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Abstract

Background. Very little knowledge exists on the impact of Alzheimer’s disease 
on the CNS target site pharmacokinetics (PK).

Aim. To predict the CNS PK of cognitively healthy young and elderly and of 
Alzheimer’s patients using the physiologically based LeiCNS-PK3.0 model.

Methods. LeiCNS-PK3.0 was used to predict the PK profiles in brain extracellular 
(brainECF)  and intracellular (brainICF) fluids  and cerebrospinal fluid of the 
subarachnoid space (CSFSAS) of donepezil, galantamine, memantine, rivastigmine, 
and semagacestat in young, elderly, and Alzheimer’s patients. The physiological 
parameters of LeiCNS-PK3.0 were adapted for aging and Alzheimer’s based 
on an extensive literature search. The CNS PK profiles at plateau for clinical 
dose regimens were related to  in vitro  IC50  values of acetylcholinesterase, 
butyrylcholinesterase, N-methyl-D-aspartate, or gamma-secretase.

Results. The PK profiles of all drugs differed between the CNS compartments 
regarding plateau levels and fluctuation. BrainECF, brainICF and CSFSAS PK profile 
relationships were different between the drugs. Aging and Alzheimer’s had little 
to no impact on CNS PK. Rivastigmine acetylcholinesterase IC50 values were not 
reached. Semagacestat brain PK plateau levels were below the IC50 of gamma-
secretase for half of the interdose interval, unlike CSFSAS PK profiles that were 
consistently above IC50.

Conclusion. This study provides insights into the relations between CNS 
compartments PK profiles, including target sites. CSFSAS PK appears to be an 
unreliable predictor of brain PK. Also, despite extensive changes in blood-
brain barrier and brain properties in Alzheimer’s, this study shows that the 
impact of aging and Alzheimer’s pathology on CNS distribution of the five drugs 
is insignificant.

Keywords: LeiCNS-PK3.0; PBPK; Alzheimer’s disease; Target site; PK prediction
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Introduction

For Alzheimer’s disease (AD) treatment, currently only four small molecule 
drugs are available that can help reduce the symptoms (1). These include 
the selective acetylcholinesterase inhibitors donepezil and galantamine, the 
acetylcholinesterase and butyrylcholinesterase dual inhibitor rivastigmine 
(for early- to mid-stage AD) (2, 3), and the N-methyl-D-aspartate (NMDA) 
receptor antagonist memantine (for moderate or severe AD) (4). Cholinesterase 
inhibitors inhibit the enzyme acetylcholinesterase from breaking down the 
neurotransmitter acetylcholine into choline and acetate (2, 3). Cholinesterases 
exist in different forms that can be found in cells, or can be attached to the outer 
cell membrane (2,  3). Memantine blocks extracellularly the cell membrane 
bound NMDA receptors (4). Despite their anticipated sites of actions in 
brain intracellular (brainICF) and/or extracellular (brainECF) fluids, accessible 
information on AD drug distribution in the human brain is lacking, let aside how 
this PK profile may be affected by changes in the CNS physiology associated with 
aging and/or AD. At best, limited data exist on concentrations in subarachnoid 
cerebrospinal fluid (CSFSAS) at the lumbar region, which is often believed to 
reflect brainECF  concentrations (5,6,7,8,9). Also for AD drug discovery and 
development, it is important to understand the unbound (brain) target site(s) 
concentrations, that drive their effects (10). However, assessment of the right 
information on human brain PK is challenging. First, the best possible direct 
measurement of unbound drug PK profiles in human brain by microdialysis is 
limited by ethical restrictions based on the method’s invasiveness. Second, while 
noninvasive CNS imaging techniques provide crucial information on CNS drug 
distribution they do not distinguish between the bound and the unbound drug or 
the parent drug and its metabolites (11). Third, while (invasive) sampling of the 
lumbar cerebrospinal fluid (CSF) is ethically possible and provides unbound 
drug concentrations, its use remains limited (5,6,7,8,9), while also it has been 
shown to be an inaccurate surrogate of brain PK, particularly in the context of 
CNS diseases (12, 13).

We have previously developed the comprehensive physiologically-based 
LeiCNS-PK3.0 model (Fig. 1), that has been demonstrated to adequately predict 
the unbound PK of multiple small molecule drugs in healthy human brainECF and 
lumbar CSFSAS  (13,  14). The LeiCNS-PK3.0 model accounts for the drug 
physicochemical properties such as lipophilicity, charge, and molecular weight 
and for the physiological properties of the human CNS, including the brainECF and 
brainICF, and the different CSF compartments, on the basis of the compartments 
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size and surface area. The model accounts for other physiological processes 
including drug transport across the blood-brain (BBB) and blood-CSF (BCSFB) 
barrier, physiological fluid flow, intra-extracellular drug distribution, brain 
tissue non-specific binding, and compartment-specific pH values. The LeiCNS-
PK3.0 model can be used to predict the unbound PK profiles at CNS target sites 
for small molecule CNS drugs and off-target sites for non-CNS drugs and 
thus predicting potential CNS related toxicities or side effects. In addition, the 
mechanistic structure of the model allows translation of PK predictions across 
species but also between the different CNS physiological states, i.e. healthy, 
diseased, maturing, etc.

Previous studies with the LeiCNS-PK3.0 model have predicted that CNS 
pathophysiological changes can alter the rate and/or extent of drug transport 
into the CNS (13,14,15). These studies addressed the impact of individual CNS 
pathophysiological changes for multiple small molecule drugs. AD is associated 
with a complex, multifactorial pathophysiology, which includes but is not limited 
to brain shrinkage, CSF spatial expansion, brain tissue and cellular composition 
alteration, and BBB breakdown. Any of these factors has the potential to impact 
the unbound CNS PK profiles. For a disease (like AD), the impact of disease 
induced changes on CNS PK should be addressed in combination and not in 
isolation. Also, AD processes should be distinguished from processes that occur 
during “normal” aging. Aging represents the best-known risk factor of AD and 
is associated with similar, but otherwise mild pathophysiological changes (16). 
Thus, accounting for the pathophysiological changes observed in aging and AD 
should be performed in a holistic manner to improve the accuracy of CNS PK 
predictions in these populations (17).

In this paper, we translate the LeiCNS-PK3.0 model to predict the impact of 
healthy aging and AD-specific pathophysiological changes on brain and CSF PK 
profiles. The pathophysiological changes associated with each condition were 
identified from an extensive literature search. The aging and AD versions of the 
LeiCNS-PK3.0 model will then be used to predict the brainECF and brainICF PK 
profiles of donepezil, galantamine, memantine, and rivastigmine. In addition, 
two case studies of potential model applications will be performed. In case 
study 1, the predicted PK profiles of virtual AD patients under chronic treatment 
with either of the four AD drugs are compared to the relevant unbound IC50 at 
brainECF, brainICF and CSFSAS. CSFSAS includes the lumbar CSF region and, in this 
sense, represents the most feasible sampling site of the human CNS. 
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In case study 2, the fluctuation of semagacestat PK profiles at brainECF  and 
brainICF versus CSFSAS, and the relation to its IC50 is explored. Semagacestat is a 
gamma secretase inhibitor that failed in clinical trials due to the lack of efficacy 
and safety concerns (18).

Furthermore, the LeiCNS-PK3.0 model is published as a web-based application 
at https://cns-pbpk.shinyapps.io/AD-SHINYAPP/ and can be used to predict 
the PK profiles of healthy and AD subjects. In addition, the impact of the 
pathophysiological changes of brainECF pH and of paracellular transport on CNS 
PK can be assessed. These parameters were selected based on the sensitivity 
analysis results and represent an example of parameters with a drug-dependent 
impact on CNS PK, while the numerical values are the average change of these 
parameters in CNS diseases (15).

Methods

Translation Strategy
A knowledge-based approach was implemented to translate the predicted 
PK profiles of cognitively healthy young adult population (CHY) to that of 
cognitively healthy elderly (CHE) and of AD patients. An extensive literature 
study of the physiological changes of CNS parameters and processes associated 
with AD and aging was performed (see Literature Search for details). Results of 
this literature study were used to inform LeiCNS-PK3.0 parameters.

Literature Search
An extensive literature search on aging and AD-associated changes in CNS 
physiology was performed in the PUBMED database (19), with a focus on 
the parameters that are relevant to parameterization of the LeiCNS-PK3.0 
model. Search queries included the terms “Alzheimer’s” or “Aging”, the terms 
“brain”, “CNS”, etc. and terms related to the CNS physiological parameter 
in question, for example “cerebrospinal fluid flow”, “blood-brain barrier”.  
A representation of the search terms used in this literature study is presented  
in the Supplementary Table  3. In addition, manual forward and backward 
searches using a seed article were carried out, particularly for CNS parameters 
with little literature information. Studies including human subjects were 
selected for further analysis and when humans studies were unavailable, 
parameter values from animal studies were used. The scaling method of a given 
parameter, where required, is described in the results section. Where multiple 
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values of the same parameter are found in literature, the mean was calculated 
weighed by the number of subjects included in the study.

Aging Versus AD
In this study, aging in CHE is defined as the physiological changes that occur in 
the CNS, from 60 years old onwards, for subjects without cognitive impairment 
as defined by mini-mental score examination (MMSE) scores. Subjects younger 
than 60 years old were therefore not considered CHE. Parameter rate of change 
over age was calculated as the percentage change per year from 60 years old 
onwards. Where literature information was not suitable for calculating %change 
per year, the population was divided into 3 categories: young (<60 years old), 
old (60–75 years old), and older old (>75 years old) and the parameter %change 
per year was calculated for the parameters of the older categories relative to 
the young category.

Age as such is not a good marker of AD progression (20), and therefore cognitive 
scales such as MMSE and clinical dementia rating (CDR) were used to categorize 
AD patients into mild, moderate, and severe patients (Table I). Information on 
changes in CNS physiological parameters in moderate-to-severe stages of AD 
are very rare and therefore we focused on predicting the PK profiles of mild AD 
patients, which is in line with clinical studies that target the mild AD population. 
Rate of change of parameters was calculated as the percentage rate of change 
relative to that in the age matched CHE.

Table 1. Alzheimer’s Disease (AD) Severity according to CDR, MMSE, and Braak Severity Scores 
(21,22,23,24,25)

CDR MMSE Braak AD Severity

0 30 0-II Normal cognition

0.5 26–29 II-III Questionable

1 21–25 III-IV Mild

2 11–20 IV-V Moderate

3 0–10 V-VI Severe

CDR: Clinical Dementia Rating; MMSE: Mini-Mental State Examination

LeiCNS-PK3.0
The previously published physiologically based LeiCNS-PK3.0 model (13) was 
used as the base model that was translated to predict CNS PK profiles in CHE 
and AD patients. The model structure (Fig. 1) is composed of 9 compartments 
representing different physiological compartments of the CNS including brain 
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cells and the surrounding extracellular fluid, lysosomes, brain ventricles, 
cisterna magna, and CSFSAS, including lumbar CSF. Plasma PK is used as input 
into the LeiCNS-PK3.0 model and is typically described by empirical 1-, 2-, or 
3-compartment models. Other physiological processes are accounted for in 
the model such as brain tissue non-specific binding, the actual physiological 
pH in each compartment to calculate drug ionization as input for ionized and 
neutral drug transport across cell membranes and across the BBB and BCSFB 
via paracellular and transcellular routes, and drug transport by bulk fluid flow. 
Active transport across BBB and BCSFB is accounted for by using the asymmetry 
factors that are calculated and are translated as described previously (13, 14, 26). 
Asymmetry factors can be regarded as pure Kpuu values, without influences of 
other steady state brain processes, for example the constant brainECF bulk flow. 
Further details on model equations have been reported previously (13).

The LeiCNS-PK3.0 model input includes drug physicochemical, CNS 
physiological, and plasma PK parameters, in addition to the unbound tissue-
to-plasma partition coefficient across the BBB (Kpuu,BBB) and across BCSFB 
(Kpuu,LV and Kpuu,lumbar) (see Table II), which can be obtained from in vivo or in 
vitro  data. No clinically measured CNS PK data are, thus, required to run 
the model.

Physiological Parameters
Physiological parameters represent the CNS physiology in values such as 
volumes of different compartments, tissue composition, pH of fluids, flows, 
and transport rates across the membranes (i.e. brain barriers). Physiological 
parameters of the CHY were as previously described in our work (13). 
Physiological parameters of CHE and AD patients were calculated using the 
physiological values of CHY in combination with rates of change as identified 
from the literature search.

Plasma PK Parameters
Parameters of the empirical plasma models of the drugs are available from 
literature (Table III). Plasma PK parameters that were estimated based on PK 
data of AD patients were selected when available.

Kpuu Values
Kpuu,BBB, Kpuu,LV, and Kpuu,lumbar  values are used to calculate the asymmetry 
factor to account for the active transport of drugs across the BBB and BCSFB. 
Kpuu,LV and Kpuu,lumbar are calculated based on limited clinical CSF data. Kpuu,BBB is 
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rarely available in humans because of the ethical constraints of the human brain 
sampling with microdialysis. Therefore, Kpuu,BBB measured with microdialysis 
in rats, where available, were used to calculate AFBBB,rat  that was translated 
to AFBBB,human  based on the decision tree described previously (14). When  in 
vivo Kpuu,BBB could not be found, Kp brain measured by brain homogenate was 
used and converted to Kpuu,BBB,  by correcting for plasma protein and brain 
tissue binding and also for the unequal distribution of charged drug between 
brainECF and brainICF as a result of the pH difference. Equations used to convert 
Kp to Kpuu,BBB are described in the supplementary materials. 

Table 2. Drug-Specific Parameters

Drug Donepezil Galantamine Memantine Rivastigmine Semagacestat

Drug physicochemical parameters (27)

Molecular 
mass (g/
mol)

379.49 287.35 179.3 250.3 361.4

logP 4.14 1.16 3.31 2.45 0.44

pKa 17.02 14.81 NA NA 11.91

pKb 8.62 8.58 10.7 8.89 −3.7

Kpuu and calculated asymmetry factors (AF)1

Kpuu,BBB
2 0.482 (28, 29) 0.826 (30) 2 (31, 32) 0.733 (29) 0.553

AFin,ECF 2.1 1 191.3 1 1

AFef,ECF 1 18.4 1 8.6 20.4

Kpuu,LV 4 1.8 (9) 1.2 (33) 0.89 (5) 0.663 (7) 0.55 (34)

AFin,LV 1.2 19.5 1 1 1

AFef,LV 1 1 27 10.2 18

Kpuu,lumbar 
4 1.8 (9) 1.2 (33) 0.89 (5) 0.663 (7) 0.55 (34)

AFin,TFV 1.2 16.4 1 1 1

AFef,TFV 1 1 24.5 10.6 18.6

1AF factors are calculated for AD populations; 2Rat values; 3Assumed the same as Kpuu,lumbar; 
4Human values
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Table 3. Plasma PK Model Parameters and Dosing Regimens of Different Drugs
Drug Donepezil Galantamine Memantine Rivastigmine Semagacestat
Plasma PK model parameters
Population Elderly 

(35)
Alzheimer’s 
(36)

Alzheimer’s 
(37)

Alzheimer’s 
(7)

Volunteers 
(38)

Number of subjects 129 1089 108 18 14
CLcen (mL min−1)1 2048 192 228 3333 5 846
Qcen-per1 (mL min−1)1 0 51 0 0 0
Vcen (mL) 391,000 157,000 194,000 236,000 71,700
Vper1 (mL) 0 59,000 0 0 0
Ka (min−1) 0.022 0.051 0.005 0.052 0.012 (39)
Biological drug properties
fu,p

7 0.07 (40) 6,8 0.83 (40) 6,9 0.55 (40) 6 0.6 (40) 6 0.382 (41) 2

fu,b
7 0.107 (42) 10 0.333 (42) 2 0.071 

(43) 3, 10

0.376 (42) 10 0.413 (42) 2

IC50 (ng mL−1) 0.57 (44) 4 55 (44) 4 109 (5) 857.2 (44) 4 5.4 (18)
Dosing parameters
Dose (mg) 10 10 20 6 140
Dosing Once daily Twice daily Once daily Twice daily Once daily

1Apparent values and are corrected for plasma protein binding, i.e. represent unbound drug; 
2Predicted values; 3Rat values; 4Corrected for fraction unbound in brain (fu,b); 5F = 1.4 for 6 mg 
dose, representing relative bioavailability to 1–5 mg dose; 6Human values; 7fu,p: fraction of unbound 
drug in plasma; fu,b: fraction of unbound drug in brain; 8fu,p  was determined by ultrafiltration; 
9fu,p  was determined by equilibrium dialysis; 10fu,b was determined by equilibrium dialysis of  
brain homogenates (45)

Drug Properties
Drug physicochemical properties: molecular weight, lipophilicity (logP), and 
acid/base ionization constants were available from DrugBank release version 
5.1.8 (27) and are presented in Table  II. ALOGPS (46) and CHEMAXON (47) 
were the methods of choice to predict logP and acid/base ionization constants, 
respectively. Galantamine lipophilicity from the CHEMAXON method was used, 
as its ALOGPS value was unavailable.

Sensitivity Analysis
A sensitivity analysis was performed to assess the impact of altered CNS 
physiology on CNS PK and to support parameter translation where literature 
information gaps exist. Parameters of the AD model were increased and 
decreased one-at-time by two and ten folds, except for pH values that were 
altered by ±1 and ± 2 pH units. The Cmax, Tmax, half-life, and AUC of the altered 
PK profiles at steady state at the brainECF/ICF and at the CSFSAS were compared to 
those of the original profiles.
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LeiCNS-PK3.0 Simulation and Case Studies
The AD and aging versions of LeiCNS-PK3.0 were simulated to assess the impact 
of aging and AD on steady state PK profiles, i.e. during chronic treatment, at 
brainECF, brainICF, and CSFSAS  as compared to those of CHY. Simulations were 
performed for drugs that are marketed for AD: donepezil, galantamine, 
memantine, and rivastigmine. The same plasma PK profile of every drug 
was used as input for the three populations, in order to isolate the impact of 
differences in CNS parameters from those of plasma. The AD PK predictions at 
the brainECF and brainICF (the CNS target sites) and the CSFSAS (the CNS sampling 
site) were, also, compared to the respective unbound IC50. In vitro IC50 values of 
the four drugs were available from literature. IC50 of donepezil, galantamine, and 
rivastigmine were measured in vitro using human brain homogenate (44) and 
were corrected for brain non-specific binding. IC50 of NMDA receptor inhibition 
by memantine was also quantified in vitro using HEK293T cells (48). In addition, 
a previous analysis performed by de Strooper (18) was revisited to study the 
fluctuation of semagacestat PK profile at brainECF and brainICF versus CSFSAS while 
accounting for the impact of chronic dosing and AD on the PK profiles.

Software
LeiCNS-PK3.0 simulations were performed in R (version 4.0.3) using the 
package RxODE (version 0.9.2–0) and the LSODA (Livermore Solver for Ordinary 
Differential Equations) Fortran package. Literature data were digitized with 
WebPlotDigitizer version 4.2 (https://apps.automeris.io/wpd/).

Results

Literature Findings on CNS Pathophysiology in CHE and AD Patients
An extensive literature search was used to adapt all 35 LeiCNS-PK3.0 parameters 
to AD- and aging-specific pathophysiology. Results of longitudinal studies on 
aging-related CNS pathophysiology, where available, were preferable to cross-
sectional studies, particularly when studying changes of small magnitude, 
e.g. brain volume shrinkage (49, 50). Data from cross-sectional designs were 
extracted from studies with the appropriate control, i.e. CHE versus CHY and AD 
patients versus CHE, such that each study would serve as its own control. Mild 
AD patients represent the major target population of CNS drug development 
and were therefore the focus of the literature study. Age is a poor marker of AD 
progression (20), AD severity scores (Table I) were hence used to classify AD 
patients. Studies comparing AD patients to age-matched CHE were selected 
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to distinguish between aging and AD pathophysiology, unless such studies 
were unavailable. A summary table of the literature study results is reported 
in Supplementary Table  4, including relevant references. CNS physiological 
parameters of CHY, CHE, and AD patients that were used as input to LeiCNS-
PK3.0 are reported in Supplementary Table 1.

Total Brain Volume
Brain shrinkage begins around 50 years of healthy aging (51, 52). Longitudinal 
studies reported brain shrinkage as % volume shrinkage /year or as ml volume 
shrinkage/year, which was converted to % shrinkage/year by normalizing to 
baseline brain volume. Brain shrinkage rates (in %/year) were not significantly 
different across the different age groups (results not shown), and hence the 
mean of brain shrinkage (%/year) across the age groups, weighed by the study 
size, was calculated as 0.401%/year. The brain of an AD patient shrinks at a 
faster rate than that of a CHE. Data from cross-sectional studies estimated an 
average of 5% lower brain volume in AD patients, compared to CHE.

BrainECF and BrainICF Volume Fraction
BrainECF  and brainICF  volume fractions represent the volume ratio of the 
brainECF and brainICF to total brain, which in healthy conditions are 0.2 and 0.8, 
respectively (13). BrainECF volume fraction decreased by 16% in senescent rats 
(26–32 months) compared to adult rats (2–3 months) and by 26% in senescent 
mice (17–25 months) compared to 6–8 months mice. BrainICF volume fraction 
of the aging, shrinking brain does not change (53). BrainECF volume fraction 
increased in mouse AD models compared to age-matched senescent mice by 
about 40%. No information on brainICF volume fraction was retrieved and was 
calculated as the difference of unity and brainECF volume fraction.

Volume of Brain Microvasculature
The volume of brain microvasculature declines significantly with age (54), more 
in the grey matter than the white matter (55, 56). The ratio of the volume of brain 
microvasculature to total cerebral blood flow (CBF), however, stays the same with 
age (54, 57) and the two parameters show a significant, linear correlation (57).  
In addition, brain microvascular volume to total brain tissue volume stays the  
same (58). Therefore, brain microvascular volume was calculated to maintain the 
ratio of brain microvascular volume-to-cerebral blood flow of young age. Similarly, 
the volume of brain microvasculature does not change in AD patients versus CHE 
and was therefore translated by correcting for the atrophied brain volume.
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Brain Phospholipid Volume Fraction
Brain tissue non-specific binding of drugs is assumed to occur in LeiCNS-PK3.0 
to brain phospholipids. The volume of brain phospholipids is calculated as 5% 
of the total brain volume and that decreases with age. The decline of the brain 
phospholipid volume fraction is reported to be biphasic, declining by about 
10% in the CHE population between 60 and 80 years old, and further declining 
by another 8% in the 80–100  years CHE population. The decline rates were 
calculated as the mean of the values from two studies, weighted by study sample 
size. The relative volume of different brain structures, e.g. white versus grey 
matter volume, was also accounted for. The fraction of the unbound drug in the 
AD brain is higher compared to age-matched CHE (43), which is in line with 
a decrease of the volume fraction of brain phospholipids of 10% on average. 
The decrease in phospholipids was reported as region-specific (59,60,61), 
where it decreases in the cerebellum, frontal cortex and hippocampus, but 
not in prefrontal cortex and anterior temporal cortex (62, 63). Patients with 
early onset AD showed a 20% decrease, while late onset AD patients showed 
no change compared to age-matched CHE (64). The weighted average was 
calculated considering the differences of the volume of different brain regions, 
the proportions of the different phospholipids, and the study size.

CSF Volume
CSF volume expansion was calculated in a similar fashion as was brain shrinkage. 
The lateral and 3rd and 4th ventricles were assumed to expand at the same rate, 
3.45%/year. The Cisterna magna volume expansion (1.09%/year) was calculated 
as the extraventricular expansion rate, using the cranial CSF and ventricular 
expansion rates, considering their relative volumes. The CSFSAS expands at a rate 
of 0.78%/year. This was calculated as the extraventricular CSF expansion rate 
as described before and accounting for the contraction of the spinal CSFSAS (65).

Similarly, in AD patients, CSF volume of the ventricles, i.e. lateral, 3rd and 
4th ventricles, was assumed to be larger by 39% in AD patients that CHE. 
Extraventricular CSF, including cisterna magna and cranial CSFSAS, expands at 
a different rate than ventricular CSF and is 21% larger in AD patients compared 
to CHE. No quantitative information were available on spinal CSFSAS expansion, 
it can, however, be deduced that it might increase in AD as a consequence of the 
decrease of spinal cord volume (66), and it was, therefore, assumed to increase 
at the same rate as cranial CSFSAS.
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Cerebral Blood Flow (CBF)
CBF is reported in literature either as the total CBF (mL/min), representing blood 
flow to the whole brain, or as normalized CBF, where total CBF is corrected by 
brain mass (mL/min/100 g brain). Total CBF declines with age (67,68,69,70,71), 
which is attributed to brain atrophy and not to aging per se (71, 72). Normalized 
CBF showed no change with age, particularly above 60  years of age (73). 
Normalized CBF was calculated based on the CHY total CBF and brain volume 
and was used to calculate the total CBF at different ages, thus correcting for 
the impact of CHE brain shrinkage on total CBF. In AD patients, normalized 
CBF decreases compared to CHE in a brain region-dependent manner (74, 75). 
Normalized CBF is 15% lower in mild AD patients compared to CHE. Total CBF 
in AD patients was calculated by accounting for the AD- and brain atrophy-
related reductions.

BrainECF Bulk Flow
Total brainECF bulk flow is known to decrease during aging and AD as a result 
of brain atrophy and other physiological changes including glymphatic system 
dysfunction, altered aquaporin-4 channel polarization and expression, and 
amyloid β deposition (76,77,78,79). 14C-inulin clearance in mice was reduced 
in senescent mice (18 months) compared to adult mice (2–3 months) by about 
33% (76). Therefore, brainECF bulk flow, after correction for brain atrophy, was 
assumed to decrease by about 33% in CHE compared to CHY. BrainECF bulk flow 
was shown to decrease by 15% in an AD mouse model compared to wild type 
mouse and thus brainECF bulk flow in AD patients was reduced by 15% and was 
corrected for brain atrophy. Results of the model’s sensitivity analysis suggest 
that changes in brainECF bulk flow has no impact on brainECF/ICF PK profiles.

CSF Flow
CSF flow (mL/min) in LeiCNS-PK3.0 model is assumed to have a constant rate 
across the CSF spaces and is calculated using CSF turnover (day−1) and the 
total CSF volume. CSF production did not differ significantly between CHY and 
CHE, neither did its flow patterns or velocity at different CSF compartments. 
There was, however, a small significant increase to CSF outflow with aging. 
CSF flow is measured at the aqueduct and at the craniocervical junction using 
MRI. At the aqueduct, CSF flow did not differ significantly with age, except in one 
study where CHE males showed a 70% higher CSF flow than younger males. At 
the craniocervical junction, results were contradictory. Two studies showed a 
decrease of CSF flow with age of about 12.5–25%, while a third study showed 
about 50% increase in CHE versus CHY. CSF production might decrease in AD (80), 
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although this reduction might be an artifact of the measurement technique and 
not AD per se (81). CSF flow is not altered in AD patients, at both the aqueduct 
and craniocervical junction. Given the available results, we assumed that CSF 
flow does not change with increasing age or with AD.

Surface Areas of the BBB and BCSFB
Surface area of the BBB represents the surface area of brain microvessels 
including capillaries and arterioles. BBB SA decreases with aging (82), possibly 
a result of the observed decrease in capillary density (58, 83, 84), the loss of 
brain capillaries, and the increase of brain arterioles. The decline of the BBB 
surface area with aging is reflected by the 10% decrease of the ratio of the brain 
capillary surface area to brain capillary volume and to brain tissue volume (58). 
Therefore, total surface area of the BBB was calculated by correcting the CHY 
BBB surface area for brain atrophy and for the aging-related decrease of 10%.

Direct information on the differences of surface area of the BBB in AD patients 
compared to CHE was not available. BBB SA can be calculated as the product 
of the blood vessel’s perimeter, its length, and the capillary number or density. 
Results of the literature study implied a non-significant change of brain 
capillary length in AD versus CHE (85); a no change to a 5%-increase of capillary 
diameter; and a no change to 24%-increase of capillary density. Surface area 
of BBB in AD patients is hence the same or up to 29.3% higher than that in CHE. 
BBB SA was, hence, corrected for brain atrophy, in addition to an increase of 
11.23% compared to CHE.

No information related to the change of BCSFB SA in aging and AD could be 
found and it was therefore assumed the same in CHY, CHE, and AD patients.

Paracellular Transport
BBB paracellular transport represents the drug transport across the torturous 
paths between the endothelial cells of the BBB. Tight junction proteins between 
the BBB endothelial cells limit the free passive drug diffusion and reduce the 
rate of paracellular transport across the BBB. During aging, tight junction 
protein expression is reduced (86, 87), implying the opening of the BBB and 
an increase in passive paracellular transport. This effect is counteracted by 
thickening of the basement membrane, which might reduce passive paracellular 
transport (86, 87). BBB passive transport is evaluated in the clinic using imaging 
of gadolinium-based contrast agents. In one study, an increase of BBB passive 
permeability of about 40% was observed at the hippocampus and caudate 
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nucleus, but not at the superior frontal and inferior temporal gyrus cortex, 
thalamus, striatum, white matter (WM), corpus collosum, or internal capsule; 
all these showed no significant difference (88). In another study, an increase 
of BBB passive permeability of 0.0001%/year or 1.48*10−12  min−1/year was 
estimated in grey and white matter (89). Given these data, aging is not expected 
to impact BBB passive permeability.

Similar to aging, in AD the decrease of tight junction proteins expression and the 
thickening of the basement membrane impact passive paracellular transport in 
opposite directions (90). BBB passive paracellular transport, as measured with 
MRI and contrast agents, demonstrated up to 1.25-, 5-, and 10-fold increase at 
the hippocampus, grey matter, and cortex, respectively (91). Other regions such 
as white matter and basal ganglia showed no change of paracellular transport. 
A mean value of 4.4-fold increase of paracellular transport was used.

Studies comparing the paracellular transport at BCSFB between CHY and 
CHE and between AD and age-matched CHE were not available in literature. 
CSF-to-plasma ratio of creatinine and urea showed an increase of 23% and 
7%, respectively in AD patients compared to young volunteers (92). Given 
the small magnitude and the lack of age matching controls in the available 
study we assumed that paracellular transport at BCSFB is the same in all 
three populations.

BBB Active Transport
The expression and function of Pgp at the BBB in CHE  versus  CHY have been 
evaluated. Pgp protein and mRNA expression measured with immunohistochemistry 
showed no significant difference between CHY and CHE populations. Pgp function 
in CHY  versus  CHE was examined using MR imaging of 11C-verapamil BBB 
transport and calculating the ratio of the efflux to influx transfer rate constants. 
Such approach demonstrated that the change of BBB Pgp transport of verapamil 
ranges from no significant change to about 40% decrease in the Pgp function at the  
BBB. Interestingly, CHE population demonstrated a higher susceptibility to Pgp 
inhibition (93). The coadministration of 11C-verapamil and tariquidar resulted 
in a 30% decrease of Pgp function compared to the administration of solely 
11C-verapamil, while Pgp function was not impacted in the young population (93). 
Collectively, these findings imply that with aging Pgp expression and function do 
not change, except when a drug is co-administrated with another Pgp substrate or 
inhibitor. No information could be retrieved on BCRP expression or function at the 
BBB and its activity was assumed the same in CHE as in CHY.
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Information on expression and function of the active transporters, Pgp and BCRP, 
indicate that BBB active transport might decrease in AD patients. Expression 
studies of Pgp and BCRP proteins with immunohistochemistry showed a no 
change to a decrease of expression of 15% and 20%, respectively. Pgp and 
BCRP protein expression measured with other quantitative techniques such 
as western blot and LC-MS demonstrated no significant change of the protein 
expression of both transporters. Studies of BBB Pgp function indicated a no 
change to a 15–30% decrease of BBB Pgp activity in AD patients. No quantitative 
information could be retrieved on the changes of active transporters activity and 
expression at the BCSFB.

The impact of the potential difference of BBB active transporters expression and 
function on brain PK should be assessed on a drug-by-drug basis, considering 
the affinity of a single or multiple active transporter to the drug. Donepezil is a 
substrate of choline transporters (CHT) (94), Pgp, and BCRP (95). No studies 
could be identified that report on rat-to-human differences in CHT’s expression. 
Pgp and BCRP protein expression is 0.22- and 1.1-fold different, respectively, 
in human’s brain microvessels versus that of rat (15). The asymmetry factors of 
donepezil were calculated based on rat Kpuu,BBB and were converted to those of 
humans by multiplying by 0.22 and 1.1. Galantamine is not a substrate of the major 
BBB transporters: Pgp, BCRP, MRP4, or of cationic transporters: CHT and OCT; 
no conversion of asymmetry factors was required. Memantine is a substrate of 
OCTN1 transporter (96, 97), the expression of which does not change in the brains 
of AD patients versus CHE (98). No information on the rat-to-human differences 
of OCTN1 expression could be found. Brain-to-plasma drug concentration ratio 
measured in human was similar to that of rats (99) and therefore asymmetry 
factors based on rat Kpuu,BBB were calculated. Rivastigmine is a substrate of the 
CHT (94); the asymmetry factors based on preclinical data were used.

BrainECF, BrainICF and CSF pH
Multiple studies reported a 0.001 unit decrease of brain pH per year of 
aging (100,101,102,103); these studies did not distinguish intracellular and 
extracellular brain pH. Other studies reported no change of brain extracellular 
pH (104, 105), which is supported with data from preclinical species, where 
only brain intracellular pH decreased but not brain extracellular pH (106). Brain 
intracellular pH was, hence, assumed to decrease by 0.001 pH unit/year, while 
brainECF pH stays the same. The pH of CSF of CHE was similar to that of CHY (107).
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Studies reported changes in brain pH from pre- and postmortem CHE and 
AD patients, without discerning intra- or extracellular brain pH. Studies with 
postmortem data were excluded, as the potential of postmortem brain acidosis 
increases, particularly with long postmortem-to-tissue collection intervals and 
in individual with high premortem agony. Changes of brain pH ranged from 0 to 
an increase of 0.009 pH units, as measured in the brain cortex and hippocampus. 
The white matter on the other hand decreased by 0.007 pH units in AD patients. 
No information was available from premortem subjects on cranial CSF pH, which 
was found to decrease by an average of 0.11 pH units in postmortem samples. 
Lumbar CSF pH, on the contrary, might increase by 0.018 pH units in AD patients, 
as compared to healthy young subjects.

Model Simulations and Case Studies

The LeiCNS-PK3.0 model was used to explore the impact of the pathophysio-
logical changes of aging and AD on the steady state PK profiles of AD drugs at 
the brainECF, brainICF, and the CSFSAS. The parameters of the plasma PK model 
were based on datasets that included AD patients, except for donepezil, which 
was based on a CHE population.

Aging and AD Have a Minor Impact on BrainECF, BrainICF, and 
CSFSAS PK Profiles
Model simulations of CHY, CHE, and AD populations of the four drugs are depicted 
in Fig.  2. BrainECF, brainICF  and CSFSAS  PK profiles were minimally altered with 
aging- and AD-related pathophysiological alterations. The change of rivastigmine 
steady state Cmax, while the most prominent, was less than two-fold.
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Figure 2. Simulated unbound PK profiles of the four marketed AD drugs at brainECF, brainICF, and 
subarachnoid space (CSFSAS) of CHY (green), CHE (blue), and AD (red) populations. Aging and 
AD pathophysiological changes have a minor impact on brainECF, brainICF, and CSFSAS PK profiles. 
Model simulations were performed using the clinical dosing regimens. For each drug, the plasma 
PK input in the model was based on plasma PK data of CHE or AD patients. Thus, any change of PK 
profile is attributed to changes of CNS physiology. Please note the different y-axis scale of every 
panel. BrainECF: brain extracellular fluid, brainICF: brain intracellular fluid, CSFSAS: cerebrospinal fluid 
of the subarachnoid space, CHY: cognitively healthy young adults, CHE: cognitively healthy elderly. 
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Case Study 1: Brain and CSFSAS PK Profiles Compared to IC50 of the 
Respective Target
A comparison between predicted AD PK profile at the brainECF, brainICF, and 
CSFSAS versus  the IC50 of the respective drug target is depicted in Fig. 3. The 
brainECF and brainICF represent the target site of the cholinesterase inhibitors: 
donepezil, galantamine, and rivastigmine (108), while brainECF is the target site 
of the N-methyl-D-aspartate receptor antagonist, memantine (4). The predicted 
rivastigmine PK profiles at different CNS locations were consistently below IC50, 
while the brainECF and brainICF PK profiles of memantine and galantamine were 
below the IC50 briefly between the doses. The predicted PK profile of memantine 
at the CSFSAS was below the IC50, but not at the brainECF/ICF.

Figure 3. AD predicted PK profiles of the 4 marketed AD drugs at the brainECF, brainICF, and 
CSFSAS versus the IC50 of the respective drug target. Target site concentrations are the driver 
of drug effect and should therefore be evaluated during early stages of drug development. The 
predicted PK profiles of rivastigmine are below the IC50 of acetylcholinesterase. Memantine PK 
profile at the CSFSAS and not at the brainECF were lower than the IC50 of NMDA receptor, which might 
imply that lumbar CSFSAS drug concentration is an inaccurate surrogate of that of brainECF. 
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Case Study 2: The Importance of Addressing Target 
Site Concentrations
The PK profiles of semagacestat in brainECF, brainICF, and CSFSAS of CHY and AD 
patients are depicted in Fig. 4. Model simulations indicate a higher fluctuation 
of the PK profile at the brainECF  and brainICF  (Cmax:Cmin ≈ 9*104) than at the 
CSFSAS (Cmax:Cmin ≈ 13). In addition, they show that the brain enters a drug-free 
period as of 12 hours post dose, unlike CSFSAS PK profiles that are consistently 
above the IC50.

Figure 4. Semagacestat PK profiles of cognitively healthy (CHY) young volunteers (green) and 
AD patients (red) at the brainECF, brainICF  and at the CSFSAS. The black dots in the CSFSAS   
are semagacestat concentrations at a single dose of 140 mg, measured in CSF samples from CHY 
volunteers (34). The blue horizontal dashed line represents the paradoxical value used by de 
Strooper (18) of notch inhibition, while black dashed line represents the IC50 of gamma-secretase 
inhibition by semagacestat. These simulations support the take home messages of the de  
Strooper (18) analysis on the importance of addressing the fluctuation of the drug concentrations 
and, in addition, indicate the importance of considering the steady state, potentially disease-
altered, PK profiles at the target sites in the brainECF and brainICF. 

Discussion

In this study, the CNS PBPK LeiCNS-PK3.0 model was translated to predict the 
CNS drug distribution of the elderly and AD populations. Model predictions under 
chronic dosing of the four marketed AD small molecule drugs showed a different 
pattern of PK profiles fluctuation (Cmax:Cmin) between different compartments. 
In addition, comparing the predicted PK profiles at the CNS target sites in 
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brainECF and brainICF and at the CSFSAS to the IC50 value of the respective drug 
target demonstrated the importance of target site drug concentrations, rather 
than surrogate compartments, as drivers of drug effect. Interestingly, model 
simulations showed a little to no impact of AD and healthy aging on the CNS PK 
profiles, including the target sites.

AD pathophysiology has been studied intensively in humans and in preclinical 
species, particularly the changes related to BBB integrity but also those 
related to CBF, brainECF bulk flow, CSF flow, etc. (109), suggesting the possible 
alteration of CNS PK. Little, however, is available on the overall impact of the AD 
pathophysiological changes on CNS PK per se (110). This study is the first, to 
the best of the authors’ knowledge, to investigate the potential changes of CNS 
PK associated with healthy aging or AD, showing that both are of little effect. 
BrainECF and brainICF PK profiles of rivastigmine showed the largest difference 
between CHY/CHE and AD patients, the predicted increase of Cmax was, however, 
less than two-fold. We identified the four-fold increase of paracellular transport 
as the major contribution to the predicted change of rivastigmine brain PK. This 
was assessed by testing the AD altered parameter values in the model one 
parameter at a time and observing the parameter’s impact on brain PK (results 
not shown). These results are in line with a clinical study that demonstrated 
a minor increase in the exposure of LY2886721 lumbar CSF exposure in AD 
patients compared to healthy volunteers (111) and with a preclinical study that 
showed no change of the extent of drug transport across the BBB in a transgenic 
AD mouse model (112). Taken together, it can be implied that CNS drug 
concentration measured in young adults might represent that of AD patients. 
Accounting for the interpopulation differences in physiological characteristics 
improves brain exposure predictions (113), towards personalized medicine in 
aging and AD populations (17).

BrainECF, brainICF, and CSFSAS PK profiles of the four marketed AD drugs were 
compared to the  in vitro  IC50  values of the brain cholinesterases and of the 
NMDA receptor. The dosing regimens of these drugs were the same as the ones 
used in the clinic. BrainECF PK profiles, the target site of the four drugs (4, 108), 
were above the IC50  value, except for rivastigmine. Apart from rivastigmine, 
these results are expected for successful drugs on the market. Rivastigmine 
is a dual inhibitor of acetylcholinesterase (IC50 = 857.2  ng/ml (44)) and 
butyrylcholinesterase (IC50 = 9.3 ng/ml (114)) and acts at both the brainECF and 
brainICF. At 6 mg twice daily dosing, the brainECF  unbound concentrations of 
rivastigmine were below the IC50 of both enzymes. The brainICF PK profiles were, 
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however, above the IC50 of butyrylcholinesterase (Supplementary Fig. 1), the 
activity of which has been demonstrated to increase with AD progression, in 
contrast to the activity of acetylcholinesterase, which might decrease (2, 3, 115). 
Thus, the known therapeutic benefit of rivastigmine can be attributed to dual 
inhibition of the two cholinesterase enzymes.

The pattern of drug exposure compared to IC50 was the same in the CSFSAS and 
brainECF/ICF for all drugs, except memantine. Memantine exposure was lower than 
the IC50 at the CSFSAS, but not at the brainECF/ICF. This is in line with a previous 
clinical study, where memantine CSF concentration of the majority of the study 
subjects was lower than IC50, despite an observed clinical effect. This mismatch 
between the PK profiles at brainECF and brainICF and CSFSAS further corroborate 
previous findings (12, 13) that lumbar CSF is an inaccurate surrogate of brain 
drug concentrations.

Unestablished target site PK has resulted in as high as one-third of the failures 
observed in drug development in general (116). Our model predicts the unbound 
PK of the brainECF/ICF in CHE and AD patients, by holistically accounting for the 
associated multifactorial pathophysiology and thus addresses the previously 
identified PK information gaps and focuses on the AD population that is a 
prime target population of CNS drug development (90, 110). De strooper (18) 
identified the learned lessons of a failed clinical trial, studying semagacestat 
and highlighted the consequences of a fluctuating PK profile on the observed 
(un)desired drug effect (18). The analysis was, however, performed based on 
a single dose PK profile from healthy, young volunteers and did not consider 
the potential impact of AD on CNS PK, the target site PK profile, and steady 
state PK condition. Our model simulations (Fig. 5) indicate a drastically higher 
fluctuation of the PK profile at the brainECF  and brainICF  than at the CSFSAS, 
resulting in the different pattern of drug availability of the two compartments. 
This further highlights the importance of studying target site concentrations as 
surrogates of drug effect.

Literature information was used to adapt the physiological parameters of 
LeiCNS-PK3.0 to AD and aging conditions. Comparison of parameter values from 
different populations across the different studies was avoided where possible, 
primarily because of different measurement and analysis techniques used in by 
each study. A clear example was the four orders of magnitude difference of the 
paracellular permeability calculated as Ktrans in two different studies (88, 89), 
which could be attributed to the difference of the imaging protocols, contrast 
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agents, and MR devices. Careful interpretation of heterogeneous literature data 
on a parameter-by-parameter basis is a crucial requirement to ensure an “as 
accurate as” possible CNS PK prediction. Meta-analysis studies, performed for 
each parameter, could provide an unbiased estimate of the parameter mean and 
the associated variability, further improving the accuracy of model predictions.

A major limitation of this work is that the AD/aging models were not validated 
against clinical PK data. To the best of the authors’ knowledge, no PK 
measurements in AD and elderly brain are available. We identified several 
clinical studies where lumbar CSF PK profiles were measured in AD patients on 
chronic treatment with either donepezil, memantine, or rivastigmine (5,6,7,8,9). 
The data were, however, inadequate for model validation either because of the 
missing sampling time after the donepezil dose (9), the unrealistically higher 
plasma and CSF donepezil and memantine concentrations at the end of the 
dosing interval (5,  6), or the unavailability of population plasma PK profile 
of rivastigmine (7,  8). Another limitation related to the knowledge-based 
translation approach is that the accuracy of the PK predictions is reliant on the 
extent and quality of available literature. Literature studies on few parameters 
were either missing, inaccurate, or contradictory and might reduce the 
reliability and accuracy of the model. For example, no literature reports could 
be identified on AD- or aging-related changes of lysosomal volume, lysosomal 
de-acidification, surface area and the paracellular transport of the blood-CSF 
barrier. To address this drawback, a sensitivity analysis of the AD model was 
performed (Supplementary Fig.  2) and indicated that these parameters do 
not have a major impact on the major target site, i.e. brainECF  PK profile and 
were therefore assumed the same as the healthy condition (13). In addition, 
contradictory results were found regarding changes of CSF flow in AD, ranging 
from no change to an increase in AD patients compared to CHE. CSF flow does 
not impact the brainECF  PK profiles, but does impact the sampling site, i.e. 
lumbar CSF, and might result in inaccurate implication regarding the rate of 
drug removal from the CNS. Addressing the knowledge gaps and inaccuracies of 
AD-related pathophysiology would further improve the model’s reliability. The 
model as currently presented, thus, cannot yet replace preclinical and clinical 
studies. LeiCNS-PK3.0 nevertheless is suited to support early stages of drug 
development, mainly in initial drug screening and design and analysis of first-
in-human trials.

The LeiCNS-PK3.0 model provides insights of small molecule drug PK of 
brainECF and brainICF  in AD patients, and can therefore help in optimizing and 
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accelerating the development of small molecule drugs for AD. To date, the 
marketed small molecule drugs have been approved for merely the symptomatic 
management of AD. Emerging multitarget treatment approach have shown 
potential as disease modifying agent and potential treatment of AD. This can be 
either by polypharmacy (i.e. combining multiple drugs) (117) or by multi-target-
directed ligand (i.e. single drug acting on multiple targets) (118). To this end, in 
silico methods are useful to explore the therapeutic advantages of this multitarget 
approach. For example, combining our model (i.e. PK component) with a 
quantitative systems pharmacology model (i.e. pharmacodynamic component) 
of AD disease pathways will allow the exploration of possible interaction of drug 
target site exposure (in case of polypharmacy) or effect (117).

Conclusion

In this study, a literature-based approach was used to translate the CNS 
PBPK LeiCNS-PK3.0 model to predict the CNS PK profile of elderly and AD 
populations. Steady state brainECF PK predictions of donepezil, galantamine, 
and memantine were above the respective IC50. Fluctuations of the PK profile 
of semagacestat showed distinct patterns in brain compared to CSFSAS. CNS PK 
profiles were comparable among CHY, CHE, and AD patients implying a minor 
impact of healthy aging and AD on CNS PK, including the target sites.

LeiCNS-PK3.0 is available as a web-based application (https://cns-pbpk.
shinyapps.io/AD-SHINYAPP/) that can be used to predict CNS PK profiles of CHY 
and AD populations, in addition to the impact of selected pathophysiological 
changes on CNS PK.
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Supplementary material

Supplementary figure 1. AD predicted PK profiles of rivastigmine (6 mg, twice daily) at brainECF 
and brainICF versus the IC50 of butyrylcholinesterase. The blue dashed line represents the IC50 
value of butyrylcholinesterase. The predicted PK profiles of rivastigmine are below the IC50 of 
acetylcholinesterase but exceed that of butyrylcholinesterase at the brainECF/ICF. 

Sensitivity analysis of the AD version of LeiCNS-PK3.0
A sensitivity analysis was performed on the AD version of LeiCNS-PK3.0 for 
donepezil, galantamine, memantine, and rivastigmine. Model parameters 
were altered by two and ten folds, while pH values were changed by one and 
two pH units. The pharmacokinetic parameters: Cmax, Tmax, AUC, and half-
life were used to assess the impact of parameters alterations on PK profiles 
at the compartments of interest: brainECF, brainICF, and CSFSAS. Sensitivity 
analysis results are depicted in supplementary figure 2. The PK profiles of the 
compartments of interest were not impacted by changes of ventricular volume, 
brain microvasculature volume, brainECF bulk flow, CSF pH, and the surface 
area of blood-CSF barrier. Changes of related to CSF parameters: CSF flow and 
volumes of the SAS and of the cisterna magna affected the CSF but not brainECF 

and brainICF PK profiles, which is in line with our previous results [1]. The other 
parameters affected the PK profiles depending on the drug’s physicochemical 
properties. PK changes due pH depended on the acidic and basic ionization 
constants of the drug. Those due to cerebral blood flow and volume fraction of 
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phospholipids relied on the drug’s lipophilicity, evident by the notable change 
observed for lipophilic drug, donepezil (logP = 4.14). PK parameters of the more 
hydrophilic drugs, rivastigmine and galantamine, were impacted by changes 
of the brain cell and lysosomal surface area. Changes of surface area of the 
BBB and that of BBB paracellular transport affect the PK profiles depending 
on the paracellular-to-transcellular drug transport ratio, which is determined 
according to the drug’s molecular weight and lipophilicity and if the drug is 
actively transported at the BBB.

See supplementary figure 2 on next page

Supplementary figure 2. Sensitivity analysis of the AD LeiCNS-PK3.0. Parameters (top) were 
varied (bottom) by two and ten folds, while pH values were changed by one and two pH units. 
The final profiles at the brainECF/ICF and CSFSAS (right) were evaluated according to the changes in 
the PK parameters (left): Cmax, Tmax, AUC, and half-life. The magnitude of change in percentage 
of pharmacokinetic parameters is given by the color scale (right), where blue, red, and white 
represent increase, decrease, and no change, respectively. pHCSF: pH of cerebrospinal fluid, 
pHECF: pH of brain extracellular fluid, pHICF: pH of brain cells, pHLYS: pH of brain lysosomes, 
pHMV: pH of brain microvasculature, PPA-BBB: effective surface area of paracellular transport at 
the blood-brain barrier, PPA-CSF: effective surface area of paracellular transport at the blood-CSF 
barrier, QCBF: cerebral blood flow, QCSF: cerebrospinal fluid flow, QECF: brainECF bulk flow, SABBB: 
blood brain barrier surface area, SABC: surface area of brain cell membrane, SACSFB: surface area 
of blood-CSF barrier, SALYSO: lysosomal surface area, VCM: volume of cisterna magna, VECF: 
volume of brain extracellular fluid, VICF: volume of brain cells, VLV: volume of lateral ventricles, 
VLYS: volume of lysosomes, VMV: volume of brain microvasculature, Vphb: volume fraction of brain 
phospholipid, VSAS: subarachnoid space volume, VTFV: volume of third and fourth ventricles.
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Supplementary equations to convert Kpbrain into Kpuu,BBB

These equations are used to convert Kpbrain to Kpuu,BBB, by correcting for plasma 
protein and brain tissue binding and also for the unequal distribution of charged 
drug between brainECF and brainICF as a result of the pH difference. The following 
assumptions were made. Active transport is not present at brain cells level or 
at lysosomes. Unbound drug exists in the brain extracellular and intracellular 
fluids and in lysosomes, and drug can bind to the phospholipids of the brain 
cell membrane.

Definitions
Cbrain: brain concentration as measured by homogenate methods; A: amounts; 
ECF: brain ECF; ICF: brain ICF; LYS: lysosomes; BCM: brain cell membrane; 
Vbr: brain volume; Cp: total plasma concentration; CP,u: unbound plasma 
concentration; fu,p: unbound fraction of plasma; Vu,Br: unbound volume of 
distribution in brain as measured by brain slice method; WTBr: brain weight; PHF: 
neutral drug fraction

Equations
• In the presence of experimentally measured Vu,br
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Supplementary table 1. CNS physiological parameters of cognitively healthy young, cognitively 
healthy elderly, and Alzheimer’s disease patients

Parameter Adults 75-elder AD

value [1] value %1 value %1

Volume
(mL)

Total brain 1251 1131 90.4 1081 86.5

Brain extracellular 
fluid (brainECF)

254 181 71.3 247 97.3

Brain intracellular 
fluid (brainICF)

1001 905 90.4 834 83.4

Brain cell lysosomes 
(VLYS)

13 11 90.4 10 83.4

Lateral ventricles 20 47 233.3 65 324.3

3rd and 4th ventricles 3.0 7.0 233.3 9.8 324.3

Cisterna magna 1.0 1.3 131.2 1.6 158.8

Subarachnoid space 116 141 121.4 170 146.9

Brain microvasculature 46 41 90.4 34 74.1

Flow
(mL/min)

Brain bulk flow 0.20 0.15 72.4 0.20 98.7

CSF flow 0.42 0.42 100 0.42 100

Cerebral blood flow (CBF) 689 623 90.4 510 74.1

Surface area
(cm2)

Blood–brain barrier 
(SABBB)

150000 121962 81.3 129695 86.5

Blood CSF barrier 
(SABCSFB)

15000 15000 100 15000 100

Brain cell membrane 
(SABCM)

2666517 2511324 94.2 2379051 89.2

Lysosomes membrane 1980260 1809922 91.4 1668827 84.3

width
(µm)

Blood brain barrier Blood 0.5 0.5 100 0.5 100

Blood CSF barrier 0.5 0.5 100 0.5 100

pH Plasma and brain MV 7.4 7.4 100 7.4 100

Brain extracellular 
fluid (pHECF)

7.3 7.3 100 7.309 100.1

Brain cells (pHICF) 7.0 6.975 99.6 6.984 99.8

Brain cell lysosomes 5.0 5.0 100 5.0 100

Cerebrospinal fluid 7.3 7.3 100 7.19 98.5

Effective 
surface area
(%)

BBB Transcellular 
transport

0.998 0.998 100 0.998 100

BCSFB Transcellular 
transport

0.998 0.998 100 0.998 100

BBB paracellular transport 0.00004 0.00004 100 0.00018 444.8

BCSFB paracellular 
transport

0.00016 0.00016 100 0.00016 100
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Parameter Adults 75-elder AD

value [1] value %1 value %1

Volume 
fraction

Brain phospholipids 0.0565 0.0513 90.8 0.0469 82.9

BrainECF 0.2 0.16 80.0 0.2284 114.2

BrainICF 0.8 0.8 100 0.7716 96.4

Lysosomes 0.0125 0.0125 100 0.0125 100

Count Total brain cells (Nbr.cells) 1,71E+11 1,71E+11 100 1,71E+11 100

1Compared to adults

Supplementary table 2. Age versus aging stage of different species

Species Stage Age Age units

Mouse young 3-6 month

[2]Mouse middle aged 10-15 month

Mouse old 18-26 month

rat young 6-12 month

[3, 4]rat middle aged 18-24 month

rat old 30-36 month

human young 20-30 year

[2]human middle aged 38-47 year

human old 59-69 year

Supplementary table 1. Continued



225

CNS PK predictions in healthy aging and Alzheimer’s disease

66

Supplementary table 3. Examples of the different search queries used in the literature study

CNS parameter Search queries

Aging

Brain volume "brain" AND ("volume" OR "structure" OR "shrinkage") 
AND ("elderly"OR "aging" OR "age" "old"); 

Brain microvascular 
volume

("cerebral" OR "brain") AND ("blood volume" 
OR "vascular volume" OR "microvasculature" OR 
"microvascular") AND ("volume") AND ("aging")

Cerebral blood flow ("cerebral blood flow" [tiab]) AND ("aging" 
[tiab] OR "ageing"[ti] OR "age"[ti])

Cerebrospinal fluid flow ("CSF flow"[tiab] OR "cerebrospinal fluid flow"[tiab] OR "CSF 
flows"[tiab] OR "cerebrospinal fluid flows"[tiab]) AND ("aging"[tiab] 
OR "elderly"[tiab] OR "age"[title] OR "ageing"[tiab])

CSF pH ("Aging" OR "AGE" OR "ELDERLY" OR "AGEING") AND 
("CSF" OR "cerebrospinal fluid") AND "pH"

Ventricular volume ("ventricles volume" OR "ventricular volume"[tiab] OR 
"cerebrospinal fluid volume"[tiab] OR "CSF volume"[tiab]) 
AND ("aging"[tiab] OR "ageing"[tiab] OR "elderly"[tiab])

BBB Pgp ("central nervous system" OR "CNS" OR "brain" OR "blood-
brain barrier" OR "BBB" OR "blood brain barrier") AND 
("aging" OR "ageing" OR "Elderly") AND ("p-gp" OR 
"p-glycoprotein" OR "pgp" OR "permeability glycoprotein")

BBB BCRP ("CNS" OR "central nervous system" OR "brain" OR "blood-
brain barrier" OR "BBB" OR "blood brain barrier") AND 
("aging" OR "ageing" OR "Elderly") AND ("BCRP" OR 
"breast cancer Resistance protein" OR "ABCG2")

BBB MRP4 ("CNS" OR "central nervous system" OR "brain" OR "blood-
brain barrier" OR "BBB" OR "blood brain barrier") AND 
("aging" OR "ageing" OR "Elderly") AND ("multidrug 
resistance protein" OR "ABCC4" OR "MRP4")

BBB OAT/OCT ("CNS"[tiab] OR "central nervous system"[tiab] OR "brain"[tiab] 
OR "blood-brain barrier"[tiab] OR "BBB"[tiab] OR "blood 
brain barrier"[tiab]) AND ("aging"[tiab] OR "ageing"[tiab] 
OR "Elderly"[tiab]) AND ("OAT"[tiab] OR "OCT"[tiab] OR 
"organic anionic transporter"[tiab] OR "organic cationic 
transporter"[tiab]) NOT ("retina" OR "retinal")

Blood-CSF barrier 
active transport

("CP" OR "choroid plexus" OR "cerebrospinal fluid" OR "CSF" OR 
"blood-cerebrospinal" OR "BCSFB") AND ("aging" OR "ageing" OR 
"Elderly") AND ("p-gp" OR "p-glycoprotein" OR "pgp" OR "permeability 
glycoprotein" OR "BCRP" OR "breast cancer Resistance protein" OR 
"ABCG2" OR "multidrug resistance protein" OR "ABCC4" OR "MRP4")

BBB paracellular 
transport

("paracellular") AND ("BBB" OR "blood-brain barrier" OR "blood brain 
barrier") AND ("aging" OR "ageing" OR "elderly" OR "senescence")

("blood-brain barrier"[tiab] OR "blood brain barrier"[tiab] 
OR "BBB"[tiab]) AND ("permeability"[tiab]) AND 
("aging"[tiab] OR "ageing"[tiab] OR "elderly"[tiab])

Non-specific binding phospholipids[tiab] AND "brain"[tiab] AND "aging"[tiab]

BrainECF fraction (brain) AND ("interstitial" OR "extracellular") AND 
("aging" OR "ageing") AND ("fraction")
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CNS parameter Search queries

BrainICF fraction (brain OR CNS OR "central nervous system") AND ("aging" 
OR "ageing" OR "elderly" OR "elder" OR "senescence" 
OR "senescent") AND ( "volume fraction" OR "volume 
ratio") AND ("intracellular" OR "cellular")

BBB surface area ("brain"[tiab] OR "cerebral"[tiab]) AND ("aging"[tiab] 
OR "ageing"[tiab] OR "elderly"[tiab] OR "elder"[tiab] OR 
"senescence"[tiab] OR "senescent"[tiab]) AND ("vascular volume" 
OR "microvascular volume" OR "vascular area" OR "microvascular 
area" OR "vascular density" OR "microvascular density")

Blood-CSF barrier 
surface area

("choroid plexus"[tiab] OR "blood cerebrospinal fluid 
barrier"[tiab] OR "cerebrospinal fluid barrier"[tiab] OR "blood 
CSF barrier"[tiab] OR "BCSFB"[tiab]) AND ("aging"[tiab] 
OR "ageing"[tiab] OR "age"[tiab] OR "senescence"[tiab] OR 
"elderly"[tiab]) AND ("surface area" OR morphology[tiab])

Alzheimer’s disease

Brain microvascular 
volume

(alzheimer's[tiab] OR alzheimer[tiab]) AND (brain[tiab] 
OR cerebral[tiab]) AND ("vascular volume"[tiab] 
OR "vasculature volume"[tiab] OR "microvascular 
volume"[tiab] OR "blood volume"[tiab])

BrainICF fraction (intracellular OR cell) AND ("volume ratio" OR "volume 
fraction") AND (alzheimer's OR alzheimer)

Blood-CSF barrier 
surface area

("choroid plexus"[tiab] OR "blood cerebrospinal fluid barrier"[tiab] 
OR "cerebrospinal fluid barrier"[tiab] OR "blood CSF barrier"[tiab] OR 
"BCSFB"[tiab] OR "blood-cerebrospinal fluid barrier"[tiab] OR "blood-
CSF barrier"[tiab]) AND ("alzheimer"[tiab] OR "alzheimer's"[tiab]) 
AND ("surface area" OR morphology[tiab] OR structure[tiab] 
OR length[tiab] OR villi[tiab] OR pathophysiology[tiab])

Blood-CSF barrier 
paracellular transport

("choroid plexus"[tiab] OR "cerebrospinal fluid barrier"[tiab] 
OR "blood CSF barrier"[tiab] OR "BCSFB"[tiab] OR 
"blood-cerebrospinal fluid barrier"[tiab] OR "blood-CSF 
barrier"[tiab]) AND ("alzheimer"[tiab] OR "alzheimer's"[tiab]) 
AND (permeability OR paracellular OR gadolinium)

BrainECF fraction ("extracellular"[tiab] OR "interstitial"[tiab]) AND ("brain"[tiab]) AND 
("volume"[tiab]) AND ("alzheimer"[tiab] OR "alzheimer's"[tiab])

BBB surface area ("alzheimer's"[tiab] OR "alzheimer"[tiab]) AND ("brain 
microvessels"[tiab] OR "brain microvascular"[tiab] OR 
"cerebrovascular"[tiab] OR "blood-brain barrier"[tiab] 
OR "blood brain barrier"[tiab]) AND ("surface area"[tiab] 
OR "density"[tiab] OR "diameter"[tiab])

Cerebral blood flow ("cerebral blood flow"[tiab] OR "brain blood flow"[tiab]) AND 
("Alzheimer's" [tiab] OR "Alzheimer" [tiab] OR "AD" [tiab])

Paracellular transport ("paracellular") AND ("BBB" OR "blood-brain barrier" OR 
"blood brain barrier" OR "Blood CSF Barrier" OR "BCSFB") 
AND ("Alzheimer's" OR "Alzheimer" OR "AD")

CSF volume ("ventricles volume"[tiab] OR "ventricular volume"[tiab] OR 
"cerebrospinal fluid volume"[tiab] OR "CSF volume"[tiab]) 
AND ("alzheimer's"[tiab] OR "alzheimer"[tiab]) NOT ("heart" 
OR "cardiac") AND ("MRI" OR "magnetic resonance ")

Supplementary table 3. Continued
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Supplementary table 4. Changes of CNS physiology during healthy aging in humans

Parameter Study design 
(follow up years)

Value unit % Population 
(Database)

Age (years) Age range (SD) Number 
patients

Technique Notes Ref.

Brain volume                

Vbrain longitudinal (2.5) -0.62 %/year NA (AGES-Reykjavik) 75 5 367 MRI NA [5]

Vbrain cross-sectional -0.41 %/year NA (AGES-Reykjavik) 76.1 66-96 (5.4) 4303 MRI NA [5]

Vbrain longitudinal (1) -0.38 %/year NA (ADNI) 75.6 59.8-90.2 142 MRI Median value of 48 ROI [6]

Vbrain longitudinal (4.1) 1158.8 ml NA (Volunteers - 
South Korea)

59.5 (6.66) 984 MRI Estimated from a linear 
regression model

[7]

Vbrain longitudinal (4.1) -2.65 ml/year NA (Volunteers - 
South Korea)

59.5 (6.66) 984 MRI Estimated from a linear 
regression model

[7]

Vbrain longitudinal (4.1) -0.23 %/year NA (Volunteers - 
South Korea)

59.5 (6.66) 984 MRI Normalized by baseline 
brain volume (1158.8 ml) 

[7]

Vbrain longitudinal 1000 ml NA (BLSA) 64 NA 120 MRI NA [8]

Vbrain longitudinal (9) -7.35 ml/year NA (BLSA) 70.58 64-86 (6.11) 120 MRI Estimated from a linear 
regression model

[8]

Vbrain longitudinal (9) -0.735 %/year NA (BLSA) 70.58 64-86 (6.11) 120 MRI Normalized by brain volume 
at 64 yr (1000 ml)

[8]

Vbrain longitudinal (1.9) -0.23 %/year NA (Volunteers - Japan) 56.4 38.1-82.9 (9.9) 199 MRI NA [9]

Vbrain longitudinal (1.5) -0.32 %/year NA (Volunteers - 
England)

NA 31-84 39 MRI NA [10]

Vbrain longitudinal (1.4) -0.5 %/year NA (Mayo AD Res Center/
AD Patient Registry)

81.9** (7.5) 91 MRI NA [11]

Vbrain longitudinal (4.3) -0.4 %/year NA (Mayo AD Res Center/
AD Patient Registry)

79* 56-93 40 MRI NA [12]

Vbrain longitudinal (1) -0.44 %/year NA (ADNI) 75.4* 60-90 (5.1) 132 MRI NA [13]

Vbrain longitudinal (4) -2.14 %/year NA (OASIS repository) 77.1 60-97 72 MRI NA [14]

Vbrain cross-sectional 999.7 ml NA (BLSA) NA 59-69 63 MRI NA [15]

Vbrain cross-sectional 946.8 ml NA (BLSA) NA 70-85 53 MRI NA [15]

Vbrain longitudinal (1) 0 ml/year NA (BLSA) NA 59-85 116 MRI NA [15]

Vbrain longitudinal (1) 0 %/year NA (BLSA) NA 59-85 116 MRI NA [15]

Vbrain longitudinal (3.5) 1217 ml NA (Volunteers - UK) 44.5 35-53 (5.7) 37 MRI NA [16]

Vbrain longitudinal (3.5) 1171 ml NA (Volunteers - UK) 67.9 57-77 (6.4) 9 MRI NA [16]

Vbrain longitudinal (3.5) -0.64 %scan-
to-scan

NA (Volunteers - UK) 44.5 35-53 (5.7) 37 MRI NA [16]

Vbrain longitudinal (3.5) -1.35 %scan-
to-scan

NA (Volunteers - UK) 67.9 57-77 (6.4) 9 MRI NA [16]

Vbrain longitudinal (3.5) -0.18 %/year NA (Volunteers - UK) 44.5 35-53 (5.7) 37 MRI caclulated as (%scan-to-
scan)**(1/yrs scan-to-scan)

[16]

Vbrain longitudinal (3.5) -0.39 %/year NA (Volunteers - UK) 67.9 57-77 (6.4) 9 MRI caclulated as (%scan-to-
scan)**(1/yrs scan-to-scan)

[16]

Vbrain longitudinal (1.8) -0.45 %/year NA (Volunteers - USA) 78 65-95 (8) 38 MRI NA [17]
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Supplementary table 4. Changes of CNS physiology during healthy aging in humans

Parameter Study design 
(follow up years)

Value unit % Population 
(Database)

Age (years) Age range (SD) Number 
patients

Technique Notes Ref.

Brain volume                

Vbrain longitudinal (2.5) -0.62 %/year NA (AGES-Reykjavik) 75 5 367 MRI NA [5]

Vbrain cross-sectional -0.41 %/year NA (AGES-Reykjavik) 76.1 66-96 (5.4) 4303 MRI NA [5]

Vbrain longitudinal (1) -0.38 %/year NA (ADNI) 75.6 59.8-90.2 142 MRI Median value of 48 ROI [6]

Vbrain longitudinal (4.1) 1158.8 ml NA (Volunteers - 
South Korea)

59.5 (6.66) 984 MRI Estimated from a linear 
regression model

[7]

Vbrain longitudinal (4.1) -2.65 ml/year NA (Volunteers - 
South Korea)

59.5 (6.66) 984 MRI Estimated from a linear 
regression model

[7]

Vbrain longitudinal (4.1) -0.23 %/year NA (Volunteers - 
South Korea)

59.5 (6.66) 984 MRI Normalized by baseline 
brain volume (1158.8 ml) 

[7]

Vbrain longitudinal 1000 ml NA (BLSA) 64 NA 120 MRI NA [8]

Vbrain longitudinal (9) -7.35 ml/year NA (BLSA) 70.58 64-86 (6.11) 120 MRI Estimated from a linear 
regression model

[8]

Vbrain longitudinal (9) -0.735 %/year NA (BLSA) 70.58 64-86 (6.11) 120 MRI Normalized by brain volume 
at 64 yr (1000 ml)

[8]

Vbrain longitudinal (1.9) -0.23 %/year NA (Volunteers - Japan) 56.4 38.1-82.9 (9.9) 199 MRI NA [9]

Vbrain longitudinal (1.5) -0.32 %/year NA (Volunteers - 
England)

NA 31-84 39 MRI NA [10]

Vbrain longitudinal (1.4) -0.5 %/year NA (Mayo AD Res Center/
AD Patient Registry)

81.9** (7.5) 91 MRI NA [11]

Vbrain longitudinal (4.3) -0.4 %/year NA (Mayo AD Res Center/
AD Patient Registry)

79* 56-93 40 MRI NA [12]

Vbrain longitudinal (1) -0.44 %/year NA (ADNI) 75.4* 60-90 (5.1) 132 MRI NA [13]

Vbrain longitudinal (4) -2.14 %/year NA (OASIS repository) 77.1 60-97 72 MRI NA [14]

Vbrain cross-sectional 999.7 ml NA (BLSA) NA 59-69 63 MRI NA [15]

Vbrain cross-sectional 946.8 ml NA (BLSA) NA 70-85 53 MRI NA [15]

Vbrain longitudinal (1) 0 ml/year NA (BLSA) NA 59-85 116 MRI NA [15]

Vbrain longitudinal (1) 0 %/year NA (BLSA) NA 59-85 116 MRI NA [15]

Vbrain longitudinal (3.5) 1217 ml NA (Volunteers - UK) 44.5 35-53 (5.7) 37 MRI NA [16]

Vbrain longitudinal (3.5) 1171 ml NA (Volunteers - UK) 67.9 57-77 (6.4) 9 MRI NA [16]

Vbrain longitudinal (3.5) -0.64 %scan-
to-scan

NA (Volunteers - UK) 44.5 35-53 (5.7) 37 MRI NA [16]

Vbrain longitudinal (3.5) -1.35 %scan-
to-scan

NA (Volunteers - UK) 67.9 57-77 (6.4) 9 MRI NA [16]

Vbrain longitudinal (3.5) -0.18 %/year NA (Volunteers - UK) 44.5 35-53 (5.7) 37 MRI caclulated as (%scan-to-
scan)**(1/yrs scan-to-scan)

[16]

Vbrain longitudinal (3.5) -0.39 %/year NA (Volunteers - UK) 67.9 57-77 (6.4) 9 MRI caclulated as (%scan-to-
scan)**(1/yrs scan-to-scan)

[16]

Vbrain longitudinal (1.8) -0.45 %/year NA (Volunteers - USA) 78 65-95 (8) 38 MRI NA [17]
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Parameter Study design 
(follow up years)

Value unit % Population 
(Database)

Age (years) Age range (SD) Number 
patients

Technique Notes Ref.

Cerebrospinal fluid volume                

CSF,cran longitudinal (2.5) 1.61 %/year NA (AGES-Reykjavik) 75 (5) 367 MRI NA [5]

CSF,cran cross-sectional 1.07 %/year NA (AGES-Reykjavik) 76.1 66-96 (5.4) 4303 MRI NA [5]

V,LV longitudinal (1) 4.4 %/year NA 21 75.6* 59.8-90.2 142 MRI NA [6]

V,inf LV longitudinal (1) 5.47 %/year NA (ADNI) 75.6* 59.8-90.2 142 MRI NA [6]

V,3rd V longitudinal (1) 3.07 %/year NA (ADNI) 75.6* 59.8-90.2 142 MRI NA [6]

V,4thV longitudinal (1) 0.71 %/year NA (ADNI) 75.6* 59.8-90.2 142 MRI NA [6]

Vtot,CSF longitudinal (4.1) 209.7 ml NA (Volunteers - 
South Korea)

59.5* (6.66) 984 MRI Estimated from a linear 
regression model

[7]

Vtot,CSF longitudinal (4.1) 2.84 ml/year NA (Volunteers - 
South Korea)

59.5* (6.66) 984 MRI Estimated from a linear 
regression model

[7]

CSF,cran longitudinal (4.1) 1.35 %/year NA (Volunteers - 
South Korea)

59.5* (6.66) 984 MRI rate: calculated as %/
year by rate (ml/yr)/ CSF 
volume (209.7 ml)

[7]

Vtot,CSF longitudinal (9) 1.31 ml/year NA (BLSA) 70.58 64-86 (6.11) 120 MRI Estimated from a linear 
regression model

[8]

Ventricles longitudinal (1.5) 0.65 ml/year NA (Volunteers - 
England)

NA 31-84 39 MRI NA [10]

Ventricles longitudinal (1.4) 2.4 %/year NA (Mayo AD Res Center/
AD Patient Registry)

81.9** -7.5 91 MRI NA [11]

Ventricles longitudinal (4.3) 1.7 %/year NA (Mayo AD Res Center/
AD Patient Registry)

79* 56-93 40 MRI NA [12]

Ventricles longitudinal (1) 4.57 %/year NA (ADNI) 75.4* 60-90 (5.1) 79 MRI NA [13]

V,LV longitudinal (1) 4.61 %/year NA (ADNI) 75.4* 60-90 (5.1) 79 MRI NA [13]

V,inf LV longitudinal (1) 4.63 %/year NA (ADNI) 75.4* 60-90 (5.1) 79 MRI NA [13]

V,3rd V longitudinal (1) 3.13 %/year NA (ADNI) 75.4* 60-90 (5.1) 79 MRI NA [13]

V,4thV longitudinal (1) 0.99 %/year NA (ADNI) 75.4* 60-90 (5.1) 79 MRI NA [13]

V,LV longitudinal (1) 3.31 %/year NA (OASIS repository) 77.1 60-97 72 MRI NA [14]

Ventricles cross-sectional 25.2 ml NA (BLSA) NA 59-69 63 MRI NA [15]

Ventricles cross-sectional 41.1 ml NA (BLSA) NA 70-85 53 MRI NA [15]

Ventricles longitudinal (1) 1.53 ml/year NA (BLSA) NA 59-85 53 MRI NA [15]

Ventricles longitudinal (1) 6.07 %/year NA (BLSA) NA 59-85 53 MRI normalized to baseline 
volume (25.2 ml)

[15]

Ventricles longitudinal (1) 39 ml NA (ADNI) 75 72-78 92 MRI NA [18]

Ventricles longitudinal (1) 1.4 ml/year NA (ADNI) 75 72-78 92 MRI NA [18]

Ventricles longitudinal (1) 3.59 %/year NA (ADNI) 75 72-78 92 MRI normalized to baseline 
volume (39 ml)

[18]

Ventricles longitudinal (4.1) 0.62 ml/year NA <60 years 
(SMART-MR)

58 (9) 331 MRI NA [19]

Supplementary table 4. Continued
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Parameter Study design 
(follow up years)

Value unit % Population 
(Database)

Age (years) Age range (SD) Number 
patients

Technique Notes Ref.

Cerebrospinal fluid volume                

CSF,cran longitudinal (2.5) 1.61 %/year NA (AGES-Reykjavik) 75 (5) 367 MRI NA [5]

CSF,cran cross-sectional 1.07 %/year NA (AGES-Reykjavik) 76.1 66-96 (5.4) 4303 MRI NA [5]

V,LV longitudinal (1) 4.4 %/year NA 21 75.6* 59.8-90.2 142 MRI NA [6]

V,inf LV longitudinal (1) 5.47 %/year NA (ADNI) 75.6* 59.8-90.2 142 MRI NA [6]

V,3rd V longitudinal (1) 3.07 %/year NA (ADNI) 75.6* 59.8-90.2 142 MRI NA [6]

V,4thV longitudinal (1) 0.71 %/year NA (ADNI) 75.6* 59.8-90.2 142 MRI NA [6]

Vtot,CSF longitudinal (4.1) 209.7 ml NA (Volunteers - 
South Korea)

59.5* (6.66) 984 MRI Estimated from a linear 
regression model

[7]

Vtot,CSF longitudinal (4.1) 2.84 ml/year NA (Volunteers - 
South Korea)

59.5* (6.66) 984 MRI Estimated from a linear 
regression model

[7]

CSF,cran longitudinal (4.1) 1.35 %/year NA (Volunteers - 
South Korea)

59.5* (6.66) 984 MRI rate: calculated as %/
year by rate (ml/yr)/ CSF 
volume (209.7 ml)

[7]

Vtot,CSF longitudinal (9) 1.31 ml/year NA (BLSA) 70.58 64-86 (6.11) 120 MRI Estimated from a linear 
regression model

[8]

Ventricles longitudinal (1.5) 0.65 ml/year NA (Volunteers - 
England)

NA 31-84 39 MRI NA [10]

Ventricles longitudinal (1.4) 2.4 %/year NA (Mayo AD Res Center/
AD Patient Registry)

81.9** -7.5 91 MRI NA [11]

Ventricles longitudinal (4.3) 1.7 %/year NA (Mayo AD Res Center/
AD Patient Registry)

79* 56-93 40 MRI NA [12]

Ventricles longitudinal (1) 4.57 %/year NA (ADNI) 75.4* 60-90 (5.1) 79 MRI NA [13]

V,LV longitudinal (1) 4.61 %/year NA (ADNI) 75.4* 60-90 (5.1) 79 MRI NA [13]

V,inf LV longitudinal (1) 4.63 %/year NA (ADNI) 75.4* 60-90 (5.1) 79 MRI NA [13]

V,3rd V longitudinal (1) 3.13 %/year NA (ADNI) 75.4* 60-90 (5.1) 79 MRI NA [13]

V,4thV longitudinal (1) 0.99 %/year NA (ADNI) 75.4* 60-90 (5.1) 79 MRI NA [13]

V,LV longitudinal (1) 3.31 %/year NA (OASIS repository) 77.1 60-97 72 MRI NA [14]

Ventricles cross-sectional 25.2 ml NA (BLSA) NA 59-69 63 MRI NA [15]

Ventricles cross-sectional 41.1 ml NA (BLSA) NA 70-85 53 MRI NA [15]

Ventricles longitudinal (1) 1.53 ml/year NA (BLSA) NA 59-85 53 MRI NA [15]

Ventricles longitudinal (1) 6.07 %/year NA (BLSA) NA 59-85 53 MRI normalized to baseline 
volume (25.2 ml)

[15]

Ventricles longitudinal (1) 39 ml NA (ADNI) 75 72-78 92 MRI NA [18]

Ventricles longitudinal (1) 1.4 ml/year NA (ADNI) 75 72-78 92 MRI NA [18]

Ventricles longitudinal (1) 3.59 %/year NA (ADNI) 75 72-78 92 MRI normalized to baseline 
volume (39 ml)

[18]

Ventricles longitudinal (4.1) 0.62 ml/year NA <60 years 
(SMART-MR)

58 (9) 331 MRI NA [19]
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Parameter Study design 
(follow up years)

Value unit % Population 
(Database)

Age (years) Age range (SD) Number 
patients

Technique Notes Ref.

Ventricles longitudinal (4.1) 2.52 %/year NA <60 years 
(SMART-MR)

58 (9) 331 MRI NA [19]

Ventricles longitudinal (4.1) 1.42 ml/year NA >60 years 
(SMART-MR)

58 (9) 331 MRI NA [19]

Ventricles longitudinal (4.1) 4.22 %/year NA >60 years 
(SMART-MR)

58 (9) 331 MRI NA [19]

Ventricles longitudinal (6.4) 3.54 %/year NA (Oregon brain aging) 82.3 64.7 - 100.5 
(7.8)

42 MRI NA [20]

Ventricles longitudinal (6.4) 37.1 ml NA (Oregon brain aging) 82.3 64.7 - 100.5 
(7.8)

42 MRI NA [20]

Ventricles longitudinal (1) 31.7 ml NA Volunteers 69.3 (7) 19 MRI NA [21]

Ventricles longitudinal (1) 0.9 ml/year NA Volunteers 69.3 (7) 19 MRI NA [21]

Ventricles longitudinal (1) 2.83 %/year NA Volunteers 69.3 (7) 19 MRI normalized to baseline 
volume (31.7 ml)

[21]

Ventricles longitudinal (1) 1.9 %/year NA Volunteers 71.5 (3.4) 14 MRI NA [22]

Ventricles longitudinal (2.4) 3.5 %/year NA (Oregon brain aging) 83 (7) 88 MRI NA [23]

Ventricles longitudinal (2.4) 40.6 ml NA (Oregon brain aging) 83 (7) 88 MRI NA [23]

CSF,cran cross-sectional 3.6 ml/year NA (Epid. Vascular 
aging)

69.5 63.69-75.6 662 MRI NA [24]

CSF,cran cross-sectional 357 ml NA (Epid. Vascular 
aging)

69.5 63.69-75.6 662 MRI NA [24]

CSF,cran cross-sectional 1.01 %/year NA (Epid. Vascular 
aging)

69.5 63.69-75.6 662 MRI normalized to baseline 
volume (357 ml)

[24]

extraventricular cross-sectional 2.75 %/year NA Volunteers NA 24-80 49 MRI normalized to baseline 
volume (85 ml)

[25]

CSF,SASspinal cross-sectional -0.27 ml/year NA NA NA 29-70 87 MRI Estimated from a linear 
regression model

[26]

Vphb                    

Vphb cross-sectional 73.5 mmol/kg 100 Postmortum 
(Sweden)

NA 20-39 44 dry weight average of male and 
female data

[27]

Vphb cross-sectional 70 mmol/kg N.S. Postmortum 
(Sweden)

NA 40-59 46 dry weight average of male and 
female data

[27]

Vphb cross-sectional 66.5 mmol/kg 90,4 Postmortum 
(Sweden)

NA 60-79 47 dry weight average of male and 
female data

[27]

Vphb cross-sectional 60 mmol/kg 81,6 Postmortum 
(Sweden)

NA 80-100 47 dry weight average of male and 
female data

[27]

Vphb cross-sectional NA mg/gm 
wet wt

100 Postmortum NA 33-36 7 chemical 
extraction

GM, WM, Nucleus caudatus, 
hippocampus, pons, 
cerebellum, medulla oblongata

[28]

Supplementary table 4. Continued
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Parameter Study design 
(follow up years)

Value unit % Population 
(Database)

Age (years) Age range (SD) Number 
patients

Technique Notes Ref.

Ventricles longitudinal (4.1) 2.52 %/year NA <60 years 
(SMART-MR)

58 (9) 331 MRI NA [19]

Ventricles longitudinal (4.1) 1.42 ml/year NA >60 years 
(SMART-MR)

58 (9) 331 MRI NA [19]

Ventricles longitudinal (4.1) 4.22 %/year NA >60 years 
(SMART-MR)

58 (9) 331 MRI NA [19]

Ventricles longitudinal (6.4) 3.54 %/year NA (Oregon brain aging) 82.3 64.7 - 100.5 
(7.8)

42 MRI NA [20]

Ventricles longitudinal (6.4) 37.1 ml NA (Oregon brain aging) 82.3 64.7 - 100.5 
(7.8)

42 MRI NA [20]

Ventricles longitudinal (1) 31.7 ml NA Volunteers 69.3 (7) 19 MRI NA [21]

Ventricles longitudinal (1) 0.9 ml/year NA Volunteers 69.3 (7) 19 MRI NA [21]

Ventricles longitudinal (1) 2.83 %/year NA Volunteers 69.3 (7) 19 MRI normalized to baseline 
volume (31.7 ml)

[21]

Ventricles longitudinal (1) 1.9 %/year NA Volunteers 71.5 (3.4) 14 MRI NA [22]

Ventricles longitudinal (2.4) 3.5 %/year NA (Oregon brain aging) 83 (7) 88 MRI NA [23]

Ventricles longitudinal (2.4) 40.6 ml NA (Oregon brain aging) 83 (7) 88 MRI NA [23]

CSF,cran cross-sectional 3.6 ml/year NA (Epid. Vascular 
aging)

69.5 63.69-75.6 662 MRI NA [24]

CSF,cran cross-sectional 357 ml NA (Epid. Vascular 
aging)

69.5 63.69-75.6 662 MRI NA [24]

CSF,cran cross-sectional 1.01 %/year NA (Epid. Vascular 
aging)

69.5 63.69-75.6 662 MRI normalized to baseline 
volume (357 ml)

[24]

extraventricular cross-sectional 2.75 %/year NA Volunteers NA 24-80 49 MRI normalized to baseline 
volume (85 ml)

[25]

CSF,SASspinal cross-sectional -0.27 ml/year NA NA NA 29-70 87 MRI Estimated from a linear 
regression model

[26]

Vphb                    

Vphb cross-sectional 73.5 mmol/kg 100 Postmortum 
(Sweden)

NA 20-39 44 dry weight average of male and 
female data

[27]

Vphb cross-sectional 70 mmol/kg N.S. Postmortum 
(Sweden)

NA 40-59 46 dry weight average of male and 
female data

[27]

Vphb cross-sectional 66.5 mmol/kg 90,4 Postmortum 
(Sweden)

NA 60-79 47 dry weight average of male and 
female data

[27]

Vphb cross-sectional 60 mmol/kg 81,6 Postmortum 
(Sweden)

NA 80-100 47 dry weight average of male and 
female data

[27]

Vphb cross-sectional NA mg/gm 
wet wt

100 Postmortum NA 33-36 7 chemical 
extraction

GM, WM, Nucleus caudatus, 
hippocampus, pons, 
cerebellum, medulla oblongata

[28]
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Vphb cross-sectional NA mg/gm 
wet wt

NS Postmortum NA 54-57 8 chemical 
extraction

GM, WM, Nucleus caudatus, 
pons, cerebellum, 
medulla oblongata. 

[28]

Vphb cross-sectional NA mg/gm 
wet wt

p<0,05 Postmortum NA 54-57 8 chemical 
extraction

Hippocampus (vs 
youngest group)

[28]

Vphb cross-sectional NA mg/gm 
wet wt

NS Postmortum NA 69-72 8 chemical 
extraction

GM, WM, Nucleus caudatus, 
hippocampus, pons, 
cerebellum, medulla oblongata

[28]

Vphb cross-sectional NA mg/gm 
wet wt

p<0,05 Postmortum NA 69-72 8 chemical 
extraction

WM, pons, Hippocampus 
(p<0.05, youngest group)

[28]

Vphb cross-sectional NA mg/gm 
wet wt

p<0,05 Postmortum NA 89-92 7 chemical 
extraction

GM, WM, Nucleus caudatus, 
hippocampus, pons, 
cerebellum, medulla oblongata

[28]

Vphb cross-sectional NA mg/gm 
wet wt

N.S. Postmortum NA 89-92 7 chemical 
extraction

cerebellum (vs 
youngest group)

[28]

Vphb cross-sectional 18.2 mg/gm 
wet wt

100 Postmortum NA 33-36 7 chemical 
extraction

GM [28]

Vphb cross-sectional 17.4 mg/gm 
wet wt

N.S. Postmortum NA 69-72 8 chemical 
extraction

GM [28]

Vphb cross-sectional 35.1 mg/gm 
wet wt

100 Postmortum NA 33-36 7 chemical 
extraction

WM [28]

Vphb cross-sectional 29.9 mg/gm 
wet wt

85,2 Postmortum NA 69-72 8 chemical 
extraction

WM [28]

Vphb cross-sectional NA NA 100 Postmortum NA 33-36 7 chemical 
extraction

average over grey and 
white matters, accounting 
for volume differences

[28]

Vphb cross-sectional NA NA 93,34 Postmortum NA 69-72 8 chemical 
extraction

average over grey and 
white matters, accounting 
for volume differences

[28]

Vphb cross-sectional 18.2 mg/gm 
wet wt

100 Postmortum NA 33-36 7 chemical 
extraction

GM [28]

Vphb cross-sectional 16.4 mg/gm 
wet wt

90,1 Postmortum NA 89-92 7 chemical 
extraction

GM [28]

Vphb cross-sectional 35.1 mg/gm 
wet wt

100 Postmortum NA 33-36 7 chemical 
extraction

WM [28]

Vphb cross-sectional 28.2 mg/gm 
wet wt

80,3 Postmortum NA 89-92 7 chemical 
extraction

WM [28]

Vphb cross-sectional NA NA 100 Postmortum NA 33-36 7 chemical 
extraction

average over grey and 
white matters, accounting 
for volume differences

[28]

Vphb cross-sectional NA NA 85,7 Postmortum NA 89-92 7 chemical 
extraction

average over grey and 
white matters, accounting 
for volume differences

[28]
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Vphb cross-sectional NA mg/gm 
wet wt

NS Postmortum NA 54-57 8 chemical 
extraction

GM, WM, Nucleus caudatus, 
pons, cerebellum, 
medulla oblongata. 

[28]

Vphb cross-sectional NA mg/gm 
wet wt

p<0,05 Postmortum NA 54-57 8 chemical 
extraction

Hippocampus (vs 
youngest group)

[28]

Vphb cross-sectional NA mg/gm 
wet wt

NS Postmortum NA 69-72 8 chemical 
extraction

GM, WM, Nucleus caudatus, 
hippocampus, pons, 
cerebellum, medulla oblongata

[28]

Vphb cross-sectional NA mg/gm 
wet wt

p<0,05 Postmortum NA 69-72 8 chemical 
extraction

WM, pons, Hippocampus 
(p<0.05, youngest group)

[28]

Vphb cross-sectional NA mg/gm 
wet wt

p<0,05 Postmortum NA 89-92 7 chemical 
extraction

GM, WM, Nucleus caudatus, 
hippocampus, pons, 
cerebellum, medulla oblongata

[28]

Vphb cross-sectional NA mg/gm 
wet wt

N.S. Postmortum NA 89-92 7 chemical 
extraction

cerebellum (vs 
youngest group)

[28]

Vphb cross-sectional 18.2 mg/gm 
wet wt

100 Postmortum NA 33-36 7 chemical 
extraction

GM [28]

Vphb cross-sectional 17.4 mg/gm 
wet wt

N.S. Postmortum NA 69-72 8 chemical 
extraction

GM [28]

Vphb cross-sectional 35.1 mg/gm 
wet wt

100 Postmortum NA 33-36 7 chemical 
extraction

WM [28]

Vphb cross-sectional 29.9 mg/gm 
wet wt

85,2 Postmortum NA 69-72 8 chemical 
extraction

WM [28]

Vphb cross-sectional NA NA 100 Postmortum NA 33-36 7 chemical 
extraction

average over grey and 
white matters, accounting 
for volume differences

[28]

Vphb cross-sectional NA NA 93,34 Postmortum NA 69-72 8 chemical 
extraction

average over grey and 
white matters, accounting 
for volume differences

[28]

Vphb cross-sectional 18.2 mg/gm 
wet wt

100 Postmortum NA 33-36 7 chemical 
extraction

GM [28]

Vphb cross-sectional 16.4 mg/gm 
wet wt

90,1 Postmortum NA 89-92 7 chemical 
extraction

GM [28]

Vphb cross-sectional 35.1 mg/gm 
wet wt

100 Postmortum NA 33-36 7 chemical 
extraction

WM [28]

Vphb cross-sectional 28.2 mg/gm 
wet wt

80,3 Postmortum NA 89-92 7 chemical 
extraction

WM [28]

Vphb cross-sectional NA NA 100 Postmortum NA 33-36 7 chemical 
extraction

average over grey and 
white matters, accounting 
for volume differences

[28]

Vphb cross-sectional NA NA 85,7 Postmortum NA 89-92 7 chemical 
extraction

average over grey and 
white matters, accounting 
for volume differences

[28]
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GM:WM ratio                    

GM:WM ratio NA 1.243 unitless NA NA NA NA NA NA NA [29]

QCSF                    

QCSF cross-sectional 1.02 ml/min 100 (Volunteers) NA 20-34 24 PC-MRI Aqueduct [30]

QCSF cross-sectional 1.14 ml/min N.S. (Volunteers) NA 35-49 24 PC-MRI Aqueduct [30]

QCSF cross-sectional 1.5 ml/min N.S. (Volunteers) NA 50-64 24 PC-MRI Aqueduct [30]

QCSF cross-sectional 40.825 ml/min NA Young (Volunteers) 27.5 (4.4) 19 PC-MRI Craniocervical junction, 
calc. as stroke volume 
(ml/cycle)*heart rate 
(71 cycle/min)

[31]

QCSF cross-sectional 35.646 ml/min NA Elderly (Volunteers) 71 (9) 12 PC-MRI Craniocervical junction, 
calc. as stroke volume 
(ml/cycle)*heart rate 
(78 cycle/min)

[31]

QCSF cross-sectional 3.408 ml/min NA Young (Volunteers) 27.5 (4.4) 19 PC-MRI Aqueduct, calc. as stroke 
volume (ml/cycle)*heart 
rate (71 cycle/min)

[31]

QCSF cross-sectional 2.652 ml/min NA Elderly (Volunteers) 71 (9) 12 PC-MRI Aqueduct, calc. as stroke 
volume (ml/cycle)*heart 
rate (78 cycle/min)

[31]

QCSF cross-sectional NA NA NA Young (Volunteers) 29.6 25-36 11 Cine PC-MRI Non-significant increase 
of CSF flow at aqueduct

[32]

QCSF cross-sectional NA NA NA Elderly (Volunteers) 68.6 57-76 9 Cine PC-MRI Non-significant increase 
of CSF flow at aqueduct

[32]

QCSF Longitudinal (5.5) N.S. ml/min NA (Volunteers) 47.4 (12.9) 20 Cine PC-MRI Aqueduct [33]

QCSF cross-sectional 2.76 ml/min 100 Young (Volunteers) 31 26-44 (7) 16 PC-MRI Aqueduct, calc. as flow 
rate (ml/cycle)*heart 
rate (69 cycle/min)

[34]

QCSF cross-sectional 3.5 ml/min N.S. Elderly (Volunteers) 73 63-82 (6) 19 PC-MRI Aqueduct, calc. as flow 
rate (ml/cycle)*heart 
rate (70 cycle/min)

[34]

QCSF cross-sectional 23.46 ml/min 100 Young (Volunteers) 31 26-44 (7) 16 PC-MRI Craniocervical junction, calc. 
as flow rate (ml/cycle)*heart 
rate (69 cycle/min)

[34]

QCSF cross-sectional 35.7 ml/min 152,1 Elderly (Volunteers) 73 63-82 (6) 19 PC-MRI Craniocervical junction, calc. 
as flow rate (ml/cycle)*heart 
rate (70 cycle/min)

[34]

QCSF cross-sectional 0.96 ml/min 100 Young (Male 
volunteers)

NA 17-50 31 PC-MRI Aqueduct [35]

QCSF cross-sectional 1.62 ml/min 168,8 Elderly (Male 
volunteers)

NA 51-88 31 PC-MRI Aqueduct [35]

QCSF cross-sectional 0.72 ml/min 100 Young (Female 
volunteers)

NA 17-50 32 PC-MRI Aqueduct [35]
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GM:WM ratio                    

GM:WM ratio NA 1.243 unitless NA NA NA NA NA NA NA [29]

QCSF                    

QCSF cross-sectional 1.02 ml/min 100 (Volunteers) NA 20-34 24 PC-MRI Aqueduct [30]

QCSF cross-sectional 1.14 ml/min N.S. (Volunteers) NA 35-49 24 PC-MRI Aqueduct [30]

QCSF cross-sectional 1.5 ml/min N.S. (Volunteers) NA 50-64 24 PC-MRI Aqueduct [30]

QCSF cross-sectional 40.825 ml/min NA Young (Volunteers) 27.5 (4.4) 19 PC-MRI Craniocervical junction, 
calc. as stroke volume 
(ml/cycle)*heart rate 
(71 cycle/min)

[31]

QCSF cross-sectional 35.646 ml/min NA Elderly (Volunteers) 71 (9) 12 PC-MRI Craniocervical junction, 
calc. as stroke volume 
(ml/cycle)*heart rate 
(78 cycle/min)

[31]

QCSF cross-sectional 3.408 ml/min NA Young (Volunteers) 27.5 (4.4) 19 PC-MRI Aqueduct, calc. as stroke 
volume (ml/cycle)*heart 
rate (71 cycle/min)

[31]

QCSF cross-sectional 2.652 ml/min NA Elderly (Volunteers) 71 (9) 12 PC-MRI Aqueduct, calc. as stroke 
volume (ml/cycle)*heart 
rate (78 cycle/min)

[31]

QCSF cross-sectional NA NA NA Young (Volunteers) 29.6 25-36 11 Cine PC-MRI Non-significant increase 
of CSF flow at aqueduct

[32]

QCSF cross-sectional NA NA NA Elderly (Volunteers) 68.6 57-76 9 Cine PC-MRI Non-significant increase 
of CSF flow at aqueduct

[32]

QCSF Longitudinal (5.5) N.S. ml/min NA (Volunteers) 47.4 (12.9) 20 Cine PC-MRI Aqueduct [33]

QCSF cross-sectional 2.76 ml/min 100 Young (Volunteers) 31 26-44 (7) 16 PC-MRI Aqueduct, calc. as flow 
rate (ml/cycle)*heart 
rate (69 cycle/min)

[34]

QCSF cross-sectional 3.5 ml/min N.S. Elderly (Volunteers) 73 63-82 (6) 19 PC-MRI Aqueduct, calc. as flow 
rate (ml/cycle)*heart 
rate (70 cycle/min)

[34]

QCSF cross-sectional 23.46 ml/min 100 Young (Volunteers) 31 26-44 (7) 16 PC-MRI Craniocervical junction, calc. 
as flow rate (ml/cycle)*heart 
rate (69 cycle/min)

[34]

QCSF cross-sectional 35.7 ml/min 152,1 Elderly (Volunteers) 73 63-82 (6) 19 PC-MRI Craniocervical junction, calc. 
as flow rate (ml/cycle)*heart 
rate (70 cycle/min)

[34]

QCSF cross-sectional 0.96 ml/min 100 Young (Male 
volunteers)

NA 17-50 31 PC-MRI Aqueduct [35]

QCSF cross-sectional 1.62 ml/min 168,8 Elderly (Male 
volunteers)

NA 51-88 31 PC-MRI Aqueduct [35]

QCSF cross-sectional 0.72 ml/min 100 Young (Female 
volunteers)

NA 17-50 32 PC-MRI Aqueduct [35]
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QCSF cross-sectional 0.9 ml/min N.S. Elderly (Female 
volunteers)

NA 51-88 34 PC-MRI Aqueduct [35]

QCSF cross-sectional 6.7 ml/min 100 Young (Volunteers) 24 (3) 11 MRI Aqueduct [36]

QCSF cross-sectional 7.5 ml/min N.S. Elderly (Volunteers 
- Switzerland)

70 (5) 11 MRI Aqueduct [36]

QCSF cross-sectional 121 ml/min 100 Young (Volunteers) 24 (3) 11 MRI Craniocervical junction [36]

QCSF cross-sectional 93 ml/min 76,86 Elderly (Volunteers 
- Switzerland)

70 (5) 11 MRI Craniocervical junction [36]

QCSF cross-sectional NA NA N.S. (Volunteers) 31.2 6-70 60 MRI non-significant increase of 
average flow & decrease 
of flow velocity

[37]

QCSF cross-sectional 2.6 ml/min 100 Young (Volunteers) 29.8 22-40 (7.6) 8 MRI Aqueduct (craniocaudal 
- caudocranial)

[38]

QCSF cross-sectional 2.3 ml/min N.S. Elderly (Volunteers) 69 58-76 (8) 5 MRI Aqueduct (craniocaudal 
- caudocranial)

[38]

CSF production cross-sectional 0.69 ml/min 100 Young (Volunteers) 29.8 22-40 (7.6) 8 MRI Aqueduct [38]

CSF production cross-sectional 0.68 ml/min N.S. Elderly (Volunteers) 69 58-76 (8) 5 MRI Aqueduct [38]

CSF production cross-sectional NA NA NA (Volunteers) 47.9 22-79 (15.8) 40 MRI No age effect on CSF flow 
patterns or velocity at LV, 
TFV, aqueduct, monro

[39]

CSF outflow cross-sectional NA NA NA (Volunteers) 60 20-88 52 Lumbar 
computerized 
infusion

A small, significant 
increase of resistance to 
CSF outflow with age

[40]

QCBF                    

CBF cross sectional 0 ml/year (Volunteers) 35 20-63 (12) 48 Transcranial 
color duplex

No correction for brain atrophy [41]

CBF cross sectional -6.2 ml/year (PROSPER) 75 (3) NA MRI Accounted for brain atrophy [42]

CBF longituinal (4) 54.1 ml/100g/min (DLBS) NA 20-30 NA MRI Accounted for brain atrophy [43]

CBF longituinal (4) 51.8 ml/100g/min (DLBS) NA 30-40 NA MRI Accounted for brain atrophy [43]

CBF longituinal (4) 48.4 ml/100g/min (DLBS) NA 40-50 NA MRI Accounted for brain atrophy [43]

CBF longituinal (4) 44.5 ml/100g/min (DLBS) NA 50-60 NA MRI Accounted for brain atrophy [43]

CBF longituinal (4) 43.4 ml/100g/min (DLBS) NA 60-70 NA MRI Accounted for brain atrophy [43]

CBF longituinal (4) 41.4 ml/100g/min (DLBS) NA 70-80 NA MRI Accounted for brain atrophy [43]

CBF longituinal (4) 39.8 ml/100g/min (DLBS) NA 80-90 NA MRI Accounted for brain atrophy [43]

CBF cross sectional -0.37 % / year (Volunteers) 41 20-67 (14) 34 MRI Accounted for brain atrophy [44]

CBF cross sectional -0.33 ml/100g/
min/year

(Volunteers) 47.7 20-80 17 MRI No correction for brain atrophy [45]

CBF cross sectional N.S. ml/100g/
min/year

(Volunteers) 39 20-72 (19) 26 PET No correction for brain atrophy [46]

Supplementary table 4. Continued



239

CNS PK predictions in healthy aging and Alzheimer’s disease

66

Parameter Study design 
(follow up years)

Value unit % Population 
(Database)

Age (years) Age range (SD) Number 
patients

Technique Notes Ref.

QCSF cross-sectional 0.9 ml/min N.S. Elderly (Female 
volunteers)

NA 51-88 34 PC-MRI Aqueduct [35]

QCSF cross-sectional 6.7 ml/min 100 Young (Volunteers) 24 (3) 11 MRI Aqueduct [36]

QCSF cross-sectional 7.5 ml/min N.S. Elderly (Volunteers 
- Switzerland)

70 (5) 11 MRI Aqueduct [36]

QCSF cross-sectional 121 ml/min 100 Young (Volunteers) 24 (3) 11 MRI Craniocervical junction [36]

QCSF cross-sectional 93 ml/min 76,86 Elderly (Volunteers 
- Switzerland)

70 (5) 11 MRI Craniocervical junction [36]

QCSF cross-sectional NA NA N.S. (Volunteers) 31.2 6-70 60 MRI non-significant increase of 
average flow & decrease 
of flow velocity

[37]

QCSF cross-sectional 2.6 ml/min 100 Young (Volunteers) 29.8 22-40 (7.6) 8 MRI Aqueduct (craniocaudal 
- caudocranial)

[38]

QCSF cross-sectional 2.3 ml/min N.S. Elderly (Volunteers) 69 58-76 (8) 5 MRI Aqueduct (craniocaudal 
- caudocranial)

[38]

CSF production cross-sectional 0.69 ml/min 100 Young (Volunteers) 29.8 22-40 (7.6) 8 MRI Aqueduct [38]

CSF production cross-sectional 0.68 ml/min N.S. Elderly (Volunteers) 69 58-76 (8) 5 MRI Aqueduct [38]

CSF production cross-sectional NA NA NA (Volunteers) 47.9 22-79 (15.8) 40 MRI No age effect on CSF flow 
patterns or velocity at LV, 
TFV, aqueduct, monro

[39]

CSF outflow cross-sectional NA NA NA (Volunteers) 60 20-88 52 Lumbar 
computerized 
infusion

A small, significant 
increase of resistance to 
CSF outflow with age

[40]

QCBF                    

CBF cross sectional 0 ml/year (Volunteers) 35 20-63 (12) 48 Transcranial 
color duplex

No correction for brain atrophy [41]

CBF cross sectional -6.2 ml/year (PROSPER) 75 (3) NA MRI Accounted for brain atrophy [42]

CBF longituinal (4) 54.1 ml/100g/min (DLBS) NA 20-30 NA MRI Accounted for brain atrophy [43]

CBF longituinal (4) 51.8 ml/100g/min (DLBS) NA 30-40 NA MRI Accounted for brain atrophy [43]

CBF longituinal (4) 48.4 ml/100g/min (DLBS) NA 40-50 NA MRI Accounted for brain atrophy [43]

CBF longituinal (4) 44.5 ml/100g/min (DLBS) NA 50-60 NA MRI Accounted for brain atrophy [43]

CBF longituinal (4) 43.4 ml/100g/min (DLBS) NA 60-70 NA MRI Accounted for brain atrophy [43]

CBF longituinal (4) 41.4 ml/100g/min (DLBS) NA 70-80 NA MRI Accounted for brain atrophy [43]

CBF longituinal (4) 39.8 ml/100g/min (DLBS) NA 80-90 NA MRI Accounted for brain atrophy [43]

CBF cross sectional -0.37 % / year (Volunteers) 41 20-67 (14) 34 MRI Accounted for brain atrophy [44]

CBF cross sectional -0.33 ml/100g/
min/year

(Volunteers) 47.7 20-80 17 MRI No correction for brain atrophy [45]

CBF cross sectional N.S. ml/100g/
min/year

(Volunteers) 39 20-72 (19) 26 PET No correction for brain atrophy [46]
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CBF cross sectional N.S. ml/100ml/
min

(Volunteers) 46.2 20-80 (20) 27 MRI Accounted for brain atrophy [47]

CBF cross sectional -9.38 ml/year (Volunteers) 71 (9) 12 MRI No correction for brain atrophy [31]

CBF cross sectional no 
change

ml/100g/min (Volunteers) 50 50-85 28 PET No correction for brain atrophy [48]

CBF cross sectional -4.8 ml/year (Volunteers) NA 19-88 250 2D phase-
contrast MRI

No correction for brain atrophy [49]

Kpuu,BBB P-gp                   

BBB pgp mRNA 
expression

cross-sectional NA %area 
stained

NS Harvard Brain Tissue 
Resource Center at

45.7 20-60 6 IHC NA [50]

BBB pgp mRNA 
expression

cross-sectional NA %area 
stained

NS Harvard Brain Tissue 
Resource Center at

76 61-100 8 IHC NA [50]

BBB pgp protein 
expression

cross-sectional NA %area 
stained

NS Harvard Brain Tissue 
Resource Center at

45.7 20-60 6 IHC NA [50]

BBB pgp protein 
expression

cross-sectional NA %area 
stained

NS Harvard Brain Tissue 
Resource Center at

76 61-100 8 IHC NA [50]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.62 NA 100 Young (Volunteers) 25 21-27 (2.3) 5 MRI NA [51]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.73 NA 118 Elderly (Volunteers) 61 59-68 (3.6) 5 MRI NA [51]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.38 NA 100 Young (Volunteers) 24 (2) 7 MRI NA [52]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.61 NA 160 Elderly (Volunteers) 60 (11) 10 MRI NA [52]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.79 NA 100 Young (Volunteers) 26 (1) 5 MRI NA [53]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.78 NA NS Elderly (Volunteers) 68 (6) 5 MRI NA [53]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.79 NA 100 Young (Volunteers) 26 (1) 5 MRI NA [53]
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CBF cross sectional N.S. ml/100ml/
min

(Volunteers) 46.2 20-80 (20) 27 MRI Accounted for brain atrophy [47]

CBF cross sectional -9.38 ml/year (Volunteers) 71 (9) 12 MRI No correction for brain atrophy [31]

CBF cross sectional no 
change

ml/100g/min (Volunteers) 50 50-85 28 PET No correction for brain atrophy [48]

CBF cross sectional -4.8 ml/year (Volunteers) NA 19-88 250 2D phase-
contrast MRI

No correction for brain atrophy [49]

Kpuu,BBB P-gp                   

BBB pgp mRNA 
expression

cross-sectional NA %area 
stained

NS Harvard Brain Tissue 
Resource Center at

45.7 20-60 6 IHC NA [50]

BBB pgp mRNA 
expression

cross-sectional NA %area 
stained

NS Harvard Brain Tissue 
Resource Center at

76 61-100 8 IHC NA [50]

BBB pgp protein 
expression

cross-sectional NA %area 
stained

NS Harvard Brain Tissue 
Resource Center at

45.7 20-60 6 IHC NA [50]

BBB pgp protein 
expression

cross-sectional NA %area 
stained

NS Harvard Brain Tissue 
Resource Center at

76 61-100 8 IHC NA [50]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.62 NA 100 Young (Volunteers) 25 21-27 (2.3) 5 MRI NA [51]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.73 NA 118 Elderly (Volunteers) 61 59-68 (3.6) 5 MRI NA [51]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.38 NA 100 Young (Volunteers) 24 (2) 7 MRI NA [52]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.61 NA 160 Elderly (Volunteers) 60 (11) 10 MRI NA [52]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.79 NA 100 Young (Volunteers) 26 (1) 5 MRI NA [53]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.78 NA NS Elderly (Volunteers) 68 (6) 5 MRI NA [53]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.79 NA 100 Young (Volunteers) 26 (1) 5 MRI NA [53]
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(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.8 NA NS Young (Volunteers) 26 (1) 5 MRI partial inhibition of 
pgp with tariquidar

[53]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.78 NA 100 Elderly (Volunteers) 68 (6) 5 MRI NA [53]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 1.08 NA 138,4 Elderly (Volunteers) 68 (6) 5 MRI partial inhibition of 
pgp with tariquidar

[53]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.71 NA 100 Young (Volunteers) 24 21-27 (2) 9 MRI Regional significant changes 
(18-38%)of Vd, but not global

[54]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.75 NA NS Middle-aged 
(Volunteers)

46 42-50 (3) 10 MRI Regional significant changes 
(18-38%)of Vd, but not global

[54]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.84 NA NS Elderly (Volunteers) 63 57-69 (4) 16 MRI Regional significant changes 
(18-38%)of Vd, but not global

[54]

(R)-[11C] 
verapamil efflux 
rate constant

cross-sectional NA NA 100 Young (Volunteers) 27 (4) 7 MRI NA [55]

(R)-[11C] 
verapamil efflux 
rate constant

cross-sectional NA NA NS Elderly (Volunteers) 69 (9) 6 MRI NA [55]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.65 NA 100 Young (Volunteers) 27 (4) 7 MRI NA [55]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.75 NA NS Elderly (Volunteers) 69 (9) 6 MRI NA [55]

PPA-BBB                    

BBB permeability 
(Ktrans)

cross-secional NA 100 Young (Volunteers) NA 23-47 6 CE-MRI superior frontal & inferior 
temporal gyrus cortex, 
thalamys, striatum, WM, corpus 
collosum, internal capsule

[56]

Supplementary table 4. Continued
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Value unit % Population 
(Database)

Age (years) Age range (SD) Number 
patients

Technique Notes Ref.

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.8 NA NS Young (Volunteers) 26 (1) 5 MRI partial inhibition of 
pgp with tariquidar

[53]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.78 NA 100 Elderly (Volunteers) 68 (6) 5 MRI NA [53]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 1.08 NA 138,4 Elderly (Volunteers) 68 (6) 5 MRI partial inhibition of 
pgp with tariquidar

[53]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.71 NA 100 Young (Volunteers) 24 21-27 (2) 9 MRI Regional significant changes 
(18-38%)of Vd, but not global

[54]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.75 NA NS Middle-aged 
(Volunteers)

46 42-50 (3) 10 MRI Regional significant changes 
(18-38%)of Vd, but not global

[54]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.84 NA NS Elderly (Volunteers) 63 57-69 (4) 16 MRI Regional significant changes 
(18-38%)of Vd, but not global

[54]

(R)-[11C] 
verapamil efflux 
rate constant

cross-sectional NA NA 100 Young (Volunteers) 27 (4) 7 MRI NA [55]

(R)-[11C] 
verapamil efflux 
rate constant

cross-sectional NA NA NS Elderly (Volunteers) 69 (9) 6 MRI NA [55]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.65 NA 100 Young (Volunteers) 27 (4) 7 MRI NA [55]

(R)-[11C] 
verapamil 
distribution 
volume

cross-sectional 0.75 NA NS Elderly (Volunteers) 69 (9) 6 MRI NA [55]

PPA-BBB                    

BBB permeability 
(Ktrans)

cross-secional NA 100 Young (Volunteers) NA 23-47 6 CE-MRI superior frontal & inferior 
temporal gyrus cortex, 
thalamys, striatum, WM, corpus 
collosum, internal capsule

[56]
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Parameter Study design 
(follow up years)

Value unit % Population 
(Database)

Age (years) Age range (SD) Number 
patients

Technique Notes Ref.

BBB permeability 
(Ktrans)

cross-secional NA min-1/year N.S. Elderly (Volunteers) NA 55-90 18 CE-MRI superior frontal & inferior 
temporal gyrus cortex, 
thalamys, striatum, WM, corpus 
collosum, internal capsule

[56]

passive 
permeability

cross-secional 1.22 min-1 100 Young (Volunteers) NA 23-47 6 CE-MRI caudate nucleus [56]

passive 
permeability

cross-secional 1.59 min-1 130 Elderly (Volunteers) NA 55-91 18 CE-MRI caudate nucleus [56]

passive 
permeability

cross-secional 0.00093 min-1 100 Young (Volunteers) 23-47 6 CE-MRI Hippocampus [56]

passive 
permeability

cross-secional 0.0013 min-1 139,8 Elderly (Volunteers) 55-91 18 CE-MRI Hippocampus [56]

WM passive 
permeability 
increase/year

cross-secional 0.121 min-1.yr-1 NA Volunteers 65.8 47-91 (10.2) 57 CE-MRI calculated from Bstd, by 
multiplying Bstd with sd 
of Ki (cubic root (Ki*1000) 
& 1/sd of AGE)

[57]

GM passive 
permeability 
increase/year

cross-secional 0.109 min-1.yr-1 NA Volunteers 65.8 47-91 (10.2) 57 CE-MRI calculated from Bstd, by 
multiplying Bstd with sd 
of Ki (cubic root (Ki*1000) 
& 1/sd of AGE)

[57]

passive 
permeability 
increase/year

cross-secional 0.114 min-1.yr-1 NA Volunteers 65.8 47-91 (10.2) 57 CE-MRI average over grey and 
white matters, accounting 
for volume differences

[57]

SABBB                    

capillary SA/unit 
tissue volume

cross-sectional 1.98 mm2/mm3 100 postmortum 38 21-51 5 microscopy NA [58]

capillary SA/unit 
tissue volume

cross-sectional 1.78 mm2/mm3 89,9 postmortum 74 60-88 5 microscopy NA [58]

capillary 
volume/unit 
tissue volume

cross-sectional 0.0025 mm3/mm3 100 postmortum 38 21-51 5 microscopy NA [58]

capillary 
volume/unit 
tissue volume

cross-sectional 0.0025 mm3/mm3 N.S. postmortum 74 60-88 5 microscopy NA [58]

capillary SA/unit 
capillary volume

cross-sectional 792 mm2/mm3 100 postmortum 38 21-51 5 microscopy NA [58]

capillary SA/unit 
capillary volume

cross-sectional 712 mm2/mm3 89,9 postmortum 74 60-88 5 microscopy NA [58]

cappilaries cross-sectional NA NA NA postmortum 69 26-96 (15.2) 24 stereology Capillary surface area:tissue 
vol and capillary length: 
tissue volume signnificantly 
correlated with age 
in frontal cortex

[59]

Supplementary table 4. Continued
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Value unit % Population 
(Database)

Age (years) Age range (SD) Number 
patients

Technique Notes Ref.

BBB permeability 
(Ktrans)

cross-secional NA min-1/year N.S. Elderly (Volunteers) NA 55-90 18 CE-MRI superior frontal & inferior 
temporal gyrus cortex, 
thalamys, striatum, WM, corpus 
collosum, internal capsule

[56]

passive 
permeability

cross-secional 1.22 min-1 100 Young (Volunteers) NA 23-47 6 CE-MRI caudate nucleus [56]

passive 
permeability

cross-secional 1.59 min-1 130 Elderly (Volunteers) NA 55-91 18 CE-MRI caudate nucleus [56]

passive 
permeability

cross-secional 0.00093 min-1 100 Young (Volunteers) 23-47 6 CE-MRI Hippocampus [56]

passive 
permeability

cross-secional 0.0013 min-1 139,8 Elderly (Volunteers) 55-91 18 CE-MRI Hippocampus [56]

WM passive 
permeability 
increase/year

cross-secional 0.121 min-1.yr-1 NA Volunteers 65.8 47-91 (10.2) 57 CE-MRI calculated from Bstd, by 
multiplying Bstd with sd 
of Ki (cubic root (Ki*1000) 
& 1/sd of AGE)

[57]

GM passive 
permeability 
increase/year

cross-secional 0.109 min-1.yr-1 NA Volunteers 65.8 47-91 (10.2) 57 CE-MRI calculated from Bstd, by 
multiplying Bstd with sd 
of Ki (cubic root (Ki*1000) 
& 1/sd of AGE)

[57]

passive 
permeability 
increase/year

cross-secional 0.114 min-1.yr-1 NA Volunteers 65.8 47-91 (10.2) 57 CE-MRI average over grey and 
white matters, accounting 
for volume differences

[57]

SABBB                    

capillary SA/unit 
tissue volume

cross-sectional 1.98 mm2/mm3 100 postmortum 38 21-51 5 microscopy NA [58]

capillary SA/unit 
tissue volume

cross-sectional 1.78 mm2/mm3 89,9 postmortum 74 60-88 5 microscopy NA [58]

capillary 
volume/unit 
tissue volume

cross-sectional 0.0025 mm3/mm3 100 postmortum 38 21-51 5 microscopy NA [58]

capillary 
volume/unit 
tissue volume

cross-sectional 0.0025 mm3/mm3 N.S. postmortum 74 60-88 5 microscopy NA [58]

capillary SA/unit 
capillary volume

cross-sectional 792 mm2/mm3 100 postmortum 38 21-51 5 microscopy NA [58]

capillary SA/unit 
capillary volume

cross-sectional 712 mm2/mm3 89,9 postmortum 74 60-88 5 microscopy NA [58]

cappilaries cross-sectional NA NA NA postmortum 69 26-96 (15.2) 24 stereology Capillary surface area:tissue 
vol and capillary length: 
tissue volume signnificantly 
correlated with age 
in frontal cortex

[59]
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(Database)

Age (years) Age range (SD) Number 
patients

Technique Notes Ref.

cappilaries cross-sectional NA NA NA postmortum 69 26-96 (15.2) 24 stereology Capillary volume:tissue 
volume, capillary surface area: 
volume, capillary diameter 
did not significantly correlate 
with age in frontal cortex

[59]

cappilaries cross-sectional NA NA NA postmortum 68 26-96 (15.6) 25 stereology capillary volume:tissue 
volume, capillary surface 
area:tissue vol, capillary 
length:tissue volume, capillary 
surface area:capillary volume, 
capillary diameter did not 
signficantly correlate with 
age in temporal cortex

[59]

SABCSFB                    

Choroid plexus 
cells height

cross-sectional 14.3 um N.S. Post-mortum 46 NA 1 microscopy NA [60]

Choroid plexus 
cells height

cross-sectional 13.7 um 100 Post-mortum 89.1 82-96 (5.4) 8 microscopy NA [60]

Supplementary table 5. CNS pathophysiology in mild Alzheimer’s patients

Value unit % Database cohort Severity score 
(method)

Age Age range Number 
pts

Technique Notes Ref.

 Brain volume                   

1453 mL 94.7 NA Mild AD 22 (MMSE) 67 (9) 64 MRI NA [61]

1534 mL 100 NA healthy elderly 28 (MMSE) 67 (9) 34 MRI NA [61]

952.3 mL 95.4 ADNI Mild AD 23.7 (MMSE) 74.9 (7.6) 65 MRI NA [62]

997.9 mL 100 ADNI healthy elderly 29.1 (MMSE) 75.8 (5.5) 87 MRI NA [62]

1007 mL 96 ADNI Mild AD 23.5 (MMSE) 75.3 (6.9) 99 MRI NA [63]

1049 mL 100 ADNI healthy elderly 29.2 (MMSE) 76 (5.1) 131 MRI NA [63]

1106 mL 96 NA not reported (National Institute 
on Aging–
Alzheimer's criteria)

79.1 (5) 18 MRI NA [64]

1152 mL 100 NA not reported (National Institute 
on Aging–
Alzheimer's criteria)

77 (6.6) 26 MRI NA [64]

 CSF flow                     

2.65 mL/min NS NA Mild AD ≥20 (MMSE) 79 (5) 9 MRI Aqueduct, calc. as stroke 
volume (ul/cycle)*heart rate 

[65]

2.81 mL/min 100 NA Age-matched 
control

29 (MMSE) 71 (9) 12 MRI Aqueduct, calc. as stroke 
volume (ul/cycle)*heart rate 

[65]

Supplementary table 4. Continued
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(follow up years)

Value unit % Population 
(Database)

Age (years) Age range (SD) Number 
patients

Technique Notes Ref.

cappilaries cross-sectional NA NA NA postmortum 69 26-96 (15.2) 24 stereology Capillary volume:tissue 
volume, capillary surface area: 
volume, capillary diameter 
did not significantly correlate 
with age in frontal cortex

[59]

cappilaries cross-sectional NA NA NA postmortum 68 26-96 (15.6) 25 stereology capillary volume:tissue 
volume, capillary surface 
area:tissue vol, capillary 
length:tissue volume, capillary 
surface area:capillary volume, 
capillary diameter did not 
signficantly correlate with 
age in temporal cortex

[59]

SABCSFB                    

Choroid plexus 
cells height

cross-sectional 14.3 um N.S. Post-mortum 46 NA 1 microscopy NA [60]

Choroid plexus 
cells height

cross-sectional 13.7 um 100 Post-mortum 89.1 82-96 (5.4) 8 microscopy NA [60]

Supplementary table 5. CNS pathophysiology in mild Alzheimer’s patients

Value unit % Database cohort Severity score 
(method)

Age Age range Number 
pts

Technique Notes Ref.

 Brain volume                   

1453 mL 94.7 NA Mild AD 22 (MMSE) 67 (9) 64 MRI NA [61]

1534 mL 100 NA healthy elderly 28 (MMSE) 67 (9) 34 MRI NA [61]

952.3 mL 95.4 ADNI Mild AD 23.7 (MMSE) 74.9 (7.6) 65 MRI NA [62]

997.9 mL 100 ADNI healthy elderly 29.1 (MMSE) 75.8 (5.5) 87 MRI NA [62]

1007 mL 96 ADNI Mild AD 23.5 (MMSE) 75.3 (6.9) 99 MRI NA [63]

1049 mL 100 ADNI healthy elderly 29.2 (MMSE) 76 (5.1) 131 MRI NA [63]

1106 mL 96 NA not reported (National Institute 
on Aging–
Alzheimer's criteria)

79.1 (5) 18 MRI NA [64]

1152 mL 100 NA not reported (National Institute 
on Aging–
Alzheimer's criteria)

77 (6.6) 26 MRI NA [64]

 CSF flow                     

2.65 mL/min NS NA Mild AD ≥20 (MMSE) 79 (5) 9 MRI Aqueduct, calc. as stroke 
volume (ul/cycle)*heart rate 

[65]

2.81 mL/min 100 NA Age-matched 
control

29 (MMSE) 71 (9) 12 MRI Aqueduct, calc. as stroke 
volume (ul/cycle)*heart rate 

[65]
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Value unit % Database cohort Severity score 
(method)

Age Age range Number 
pts

Technique Notes Ref.

35.64 mL/min NS NA Mild AD 21 (MMSE) 79 (5) 9 MRI Craniocervical junction, 
calc. as stroke volume 
(ul/cycle)*heart rate 

[65]

32.4 mL/min 100 NA Age-matched 
control

29 (MMSE) 71 (9) 12 MRI Craniocervical junction, 
calc. as stroke volume 
(ul/cycle)*heart rate 

[65]

8.81 mL/min NS NA AD patients NA 71.2 50-87 46 MRI Aqueduct [66]

8.42 mL/min 100 NA Volunteers NA 80.3 62-91 47 MRI Aqueduct [66]

 CSF volume                    

1241 ml 108.2 LAARC Mild-
Moderate AD

19.4 (MMSE) 71.9 (8) 39 MRI Intracranial volume; 
All AD; sign differed 
compared to control 

[67]

1147 ml 100 LAARC Healthy 28.2 (MMSE) 83.9 (7.2) 166 MRI Intracranial volume; No 
dementia/Normal

[67]

19.70 %/ICV 111.3 LAARC Mild-
Moderate AD

19.4 (MMSE) 71.9 (8) 39 MRI SAS:ICV; All AD; sign 
diff compared to control 
and questionable

[67]

17.70 %/ICV 100 LAARC Healthy 28.2 (MMSE) 83.9 (7.2) 166 MRI SAS/ICV; no dementia/
Normal

[67]

5.60 %/ICV 155.6 LAARC Mild-
Moderate AD

19.4 (MMSE) 71.9 (8) 39 MRI Total ventricles colume/ICV; 
all AD; sign diff compared to 
control and questionable

[67]

3.60 %/ICV 100 LAARC Healthy 28.2 (MMSE) 83.9 (7.2) 166 MRI Total ventricles colume/
ICV;no dementia/Normal

[67]

128.3 ml 131.5 NA AD NA 54 NA 1 MRI Extraventricular 
intracranial CSF

[68]

97.60 ml 100 NA Control, 
Normal 
volunteers

NA 37 18-74 10 MRI Extraventricular 
intracranial CSF 

[68]

44.46 ml 145.5 ADNI Mild AD 23.14 (MMSE) 74.58 55-90 (1.06) 46 MRI Total ventricular volume [69]

30.56 ml 100 ADNI Healthy 28.67 (MMSE) 72.98 55-91 (0.84) 73 MRI Total ventricular volume [69]

22.20 ml 133.7 ADNI-1 Mild AD 20-26 (MMSE) 74 (7.7) 108 MRI Total ventricular 
volume at baseline

[70]

16.60 ml 100 ADNI-1 Healthy 24-30 (MMSE) 75 (4.8) 156 MRI Total ventricular 
volume at baseline

[70]

1.50 %/ICV 136.4 ADNI-1 Mild AD 20-26 (MMSE) 74 (7.7) 108 MRI Total ventricular volume/
ICV at baseline

[70]

1.10 %/ICV 100 ADNI-1 Healthy 24-30 (MMSE) 75 (4.8) 155 MRI Total ventricular volume/
ICV at baseline

[70]

1493 ml 102.3 NA AD NA 72.6 (4.7) 10 MRI  ICV [71]

1459 ml 100 Volunteers Control >27 (MMSE) 71.1 (3.9) 8 MRI  ICV [71]

247 ml 130.7 NA AD NA 72.6 (4.7) 10 MRI Intracranial CSF volume/ICV [71]

Supplementary table 5. Continued
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Value unit % Database cohort Severity score 
(method)

Age Age range Number 
pts

Technique Notes Ref.

35.64 mL/min NS NA Mild AD 21 (MMSE) 79 (5) 9 MRI Craniocervical junction, 
calc. as stroke volume 
(ul/cycle)*heart rate 

[65]

32.4 mL/min 100 NA Age-matched 
control

29 (MMSE) 71 (9) 12 MRI Craniocervical junction, 
calc. as stroke volume 
(ul/cycle)*heart rate 

[65]

8.81 mL/min NS NA AD patients NA 71.2 50-87 46 MRI Aqueduct [66]

8.42 mL/min 100 NA Volunteers NA 80.3 62-91 47 MRI Aqueduct [66]

 CSF volume                    

1241 ml 108.2 LAARC Mild-
Moderate AD

19.4 (MMSE) 71.9 (8) 39 MRI Intracranial volume; 
All AD; sign differed 
compared to control 

[67]

1147 ml 100 LAARC Healthy 28.2 (MMSE) 83.9 (7.2) 166 MRI Intracranial volume; No 
dementia/Normal

[67]

19.70 %/ICV 111.3 LAARC Mild-
Moderate AD

19.4 (MMSE) 71.9 (8) 39 MRI SAS:ICV; All AD; sign 
diff compared to control 
and questionable

[67]

17.70 %/ICV 100 LAARC Healthy 28.2 (MMSE) 83.9 (7.2) 166 MRI SAS/ICV; no dementia/
Normal

[67]

5.60 %/ICV 155.6 LAARC Mild-
Moderate AD

19.4 (MMSE) 71.9 (8) 39 MRI Total ventricles colume/ICV; 
all AD; sign diff compared to 
control and questionable

[67]

3.60 %/ICV 100 LAARC Healthy 28.2 (MMSE) 83.9 (7.2) 166 MRI Total ventricles colume/
ICV;no dementia/Normal

[67]

128.3 ml 131.5 NA AD NA 54 NA 1 MRI Extraventricular 
intracranial CSF

[68]

97.60 ml 100 NA Control, 
Normal 
volunteers

NA 37 18-74 10 MRI Extraventricular 
intracranial CSF 

[68]

44.46 ml 145.5 ADNI Mild AD 23.14 (MMSE) 74.58 55-90 (1.06) 46 MRI Total ventricular volume [69]

30.56 ml 100 ADNI Healthy 28.67 (MMSE) 72.98 55-91 (0.84) 73 MRI Total ventricular volume [69]

22.20 ml 133.7 ADNI-1 Mild AD 20-26 (MMSE) 74 (7.7) 108 MRI Total ventricular 
volume at baseline

[70]

16.60 ml 100 ADNI-1 Healthy 24-30 (MMSE) 75 (4.8) 156 MRI Total ventricular 
volume at baseline

[70]

1.50 %/ICV 136.4 ADNI-1 Mild AD 20-26 (MMSE) 74 (7.7) 108 MRI Total ventricular volume/
ICV at baseline

[70]

1.10 %/ICV 100 ADNI-1 Healthy 24-30 (MMSE) 75 (4.8) 155 MRI Total ventricular volume/
ICV at baseline

[70]

1493 ml 102.3 NA AD NA 72.6 (4.7) 10 MRI  ICV [71]

1459 ml 100 Volunteers Control >27 (MMSE) 71.1 (3.9) 8 MRI  ICV [71]

247 ml 130.7 NA AD NA 72.6 (4.7) 10 MRI Intracranial CSF volume/ICV [71]
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189 ml 100 Volunteers Control >27 (MMSE) 71.1 (3.9) 8 MRI Intracranial CSF volume/ICV [71]

18.20 %/ICV 144.6 NA AD NA 72.6 (4.7) 10 MRI Intracranial CSF volume/ICV [71]

12.59 %/ICV 100 Volunteers Control >27 (MMSE) 71.1 (3.9) 8 MRI Intracranial CSF volume/ICV [71]

6.06 %/ICV 162.0 NA Mild-
Moderate AD

19 (MMSE) 78.9 (4.4) 38 MRI Total ventricular volume/
ICV (with lacune)

[72]

4.78 %/ICV 127.8 NA Mild-
Moderate AD

19 (MMSE) 78.9 (4.4) 38 MRI Total ventricular volume/
ICV (without lacune)

[72]

3.74 %/ICV 100 NA Healthy 29 (MMSE) 78.1 (5.6) 40 MRI  Total ventricular volume/ICV [72]

49.90 ml 130.3 ADNI Mild AD 23.3 (MMSE) 74.9 (15) 104 MRI Total ventricular 
volume at baseline

[73]

38.30 ml 100 ADNI Healthy 29.1 (MMSE) 76.4 (5.2) 152 MRI Total ventricular 
volume at baseline

[73]

48.70 ml 131.6 ADNI Questionable-
Mild AD

23.7 (CDR) 74.9 (7.6) 65 MRI Total ventricular volume [62]

37.00 ml 100 ADNI Healthy 29.1 (CDR) 75.8 (5.5) 87 MRI Total ventricular volume [62]

1254.1 ml 105.1 Univeristy of 
Heidelberg dep 
Psychiatry

Mild-
Moderate AD

17.2 (MMSE) 71.9 57-85 (8) 27 MRI ICV (duncan's test: NS) [74]

1193.5 ml 100 Community Healthy 29.3 (MMSE) 68.2 59-87 (5.3) 13 MRI ICV (duncan's test: NS) [74]

1215.5 ml 101.9 Section of Geriatric 
psych of Uni of 
Heidelberg

Mild-
Moderate AD

16.92 (MMSE) 68.23 (0.78) 22 MRI Intracranial CSF volume 
not adjusted for age

[74]

1193.4 ml 100 Volunteers Healthy 29.33 (MMSE) 71.04 (8.56) 13 MRI Intracranial CSF volume 
not adjusted for age

[74]

1209.6 ml 102.3 Section of Geriatric 
psych of Uni of 
Heidelberg

Mild-
Moderate AD

16.92 (MMSE) 68.23 (0.78) 22 MRI Intracranial CSF volume 
adjusted for age

[74]

1182 ml 100 Volunteers Healthy 29.33 (MMSE) 71.04 (8.56) 13 MRI Intracranial CSF volume 
adjusted for age

[74]

428.9 ml 138 Univeristy of 
Heidelberg dep 
Psychiatry

Mild-
Moderate AD

17.2 (MMSE) 71.9 57-85 (8) 27 MRI Intracranial CSF volume 
(Duncan's test: NS)

[74]

310.8 ml 100 Community Healthy 29.33 (MMSE) 68.2 59-87 (5.3) 13 MRI Intracranial CSF volume 
(duncan's test: NS)

[74]

1657 ml 100 Aging and 
Dementia Center

Control 29.5 (MMSE) 69.7 59-84 (7) 18 MRI  ICV [75]

1336 ml 80.6 Aging and 
Dementia Center

Mild-Advaced 
AD

19.2 (MMSE) 72.1 53-87 (11) 17 MRI  ICV [75]

589 ml 100 Aging and 
Dementia Center

Healthy 29.5 (MMSE) 69.7 59-84 (7) 18 MRI ICV CSF volume, no sign 
difference across groups

[75]

Supplementary table 5. Continued
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189 ml 100 Volunteers Control >27 (MMSE) 71.1 (3.9) 8 MRI Intracranial CSF volume/ICV [71]

18.20 %/ICV 144.6 NA AD NA 72.6 (4.7) 10 MRI Intracranial CSF volume/ICV [71]

12.59 %/ICV 100 Volunteers Control >27 (MMSE) 71.1 (3.9) 8 MRI Intracranial CSF volume/ICV [71]

6.06 %/ICV 162.0 NA Mild-
Moderate AD

19 (MMSE) 78.9 (4.4) 38 MRI Total ventricular volume/
ICV (with lacune)

[72]

4.78 %/ICV 127.8 NA Mild-
Moderate AD

19 (MMSE) 78.9 (4.4) 38 MRI Total ventricular volume/
ICV (without lacune)

[72]

3.74 %/ICV 100 NA Healthy 29 (MMSE) 78.1 (5.6) 40 MRI  Total ventricular volume/ICV [72]

49.90 ml 130.3 ADNI Mild AD 23.3 (MMSE) 74.9 (15) 104 MRI Total ventricular 
volume at baseline

[73]

38.30 ml 100 ADNI Healthy 29.1 (MMSE) 76.4 (5.2) 152 MRI Total ventricular 
volume at baseline

[73]

48.70 ml 131.6 ADNI Questionable-
Mild AD

23.7 (CDR) 74.9 (7.6) 65 MRI Total ventricular volume [62]

37.00 ml 100 ADNI Healthy 29.1 (CDR) 75.8 (5.5) 87 MRI Total ventricular volume [62]

1254.1 ml 105.1 Univeristy of 
Heidelberg dep 
Psychiatry

Mild-
Moderate AD

17.2 (MMSE) 71.9 57-85 (8) 27 MRI ICV (duncan's test: NS) [74]

1193.5 ml 100 Community Healthy 29.3 (MMSE) 68.2 59-87 (5.3) 13 MRI ICV (duncan's test: NS) [74]

1215.5 ml 101.9 Section of Geriatric 
psych of Uni of 
Heidelberg

Mild-
Moderate AD

16.92 (MMSE) 68.23 (0.78) 22 MRI Intracranial CSF volume 
not adjusted for age

[74]

1193.4 ml 100 Volunteers Healthy 29.33 (MMSE) 71.04 (8.56) 13 MRI Intracranial CSF volume 
not adjusted for age

[74]

1209.6 ml 102.3 Section of Geriatric 
psych of Uni of 
Heidelberg

Mild-
Moderate AD

16.92 (MMSE) 68.23 (0.78) 22 MRI Intracranial CSF volume 
adjusted for age

[74]

1182 ml 100 Volunteers Healthy 29.33 (MMSE) 71.04 (8.56) 13 MRI Intracranial CSF volume 
adjusted for age

[74]

428.9 ml 138 Univeristy of 
Heidelberg dep 
Psychiatry

Mild-
Moderate AD

17.2 (MMSE) 71.9 57-85 (8) 27 MRI Intracranial CSF volume 
(Duncan's test: NS)

[74]

310.8 ml 100 Community Healthy 29.33 (MMSE) 68.2 59-87 (5.3) 13 MRI Intracranial CSF volume 
(duncan's test: NS)

[74]

1657 ml 100 Aging and 
Dementia Center

Control 29.5 (MMSE) 69.7 59-84 (7) 18 MRI  ICV [75]

1336 ml 80.6 Aging and 
Dementia Center

Mild-Advaced 
AD

19.2 (MMSE) 72.1 53-87 (11) 17 MRI  ICV [75]

589 ml 100 Aging and 
Dementia Center

Healthy 29.5 (MMSE) 69.7 59-84 (7) 18 MRI ICV CSF volume, no sign 
difference across groups

[75]
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565 ml 95.9 Aging and 
Dementia Center

Mild-Advaced 
AD

19.2 (MMSE) 72.1 53-87 (11) 17 MRI ICV CSF volume, no 
sign difference across 
groups, p = 0.88

[75]

91 ml 133.8 Aging and 
Dementia Center

Mild-Advaced 
AD

19.2 (MMSE) 72.1 53-87 (11) 17 MRI Total ventricular 
volume, p = 0.11

[75]

68 ml 100 Aging and 
Dementia Center

Healthy 29.5 (MMSE) 69.7 59-84 (7) 18 MRI Total ventricular 
volume, p = 0.11

[75]

4.8 %/ICV 137.1 ADNI Mild-
Moderate AD

22.9 (MMSE) 76.4 62.3-86.6 30 MRI & ASL Total ventricular volume/
ICV at baseline

[76]

3.5 %/ICV 100 ADNI Healthy 28.8 (MMSE) 73.5 63.2-84.7 41 MRI & ASL Total ventricular volume/
ICV at baseline

[76]

54 ml 138.5 ADNI Mild AD 24 (MMSE) 77 71-81 71 MRI Total ventricular volume; 
MRI and cogn assessment 
at 0, 6 and 12 months; but 
only 0 and 12 months incl 
because CSF measurements 
also at 0 and 12 months

[18]

39 ml 100 ADNI Healthy 29 (MMSE) 75 72-78 92 MRI Total ventricular volume; 
MRI and cogn assessment 
at 0, 6 and 12 months; but 
only 0 and 12 months incl 
because CSF measurements 
also at 0 and 12 months

[18]

4.4 ml/year NA ADNI Mild 24 (MMSE) 77 71-81 71 MRI Total ventricular volume; 
Longitudinal study (1 year)

[18]

1.4 ml/year NA ADNI Healthy 29 (MMSE) 75 72-78 92 MRI Total ventricular volume; 
Longitudinal study (1 year)

[18]

Cerebral blood flow                  

36.8 ml·100 g− 1·min− 1 88.5 Mild - 
Moderate AD

20.8 (MMSE) 70.6 56-78 (6.2) 30 SPECT Global [77]

41.6 ml·100 g− 1·min− 1 100.0 Age matched 28.9 (MMSE) 68.3 55-78 (6.1) 62 SPECT Global [77]

38.2 ml·100 g− 1·min− 1 76.6 Mild - 
Moderate AD

19.9 (MMSE) 72 (6.3) 15 3D ASL Whole brain GM, 
corrected for atrophy and 
enlarged ventricles

[78]

49.9 ml·100 g− 1·min− 1 100.0 Age matched 29.5 (MMSE) 69.2 (7.6) 19 3D ASL Whole brain GM, 
corrected for atrophy and 
enlarged ventricles

[78]

27.8 ml·100 g− 1·min− 1 75.7 Mild - 
Moderate AD

20.1 (MMSE) 74.5 55-89 (8.6) 19 3D ASL Global [79]

36.7 ml·100 g− 1·min− 1 100.0 Age matched 29.4 (MMSE) 72.8 50-81 (6.8) 22 3D ASL Global [79]

27.3 ml·100 g− 1·min− 1 86.7 Mild - 
Moderate AD

21 (MMSE) 66 (7) 129 3D ASL Whole brain CBF [80]

31.5 ml·100 g− 1·min− 1 100.0 Age matched 28 (MMSE) 64 (5) 61 3D ASL Whole brain CBF [80]
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565 ml 95.9 Aging and 
Dementia Center

Mild-Advaced 
AD

19.2 (MMSE) 72.1 53-87 (11) 17 MRI ICV CSF volume, no 
sign difference across 
groups, p = 0.88

[75]

91 ml 133.8 Aging and 
Dementia Center

Mild-Advaced 
AD

19.2 (MMSE) 72.1 53-87 (11) 17 MRI Total ventricular 
volume, p = 0.11

[75]

68 ml 100 Aging and 
Dementia Center

Healthy 29.5 (MMSE) 69.7 59-84 (7) 18 MRI Total ventricular 
volume, p = 0.11

[75]

4.8 %/ICV 137.1 ADNI Mild-
Moderate AD

22.9 (MMSE) 76.4 62.3-86.6 30 MRI & ASL Total ventricular volume/
ICV at baseline

[76]

3.5 %/ICV 100 ADNI Healthy 28.8 (MMSE) 73.5 63.2-84.7 41 MRI & ASL Total ventricular volume/
ICV at baseline

[76]

54 ml 138.5 ADNI Mild AD 24 (MMSE) 77 71-81 71 MRI Total ventricular volume; 
MRI and cogn assessment 
at 0, 6 and 12 months; but 
only 0 and 12 months incl 
because CSF measurements 
also at 0 and 12 months

[18]

39 ml 100 ADNI Healthy 29 (MMSE) 75 72-78 92 MRI Total ventricular volume; 
MRI and cogn assessment 
at 0, 6 and 12 months; but 
only 0 and 12 months incl 
because CSF measurements 
also at 0 and 12 months

[18]

4.4 ml/year NA ADNI Mild 24 (MMSE) 77 71-81 71 MRI Total ventricular volume; 
Longitudinal study (1 year)

[18]

1.4 ml/year NA ADNI Healthy 29 (MMSE) 75 72-78 92 MRI Total ventricular volume; 
Longitudinal study (1 year)

[18]

Cerebral blood flow                  

36.8 ml·100 g− 1·min− 1 88.5 Mild - 
Moderate AD

20.8 (MMSE) 70.6 56-78 (6.2) 30 SPECT Global [77]

41.6 ml·100 g− 1·min− 1 100.0 Age matched 28.9 (MMSE) 68.3 55-78 (6.1) 62 SPECT Global [77]

38.2 ml·100 g− 1·min− 1 76.6 Mild - 
Moderate AD

19.9 (MMSE) 72 (6.3) 15 3D ASL Whole brain GM, 
corrected for atrophy and 
enlarged ventricles

[78]

49.9 ml·100 g− 1·min− 1 100.0 Age matched 29.5 (MMSE) 69.2 (7.6) 19 3D ASL Whole brain GM, 
corrected for atrophy and 
enlarged ventricles

[78]

27.8 ml·100 g− 1·min− 1 75.7 Mild - 
Moderate AD

20.1 (MMSE) 74.5 55-89 (8.6) 19 3D ASL Global [79]

36.7 ml·100 g− 1·min− 1 100.0 Age matched 29.4 (MMSE) 72.8 50-81 (6.8) 22 3D ASL Global [79]

27.3 ml·100 g− 1·min− 1 86.7 Mild - 
Moderate AD

21 (MMSE) 66 (7) 129 3D ASL Whole brain CBF [80]

31.5 ml·100 g− 1·min− 1 100.0 Age matched 28 (MMSE) 64 (5) 61 3D ASL Whole brain CBF [80]
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41.8 ml·100 g− 1·min− 1 88.9 Mild - 
Moderate AD

21 (MMSE) 66 (7) 129 3D ASL PVC cortical CBF, 
corrected for PVE

[80]

47 ml·100 g− 1·min− 1 100.0 Age matched 28 (MMSE) 64 (5) 61 3D ASL PVC cortical CBF, 
corrected for PVE

[80]

44.28 ml·100 g− 1·min− 1 91.0 Mild Cognitive 
Impairment

26.57 (MMSE) 65.24 (7.2) 95 3D ASL PVC cortical CBF, corrected 
for brain atrophy

[81]

41.47 ml·100 g− 1·min− 1 85.2 Mild - 
Moderate AD

20.6 (MMSE) 65.93 (7) 161 3D ASL PVC cortical CBF, corrected 
for brain atrophy

[81]

49 ml·100 g− 1·min− 1 100.0 Age matched 28 (MMSE) 62 (6) 50 3D ASL Corrected for brain atrophy [82]

42 ml·100 g− 1·min− 1 85.7 Mild - 
Moderate AD

21 (MMSE) 65 (7) 48 3D ASL Corrected for brain atrophy [82]

BBB active transporters: pgp protein expression              

6.6 pmol/gm GM 100 Age Matched - 81 70-98 (7) 38 LC-MS/MS Cerebellum [83]

6.8 pmol/gm GM N.S. Severe AD IV-VI (Braak) 84 75-100 (7) 41 LC-MS/MS Cerebellum [83]

4.6 pmol/gm GM 100 Age Matched - 81 70-98 (7) 38 LC-MS/MS Hippocampus [83]

4.4 pmol/gm GM N.S. Severe AD IV-VI (Braak) 84 75-100 (7) 41 LC-MS/MS Hippocampus [83]

196.3 a.u. 100 Age Matched NA NA 48-89 8 IHC NA [84]

146.4 a.u. 74.6 AD patients NA NA 51-84 8 IHC NA [84]

NA NA 100 Age Matched NA NA 48-89 8 Western Blot NA [84]

NA NA N.S. AD patients NA NA 51-84 8 Western Blot NA [84]

6 not reported 100 Age Matched NA NA 48-89 8 RT-PCR NA [84]

4 not reported N.S. AD patients NA NA 51-84 8 RT-PCR NA [84]

43.6 not reported 100 Age Matched I-II (Braak) NA 64-91 5 IHC Global brain [85]

44.5 not reported N.S. Severe AD V-VI (Braak) NA 66-89 5 IHC Global brain [85]

2.58 pmol/gm total protein 100 Age Matched NA 78.75 53-90 (14.3) 12 LC-MS/MS NA [86]

2.25 pmol/gm total protein N.S. AD patients NA 78.75 53-90 (14.3) 5 LC-MS/MS NA [86]

BBB active transporters: BCRP protein expression 

16.3 pmol/gm GM 100 Age Matched - 81 70-98 (7) 38 LC-MS/MS Cerebellum [83]

16.08 pmol/gm GM N.S. Severe AD IV-VI (Braak) 84 75-100 (7) 41 LC-MS/MS Cerebellum [83]

8.7 pmol/gm GM 100 Age Matched - 81 70-98 (7) 38 LC-MS/MS Hippocampus [83]

8.5 pmol/gm GM N.S. Severe AD IV-VI (Braak) 84 75-100 (7) 41 LC-MS/MS Hippocampus [83]

190 a.u. 100 Age Matched NA NA 48-89 8 IHC NA [84]

200 a.u. N.S. AD patients NA NA 51-84 8 IHC NA [84]

2.2 not reported 100 Age Matched NA NA 48-89 8 Western Blot NA [84]

1.8 not reported N.S. AD patients NA NA 51-84 8 Western Blot NA [84]

7 not reported 100 Age Matched NA NA 48-89 8 RT-PCR NA [84]

5 not reported N.S. AD patients NA NA 51-84 8 RT-PCR NA [84]

Supplementary table 5. Continued
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41.8 ml·100 g− 1·min− 1 88.9 Mild - 
Moderate AD

21 (MMSE) 66 (7) 129 3D ASL PVC cortical CBF, 
corrected for PVE

[80]

47 ml·100 g− 1·min− 1 100.0 Age matched 28 (MMSE) 64 (5) 61 3D ASL PVC cortical CBF, 
corrected for PVE

[80]

44.28 ml·100 g− 1·min− 1 91.0 Mild Cognitive 
Impairment

26.57 (MMSE) 65.24 (7.2) 95 3D ASL PVC cortical CBF, corrected 
for brain atrophy

[81]

41.47 ml·100 g− 1·min− 1 85.2 Mild - 
Moderate AD

20.6 (MMSE) 65.93 (7) 161 3D ASL PVC cortical CBF, corrected 
for brain atrophy

[81]

49 ml·100 g− 1·min− 1 100.0 Age matched 28 (MMSE) 62 (6) 50 3D ASL Corrected for brain atrophy [82]

42 ml·100 g− 1·min− 1 85.7 Mild - 
Moderate AD

21 (MMSE) 65 (7) 48 3D ASL Corrected for brain atrophy [82]

BBB active transporters: pgp protein expression              

6.6 pmol/gm GM 100 Age Matched - 81 70-98 (7) 38 LC-MS/MS Cerebellum [83]

6.8 pmol/gm GM N.S. Severe AD IV-VI (Braak) 84 75-100 (7) 41 LC-MS/MS Cerebellum [83]

4.6 pmol/gm GM 100 Age Matched - 81 70-98 (7) 38 LC-MS/MS Hippocampus [83]

4.4 pmol/gm GM N.S. Severe AD IV-VI (Braak) 84 75-100 (7) 41 LC-MS/MS Hippocampus [83]

196.3 a.u. 100 Age Matched NA NA 48-89 8 IHC NA [84]

146.4 a.u. 74.6 AD patients NA NA 51-84 8 IHC NA [84]

NA NA 100 Age Matched NA NA 48-89 8 Western Blot NA [84]

NA NA N.S. AD patients NA NA 51-84 8 Western Blot NA [84]

6 not reported 100 Age Matched NA NA 48-89 8 RT-PCR NA [84]

4 not reported N.S. AD patients NA NA 51-84 8 RT-PCR NA [84]

43.6 not reported 100 Age Matched I-II (Braak) NA 64-91 5 IHC Global brain [85]

44.5 not reported N.S. Severe AD V-VI (Braak) NA 66-89 5 IHC Global brain [85]

2.58 pmol/gm total protein 100 Age Matched NA 78.75 53-90 (14.3) 12 LC-MS/MS NA [86]

2.25 pmol/gm total protein N.S. AD patients NA 78.75 53-90 (14.3) 5 LC-MS/MS NA [86]

BBB active transporters: BCRP protein expression 

16.3 pmol/gm GM 100 Age Matched - 81 70-98 (7) 38 LC-MS/MS Cerebellum [83]

16.08 pmol/gm GM N.S. Severe AD IV-VI (Braak) 84 75-100 (7) 41 LC-MS/MS Cerebellum [83]

8.7 pmol/gm GM 100 Age Matched - 81 70-98 (7) 38 LC-MS/MS Hippocampus [83]

8.5 pmol/gm GM N.S. Severe AD IV-VI (Braak) 84 75-100 (7) 41 LC-MS/MS Hippocampus [83]

190 a.u. 100 Age Matched NA NA 48-89 8 IHC NA [84]

200 a.u. N.S. AD patients NA NA 51-84 8 IHC NA [84]

2.2 not reported 100 Age Matched NA NA 48-89 8 Western Blot NA [84]

1.8 not reported N.S. AD patients NA NA 51-84 8 Western Blot NA [84]

7 not reported 100 Age Matched NA NA 48-89 8 RT-PCR NA [84]

5 not reported N.S. AD patients NA NA 51-84 8 RT-PCR NA [84]
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65.5 not reported 100 Age Matched I-II (Braak) NA 64-91 5 IHC Global brain [85]

69.5 not reported N.S. Severe AD V-VI (Braak) NA 66-89 5 IHC Global brain [85]

2.22 pmol/gm total protein 100 Age Matched NA 78.75 53-90 (14.3) 12 LC-MS/MS NA [86]

1.91 pmol/gm total protein N.S. AD patients NA 78.75 53-90 (14.3) 5 LC-MS/MS NA [86]

11[C]-Verapamil AUC/rCBF

1.06 not reported 100 Age Matched 29.7 (MMSE) 73.2 (1.9) 9 PET Left temporal [87]

1.35 not reported 127.4 Mild AD 24.3 (MMSE) 72.9 (2) 9 PET Left temporal [87]

1.06 not reported 100 Age Matched 29.7 (MMSE) 73.2 (1.9) 9 PET Left parietal [87]

1.26 not reported 118.9 Mild AD 24.3 (MMSE) 72.9 (2) 9 PET Left parietal [87]

1.05 not reported 100 Age Matched 29.7 (MMSE) 73.2 (1.9) 9 PET Right temporal [87]

1.24 not reported 118.1 Mild AD 24.3 (MMSE) 72.9 (2) 9 PET Right temporal [87]

1.12 not reported 100 Age Matched 29.7 (MMSE) 73.2 (1.9) 9 PET Right parietal [87]

1.25 not reported N.S. Mild AD 24.3 (MMSE) 72.9 (2) 9 PET Right parietal [87]

Brain microvasculature volume              

NA not reported 100 healthy elderly NA 67.5 (3.5) 15 perfusion CT NA [88]

NA not reported N.S. mild-
moderate AD

14-26 (MMSE) 69.7 (5.5) 20 perfusion CT Front temp occ cortex & 
lentiform nucleus; A non-
sginificant decrease of CBV

[88]

NA NA 100 healthy elderly NA 67.4 (8.9) 23 DSC-MRI cerebellum, hippocampus, 
temp. tempoparietal 
frontal sensimotoric 
cortex, lentiform nuc., 
cingulate gyrus

[89]

NA NA N.S. mild AD 22 (MMSE) 71.8 (8.8) 34 DSC-MRI A non-sginificant 
decrease of CBV

[89]

NA NA 100 healthy elderly 27.55 (MMSE) 
| 0 (CDR)

71.65 (7.04) 20 MRI whole brain cortex [90]

NA NA N.S. moderate AD 19.08 (MMSE) 
| 1 (CDR)

77.42 (6.97) 12 MRI whole brain cortex [90]

0.89 NA 100 healthy elderly 29.8 (MMSE) 68.1 (7.1) 20 PWI-DCS MRI hippocampus [91]

0.92 NA N.S. moderate AD 17.8 (MMSE) 71.2 (8) 30 PWI-DCS MRI hippocampus [91]

78 ml 100 healthy elderly 30 (MMSE) 65 (8) 12 ultrasound not corrected by total 
brain volume

[92]

79 ml N.S. moderate AD 18 (MMSE) 66 (13) 20 ultrasound not corrected by total 
brain volume

[92]

0 ml/6 mo NA AD NA 64.47 (6.94) 32 MRI No significant change of VMV 
after 6 month of longitudinal 
study, PVE considered

[93]

BBB paracellular transport (by Ktrans)                

NA NA NS probable AD (NINCDS-ADRDA) 73.7 NA 15 Dynamic MRI. Gd-DTPA Uses spouses of AD 
patients as control group

[94]
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65.5 not reported 100 Age Matched I-II (Braak) NA 64-91 5 IHC Global brain [85]

69.5 not reported N.S. Severe AD V-VI (Braak) NA 66-89 5 IHC Global brain [85]

2.22 pmol/gm total protein 100 Age Matched NA 78.75 53-90 (14.3) 12 LC-MS/MS NA [86]

1.91 pmol/gm total protein N.S. AD patients NA 78.75 53-90 (14.3) 5 LC-MS/MS NA [86]

11[C]-Verapamil AUC/rCBF

1.06 not reported 100 Age Matched 29.7 (MMSE) 73.2 (1.9) 9 PET Left temporal [87]

1.35 not reported 127.4 Mild AD 24.3 (MMSE) 72.9 (2) 9 PET Left temporal [87]

1.06 not reported 100 Age Matched 29.7 (MMSE) 73.2 (1.9) 9 PET Left parietal [87]

1.26 not reported 118.9 Mild AD 24.3 (MMSE) 72.9 (2) 9 PET Left parietal [87]

1.05 not reported 100 Age Matched 29.7 (MMSE) 73.2 (1.9) 9 PET Right temporal [87]

1.24 not reported 118.1 Mild AD 24.3 (MMSE) 72.9 (2) 9 PET Right temporal [87]

1.12 not reported 100 Age Matched 29.7 (MMSE) 73.2 (1.9) 9 PET Right parietal [87]

1.25 not reported N.S. Mild AD 24.3 (MMSE) 72.9 (2) 9 PET Right parietal [87]

Brain microvasculature volume              

NA not reported 100 healthy elderly NA 67.5 (3.5) 15 perfusion CT NA [88]

NA not reported N.S. mild-
moderate AD

14-26 (MMSE) 69.7 (5.5) 20 perfusion CT Front temp occ cortex & 
lentiform nucleus; A non-
sginificant decrease of CBV

[88]

NA NA 100 healthy elderly NA 67.4 (8.9) 23 DSC-MRI cerebellum, hippocampus, 
temp. tempoparietal 
frontal sensimotoric 
cortex, lentiform nuc., 
cingulate gyrus

[89]

NA NA N.S. mild AD 22 (MMSE) 71.8 (8.8) 34 DSC-MRI A non-sginificant 
decrease of CBV

[89]

NA NA 100 healthy elderly 27.55 (MMSE) 
| 0 (CDR)

71.65 (7.04) 20 MRI whole brain cortex [90]

NA NA N.S. moderate AD 19.08 (MMSE) 
| 1 (CDR)

77.42 (6.97) 12 MRI whole brain cortex [90]

0.89 NA 100 healthy elderly 29.8 (MMSE) 68.1 (7.1) 20 PWI-DCS MRI hippocampus [91]

0.92 NA N.S. moderate AD 17.8 (MMSE) 71.2 (8) 30 PWI-DCS MRI hippocampus [91]

78 ml 100 healthy elderly 30 (MMSE) 65 (8) 12 ultrasound not corrected by total 
brain volume

[92]

79 ml N.S. moderate AD 18 (MMSE) 66 (13) 20 ultrasound not corrected by total 
brain volume

[92]

0 ml/6 mo NA AD NA 64.47 (6.94) 32 MRI No significant change of VMV 
after 6 month of longitudinal 
study, PVE considered

[93]

BBB paracellular transport (by Ktrans)                

NA NA NS probable AD (NINCDS-ADRDA) 73.7 NA 15 Dynamic MRI. Gd-DTPA Uses spouses of AD 
patients as control group

[94]
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NA NA 100 Control (NINCDS-ADRDA) 72.7 NA 15 Dynamic MRI. Gd-DTPA Uses spouses of AD 
patients as control group

[94]

1.61 *10^-3 per min 123.8 MCI patient 0.5 (CDR) 55-85 21 Dynamic MRI Hippocampus [56]

1.3 *10^-3 per min 100 NCI elderly 0 (CDR) 55-91 18 Dynamic MRI Hippocampus [56]

0.9 *10^-4 per min 529.4 Pre-AD - Mild 26.3 (MMSE) 73.6 59-85 (7.9) 16 Dynamic MRI. Gadobutrol Grey Matter [95]

0.17 *10^-4 per min 100 Control 29.5 (MMSE) 75.8 65-85 (6.2) 17 Dynamic MRI. Gadobutrol Grey Matter [95]

0.84 *10^-4 per min 1050 Pre-AD - Mild 26.3 (MMSE) 73.6 59-85 (7.9) 16 Dynamic MRI. Gadobutrol Cortex [95]

0.08 *10^-4 per min 100 Control 29.5 (MMSE) 75.8 65-85 (6.2) 17 Dynamic MRI. Gadobutrol Cortex [95]

0.66 *10^-4 per min N.S. Pre-AD - Mild 26.3 (MMSE) 73.6 59-85 (7.9) 16 Dynamic MRI. Gadobutrol White Matter [95]

0.7 *10^-4 per min 100 Control 29.5 (MMSE) 75.8 65-85 (6.2) 17 Dynamic MRI. Gadobutrol White Matter [95]

0.65 *10^-4 per min N.S. Pre-AD - Mild 26.3 (MMSE) 73.6 59-85 (7.9) 16 Dynamic MRI. Gadobutrol Normal appearing 
white matter

[95]

0.7 *10^-4 per min 100 Control 29.5 (MMSE) 75.8 65-85 (6.2) 17 Dynamic MRI. Gadobutrol Normal appearing 
white matter

[95]

1.25 *10^-4 per min N.S. Pre-AD - Mild 26.3 (MMSE) 73.6 59-85 (7.9) 16 Dynamic MRI. Gadobutrol Deep Grey Matter [95]

0.84 *10^-4 per min 100 Control 29.5 (MMSE) 75.8 65-85 (6.2) 17 Dynamic MRI. Gadobutrol Deep Grey Matter [95]

1.06 *10^-4 per min N.S. Pre-AD - Mild 26.3 (MMSE) 73.6 59-85 (7.9) 16 Dynamic MRI. Gadobutrol White Matter 
Hyperintensities

[95]

0.61 *10^-4 per min 100 Control 29.5 (MMSE) 75.8 65-85 (6.2) 17 Dynamic MRI. Gadobutrol White Matter 
Hyperintensities

[95]

2.75 *10^-4 per min N.S. Pre-AD - Mild NA 75.3 65-85 16 Dynamic MRI. Gadobutrol Grey matter; Not significant 
but trend of patients 
higher ktrans (p=0.055)

[96]

1.8 *10^-4 per min 100 Control NA 76.4 65-85 18 Dynamic MRI. Gadobutrol Grey matter; Not significant 
but trend of patients 
higher ktrans (p=0.055)

[96]

3.84 ul/gm/min 100 healthy elderly (CAST) 83.4 (3.1) 9 CT-meglumine 
iothalamate

Average values of frontal, 
temporal, accipital, 
hippocampus, basal ganglia

[97]

4.15 ul/gm/min N.S. mild AD (CAST) 87.3 (3.8) 14 CT-meglumine 
iothalamate

Average values of frontal, 
temporal, accipital, 
hippocampus, basal ganglia

[97]

 BCSFB paracellular transport                  

NA BCSFB permeability might 
increase as indicated by 
increased CSF:plasma 
albumin ratio, while no 
indication of the impact 
of small drug molecules

[98]

0.79 NA 100 healthy 
volunteers

NA 46 28-77 (11) 21 Biochemical 
(CSF:serum urea)

volunteers and AD are 
not age matched

[99]
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Value unit % Database cohort Severity score 
(method)

Age Age range Number 
pts

Technique Notes Ref.

NA NA 100 Control (NINCDS-ADRDA) 72.7 NA 15 Dynamic MRI. Gd-DTPA Uses spouses of AD 
patients as control group

[94]

1.61 *10^-3 per min 123.8 MCI patient 0.5 (CDR) 55-85 21 Dynamic MRI Hippocampus [56]

1.3 *10^-3 per min 100 NCI elderly 0 (CDR) 55-91 18 Dynamic MRI Hippocampus [56]

0.9 *10^-4 per min 529.4 Pre-AD - Mild 26.3 (MMSE) 73.6 59-85 (7.9) 16 Dynamic MRI. Gadobutrol Grey Matter [95]

0.17 *10^-4 per min 100 Control 29.5 (MMSE) 75.8 65-85 (6.2) 17 Dynamic MRI. Gadobutrol Grey Matter [95]

0.84 *10^-4 per min 1050 Pre-AD - Mild 26.3 (MMSE) 73.6 59-85 (7.9) 16 Dynamic MRI. Gadobutrol Cortex [95]

0.08 *10^-4 per min 100 Control 29.5 (MMSE) 75.8 65-85 (6.2) 17 Dynamic MRI. Gadobutrol Cortex [95]

0.66 *10^-4 per min N.S. Pre-AD - Mild 26.3 (MMSE) 73.6 59-85 (7.9) 16 Dynamic MRI. Gadobutrol White Matter [95]

0.7 *10^-4 per min 100 Control 29.5 (MMSE) 75.8 65-85 (6.2) 17 Dynamic MRI. Gadobutrol White Matter [95]

0.65 *10^-4 per min N.S. Pre-AD - Mild 26.3 (MMSE) 73.6 59-85 (7.9) 16 Dynamic MRI. Gadobutrol Normal appearing 
white matter

[95]

0.7 *10^-4 per min 100 Control 29.5 (MMSE) 75.8 65-85 (6.2) 17 Dynamic MRI. Gadobutrol Normal appearing 
white matter

[95]

1.25 *10^-4 per min N.S. Pre-AD - Mild 26.3 (MMSE) 73.6 59-85 (7.9) 16 Dynamic MRI. Gadobutrol Deep Grey Matter [95]

0.84 *10^-4 per min 100 Control 29.5 (MMSE) 75.8 65-85 (6.2) 17 Dynamic MRI. Gadobutrol Deep Grey Matter [95]

1.06 *10^-4 per min N.S. Pre-AD - Mild 26.3 (MMSE) 73.6 59-85 (7.9) 16 Dynamic MRI. Gadobutrol White Matter 
Hyperintensities

[95]

0.61 *10^-4 per min 100 Control 29.5 (MMSE) 75.8 65-85 (6.2) 17 Dynamic MRI. Gadobutrol White Matter 
Hyperintensities

[95]

2.75 *10^-4 per min N.S. Pre-AD - Mild NA 75.3 65-85 16 Dynamic MRI. Gadobutrol Grey matter; Not significant 
but trend of patients 
higher ktrans (p=0.055)

[96]

1.8 *10^-4 per min 100 Control NA 76.4 65-85 18 Dynamic MRI. Gadobutrol Grey matter; Not significant 
but trend of patients 
higher ktrans (p=0.055)

[96]

3.84 ul/gm/min 100 healthy elderly (CAST) 83.4 (3.1) 9 CT-meglumine 
iothalamate

Average values of frontal, 
temporal, accipital, 
hippocampus, basal ganglia

[97]

4.15 ul/gm/min N.S. mild AD (CAST) 87.3 (3.8) 14 CT-meglumine 
iothalamate

Average values of frontal, 
temporal, accipital, 
hippocampus, basal ganglia

[97]

 BCSFB paracellular transport                  

NA BCSFB permeability might 
increase as indicated by 
increased CSF:plasma 
albumin ratio, while no 
indication of the impact 
of small drug molecules

[98]

0.79 NA 100 healthy 
volunteers

NA 46 28-77 (11) 21 Biochemical 
(CSF:serum urea)

volunteers and AD are 
not age matched

[99]
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Age Age range Number 
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0.85 NA 107.6 mild AD 22 (MMSE) 67 49-83 (10) 11 Biochemical 
(CSF:serum urea)

volunteers and AD are 
not age matched

[99]

1.5 NA 100 healthy 
volunteers

NA 46 28-77 (11) 21 Biochemical (CSF:serum 
creatinine)

volunteers and AD are 
not age matched

[99]

1.15 NA 123.3 mild AD 22 (MMSE) 67 49-83 (10) 11 Biochemical (CSF:serum 
creatinine)

volunteers and AD are 
not age matched

[99]

 Brain phospholipids                  

100 NA 100 Elderly NA 74.4 38-89 (4.6) 10 homogn and extraction Change mean of ptdCho, 
PtdEtn, PtdSer, Shingmyl, 
PtdIns/PA weighted 
by amount at frontal 
cortex of Controls

[100]

89.9 NA 89.9 AD NA 75.7 51-95 (3.6) 10 homogn and extraction postmortum, pairwised 
on age, postmortum 
& storage times

[100]

NA NA NA NA NA NA NA NA NA phospholipds decrease in 
AD compared to aging

[101]

NA NA 100 Elderly NA NA 76-92 3 HPLC mean different phospholip 
from parietal, frontal

[102]

NA NA 50 AD NA NA 76-92 5 HPLC mean different phospholip 
from parietal, frontal

[102]

0.35 umol/mg protein 100 Elderly NA (CERAD) 72 (13) 13 homogn and extraction frontal cortex/total 
phospholipids

[103]

0.28 umol/mg protein 80 AD NA (CERAD) 80 (8) 15 homogn and extraction frontal cortex/total 
phospholipids

[103]

0.4 umol/mg protein 100 Elderly NA (CERAD) 72 (13) 13 homogn and extraction hippocampus/total 
phospholipids

[103]

0.37 umol/mg protein 92.5 AD NA (CERAD) 80 (8) 15 homogn and extraction hippocampus/total 
phospholipids

[103]

52.43 umol/g brain wet wt 100 Elderly 4-5 (global 
deterioration scale)

70.1 (8.1) 9 homogn and extraction prefrontal cortex/
total phospholipids

[104]

50.55 umol/g brain wet wt N.S. moderate-
severe AD

4-5 (global 
deterioration scale)

70.6 (7.6) 10 homogn and extraction prefrontal cortex/
total phospholipids

[104]

84.8 umol/g brain wet wt 100 Elderly 4-5 (global 
deterioration scale)

78.4 (6.9) 6 homogn and extraction Anterior Temporal Cortex/
total phospholipids

[105]

102.7 umol/g brain wet wt N.S. moderate-
severe AD

4-5 (global 
deterioration scale)

80.3 (8) 6 homogn and extraction Anterior Temporal Cortex/
total phospholipids

[105]

98.89 NA 100 Elderly NA 69.9 (3) 11 31P NMR Postmortum, cerebellum, 
inf. Parietal, occip, sup.
med front,sup. Temp

[106]

99.85 NA 100.9 AD NA 72.9 (0.8) 45 31P NMR Post mortum, cerebellum, 
inf. Parietal, occip, sup.
med front,sup. Temp

[106]
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Age Age range Number 
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0.85 NA 107.6 mild AD 22 (MMSE) 67 49-83 (10) 11 Biochemical 
(CSF:serum urea)

volunteers and AD are 
not age matched

[99]

1.5 NA 100 healthy 
volunteers

NA 46 28-77 (11) 21 Biochemical (CSF:serum 
creatinine)

volunteers and AD are 
not age matched

[99]

1.15 NA 123.3 mild AD 22 (MMSE) 67 49-83 (10) 11 Biochemical (CSF:serum 
creatinine)

volunteers and AD are 
not age matched

[99]

 Brain phospholipids                  

100 NA 100 Elderly NA 74.4 38-89 (4.6) 10 homogn and extraction Change mean of ptdCho, 
PtdEtn, PtdSer, Shingmyl, 
PtdIns/PA weighted 
by amount at frontal 
cortex of Controls

[100]

89.9 NA 89.9 AD NA 75.7 51-95 (3.6) 10 homogn and extraction postmortum, pairwised 
on age, postmortum 
& storage times

[100]

NA NA NA NA NA NA NA NA NA phospholipds decrease in 
AD compared to aging

[101]

NA NA 100 Elderly NA NA 76-92 3 HPLC mean different phospholip 
from parietal, frontal

[102]

NA NA 50 AD NA NA 76-92 5 HPLC mean different phospholip 
from parietal, frontal

[102]

0.35 umol/mg protein 100 Elderly NA (CERAD) 72 (13) 13 homogn and extraction frontal cortex/total 
phospholipids

[103]

0.28 umol/mg protein 80 AD NA (CERAD) 80 (8) 15 homogn and extraction frontal cortex/total 
phospholipids

[103]

0.4 umol/mg protein 100 Elderly NA (CERAD) 72 (13) 13 homogn and extraction hippocampus/total 
phospholipids

[103]

0.37 umol/mg protein 92.5 AD NA (CERAD) 80 (8) 15 homogn and extraction hippocampus/total 
phospholipids

[103]

52.43 umol/g brain wet wt 100 Elderly 4-5 (global 
deterioration scale)

70.1 (8.1) 9 homogn and extraction prefrontal cortex/
total phospholipids

[104]

50.55 umol/g brain wet wt N.S. moderate-
severe AD

4-5 (global 
deterioration scale)

70.6 (7.6) 10 homogn and extraction prefrontal cortex/
total phospholipids

[104]

84.8 umol/g brain wet wt 100 Elderly 4-5 (global 
deterioration scale)

78.4 (6.9) 6 homogn and extraction Anterior Temporal Cortex/
total phospholipids

[105]

102.7 umol/g brain wet wt N.S. moderate-
severe AD

4-5 (global 
deterioration scale)

80.3 (8) 6 homogn and extraction Anterior Temporal Cortex/
total phospholipids

[105]

98.89 NA 100 Elderly NA 69.9 (3) 11 31P NMR Postmortum, cerebellum, 
inf. Parietal, occip, sup.
med front,sup. Temp

[106]

99.85 NA 100.9 AD NA 72.9 (0.8) 45 31P NMR Post mortum, cerebellum, 
inf. Parietal, occip, sup.
med front,sup. Temp

[106]
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NA NA 100 Elderly NA 78.1 67-91 (8.8) 9 homogn and extraction fron,temp,occi,precentral 
cortex, fron WM, hippo, 
pons, cerebellum, Med.
obl, Nuc. caud

[107]

NA NA N.S. AD/SDAT NA 77.4 70-91 (6.3) 9 homogn and extraction no change in phopholipids 
in different regions except 
frontal WM (81,9) & 
caudate nucleus(86,51)

[107]

NA NA 100 Elderly NA 71.9 (7.6) 16 homogn and extraction GM: front, temporal lobes, 
caudate nucl, hippocampus, 
mean value of multiple 
regions weighted by 
amounts of control

[108]

NA NA 80.96 early onset 
AD patients

NA 71.9 (6.5) 11 homogn and extraction GM: front, temporal lobes, 
caudate nucl, hippocampus

[108]

NA NA 100 Elderly NA 80.8 (5.7) 12 homogn and extraction GM: front, temporal lobes, 
caudate nucl, hippocampus

[108]

NA NA N.S. late onset 
AD patients

NA 81 (7) 21 homogn and extraction GM: front, temporal lobes, 
caudate nucl, hippocampus

[108]

 BBB surface area: Arteriolar density            

14.5 mm/mm^3 100.0 Healthy elderly (SDAT) 78.8 67-95 (9.1) 8 Histological staining Occipital cortex (visual) [109]

14.4 mm/mm^3 NS Unknown 
severity

(SDAT) 79.3 63-92 (9) 10 Histological staining Occipital cortex (visual) [109]

5.58 mm/mm^3 100.0 Healthy elderly (pathologically 
confirmed)

74.0 60-88 5 Histological staining Hippocampal cortex [58]

6.64 mm/mm^3 119.0 Unknown 
severity

(pathologically 
confirmed)

78.0 66-94 5 Histological staining Hippocampal cortex [58]

BBB surface area: Capillary density

212 mm/mm^3 100.0 Healthy elderly (pathologically 
confirmed)

78.8 67-95 (9.1) 8 Histological staining Occipital cortex (visual) [109]

206 mm/mm^3 NS Unknown 
severity

(pathologically 
confirmed)

79.3 63-92 (9) 10 Histological staining Occipital cortex (visual) [109]

102 mm/mm^3 100.0 Healthy elderly (pathologically 
confirmed)

74.0 60-88 5 Histological staining Hippocampal cortex [58]

101 mm/mm^3 NS Unknown 
severity

(pathologically 
confirmed)

78.0 66-94 5 Histological staining Hippocampal cortex [58]

291 mm/mm^3 100.0 Neurological 
Foundation Human 
Brain Bank, 
New Zealand

Healthy elderly (pathologically 
confirmed)

75.2 63-83 (4.78) 16 Immunohistochemical 
staining & stereological 
analysis

Frontal cortex [110]

361 mm/mm^3 124.1 Neurological 
Foundation Human 
Brain Bank, 
New Zealand

Mild-severe 
AD

2-3 (CERAD) 76.3 65-83 (4.98) 16 Immunohistochemical 
staining & stereological 
analysis

Frontal cortex [110]
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NA NA 100 Elderly NA 78.1 67-91 (8.8) 9 homogn and extraction fron,temp,occi,precentral 
cortex, fron WM, hippo, 
pons, cerebellum, Med.
obl, Nuc. caud

[107]

NA NA N.S. AD/SDAT NA 77.4 70-91 (6.3) 9 homogn and extraction no change in phopholipids 
in different regions except 
frontal WM (81,9) & 
caudate nucleus(86,51)

[107]

NA NA 100 Elderly NA 71.9 (7.6) 16 homogn and extraction GM: front, temporal lobes, 
caudate nucl, hippocampus, 
mean value of multiple 
regions weighted by 
amounts of control

[108]

NA NA 80.96 early onset 
AD patients

NA 71.9 (6.5) 11 homogn and extraction GM: front, temporal lobes, 
caudate nucl, hippocampus

[108]

NA NA 100 Elderly NA 80.8 (5.7) 12 homogn and extraction GM: front, temporal lobes, 
caudate nucl, hippocampus

[108]

NA NA N.S. late onset 
AD patients

NA 81 (7) 21 homogn and extraction GM: front, temporal lobes, 
caudate nucl, hippocampus

[108]

 BBB surface area: Arteriolar density            

14.5 mm/mm^3 100.0 Healthy elderly (SDAT) 78.8 67-95 (9.1) 8 Histological staining Occipital cortex (visual) [109]

14.4 mm/mm^3 NS Unknown 
severity

(SDAT) 79.3 63-92 (9) 10 Histological staining Occipital cortex (visual) [109]

5.58 mm/mm^3 100.0 Healthy elderly (pathologically 
confirmed)

74.0 60-88 5 Histological staining Hippocampal cortex [58]

6.64 mm/mm^3 119.0 Unknown 
severity

(pathologically 
confirmed)

78.0 66-94 5 Histological staining Hippocampal cortex [58]

BBB surface area: Capillary density

212 mm/mm^3 100.0 Healthy elderly (pathologically 
confirmed)

78.8 67-95 (9.1) 8 Histological staining Occipital cortex (visual) [109]

206 mm/mm^3 NS Unknown 
severity

(pathologically 
confirmed)

79.3 63-92 (9) 10 Histological staining Occipital cortex (visual) [109]

102 mm/mm^3 100.0 Healthy elderly (pathologically 
confirmed)

74.0 60-88 5 Histological staining Hippocampal cortex [58]

101 mm/mm^3 NS Unknown 
severity

(pathologically 
confirmed)

78.0 66-94 5 Histological staining Hippocampal cortex [58]

291 mm/mm^3 100.0 Neurological 
Foundation Human 
Brain Bank, 
New Zealand

Healthy elderly (pathologically 
confirmed)

75.2 63-83 (4.78) 16 Immunohistochemical 
staining & stereological 
analysis

Frontal cortex [110]

361 mm/mm^3 124.1 Neurological 
Foundation Human 
Brain Bank, 
New Zealand

Mild-severe 
AD

2-3 (CERAD) 76.3 65-83 (4.98) 16 Immunohistochemical 
staining & stereological 
analysis

Frontal cortex [110]
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6.29 % covered by 
capillaries of area

NS Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Moderate-
severe AD

14 (MMSE) 94.2 90-96 (2.6) 6 Immunohistochemical 
staining

White matter (frontal, 
temporal, parietal 
and occipital lobe)

[111]

6.25 % covered by 
capillaries of area

100.0 Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Questionable 27.7 (MMSE) 92.8 90-100 (3.3) 8 Immunohistochemical 
staining

White matter (frontal, 
temporal, parietal 
and occipital lobe)

[111]

6.05 % covered by 
capillaries of area

100.0 Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Healthy elderly 29.6 (MMSE) 92.5 91-99 (3.2) 6 Immunohistochemical 
staining

White matter (frontal, 
temporal, parietal 
and occipital lobe)

[111]

5.12 % covered by 
capillaries of area

100.0 Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Questionable 28 (MMSE) 70.8 65-75 (4.4) 5 Immunohistochemical 
staining

White matter (frontal, 
temporal, parietal 
and occipital lobe)

[111]

13.97 % covered by 
capillaries of area

NS Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Moderate-
severe AD

14 (MMSE) 94.2 90-96 (2.6) 6 Immunohistochemical 
staining

Gray matter (frontal, 
temporal, parietal, 
hippocampal and 
entorhinal regions)

[111]

13.37 % covered by 
capillaries of area

100.0 Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Questionable 27.7 (MMSE) 92.8 90-100 (3.3) 8 Immunohistochemical 
staining

Gray matter (frontal, 
temporal, parietal, 
hippocampal and 
entorhinal regions)

[111]

13.41 % covered by 
capillaries of area

100.0 Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Healthy elderly 29.6 (MMSE) 92.5 91-99 (3.2) 6 Immunohistochemical 
staining

Gray matter (frontal, 
temporal, parietal, 
hippocampal and 
entorhinal regions)

[111]

12.97 % covered by 
capillaries of area

100.0 Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Questionable 28 (MMSE) 70.8 65-75 (4.4) 5 Immunohistochemical 
staining

Gray matter (frontal, 
temporal, parietal, 
hippocampal and 
entorhinal regions)

[111]

18.95 % of total cortical 
field area

NA Healthy elderly NA 79.0 (1) 3 Histological staining 
& photomicroscopy

Frontal, temporal and 
occipital cortex

[112]

16.5 % of total cortical 
field area

87.1 Possible AD 24 (NINCDS-
ADRDA)

80.0 (5.6) 7 Histological staining 
& photomicroscopy

Frontal, temporal and 
occipital cortex

[112]

BBB surface area: MV density

108 mm/mm^3 100.0 Healthy elderly (pathologically 
confirmed)

74.0 60-88 5 Histological staining Hippocampal cortex [58]

107 mm/mm^3 NS Unknown 
severity

(pathologically 
confirmed)

78.0 66-94 5 Histological staining Hippocampal cortex [58]

7.25 % area occupied 
by laminin 

100.0 Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

Healthy elderly (NINCDS-ADRDA) 83.0 75-99 (2.5) 4 Immunohistochemical 
staining

Medial cortex, emphasized 
on 'hotspots': areas with 
high laminin staining

[113]
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6.29 % covered by 
capillaries of area

NS Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Moderate-
severe AD

14 (MMSE) 94.2 90-96 (2.6) 6 Immunohistochemical 
staining

White matter (frontal, 
temporal, parietal 
and occipital lobe)

[111]

6.25 % covered by 
capillaries of area

100.0 Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Questionable 27.7 (MMSE) 92.8 90-100 (3.3) 8 Immunohistochemical 
staining

White matter (frontal, 
temporal, parietal 
and occipital lobe)

[111]

6.05 % covered by 
capillaries of area

100.0 Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Healthy elderly 29.6 (MMSE) 92.5 91-99 (3.2) 6 Immunohistochemical 
staining

White matter (frontal, 
temporal, parietal 
and occipital lobe)

[111]

5.12 % covered by 
capillaries of area

100.0 Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Questionable 28 (MMSE) 70.8 65-75 (4.4) 5 Immunohistochemical 
staining

White matter (frontal, 
temporal, parietal 
and occipital lobe)

[111]

13.97 % covered by 
capillaries of area

NS Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Moderate-
severe AD

14 (MMSE) 94.2 90-96 (2.6) 6 Immunohistochemical 
staining

Gray matter (frontal, 
temporal, parietal, 
hippocampal and 
entorhinal regions)

[111]

13.37 % covered by 
capillaries of area

100.0 Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Questionable 27.7 (MMSE) 92.8 90-100 (3.3) 8 Immunohistochemical 
staining

Gray matter (frontal, 
temporal, parietal, 
hippocampal and 
entorhinal regions)

[111]

13.41 % covered by 
capillaries of area

100.0 Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Healthy elderly 29.6 (MMSE) 92.5 91-99 (3.2) 6 Immunohistochemical 
staining

Gray matter (frontal, 
temporal, parietal, 
hippocampal and 
entorhinal regions)

[111]

12.97 % covered by 
capillaries of area

100.0 Banner Sun Health 
Research Institute 
Brain and Body 
Donation Program

Questionable 28 (MMSE) 70.8 65-75 (4.4) 5 Immunohistochemical 
staining

Gray matter (frontal, 
temporal, parietal, 
hippocampal and 
entorhinal regions)

[111]

18.95 % of total cortical 
field area

NA Healthy elderly NA 79.0 (1) 3 Histological staining 
& photomicroscopy

Frontal, temporal and 
occipital cortex

[112]

16.5 % of total cortical 
field area

87.1 Possible AD 24 (NINCDS-
ADRDA)

80.0 (5.6) 7 Histological staining 
& photomicroscopy

Frontal, temporal and 
occipital cortex

[112]

BBB surface area: MV density

108 mm/mm^3 100.0 Healthy elderly (pathologically 
confirmed)

74.0 60-88 5 Histological staining Hippocampal cortex [58]

107 mm/mm^3 NS Unknown 
severity

(pathologically 
confirmed)

78.0 66-94 5 Histological staining Hippocampal cortex [58]

7.25 % area occupied 
by laminin 

100.0 Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

Healthy elderly (NINCDS-ADRDA) 83.0 75-99 (2.5) 4 Immunohistochemical 
staining

Medial cortex, emphasized 
on 'hotspots': areas with 
high laminin staining

[113]
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12.25 % area occupied 
by laminin 

168.8 Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

Mild-severe 
AD

(NINCDS-ADRDA) 75.6 58-99 4 Immunohistochemical 
staining

Medial cortex, emphasized 
on 'hotspots': areas with 
high laminin staining

[113]

6.59 % area occupied 
by laminin 

100.0 Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

Healthy elderly (NINCDS-ADRDA) 83.0 75-99 (2.5) 4 Immunohistochemical 
staining

Hippocampus, emphasized 
on 'hotspots': areas with 
high laminin staining

[113]

10.75 % area occupied 
by laminin 

163.1 Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

Mild-severe 
AD

(NINCDS-ADRDA) 75.6 58-99 4 Immunohistochemical 
staining

Hippocampus, emphasized 
on 'hotspots': areas with 
high laminin staining

[113]

1.32 % area per 
standard field

100.0 UWNP Core, 
tissue repository

Healthy elderly 0-II (Braak) 83.5 71-95 19 IF after IHC Parietal cortex [114]

1.29 % area per 
standard field

NS UWNP Core, 
tissue repository

Mild AD III-IV (Braak) 87.8 72-100 15 IF after IHC Parietal cortex [114]

1.34 % area per 
standard field

NS UWNP Core, 
tissue repository

Severe AD V-VI (Braak) 85.9 70-99 23 IF after IHC Parietal cortex [114]

2.15 % area per 
standard field

100.0 UWNP Core, 
tissue repository

Healthy elderly 0-II (Braak) 83.5 71-95 19 IHC Parietal cortex [114]

2.24 % area per 
standard field

NS UWNP Core, 
tissue repository

mild AD III-IV (Braak) 87.8 72-100 15 IHC Parietal cortex [114]

2.05 % area per 
standard field

NS UWNP Core, 
tissue repository

Severe AD V-VI (Braak) 85.9 70-99 39 IHC Parietal cortex [114]

1.52 % area per 
standard field

100.0 UWNP Core, 
tissue repository

Healthy elderly 0-II (Braak) 83.5 71-95 10 IHC Parietal cortex [114]

2.13 % area per 
standard field

NS UWNP Core, 
tissue repository

mild AD III-IV (Braak) 87.8 72-100 9 IHC Parietal cortex [114]

1.84 % area per 
standard field

NS UWNP Core, 
tissue repository

Severe AD V-VI (Braak) 85.9 70-99 17 IHC Parietal cortex [114]

89.8 Number of arterioles 
or capillares/mm^2

100.0 Healthy elderly NA 59.2 23-90 (26.8) 6 Fixation in formalin Pre-frontal area, basal 
forebrain, motor/sensory 
area, hippocampus

[115]

62.9 Number of arterioles 
or capillares/mm^3

70.0 St. Louis University 
AD Research 
Center Brain Bank

Unknown 
severity

23.3 (dementia 
scale)

84.6 76-91 (4.9) 16 Fixation in formalin Pre-frontal area, basal 
forebrain, motor/sensory 
area, hippocampus

[115]

7.08 % 100.0 Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

Healthy elderly NA 83.0 75-99 (2.5) 9 Immunohistochemical 
staining

Medial temporal cortex [116]

8.38 % NS Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

mild AD (NINCDS-ADRDA) 77.7 58-99 (5.9) 6 Immunohistochemical 
staining

Medial temporal cortex [116]
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Age Age range Number 
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12.25 % area occupied 
by laminin 

168.8 Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

Mild-severe 
AD

(NINCDS-ADRDA) 75.6 58-99 4 Immunohistochemical 
staining

Medial cortex, emphasized 
on 'hotspots': areas with 
high laminin staining

[113]

6.59 % area occupied 
by laminin 

100.0 Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

Healthy elderly (NINCDS-ADRDA) 83.0 75-99 (2.5) 4 Immunohistochemical 
staining

Hippocampus, emphasized 
on 'hotspots': areas with 
high laminin staining

[113]

10.75 % area occupied 
by laminin 

163.1 Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

Mild-severe 
AD

(NINCDS-ADRDA) 75.6 58-99 4 Immunohistochemical 
staining

Hippocampus, emphasized 
on 'hotspots': areas with 
high laminin staining

[113]

1.32 % area per 
standard field

100.0 UWNP Core, 
tissue repository

Healthy elderly 0-II (Braak) 83.5 71-95 19 IF after IHC Parietal cortex [114]

1.29 % area per 
standard field

NS UWNP Core, 
tissue repository

Mild AD III-IV (Braak) 87.8 72-100 15 IF after IHC Parietal cortex [114]

1.34 % area per 
standard field

NS UWNP Core, 
tissue repository

Severe AD V-VI (Braak) 85.9 70-99 23 IF after IHC Parietal cortex [114]

2.15 % area per 
standard field

100.0 UWNP Core, 
tissue repository

Healthy elderly 0-II (Braak) 83.5 71-95 19 IHC Parietal cortex [114]

2.24 % area per 
standard field

NS UWNP Core, 
tissue repository

mild AD III-IV (Braak) 87.8 72-100 15 IHC Parietal cortex [114]

2.05 % area per 
standard field

NS UWNP Core, 
tissue repository

Severe AD V-VI (Braak) 85.9 70-99 39 IHC Parietal cortex [114]

1.52 % area per 
standard field

100.0 UWNP Core, 
tissue repository

Healthy elderly 0-II (Braak) 83.5 71-95 10 IHC Parietal cortex [114]

2.13 % area per 
standard field

NS UWNP Core, 
tissue repository

mild AD III-IV (Braak) 87.8 72-100 9 IHC Parietal cortex [114]

1.84 % area per 
standard field

NS UWNP Core, 
tissue repository

Severe AD V-VI (Braak) 85.9 70-99 17 IHC Parietal cortex [114]

89.8 Number of arterioles 
or capillares/mm^2

100.0 Healthy elderly NA 59.2 23-90 (26.8) 6 Fixation in formalin Pre-frontal area, basal 
forebrain, motor/sensory 
area, hippocampus

[115]

62.9 Number of arterioles 
or capillares/mm^3

70.0 St. Louis University 
AD Research 
Center Brain Bank

Unknown 
severity

23.3 (dementia 
scale)

84.6 76-91 (4.9) 16 Fixation in formalin Pre-frontal area, basal 
forebrain, motor/sensory 
area, hippocampus

[115]

7.08 % 100.0 Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

Healthy elderly NA 83.0 75-99 (2.5) 9 Immunohistochemical 
staining

Medial temporal cortex [116]

8.38 % NS Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

mild AD (NINCDS-ADRDA) 77.7 58-99 (5.9) 6 Immunohistochemical 
staining

Medial temporal cortex [116]



268

Chapter 6

66

Value unit % Database cohort Severity score 
(method)

Age Age range Number 
pts

Technique Notes Ref.

9.99 % 119.3 Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

Severe AD (NINCDS-ADRDA) 74.2 65-87 (2.6) 9 Immunohistochemical 
staining

Medial temporal cortex [116]

23.84 NA 100.0 CFAS Healthy elderly 0-II (Braak) 85.6 70-103 (7.5) 28 Immunohistochemical 
staining

Temporal cortex (lateral 
temporal neocortex)

[117]

24.32 NA 102.0 CFAS mild AD III-IV (Braak) 85.6 70-103 (7.5) 47 Immunohistochemical 
staining

Temporal cortex (lateral 
temporal neocortex)

[117]

26.42 NA 110.8 CFAS Severe AD V-VI (Braak) 85.6 70-103 (7.5) 17 Immunohistochemical 
staining

Temporal cortex (lateral 
temporal neocortex)

[117]

BBB surface area: Capillary length

110.07 m 100 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Healthy elderly 0 (CDR) 95.0 91-97 (2.7) 4 Gallyas silver staining Hippocampus, CA1 [118]

110.01 m NS Questionable 0.5 (CDR) 88.5 82-96 (7.1) 4 Gallyas silver staining Hippocampus, CA1 [118]

78.92 m NS mild AD 1 (CDR) 90.7 88-92 (2.3) 3 Gallyas silver staining Hippocampus, CA1 [118]

90.42 m NS moderate AD 2 (CDR) 94.4 83-101 (5.5) 8 Gallyas silver staining Hippocampus, CA1 [118]

42.83 m 100 Healthy elderly 0 (CDR) 95.0 91-97 (2.7) 4 Gallyas silver staining Entorhinal cortex [118]

83.14 m NS Questionable 0.5 (CDR) 88.5 82-96 (7.1) 4 Gallyas silver staining Entorhinal cortex [118]

45.5 m NS mild AD 1 (CDR) 90.7 88-92 (2.3) 3 Gallyas silver staining Entorhinal cortex [118]

47.17 m NS moderate AD 2 (CDR) 94.4 83-101 (5.5) 8 Gallyas silver staining Entorhinal cortex [118]

BBB surface area: MV diameter

8.61 µm 100.0 UWNP Core, 
tissue repository

Healthy elderly 0-II (Braak) 83.5 71-95 19 IF after IHC Parietal cortex [114]

7.97 µm NS UWNP Core, 
tissue repository

mild AD III-IV (Braak) 87.8 72-100 15 IF after IHC Parietal cortex [114]

8.11 µm NS UWNP Core, 
tissue repository

Severe AD V-VI (Braak) 85.9 70-99 23 IF after IHC Parietal cortex [114]

6.07 µm 100.0 Healthy elderly (pathologically 
confirmed)

74.0 60-88 5 Histological staining Hippocampal cortex [58]

6.07 µm NS Unknown 
severity

(pathologically 
confirmed)

78.0 66-94 5 Histological staining Hippocampal cortex [58]

BBB surface area: Capillary diameter

7.9 µm 100.0 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Healthy elderly 0 (CDR) 95.0 91-97 (2.7) 4 Gallyas silver staining Hippocampus, CA1 [118]
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9.99 % 119.3 Kinsmen 
Laboratory brain 
bank, University of 
British Columbia

Severe AD (NINCDS-ADRDA) 74.2 65-87 (2.6) 9 Immunohistochemical 
staining

Medial temporal cortex [116]

23.84 NA 100.0 CFAS Healthy elderly 0-II (Braak) 85.6 70-103 (7.5) 28 Immunohistochemical 
staining

Temporal cortex (lateral 
temporal neocortex)

[117]

24.32 NA 102.0 CFAS mild AD III-IV (Braak) 85.6 70-103 (7.5) 47 Immunohistochemical 
staining

Temporal cortex (lateral 
temporal neocortex)

[117]

26.42 NA 110.8 CFAS Severe AD V-VI (Braak) 85.6 70-103 (7.5) 17 Immunohistochemical 
staining

Temporal cortex (lateral 
temporal neocortex)

[117]

BBB surface area: Capillary length

110.07 m 100 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Healthy elderly 0 (CDR) 95.0 91-97 (2.7) 4 Gallyas silver staining Hippocampus, CA1 [118]

110.01 m NS Questionable 0.5 (CDR) 88.5 82-96 (7.1) 4 Gallyas silver staining Hippocampus, CA1 [118]

78.92 m NS mild AD 1 (CDR) 90.7 88-92 (2.3) 3 Gallyas silver staining Hippocampus, CA1 [118]

90.42 m NS moderate AD 2 (CDR) 94.4 83-101 (5.5) 8 Gallyas silver staining Hippocampus, CA1 [118]

42.83 m 100 Healthy elderly 0 (CDR) 95.0 91-97 (2.7) 4 Gallyas silver staining Entorhinal cortex [118]

83.14 m NS Questionable 0.5 (CDR) 88.5 82-96 (7.1) 4 Gallyas silver staining Entorhinal cortex [118]

45.5 m NS mild AD 1 (CDR) 90.7 88-92 (2.3) 3 Gallyas silver staining Entorhinal cortex [118]

47.17 m NS moderate AD 2 (CDR) 94.4 83-101 (5.5) 8 Gallyas silver staining Entorhinal cortex [118]

BBB surface area: MV diameter

8.61 µm 100.0 UWNP Core, 
tissue repository

Healthy elderly 0-II (Braak) 83.5 71-95 19 IF after IHC Parietal cortex [114]

7.97 µm NS UWNP Core, 
tissue repository

mild AD III-IV (Braak) 87.8 72-100 15 IF after IHC Parietal cortex [114]

8.11 µm NS UWNP Core, 
tissue repository

Severe AD V-VI (Braak) 85.9 70-99 23 IF after IHC Parietal cortex [114]

6.07 µm 100.0 Healthy elderly (pathologically 
confirmed)

74.0 60-88 5 Histological staining Hippocampal cortex [58]

6.07 µm NS Unknown 
severity

(pathologically 
confirmed)

78.0 66-94 5 Histological staining Hippocampal cortex [58]

BBB surface area: Capillary diameter

7.9 µm 100.0 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Healthy elderly 0 (CDR) 95.0 91-97 (2.7) 4 Gallyas silver staining Hippocampus, CA1 [118]
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6.83 µm NS Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Questionable 0.5 (CDR) 88.5 82-96 (7.1) 4 Gallyas silver staining Hippocampus, CA1 [118]

6.53 µm NS Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

mild AD 1 (CDR) 90.7 88-92 (2.3) 3 Gallyas silver staining Hippocampus, CA1 [118]

6.26 µm 79.2 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

moderate AD 2 (CDR) 94.4 83-101 (5.5) 8 Gallyas silver staining Hippocampus, CA1 [118]

7.39 µm 100.0 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Healthy elderly 0 (CDR) 95.0 91-97 (2.7) 4 Gallyas silver staining Entorhinal cortex [118]

6.88 µm NS Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Questionable 0.5 (CDR) 88.5 82-96 (7.1) 4 Gallyas silver staining Entorhinal cortex [118]

6.51 µm NS Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

mild AD 1 (CDR) 90.7 88-92 (2.3) 3 Gallyas silver staining Entorhinal cortex [118]

5.59 µm 75.6 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

moderate AD 2 (CDR) 94.4 83-101 (5.5) 8 Gallyas silver staining Entorhinal cortex [118]

12.62 µm 100.0 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Healthy elderly 0 (CDR) 94.7 91-97 (3.2) 3 Gallyas silver staining Frontal cortex, 
Brodmann area 9

[118]
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6.83 µm NS Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Questionable 0.5 (CDR) 88.5 82-96 (7.1) 4 Gallyas silver staining Hippocampus, CA1 [118]

6.53 µm NS Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

mild AD 1 (CDR) 90.7 88-92 (2.3) 3 Gallyas silver staining Hippocampus, CA1 [118]

6.26 µm 79.2 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

moderate AD 2 (CDR) 94.4 83-101 (5.5) 8 Gallyas silver staining Hippocampus, CA1 [118]

7.39 µm 100.0 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Healthy elderly 0 (CDR) 95.0 91-97 (2.7) 4 Gallyas silver staining Entorhinal cortex [118]

6.88 µm NS Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Questionable 0.5 (CDR) 88.5 82-96 (7.1) 4 Gallyas silver staining Entorhinal cortex [118]

6.51 µm NS Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

mild AD 1 (CDR) 90.7 88-92 (2.3) 3 Gallyas silver staining Entorhinal cortex [118]

5.59 µm 75.6 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

moderate AD 2 (CDR) 94.4 83-101 (5.5) 8 Gallyas silver staining Entorhinal cortex [118]

12.62 µm 100.0 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Healthy elderly 0 (CDR) 94.7 91-97 (3.2) 3 Gallyas silver staining Frontal cortex, 
Brodmann area 9

[118]
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11.57 µm NS Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Questionable 0.5 (CDR) 96.0 NA 1 Gallyas silver staining Frontal cortex, 
Brodmann area 9

[118]

11.26 µm 100.0 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Moderate 2 (CDR) 96.4 91-101 (4.8) 5 Gallyas silver staining Frontal cortex, 
Brodmann area 9

[118]

8.42 µm 66.7 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Severe AD 3 (CDR) 93.5 93-94 (0.7) 2 Gallyas silver staining Frontal cortex, 
Brodmann area 9

[118]

5.01 µm 100.0 Healthy elderly (SDAT) 78.8 67-95 (9.1) 8 Histological staining Cerebral cortex (visual) [109]

5.22 µm 104.2 Unknown 
severity

(SDAT) 79.3 63-92 (9) 10 Histological staining Cerebral cortex (visual) [109]

5.55 µm 100 Healthy elderly (pathologically 
confirmed)

74.0 60-88 5 Histological staining Hippocampal cortex [58]

5.41 µm NS Unknown 
severity

(pathologically 
confirmed)

78.0 66-94 5 Histological staining Hippocampal cortex [58]

BBB surface area: Arteriolar diameter

14.15 µm 100.0 Healthy elderly (SDAT) 78.8 67-95 (9.1) 8 Histological staining Cerebral cortex (visual) [109]

14.31 µm 101.1 Unknown 
severity

(SDAT) 79.3 63-92 (9) 10 Histological staining Cerebral cortex (visual) [109]

 BCSFB surface area: CP cells height                

13.7 um 100 NA NA 89.1 82-96 (5.4) 8 microscopy NA [60]

10.5 um 76.6 NA NA 84.2 73-93 (6.3) 10 microscopy NA [60]

 BrainECF/ICF pH                     

6.91 unitless 0 healthy elderly healthy elderly 29.07 (MMSE) 65.2 (8.3) 30 MR spect (1H) WM [119]

6.84 unitless -0.07 AD mild AD 21.69 (MMSE) 68.6 (9.9) 26 MR spect (1H) WM [119]

6.87 unitless 0 healthy elderly healthy elderly 29.07 (MMSE) 65.2 (8.3) 24 MR spect (1H) Hipp [119]

6.88 unitless N.S. AD mild AD 21.69 (MMSE) 68.6 (9.9) 17 MR spect (1H) Hipp [119]

6.87 unitless 0 healthy elderly healthy elderly 29.07 (MMSE) 65.2 (8.3) 24 MR spect (1H) cerebellum [119]

6.88 unitless N.S. AD mild AD 21.69 (MMSE) 68.6 (9.9) 17 MR spect (1H) cerebellum [119]

BrainICF pH

7.028 unitless 0 healthy elderly healthy elderly 28.1 (MMSE) 73.5 (6.3) 31 MR spect (31P) retrosplenial & anterior 
cingulate cortex; 
hippocampus

[120]
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11.57 µm NS Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Questionable 0.5 (CDR) 96.0 NA 1 Gallyas silver staining Frontal cortex, 
Brodmann area 9

[118]

11.26 µm 100.0 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Moderate 2 (CDR) 96.4 91-101 (4.8) 5 Gallyas silver staining Frontal cortex, 
Brodmann area 9

[118]

8.42 µm 66.7 Department 
of Geriatrics 
and Psychiatry, 
University of 
Geneva School 
of Medicine

Severe AD 3 (CDR) 93.5 93-94 (0.7) 2 Gallyas silver staining Frontal cortex, 
Brodmann area 9

[118]

5.01 µm 100.0 Healthy elderly (SDAT) 78.8 67-95 (9.1) 8 Histological staining Cerebral cortex (visual) [109]

5.22 µm 104.2 Unknown 
severity

(SDAT) 79.3 63-92 (9) 10 Histological staining Cerebral cortex (visual) [109]

5.55 µm 100 Healthy elderly (pathologically 
confirmed)

74.0 60-88 5 Histological staining Hippocampal cortex [58]

5.41 µm NS Unknown 
severity

(pathologically 
confirmed)

78.0 66-94 5 Histological staining Hippocampal cortex [58]

BBB surface area: Arteriolar diameter

14.15 µm 100.0 Healthy elderly (SDAT) 78.8 67-95 (9.1) 8 Histological staining Cerebral cortex (visual) [109]

14.31 µm 101.1 Unknown 
severity

(SDAT) 79.3 63-92 (9) 10 Histological staining Cerebral cortex (visual) [109]

 BCSFB surface area: CP cells height                

13.7 um 100 NA NA 89.1 82-96 (5.4) 8 microscopy NA [60]

10.5 um 76.6 NA NA 84.2 73-93 (6.3) 10 microscopy NA [60]

 BrainECF/ICF pH                     

6.91 unitless 0 healthy elderly healthy elderly 29.07 (MMSE) 65.2 (8.3) 30 MR spect (1H) WM [119]

6.84 unitless -0.07 AD mild AD 21.69 (MMSE) 68.6 (9.9) 26 MR spect (1H) WM [119]

6.87 unitless 0 healthy elderly healthy elderly 29.07 (MMSE) 65.2 (8.3) 24 MR spect (1H) Hipp [119]

6.88 unitless N.S. AD mild AD 21.69 (MMSE) 68.6 (9.9) 17 MR spect (1H) Hipp [119]

6.87 unitless 0 healthy elderly healthy elderly 29.07 (MMSE) 65.2 (8.3) 24 MR spect (1H) cerebellum [119]

6.88 unitless N.S. AD mild AD 21.69 (MMSE) 68.6 (9.9) 17 MR spect (1H) cerebellum [119]

BrainICF pH

7.028 unitless 0 healthy elderly healthy elderly 28.1 (MMSE) 73.5 (6.3) 31 MR spect (31P) retrosplenial & anterior 
cingulate cortex; 
hippocampus

[120]
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7.037 unitless 0.009 AD mild AD 23.2 (MMSE) 73.4 (6.8) 31 MR spect (31P) retrosplenial & anterior 
cingulate cortex; 
hippocampus

[120]

BrainECF pH

6.261 unitless 0 UK brain bank 
aging

healthy elderly 1.4 (Braak) 71.6 (7.3) 146 pH electrode postmortum [121]

6.136 unitless -0.125 UK brain bank 
aging

mild AD 3.7 (Braak) 71.3 (5) 609 pH electrode postmortum [121]

6.608 unitless 0 GSE 44770 healthy elderly NA 68.5 (5.1) 49 pH electrode postmortum [121]

6.369 unitless -0.239 GSE 44770 Unknown 
severity

NA 68.7 (5.4) 38 pH electrode postmortum [121]

6.5 unitless 0 GSE 84422 healthy elderly 1.3 (Braak) 82.2 (6.5) 33 pH electrode postmortum [121]

6.369 unitless -0.131 GSE 84422 moderate AD 4.8 (Braak) 82.4 (6.3) 48 pH electrode postmortum [121]

6.56 unitless 0 Brain bank King's 
college london

healthy elderly NA 71.1 41-102 81 pH electrode homogenized postmortum 
tissue, death due 
to various cond

[122]

6.39 unitless -0.17 Brain bank King's 
college london

Unknown 
severity

NA 78.4 49-97 90 pH electrode homogenized postmortum 
tissue, death due 
to various cond

[122]

 CSF pH                    

7.311 unitless 0 NA healthy group 
(not elderly)

NA NA NA 35 pH meter lumbar CSF [123]

7.329 unitless 0.018 moderate-
severe

NA 66 57-73 (5.05) 15 pH meter lumbar CSF [124]

6.58 unitless 0 The Netherlands 
Brain Bank 

healthy elderly 1.36 (Braak) 78.1 NA (12.2) 281 pH meter Ventricular; postmortem [121]

6.48 unitless -0.1 The Netherlands 
Brain Bank 

moderate-
severe

5.21 (Braak) 79.4 NA (10.9) 613 pH meter Ventricular; postmortem [121]

6.71 unitless 0 The Netherlands 
Brain Bank 

healthy elderly NA 74.7 NA (1.2) 82 N/A Ventricular; postmortem [125]

6.59 unitless -0.12 The Netherlands 
Brain Bank 

AD (severity 
NA)

NA 76.3 NA (1.4) 85 N/A Ventricular; postmortem [125]
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7.037 unitless 0.009 AD mild AD 23.2 (MMSE) 73.4 (6.8) 31 MR spect (31P) retrosplenial & anterior 
cingulate cortex; 
hippocampus

[120]

BrainECF pH

6.261 unitless 0 UK brain bank 
aging

healthy elderly 1.4 (Braak) 71.6 (7.3) 146 pH electrode postmortum [121]

6.136 unitless -0.125 UK brain bank 
aging

mild AD 3.7 (Braak) 71.3 (5) 609 pH electrode postmortum [121]

6.608 unitless 0 GSE 44770 healthy elderly NA 68.5 (5.1) 49 pH electrode postmortum [121]

6.369 unitless -0.239 GSE 44770 Unknown 
severity

NA 68.7 (5.4) 38 pH electrode postmortum [121]

6.5 unitless 0 GSE 84422 healthy elderly 1.3 (Braak) 82.2 (6.5) 33 pH electrode postmortum [121]

6.369 unitless -0.131 GSE 84422 moderate AD 4.8 (Braak) 82.4 (6.3) 48 pH electrode postmortum [121]

6.56 unitless 0 Brain bank King's 
college london

healthy elderly NA 71.1 41-102 81 pH electrode homogenized postmortum 
tissue, death due 
to various cond

[122]

6.39 unitless -0.17 Brain bank King's 
college london

Unknown 
severity

NA 78.4 49-97 90 pH electrode homogenized postmortum 
tissue, death due 
to various cond

[122]

 CSF pH                    

7.311 unitless 0 NA healthy group 
(not elderly)

NA NA NA 35 pH meter lumbar CSF [123]

7.329 unitless 0.018 moderate-
severe

NA 66 57-73 (5.05) 15 pH meter lumbar CSF [124]

6.58 unitless 0 The Netherlands 
Brain Bank 

healthy elderly 1.36 (Braak) 78.1 NA (12.2) 281 pH meter Ventricular; postmortem [121]

6.48 unitless -0.1 The Netherlands 
Brain Bank 

moderate-
severe

5.21 (Braak) 79.4 NA (10.9) 613 pH meter Ventricular; postmortem [121]

6.71 unitless 0 The Netherlands 
Brain Bank 

healthy elderly NA 74.7 NA (1.2) 82 N/A Ventricular; postmortem [125]

6.59 unitless -0.12 The Netherlands 
Brain Bank 

AD (severity 
NA)

NA 76.3 NA (1.4) 85 N/A Ventricular; postmortem [125]
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Supplementary table 6. CNS pathophysiological changes in aging animal models

Species Parameter Value unit % Age in months Age range (sd) 
in months

N Technique Notes Ref. 

Brain ECF bulk flow            

Mouse 14C-inulin clearance -33,3 % NA NA NA inluin clearance 18 vs 2-3 month old mice [126]

Mouse 14C-inulin clearance 30 % NA 2-3 6-
11

inluin clearance NA [126]

Mouse 14C-inulin clearance 23 % NA 8-10 6-
11

inluin clearance NA [126]

Mouse 14C-inulin clearance 20 % 18 NA 6-
11

inluin clearance NA [126]

Paracellular transport at the BCSFB 

Sheep PPA-BCSFB 9 % 100 NA 12-24 36 radio-label + imaging mannitol (MW=180)used 
as probe molecule

[127]

Sheep PPA-BCSFB 17 % 188,9 NA 84-120 24 radio-label + imaging mannitol (MW=180)used 
as probe molecule

[127]

Sheep PPA-BCSFB 5 % 100 NA 12-24 36 radio-label + imaging PEG (MW=4000)used 
as probe molecule

[127]

Sheep PPA-BCSFB 15 % 300 NA 84-120 24 radio-label + imaging PEG (MW=4000)used 
as probe molecule

[127]

Paracellular transport at the BBB 

Rats basement membrane 
thickness

24,3 nm 100 NA 2-3 NA Electron microscopy NA [128]

Rats basement membrane 
thickness

93,9 nm 386,4 NA 14-16 NA Electron microscopy NA [128]

Rats astrocytes endfeet area 0,47 um2 100 NA 2-3 NA Electron microscopy NA [128]

Rats astrocytes endfeet area 3,54 um2 753,2 NA 14-16 NA Electron microscopy NA [128]

Rats TJ length 0,44 um NS NA 2-3 NA Electron microscopy NA [128]

Rats TJ length 0,41 um NS NA 14-16 NA Electron microscopy non-significant decrease of 
TJ length and number

[128]

Rats passive permeability NA NA NA NA NA NA SPECT imaging slightly higher qinidine 
transport (+PSC) in 14-16 
mo than in 2-3 month

[128]

Rats permeability surface 
area product

NA NA NS NA 3-31 NA quantitative radiography radio-labelled sucrose [129]

Mice albumin transport NA NA NS NA NA NA brain-serum albumin ratio SAMP8 mice (Accelerated aging) [130]

Mice IgG extravasation 0,43 % 100 3 NA 6 brain-plasma % receptor mediated transcytosis 
& shift to ligand non-
specific transcytosis

[131]

Mice IgG extravasation 0,51 % 118,6 22 NA 6 brain-plasma % receptor mediated transcytosis 
& shift to ligand non-
specific transcytosis

[131]

ECF volume ratio 

rat ECF volume ratio 0,215 unitless 100 NA 2-3 205 real-time iontophoresis 
(TMA+)

in cortex, corpus collosum, 
hippocampus

[132]
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Species Parameter Value unit % Age in months Age range (sd) 
in months

N Technique Notes Ref. 

rat ECF volume ratio 0,18 unitless 83,7 NA 26-32 82 real-time iontophoresis 
(TMA+)

in cortex, corpus collosum, 
hippocampus

[132]

mice ECF volume ratio 0,199 unitless 100 NA 6-8 4 real-time iontophoresis 
(TMA+)

females [133]

mice ECF volume ratio 0,132 unitless 66,33 NA 17-25 7 real-time iontophoresis 
(TMA+)

females [133]

mice ECF volume ratio 0,203 unitless 100 NA 6-8 3 real-time iontophoresis 
(TMA+)

males [133]

mice ECF volume ratio 0,161 unitless 79,31 NA 17-25 7 real-time iontophoresis 
(TMA+)

males [133]

mice ECF volume ratio 0,2 unitless 100 NA 6-8 7 real-time iontophoresis 
(TMA+)

average of males and females [133]

mice ECF volume ratio 0,147 unitless 73,5 NA 17-25 14 real-time iontophoresis 
(TMA+)

average of males and females [133]

Surface area of the BCSFB 

rats CP cells height 12,39 um 100 3 NA 3 microscopy [134]

rats CP cells height 11,62 um N.S. 18 NA 3 microscopy [134]

rats CP cells height 10,56 um 85 30 NA 3 microscopy compared to 3 month [134]

rats microvilli height 2,66 um 100 3 NA 3 microscopy [134]

rats microvilli height 2,65 um N.S. 18 NA 3 microscopy [134]

rats microvilli height 2,46 um N.S. 30 NA 3 microscopy [134]

rat MV density 6,8 % of total 
vol

100 NA 11-15 12 microscopy [135]

rat MV density 5,4 % of total 
vol

79,4 NA 23-25 12 microscopy [135]

rat MV capillary diameter 6,2 um 100 NA 11-15 12 microscopy [135]

rat MV capillary diameter 6,6 um N.S. NA 23-25 12 microscopy [135]

NA NA NA NA NA NA NA NA NA Increased capillary diameters 
and decreased capillary 
density. Some capillary density 
measurements in humans 
contradict these observations, 
as no changes observed.

[136]

Supplementary table 6. Continued
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Species Parameter Value unit % Age in months Age range (sd) 
in months

N Technique Notes Ref. 

rat ECF volume ratio 0,18 unitless 83,7 NA 26-32 82 real-time iontophoresis 
(TMA+)

in cortex, corpus collosum, 
hippocampus

[132]

mice ECF volume ratio 0,199 unitless 100 NA 6-8 4 real-time iontophoresis 
(TMA+)

females [133]

mice ECF volume ratio 0,132 unitless 66,33 NA 17-25 7 real-time iontophoresis 
(TMA+)

females [133]

mice ECF volume ratio 0,203 unitless 100 NA 6-8 3 real-time iontophoresis 
(TMA+)

males [133]

mice ECF volume ratio 0,161 unitless 79,31 NA 17-25 7 real-time iontophoresis 
(TMA+)

males [133]

mice ECF volume ratio 0,2 unitless 100 NA 6-8 7 real-time iontophoresis 
(TMA+)

average of males and females [133]

mice ECF volume ratio 0,147 unitless 73,5 NA 17-25 14 real-time iontophoresis 
(TMA+)

average of males and females [133]

Surface area of the BCSFB 

rats CP cells height 12,39 um 100 3 NA 3 microscopy [134]

rats CP cells height 11,62 um N.S. 18 NA 3 microscopy [134]

rats CP cells height 10,56 um 85 30 NA 3 microscopy compared to 3 month [134]

rats microvilli height 2,66 um 100 3 NA 3 microscopy [134]

rats microvilli height 2,65 um N.S. 18 NA 3 microscopy [134]

rats microvilli height 2,46 um N.S. 30 NA 3 microscopy [134]

rat MV density 6,8 % of total 
vol

100 NA 11-15 12 microscopy [135]

rat MV density 5,4 % of total 
vol

79,4 NA 23-25 12 microscopy [135]

rat MV capillary diameter 6,2 um 100 NA 11-15 12 microscopy [135]

rat MV capillary diameter 6,6 um N.S. NA 23-25 12 microscopy [135]

NA NA NA NA NA NA NA NA NA Increased capillary diameters 
and decreased capillary 
density. Some capillary density 
measurements in humans 
contradict these observations, 
as no changes observed.

[136]



280

Chapter 6

66

Supplementary table 7. CNS pathophysiological changes in AD animal models

Species Parameter Value unit % Age in months Age range (sd) 
in months

N Technique Notes Ref. 

ECF volume ratio

Mice Brain ECF volume 
frac-tion

0,145 unitless 100 NA 17-25 13 RT Iontophoretic 
TMA

Cortex Cortex

APP23 
mice

Brain ECF volume 
frac-tion

0,207 unitless 142,7586
207

NA 17-25 15 RT Iontophoretic 
TMA

Cortex Cortex

Surface area of the BCSFB

mice BCSFB-SA NA NA NA NA NA 8-10 NA Intracerebroventricular 
injection of AB42 resulted in 
loss of cuboidal shape and 
decrease of volume of choroid 
plexus epithelial cells

[137]
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