prediction results are used.
m
a
(

t

extraction [30–33]. For example, a study implements a robust
comparison of deep learning methods for multi-scale cytopathol-
ogy cell image classification, and their research perspective was
from convolutional neural networks to visual transformers [21].
With the development of this research, some variants of the ViT
model for enhanced performance have also been proposed, such
as T2T-ViT [34]. Accordingly, a study for improving cervical cancer
classification on cytological smears is proposed with the T2T-ViT
model [35]. These studies illustrate the significance of using ViT
and its variants to analyze cytological smears.

2.2. Multiple Instance Learning (MIL)

Multi-instance learning (MIL) is explored as a practical mech-
nism, which aims at using coarse-level labels (e.g., slide-level)
or learning fine-level (e.g., patch-level) images [36]. In general,
t first selects multiple small patches from a whole input image
ith annotations according to specified rules. Then, the system
andomly selects these patches to form multiple bags, and each
ag has the same annotation as the original image. Finally, a
ulti-instance classifier is established by learning for representa-

ions of bags, which is used to predict the class of bags. Currently,
his framework is used in many tasks that use DL methods to
nalyze cytopathology or histopathology [37,38]. For example,
ome studies use MIL to train a deep neural network and then
pply it to diagnosing breast diseases [17,18]. Ilse et al. use the
ttention mechanism to train the MIL classifier, which further
mproved the classification performance of the model [19]. In the
tudy of Hashimoto et al. a domain adaptation (DA) algorithm
s used in MIL to balance the differences between images from
arious institutions [39]. Based on the above content, the MIL
ethod is a practical approach for analyzing smears.

.3. MIL with transformer

Compared to CNN, transformer has more robust global feature
xtraction capabilities. Therefore, many MIL-based studies are
eginning to introduce the transformer framework to improve
he analysis ability of slides. Many prior studies drew inspira-
ion from the self-attention mechanism to build relationships
etween multiple instances using transformers [40,41]. For ex-
mple, a transformer-based MIL approach is being developed by
hao et al. [42]. The approach effectively incorporates morpho-
ogical and spatial information, providing excellent visualization

nd interpretability. Li et al. [43] introduced a newMIL model that

3

utilizes a deformable transformer architecture and convolutional
layers in a latent space. It can update the features of each instance
by simultaneously combining the features of all instances within
a bag and encoding positional context information during the
representation process. Recent research on histopathology has
tended to combine vision transformers with MIL, which has also
achieved significant advancements [22,23]. Cai et al. present a
dual-stream MIL model that leverages self-supervised contrastive
learning. The model employs the Swin Transformer as its back-
bone for feature extraction and demonstrates accurate classifica-
tion of colorectal adenoma slides based on slide-level labels [44].
Since most studies use CNN to build the MIL framework, migrat-
ing ViT to MIL requires further optimization of its structure to suit
smear classification.

The core idea of PyMLViT is inspired to solve challenges I and
II for classifying thyroid cancer on cytological smears. Thus, we
use the pyramid token extraction module to analyze the multi-
scale feature of tokens on a single input. The multi-loss fusion
module is designed to fuse the bag-level and patch-level losses
to optimize the parameters during the training phase.

3. Methodology

In this section, we first illustrate the framework of PyMLViT.
We then give a problem formulation of our model in the second
subsection. Next, we describe details about the pyramid token
extraction module in the third subsection. The last subsection
describes more information about the multi-loss fusion module.

3.1. PyMLViT architecture

We introduce the components of PyMLViT according to Fig. 2,
which consist of four parts. Part I: We use patch images from
a cytological slide as input (Fig. 2(a)). Part II: We construct a
pyramid token extraction module using the multi-token layer
fusion unit and deep self-attention encoder (Fig. 2(b)). Part III: The
ulti-loss fusion module consists of a bag-level loss based on the
ttention mechanism and patch-level losses from pseudo-labels
Fig. 2(c)). Part IV: The training phase adjusts the network param-
eters by calculating multiple loss values and then directly uses
the bag-level prediction results in the testing phase (Fig. 2(d)).
Next, we will present the mathematical definition of the model
and subsequently describe Part II and Part III in detail, which are
he two essential components of PyMLViT.
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Table 1
Key notations used in this paper.
Symbol Meaning

Xn One of the sample
Yn The sample’s label
N Number of samples
Bn A set of bags from the sample
S A variety of scales
Gs=1,2,3 Pyramid token layers
Hs=1,2,3 Pyramid token embeddings
Fs=1,2,3 Pyramid features
Hb Fusion embedding
Fb Fusion pyramid features
Pb The bag-level prediction probability
Ps=1,2,3 Patch-level prediction probabilities
Lb The bag-level loss
Ls=1,2,3 Patch-level losses
α The bag-level loss weight
β The patch-level loss weight
LT The total loss

3.2. Problem statement

This paper focuses on thyroid cancer classification by two core
tages. For convenience, we denote the first and second phases as
yramid token extraction and multi-loss fusion, respectively.
Phase I: pyramid token extraction. Given a thyroid cancer

ataset {Xn, Yn, Bn}, n ∈ N processed by the smear as the input,
e are now interested in extracting the multi-scale features and
epresenting them from these images. Where n is the sequence
umber of the current sample, and the total sample size of the
ataset is N . Xn represents the input image of the n sample,

Yn represents the label of the sample and corresponding bags
(0 or 1), and Bn represents a set of bags of Xn that will be
used for MIL learning. S represents a variety of scales, s ∈ S.
Next, Bn will be sent to the pyramid token extraction module,
which consists of three scales of the token layers Gs=1, Gs=2, Gs=3,
and generate three token embeddings Hs=1, Hs=2, Hs=3. Then the
model adds these embeddings to obtain a new fusion embedding
Hb and emits them to the transformer layers to obtain hierarchical
pyramid features Fb, Fs=1, Fs=2, and Fs=3.

Phase II: multi-loss fusion. First, the fusion feature Fb is in-
tegrated by the attention layer, and this stage can obtain the
prediction probability Pb at the bag level. Then, three pyramid
features are processed by a fully connected layer (FC), and it can
obtain three prediction probabilities Ps=1, Ps=2, Ps=3 at the patch
level. Next, the model calculates the bag-level loss Lb between Pb
and Yn. The various losses at the patch level Ls=1, Ls=2, and Ls=3
are calculated by Ps=1, Ps=2, Ps=3 and Yn. Finally, we design two
weights α and β for combining losses at the bag level and patch
level. This model can generate the total loss LT for training the
parameters.

In general, given a cytological smear, the model transforms it
into various token embeddings by pyramid token layers. Next,
the transformer layers are leveraged to extract crucial features
from pyramid token embeddings. Then, the model can obtain the
total loss according to the prediction probabilities at the bag-level
and patch-level. In the end, the prediction process can give the
classification result at the bag level. An overview of the notations
used in this paper is provided in Table 1.

3.3. Pyramid token extraction module

Yuan et al. [34] argue that the sequential split of the in-
put image in vanilla ViT cannot catch important local structures
between adjacent tokens (such as edges and lines), affecting clas-
sification performance. Therefore, they proposed a new token-to-
token split method. By aggregating several adjacent tokens into a
4

Algorithm 1: Pyramid Token Extraction Module
Input: Bn from Xn
Output: Fb, Fs=1, Fs=2, Fs=3

1 Parameter Initialization: θs=1,2,3, θT ;
2 for n = 1 to N do
3 Hs=1 = Gs=1(Bn; θs=1);
4 Hs=2 = Gs=2(Bn; θs=2);
5 Hs=3 = Gs=3(Bn; θs=3);
6 Hb = Hs=1 + Hs=2 + Hs=3;
7 Fb,s=1,2,3 = Transformer(Hb,s=1,2,3; θT ));
8 end

Fig. 3. First, the soft split operation recombines the tokens within the spe-
cific receptive field and then reforms smaller feature maps by the generated
embeddings.

new token, the surrounding tokens representing local structures
can be reorganized and fused to give the model a better single re-
ceptive field. Accordingly, we design a pyramid token extraction
module to obtain multi-scale potential features on histological
smears with various receptive fields, and Algorithm 1 describes
the modeling process of the pyramid token extraction module.

Multi-token layer fusion. The first step is called soft splitting.
For a token layer, we use a square area of a specific scale to select
adjacent multiple tokens, and each token has the same form as
ViT. Using a receptive field of a specific scale to obtain over-
lapping image regions can make adjacent tokens more relevant,
thereby avoiding information errors during feature extraction.
The second step is to use a classical self-attention network to
encode multiple adjacent tokens into a unified token. It can
effectively reduce the feature dimension of multiple input tokens,
making the model lightweight. The third step is reconstruction,
and we restore the obtained tokens into a new feature map for
the next operation. Therefore, the process can be formalized as
follows:
Ts = SS(Is),
T ′

s = MLP(MSA(Ts)),
Hs = reshape(T ′

s ),
(1)

where Is represents the input patches of the bag, and SS means
soft split. Ts represents the token groups after the soft split
operation, MSA and MLP mean the multi-head alternating self-
attention layer and multilayer perceptron with layer normaliza-
tion, which is Gs. θs and θT are trainable parameters that act
on the multi-token layer and the transformer encoder of the
model, respectively. T ′

s are new token features. Hs represents
the reconstructed token embedding. It converts tokens of l × c
dimension into h × w × c dimension, l represents the number
of tokens, where h, w, and c represent the height, width, and
channels of the new feature map, respectively. These steps can
effectively reduce the size of the feature map, and the process is
shown in Fig. 3.
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Accordingly, the model follows the above steps with receptive
fields of five, seven, and nine to obtain multi-scale feature maps.
We define the process of extracting tokens using different soft
split scales as a pyramid framework and perform three soft split
operations on each scale to obtain the final reorganized token.
The receptive field of the pyramid gradually decreases from the
bottom to the top, and the model also extracts features from
the global to the local. Finally, the model sums new tokens from
different soft split scales to obtain a multi-scale token feature
map. It contains rich semantic and detailed information, which
can improve the prediction ability of the model at the bag level.
The calculation process of fusion embedding Hb is as follows:

Hb =

S∑
s=1

Hs, (2)

Deep self-attention encoder. We use a deep and narrow self-
attention network in this unit to extract new multi-scale token
features, and it consists of k layers with hidden neurons in each
layer. For tokens with fixed length Hs from the multi-token layer
fusion unit, a class token is added to it and then processed
by sinusoidal position embedding (PE). Pyramid features Fs are
btained as follows:
0
s = [tcls;Hs] + PE,

H i
s = MLP(MSA(H i−1

s )), i = 1...k

Fs = FC(LN(H i
s)),

(3)

where LN is the layer normalization process, and i represents
the serial number of layers in the current operation. The class
token tcls is a high-level representation of the entire input image,
which the model learns to associate with the image’s class or
label. Therefore, both fusion and multi-scale pyramid features
Fb, Fs=1,2,3 are obtained by the deep self-attention encoder.

3.4. Multi-loss fusion module

Most current research work based on MIL can be divided
into two parts in the training phase. First, the model needs to
divide large-scale slides into multiple patches, combine them into
various bags, and then extract features. An aggregation model
is then learned to integrate patch-level information to classify
images at the bag level. This training method only considers
the integrated bag-level features and lacks training of patch-
level features. At the same time, the information contained in
patches at specific scales is also different. Therefore, training
on multi-scale patch-level features is also essential. Based on
this, we further design the optimization process of the training
phase, adding the supervision process at the patch level to the
multi-scale feature generated by the pyramid token extraction
unit. Moreover, the bag-level and patch-level training labels come
from the annotations of the original slides, and there is no other
labeling process. Finally, a fusion function is designed to combine
the bag-level and patch-level losses to guide network training and
improve classification performance. The pseudocode of this step
is shown in Algorithm 2.

Bag-level Loss. The bag-level features provide global infor-
mation about the bag, which can help the model identify the
characteristics distinguishing positive bags from negative bags.
This information can be useful in cases where the positive patches
are spread out across the bag or are not easily identifiable based
on their local features. In our model, each bag contains multi-
ple patches, and we use a parameterized attention module to
aggregate patch-level features in bags and generate bag-level
representations. Specifically, we first reduce the dimension of
the fusion features extracted by the pyramid token extraction
module and use them as the input of the attention network. The
5

Algorithm 2: Multi-Loss Fusion
Input: Fb, Fs=1, Fs=2, Fs=3
Output: Training : LT , Testing : Pb

1 Initialization: Attention, FC;
2 for n = 1 to N do
3 Pb = Attention(Fb; θA);
4 Ps=1,2,3 = FC(Fs=1,2,3; θFC );
5 Lb = CE(Pb, Yn);
6 Ls=1,2,3 = CE(Ps=1,2,3, Yn);
7 LT = αLb + β(Ls=1 + Ls=2 + Ls=3);
8 end

Fig. 4. The total loss is formed by weight fusion of bag-level and patch-level
losses.

attention network consists of two FC layer networks, which can
provide an attention value for each patch-level feature. Then, each
patch feature multiplies the corresponding attention value and
performs a sum operation to obtain aggregated features for the
bag. Finally, the model can give a bag-level prediction probability
Pb by connecting the obtained aggregated features to an FC layer
and using softmax activation. The specific operation method is as
follows:

Pb = softmax(FC(
M∑

m=1

amFm
b )),

a = softmax(FC(Tanh(FC(Fb)))),

(4)

where M represents the number of patches in each bag. Next, the
bag-level loss can be calculated by the cross entropy loss function
(CE) as follows:

Lb = −

C∑
c=1

Y c
n logP

c
b , (5)

here C represents the total number of classes.
Patch-level Loss. The patch-level features provide local in-

ormation about the patches within the bag, which can help
he model identify the relevant patches that contribute to the
ag’s label. This information can be helpful in cases where pos-
tive patches are rare or difficult to distinguish from negative
atches. Therefore, we also perform dimensionality reduction on
he patch-level features and then use an FC layer to classify the
imensionality-reduced features directly. After activation by the
oftmax function, the patches on each scale will give a prediction
esult Ps=1,2,3. The labels at the patch level are the same as those
t the bag level, and they all come from Yn. Therefore, the multi-
cale loss at the patch level can also be calculated using the CE
unction, and the process is as follows:

s=1,2,3 = −

C∑
c=1

Y c
n logP

c
s=1,2,3. (6)

Fusion Loss. By combining bag-level and patch-level features,
he model can capture local and global information about the bag,
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Fig. 5. Some examples of thyroid cytological smears and the process of bag integration.
eading to a more accurate classification. The model can weigh the
mportance of different levels based on their contribution to the
raining process. Therefore, we designed two hyperparameters, α
and β , to balance the impact of bag-level and patch-level losses
for training the neural network. Finally, the fusion loss function
LT is defined as follows:

LT = αLb + β(Ls=1 + Ls=2 + Ls=3). (7)

Furthermore, the fusion pattern can increase the model’s robust-
ness to noisy or irrelevant features. This is because the model
can ignore features that are not useful for classification by as-
signing patch-level information low weights, enhancing better
feature representation capability for the bag-level branch. We
aim to enhance the bag-level feature representation capabilities
by employing auxiliary supervision of patch-level information.
Therefore, we only use the bag-level predictions and do not use
patch-level results in the inference phase. The bag-level embed-
ding is composed of multiple patches in the image, allowing for a
diverse set of bags to represent sample features and thereby en-
hancing the generalization of algorithm evaluation. This process
is shown in Fig. 4.

4. Experiments

In this section, we first describe the experimental setups and
then conduct four groups of experiments to answer the following
questions: Q1: How does our proposed method perform com-
pared with popular techniques? Q2: How are different scales
of tokens transformed and represented with the pyramid token
extraction module? Q3: Is it necessary to combine patch-level
loss for the training phase in the multi-loss fusion module? Q4:
ow do the number of model parameters and computational
omplexity of PyMLViT compare to other models?

.1. Experimental settings

.1.1. Dataset
Our thyroid cell smear database consisted of 560 samples from

he China-Japan Union Hospital of Jilin University. The pathologist
sed FNAC technology to obtain diseased cells, stained them with
ematoxylin, and generated digital slides through a microscope.
t the same time, they conducted an ethical review and expert
onfirmation. The dataset only has annotations for the category,
nd no other annotations are used for training. The slide size of
he dataset is approximately 2048 × 1536 pixels. Fig. 5 gives
ome examples of thyroid cancer and normal samples. To main-
ain the balance of positive and negative samples in the dataset,
e selected 280 patient slides of thyroid cancer and 280 slides
f healthy people. The above dataset is divided into 60% training
ata, 20% validation data, and 20% testing data.
6

4.1.2. Baselines and evaluation
To comprehensively compare the test results, we divide the

relative research algorithms into exact and inexact supervision.
Exact supervised algorithms mainly include the following:

• slide level. It uses the entire compressed smear as input to
classify whether there is a disease [14].

• patch level. All patches are obtained from a smear as input,
and the patch label is the same as the slide label [45].

Inexact supervised algorithms mainly include the following:

• vanilla MIL. It combines CNNs and attention mechanisms to
extract features for classification [19].

• DA-MIL. It adds a domain adaptive network and attention
mechanism to the CNN [39].

• ViT-MIL. The extractor used to generate features is changed
from CNN to the vision transformer [20].

• T2T-ViT-MIL. It expands the local receptive field of the ViT
and makes it lightweight [34].

We use three evaluation metrics for testing: accuracy (ACC),
precision (P), and recall (R). In addition, we use floating point
operations (FLOPs) and parameters (Params) metrics to compare
the complexity of the deep learning models.

4.1.3. Implementation
The implementation of the model in this paper is based on the

bag-level MIL framework. We randomly select 100 patches with a
size of 224 × 224 from a smear to obtain a bag, and the maximum
number of bags in each smear is limited to 50. Furthermore, since
our datasets are from the same medical institution, there is no
need to consider the effect of staining on the results. In the train-
ing phase, we set 30 epochs to update the network parameters
and randomly generate patches in each bag during each iteration.
The dimension of multi-scale and integrated features is 384, and
the attention module consists of two layers of fully connected
networks with 384 and 128 neurons. The model uses stochastic
gradient descent to optimize network parameters with a learning
rate of 0.0005 and a momentum set of 0.9.

To balance the performance and complexity of the model, as
well as to maintain consistency with previous relevant research,
we design a three-layer pyramid structure. Moreover, the token
receptive field of T2T-ViT is seven, and we expand it upward and
downward to four additional receptive fields: five, six, eight, and
nine. Furthermore, we empirically validate the effects of various
combinations in our experiments.

4.2. Overall experimental results (Q1)

To assess the efficacy of our model, we compare the perfor-
mance of PyMLViT to related algorithms on an in-house thyroid
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Table 2
The results of different algorithms on the in-house thyroid dataset.
Method type Models R (%) P (%) ACC (%)

Exact supervision Slide level 79.76 77.90 78.57
Patch level 68.72 70.95 70.29

Inexact supervision

Vanilla MIL 85.41 86.11 85.41
DA-MIL 85.71 85.76 85.71
ViT-MIL 85.71 84.21 84.82
T2T-ViT-MIL 86.90 85.39 86.01

Ours PyMLViT 88.69 86.62 87.50

Table 3
Ablation results of different token layer combinations.
Models R (%) P (%) ACC (%)

PyViT(5+6+7) 88.69 84.73 86.30
PyViT(6+7+8) 83.93 87.50 85.71
PyViT(7+8+9) 88.09 85.71 86.60
PyViT(5+7+9) 90.47 84.02 86.60

dataset (see Table 2). First, we discuss some results of exact
supervised methods. Slide-level methods simplify preprocessing
of the original image, such as rescaling, which can compress
the smears and lead to information loss. As a result, the indices
of slide-level methods do not exceed 80%. On the other hand,
patch-level approaches only consider independent patches, miss-
ing global information, and perform poorly, with each index at
approximately 70%.

Second, inexact supervised algorithms consider bag-level in-
ormation perform well, although they will be distracted by noise
abels during training. The vanilla MIL method reduces the in-
erference of noise labels at the bag level by aggregating patch-
evel information through the attention mechanism, increasing by
ore than 15% in each index. The DA-MIL algorithm introduces
domain adaptive module, but the classification result has not
een significantly improved due to the lack of significant changes
n the dataset. ViT methods usually perform well in general clas-
ification tasks, but when transferred to MIL, the ViT-MIL method
ails to consider contextual information between different scales,
nd the T2T-ViT-MIL method does not consider the multi-scale
ase. At the same time, they do not consider that the bag-level
nd patch-level supervision information also plays a crucial role
n the training process.

Therefore, we consider both multi-scale features and mul-
iple types of supervisory information. Our model can obtain
ulti-scale structure features on single-scale input by combining

he pyramid token extraction module. Moreover, we adopt the
ulti-loss fusion module, which can significantly improve the
lassification performance by combining the bag-level and patch-
evel losses. As shown in Table 2, PyMLViT achieves the best
esults in three indices, with a recall of 88.69%, a precision of
6.62%, and an accuracy of 87.50%. PyMLViT obtains the highest
lassification accuracy by comparing it with other algorithms.
oreover, it illustrates that the model proposed in this paper is
ffective for classifying thyroid cancer on cytological smears.

.3. Validity of pyramid token extraction (Q2)

In this section, we verify the effectiveness of the model by
dding the pyramid token extraction module. First, we perform
blation experiments with single token layer changes. In order
o ensure that the dimension of the output feature vector is
nchanged, we use five different sizes of token layers to verify
he effect on this module. As shown in Fig. 6, the token layer
f medium size has the highest recall with almost the same
ccuracy, which proves that the size of the token layer does not
7

Fig. 6. The impact of different single-scale token layers on model performance.

Fig. 7. Impact of β weight changes on performance.

increase or decrease blindly to improve the performance of the
model. Therefore, in the following experiments, we choose the
token layer of medium size (7) as a reference to further select
the combination strategy of multi-scale tokens further.

To further verify the effectiveness of multi-scale token layer
fusion, we perform ablation experiments with different combina-
tions of token layers. We refer to the model that only combines
the pyramid token extraction module as the PyViT framework.
As shown in Table 3, all the PyViT models with the token layer
of medium size achieve more than 88% recall, but the precision
of PyViT (6 + 7 + 8) increases by approximately 2% compared to
other models. The accuracy of each model in this experiment is
similar. PyViT (5 + 7 + 9) achieves the highest recall of 90.47%;
PyViT (6 + 7 + 8) achieves the highest precision of 87.50%; and
the PyViT (5 + 7 + 9) model and PyViT (7 + 8 + 9) have the
highest accuracy of 86.60%.

In conclusion, the performance of the model with multi-scale
token layer fusion is generally higher than that of the model with
a single token layer. The pyramid token extraction module can
significantly improve the classification performance of the model.

4.4. Benefit of multi-loss fusion (Q3)

In this section, we will analyze the outcomes of the multi-
loss fusion module. To determine the impact of bag-level and
patch-level information on model performance, we introduce two
hyperparameters (α and β) to modify the importance of each.
We conduct model comparison experiments, setting the hyper-
parameter controlling the bag-level information α to a constant
value of 1. As shown in Fig. 7, the value of the hyperparameter
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Table 4
Comparison of PyViT and PyMLViT.
Models R (%) P (%) ACC (%)

PyViT 90.47 84.02 86.60
PyMLViT 88.69 86.62 87.50

governing the weight of patch-level information β determines
how well the classification model performs. Given that the patch-
level information is an auxiliary for bag-level training, the value
of β should be less than the value of α. This demonstrates that
when the patch-level and bag-level information is combined,
the model’s classification performance is inferior to the model’s
classification performance when only considering the bag-level
information. This means that the patch-level information will
correct the bag-level information and subsequently produce noise
to interfere with the model’s performance. If we define β as 1,
the precision might reach 88.24%. When β is set to 0.1, the recall
s 89.29%, and the accuracy is 84.82%; when β is set to 0.01,
e obtain the most remarkable accuracy, 87.50%. Notably, the
ptimal ACC values are observed when β is set to 0.01 and 0.05. In
uxiliary diagnosis, the risk of false-negatives is more significant
han that of false-positives, rendering the recall more clinically
ignificant than precision. Consequently, we ultimately opt for the
esults with a higher recall, corresponding to the β value of 0.01.

To further verify the effectiveness of this module, we compare
he PyViT model without patch-level supervision information
ith the PyMLViT model. This module weights bag-level and
atch-level loss information with α = 1 and β = 0.01 so
hat PyMLViT can better use the available features to generalize
erformance on unseen details. Table 4 shows that PyMLViT
chieves better performance in precision and accuracy, outper-
orming PyViT by 2% and 0.90%, respectively. The addition of
atch-level supervision information can allow the model to better
istinguish between objects and backgrounds, thereby screening
eaningful information to help model classification. For example,

he background of carcinoma and normal cases are repeatedly
abeled as positive and negative. This conflicting supervision in-
ormation makes the model give less attention to them because
hey are not helpful for diagnosis. Furthermore, the optimization
rocess of PyMLViT prioritizes the reduction of false-positives,
eading to high precision. PyMLViT typically indicates that it
an correctly classify most positive examples and has few false-
ositives with high accuracy and precision. However, it might
till miss some positive instances, resulting in false-positives. This
ituation can lead to a lower recall. The situation with PyViT
s the opposite. Due to insufficient precision, PyViT will predict
ore true and false-positive examples, thereby increasing the
alue of recall. Therefore, the PyViT and PyMLViT have opposite
erformances on R and P & ACC.
The model performance steadily improves as β is gradu-

lly reduced, demonstrating that the patch-level information is
upposed to supplement the bag-level information or that the
atch-level information aids the model in considering what the
ag-level information lacks.

.5. Parameters and complexity of PyMLViT(Q4)

In this section, we will compare the parameters and complex-
ty of the model presented in this research to previous methods.
able 5 expresses the performance of various models on our
hyroid cytological smear dataset.

Regarding the number of parameters of the model, the related
xact supervised methods have a slight advantage. Their parame-
ers are more than 1000, requiring more GPU memory for calcula-

ion and increasing the development cost. In contrast, the inexact

8

Table 5
Comparison of model parameters and complexity.
Method type Models Params(M) FLOPs(G)

Exact supervision Slide level 134.27 15.50
Patch level 134.27 15.50

Inexact supervision

Vanilla MIL 67.21 15.42
DA-MIL 174.52 15.52
ViT-MIL 85.71 16.85
T2T-ViT-MIL 21.12 4.36

Ours PyViT 21.91 4.95
PyMLViT 21.88 17.10

supervised methods have reduced the number of parameters,
especially the T2T-ViT-MIL method using token transformation,
which has minor parameters. Based on improving the classifi-
cation performance, our model keeps the characteristics of low
parameter quantity as much as possible. PyMLViT dramatically
reduces the number of parameters compared to exact supervised
models and some inexact supervised models. For example, except
for T2T-ViT-MIL, the number of parameters in PyMLViT falls by
a factor of three to roughly eight compared to other models.
Moreover, it has approximately five times fewer parameters than
the slide-level model.

In terms of complexity, the performance of exact supervi-
sion and inexact supervision is comparable, except for the T2T-
ViT-MIL method. We designed the PyViT architecture based on
the T2T-ViT-MIL model, which adds a multi-scale token extrac-
tion function and improves some performance while maintaining
low complexity. Furthermore, we added patch-level supervision
information based on PyViT, which improved the classification
performance and only sacrificed a small amount of complexity
compared with other algorithms. The accuracy rate of PyMLViT is
higher (as shown in Table 2), which means that the model in this
research is relatively light.

It shows that the strategy described in this research increases
the cytological classification performance of the model with nearly
no increase in the number of parameters and complexity while
reducing the number of parameters significantly more than the
CNN approach.

5. Conclusion

This paper proposes a novel PyMLViT model with two mod-
ules, which implements the diagnosis process of thyroid cancer
with cytological smears. A pyramid-shaped multi-scale token se-
lection mechanism is designed, and tokens from it can be further
converted into high-dimensional features by a deep self-attention
network. Furthermore, we design a weight-based loss function
for bag-level and patch-level fusion, which can optimize the
training process of the network. The study provides sound ex-
perimental evidence that PyMLViT has ultimate performance in
classifying thyroid cancer and outperforms the currently popular
methods. This shows that it is feasible to extract multi-scale
features from a single input to improve classification accuracy,
and patch-level supervision information is crucial for analyzing
cytological smears. In follow-up work, an optimized PyMLViT will
be adopted and applied to other cancers for classification to verify
its applicability further.
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