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Abstract

Predicting brain pharmacokinetics is critical for central nervous system
(CNS) drug development yet difficult due to ethical restrictions of human
brain sampling. CNS pharmacokinetic (PK) profiles are often altered in CNS
diseases due to disease-specific pathophysiology. We previously published a
comprehensive CNS physiologically-based PK (PBPK) model that predicted
the PK profiles of small drugs at brain and cerebrospinal fluid compartments.
Here, we improved this model with brain non-specific binding and pH effect
on drug ionization and passive transport. We refer to this improved model as
Leiden CNS PBPK predictor V3.0 (LeiCNS-PK3.0). LeiCNS-PK3.0 predicted the
unbound drug concentrations of brain ECF and CSF compartments in rats and
humans with less than two-fold error. We then applied LeiCNS-PK3.0 to study
the effect of altered cerebrospinal fluid (CSF) dynamics, CSF volume and flow,
on brain extracellular fluid (ECF) pharmacokinetics. The effect of altered CSF
dynamics was simulated using LeiCNS-PK3.0 for six drugs and the resulting
drug exposure at brain ECF and lumbar CSF were compared. Simulation results
showed that altered CSF dynamics changed the CSF PK profiles, but not the
brain ECF profiles, irrespective of the drug's physicochemical properties.
Our analysis supports the notion that lumbar CSF drug concentration is not
an accurate surrogate of brain ECF, particularly in CNS diseases. Systems
approaches account for multiple levels of CNS complexity and are better suited
to predict brain PK.

Keywords: Physiologically based pharmacokinetic models; CNS; Drug
development; Brain
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Introduction

Central nervous system (CNS) pharmacokinetic (PK) profiling, though
challenging, remains critical for drug development. Two PK profiles can be
distinguished in the CNS: brain and cerebrospinal fluid (CSF) PK profiles. In
CNSdrug development, compounds are selected that optimize brain PK profile,
since brain cells and extracellular fluid (ECF) represent the major site of drug
(side-) effects. Suboptimal drug exposure in brain has resulted in clinical trial
failure and has ultimately contributed to the high attrition rate of the CNS drugs
in development [1]. CSF represents a relatively accessible matrix to sample
the CNS, mainly via lumbar puncturing. While lumbar CSF drug concentrations
predict brain concentrations better than that of plasma [2], its accuracy
as a surrogate of brain PK has been argued [3], particularly for low passive
permeability and actively transported drugs [4].

The major challenge in designing drugs with adequate brain PK, is the poor
understanding of the role of CNS (patho) physiology in determining brain PK [5].
Up to this challenge, a mechanistic, systems-based understanding of key
physiological and pathological processes in healthy and diseased CNS is
instrumental in predicting brain (patho-) pharmacokinetics.

Our group previously published a comprehensive CNS physiologically-based
(PBPK) model that predicts the unbound concentration-time profiles of small
drugs within the CNS [6, 7]. This model, hereafter referred to as Leiden CNS
PBPK predictor 1.0 (LeiCNS-PK1.0), was developed using knowledge-based,
bottom-up modeling [6, 7], without using in vivo-measured PK profiles for
model building. The mechanistic structure of LeiCNS-PK1.0 allows interspecies
and interpopulation translation and provides a framework to study the effect of
altering a single or multiple physiological aspects on CNS PK. Thus, LeiCNS-
PK1.0 can be used to predict mechanistically the effect of disease-altered CNS
physiology on unbound drug exposure in brain [7]. While LeiCNS-PK1.0 could
adequately predict the CNS PK profiles of rats and healthy humans [6, 7], several
components of CNS physiology, including brain tissue non-specific binding and
pHimpact on passive transport, were represented in a rudimentary manner. This
limited the translatability of LeiCNS-PK1.0 predictions between species and
from healthy to diseased populations. First, the calculated pH factors did not
reflect the neutraldrug fraction of a given compartment, as neutraldrug fraction
in each compartment was normalized to that of the plasma compartment. In
addition, it was assumed that the charged drug molecules do not undergo
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transcellular or paracellular passive transport across the blood-brain (BBB)
and blood-cerebrospinal fluid (BCSFB) barriers, which is not physiologically
plausible as charged drugs can be transported via the passive paracellular
route [8]. Accounting for the impact of pH on drug ionization has been shown
to clearly improve the prediction of CNS PK profiles of drugs with weak acidic
and/or basic groups [9]. Drug non-specific binding, on the other hand, lacked
a mechanistic description and physiological plausibility as it was assumed in
LeiCNS-PK1.0 to occur instantaneously within the ECF and was calculated
using the unbound drug fraction in brain and plasma, brain tissue composition,
and lipophilicity of the drug. Brain unbound drug fraction (fu’b) as measured
in vitro, varies between measurement techniques, requires brain tissue, and
might not be available at early stages of drug development. Brain non-specific
binding has been demonstrated to be one of the major determinants of brain
pharmacokinetics [10], particularly for lipophilic drugs [11,12,13,14]. Hence,
LeiCNS-PK1.0 required improvement.

In this paper, we first improve LeiCNS-PK1.0 by readdressing the effect of pH
on drug ionization, LeiCNS-PK1.0 assumptions related to passive transport of
charged molecules at BBB and BCSFB barriers, and the time-dependent brain
tissue non-specific binding. We refer to this improved model as Leiden CNS
PBPK predictor 3.0 or LeiCNS-PK3.0. Next, we use LeiCNS-PK3.0 model to
explore the effect of altered CSF dynamics on CSF and brain ECF PK profiles as
well as on predictability of brain ECF drug concentration by that of lumbar CSF.
Changes in CSF dynamics, CSF volume and flow, are common in CNS diseases
(Table 1) and often alter CSF PK; their effect on the brain ECF PK profiles
remains unexplored [15].

Table 1. Cerebrospinal fluid dynamics in different CNS disease conditions

Aging® Alzheimer's  Hydrocephalus Traumatic
disease brain injury?®
CSFvolume  400% 150%®° 150%®° 115%
[51] [52] [53] [54]
CSF 66% 46%? 60%>®
production [55] [56] [57]
CSF flow 150% Normal 370% and reverse
CSF flow? flow direction?
[58] [59] [32]
CSF Reduced CSF absorption®  65%? 20-60%:
clearance [60] [61] [62]

2Compared to adults (< 60 years); ®Compared to elderly (60 +years); A study in rat
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Methods

CNS and plasma in vivo-measured drug concentrations

Drugs used to validate the model predictions included acetaminophen, atenolol,
methotrexate, morphine, phenytoin, raclopride, risperidone, paliperidone,
remoxipride, quinidine, oxycodone, and indomethacin. These drugs were
selected to cover the physicochemical space of small drug molecules with
molecular weights between 100 and 500 g/mol, different ionization rate
constants and charge class at physiological pH, different lipophilicity, and
different drug-transporter affinity at the BBB and BCSFB. Plasma PK data,
for the development of the empirical plasma models, and CNS PK data, for
the evaluation of LeiCNS-PK3.0 predictions, were available for both rats and
humans from the literature. Supplementary table 1 summarizes the sampling
location and data references.

For validating the rat version of LeiCNS-PK3.0, only in-house data were used,
where individual unbound PK profiles were simultaneously measured in
the same animal under controlled conditions in plasma and in multiple CNS
locations: brain ECF, lateral ventricles (LV), and cisterna magna (CM) using
microdialysis, in addition to total brain concentrations, which were measured
with the brain homogenate method. Clinical brain PK profiles measured with
microdialysis are quite rare due to ethical restrictions. In humans, individual
unbound PK profiles of brain ECF and lumbar CSF were available from patients
with conditions that do not affect CNS physiology or from healthy, uninjured
sites. Acetaminophen and indomethacin concentrations were measured in
patients with nerve root compression. Oxycodone were available from patients
undergoing elective gynecological surgery. Morphine concentrations were
collected using microdialysis from uninjured brain tissue sites from traumatic
braininjury patients. Total drug concentrations were corrected using respective
fraction of unbound drug where needed. CSF drug concentrations were assumed
unbound due to the low protein content of the CSF, i.e. f .. =1, except for
indomethacin with an f, . of 0.47 [16].

Drug-specific parameters

Drug specific parameters: lipophilicity (logP_, ), acid/base ionization constants
(pKa/pKb), and molecular weight, were collected from Drugbank [17] and
are listed in Table 2. Calculated logP_, values by ALOGPS method [18] were
used, unless experimental logP , values were available, while calculated pKa/
pKb values by the MARVIN method provided by CHEMAXON [19] were used.
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Leiden CNS PBPK predictor V3.0 (LeiCNS-PK3.0)

Model development

LeiCNS-PK3.0 (Fig. 1 and Supplementary Fig. 1) consists of an empirical
plasma model, which predicts plasma PK, and a nine-compartment CNS model.
The empirical plasma model serves as an input that drives the PK of the CNS
model, with both models linked by the cerebral blood flow. Development of the
empirical plasma model and detailed description of the CNS model structure,
physiological processes, and transport modes are described below. The
physiological parameters of rats and humans are presented in Supplementary
table 2. When multiple values were found in the literature, the mean value
was used.

LeiCNS-PK3.0 is an improvement of the published LeiCNS-PK1.0 [6, 7] on
aspects related to brain non-specific binding, pH effect on drug ionization, and
assumptions related to transcellular and paracellular passive diffusion of the
charged drug molecules. A comparison of the improved aspects in LeiCNS-
PK3.0 compared to LeiCNS-PK1.0 is presented in Table 3.
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CNS compartments

In LeiCNS-PK3.0, different CNS compartments are accounted for: brain
microvessels, brain extracellular fluid (ECF), brain intracellular fluid (ICF),
lysosomes, cranial cerebrospinal fluid (CSF) compartments: lateral ventricles, third
and fourth ventricles, and cisterna magna, in addition to the CSF in subarachnoid
space (SAS), including lumbar CSF. A new compartment, brain cell membrane, has
been added to LeiCNS-PK3.0, as the assumed non-specific binding site in brain.

pH effect on drug ionization

The pH factors (PHF) are defined as the neutral fraction of the drug concentration
of a given compartment. PHF is determined using adapted Henderson-Hasselbalch
equations utilizing compartment-specific pH (prmp) and the ionization constants
of the strongest acidic group (pKa) and the strongest basic group (pKb) of the drug.
In case of drugs missing one group (e.g. risperidone has only a basic group, but no
acidic groups), the relevant neutral fraction of this missing group is set to 1. PHF is

calculated as per the equations below.

1

Neutral fraction of acidic group (PHF,.iqic) = 15 107Hecomp —¥Fa

1

Neutral fraction of basic group (PHFy,;.) = 13 1075 —Pleomy

Neutral fraction of drug (PHF) = PHF,;4ic * PHFpgasic

Brain tissue non-specific binding

In LeiCNS-PK3.0, brain phospholipids, which constitute a major fraction of brain
cellmembranes, are assumed as the non-specific binding site in brain [20,21,22].
The volume of the brain cell membrane compartment is 5% of the total brain
volume, which represents the volume fraction of phospholipids in the brains
of rats [23] and humans [24]. CL  and CL_, (mL min™") describe the diffusion
clearance of a given drug between brain ECF and ICF on one side and brain cell
membrane on the other side. At steady state, the ratio of the drug concentration
in the brain cell membrane to the drug concentration in the brain ECF and ICF is

)

oct-water” *

equal to the octanol-water partition coefficient (P
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Table 3. Comparison of the improved aspects in LeiCNS-PK3.0 versus LeiCN-PK1.0

Aspect

LeiCNS-PK1.0

LeiCNS-PK3.0

pH factor (PHF)

Defined as the ratio of the neutral
fraction of adrug of a given
compartment to that of plasma

Calculated using Henderson-
Hasselbalch equations with
pH of the compartment, pH
of plasma, and the drug-
specific ionization constant

Defined as the neutral fraction of
adrugina given compartment

Calculated using adapted
Henderson-Hasselbalch
equations using compartment
specific pH and the drug-
specificionization constant

Brain tissue non-
specific binding

Using binding factor

Instantaneous

Binding occurs within the
brain ECF to a hypothetical
compartment

Relies on total brain-to-plasma
concentration ratio (K ).

K, is calculated using drug
lipophilicity (logP), unbound
drug fraction in brain (f,) and
plasma (fu’p), and brain and
plasma tissue composition

Mechanistic description

According to diffusion clearance
between aqueous and lipid phases

Binding occurs to the
phospholipids of the
brain cell membrane

Relies on drug lipophilicity and
the volume of brain phospholipids

Passive paracellular
transport

Paracellular route is restricted
to neutral drug only

Paracellular route is available for
both neutral and charged drug

Bulk fluid flow

Bulk fluid flow refers to the drug clearance between CNS compartments due
to fluid flow, irrespective of the concentration gradients. In LeiCNS-PK3.0,
bulk flows include cerebral blood flow between the brain microvessels and the
central compartment of the empirical plasma model, ECF bulk flow from brain
ECF to LV, and the CSF flow from the cranial CSF to the absorption sites in SAS.

Passive transport

Passive transportin the CNS involves paracellular and transcellular transport.
Transcellular transport refers to the permeability of the drug through
phospholipid bilayer of the membranes of the BBB endothelial cells, BCSFB
epithelial cells, brain parenchyma, and lysosomes. Paracellular transport
describes the aqueous diffusion of the drug molecules between the cells of
the BBB and BCSFB via the openings of the tight junctions. Further details on
the equations required to calculate aqueous diffusion and transmembrane
permeability are reported in the supplementary information and in [6].
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In LeiCNS-PK3.0, neutral drug molecules are transported through both
transcellular and paracellular routes, whereas charged drug molecules are
transported via paracellular routes only. Anions, cations, and zwitterions are
assumed to undergo paracellular diffusion at the same rate.

Asymmetry factors

In LeiCNS-PK3.0, physiological processes that are not explicitly addressed such
as active transport across the BBB and BCSFB, and metabolism, are accounted
for using asymmetry factors (AF). AF were calculated using the LeiCNS-PK3.0
equations at steady state and Kp_, the ratio of the unbound drug concentration
inagiven tissue to that of plasma. Kp  values were available from the literature
or calculated using influx and efflux clearances of a given compartment [25].

Cli,
Clout

Kpuu =

where Kp_ is the ratio of unbound concentration of a given tissue compartment
to that of plasma at steady state, Cl,_is the totalinflux clearance into the tissue
compartment, and Cl_, total efflux clearance out of the tissue compartment.
Influx and efflux clearances can be estimated using available unbound drug
concentration-time profiles. In humans, Kp  values are not often available and
can be calculated as described in the decision tree presented in [7]. If in vivo-
measured Kp  valuesare unavailable, AF can be derived from in vitro estimates
such as efflux ratio and cell uptake values as we described previously [7, 26].

Equations for calculating AF are provided in the supplementary materials. Influx
AF (AF,) and efflux AF (AF_) are calculated at BBB, BCSFB,,, and BCSFB,
where three scenarios are possible depending on the value of Kp . Kp  equal
to 1 suggests an equilibrium of drug concentration across BBB/BCSFB, and thus
AF, and AF_ are equalto 1. Kp  smaller than 1 suggests active efflux at BBB/
BCSFB; in this case AF, is setto 1, while AF_, is calculated using the relevant
equation and the associated Kp  value. Kp  largerthan 1 suggestsactive influx
at BBB/BCSFB, AF is setto 1, and then AF_is calculated [7].

The calculated AF values are listed in Table 2. The AF factors of atenolol and
methotrexate were exceptionally high, which can be attributed mainly to their
very low Kp, values. Atenolol (Kp, =0.037) is a low passive permeability
molecule and recent evidence show that atenolol might undergo active transport
at the BBB [27]. Methotrexate (Kpuu= 0.018, 0.0066, 0.0024 for ECF, LV, and
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CM, respectively) is a substrate of PGP [28], BCRP [29], and MRP4 [30], which
are three main transporters at the BBB and BCSFB. At CNS physiological pH,
methotrexate acts as an anion, whose negative charge could reduce its passive
permeability as a result of the interaction with negatively charged phospholipids
of the cellmembranes. The combined low passive permeability and presence of
active transport contribute to the low Kp  of both drugs.

Empirical plasma PK models

Rat plasma PK models were developed using non-linear mixed effects modeling,
where one-, two-, three- compartment models were compared. Interindividual
variability was tested using an exponential model for every PK parameter.
Residual unexplained variability was included using either proportional or
combined proportional/additive error models. The final model was selected
based on likelihood ratio test with p <0.05, equivalent to a decrease of the
objective function value of 3.84; visual predictive check (VPC) plots to compare
the model fit to drug concentrations in plasma; precision of the parameter
estimates denoted by the %relative standard errors; and the basic goodness
of fit plots that include individual/population predictions versus observations
and conditional weighted residuals versus population prediction/time. Human
plasma PK models were either available from the literature or developed in a
similar fashion as described for rats.

LeiCNS-PK3.0 evaluation

LeiCNS-PK3.0 model performance was evaluated using visual prediction check
plots (VPCs), where the median and 95% prediction interval of 200 model
simulations were plotted against and compared to in vivo-measured unbound
drug concentrations. The model simulations accounted for interindividual
variability and residual variabilities of the plasma PK model, as described
above. The relevant n of interindividual variability and € of residual unexplained
variabilities were randomly sampled from a normal distribution with a mean of 0
and a variance of w? and o?, respectively, and transformed as required.

Next, prediction errors were calculated using the individual measured drug
concentrations and their corresponding time-matched simulations median.
Average fold error (AFE) was calculated to evaluate the model's bias, while
absolute average fold error (AAFE) was calculated to compare the typical PK
profile simulated by the model to the typical PK profile of the measured PK data.
Atypical profile is the profile predicted assuming no interindividual variability,
i.e. when etas are set to zero. AFE and AAFE were calculated using relative

54



Context-specificity of lumbar CSF-to-brain ECF PK ratio

accuracy calculated for each drug. AFE and AAFE values approaching 100%
denote accurate model predictions.

1ov MedP,;
RAdrug =Mzzlo.glo Obs. -
1)

where Obs, ;is jth observation of the ith individual; MedP,  is the median value of
the 200 simulations corresponding to Obsi’j,‘ Misthe totalnumber of observations
of allindividuals; mis the number of observations of the ith individual; and N is
the total number of individuals.

%AFE of a given compartment was calculated as:

D
1
AFE = BZ RAgrug
d=1

%AFE = 100 = 104FE

where D is the number of drugs used for evaluation.

%AAFE of a given compartment was calculated as:

D
1
AAFE = EZ|RAdmg|

d=1

%AAFE = 100 * 1044FE

In addition, the mean absolute relative accuracy (MARA) was calculated to
evaluate the variability of individual drug concentrations around the median of
LeiCNS-PK3.0 simulations within a given compartment. MARA was based on
absolute relative accuracy of a given drug (ARAdmg) at a given compartment,
which was calculated as:

%MARA = 100 = 10MARA
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where Obs“j is jth observation of the ith individual, MedPi,j isthe median value of
the 200 simulations corresponding to Obs, ; Mis the total number of observations
of allindividuals; mis the number of observations of the ith individual; N is the
total number of individuals; and D is the number of drugs used for evaluation.

Symmetric mean absolute prediction errors (SMAPE) were calculated to
benchmark LeiCNS-PK3.0 with LeiCNS-PK1.0. A SMAPE value closer to 0%
implies a more accurate model.

AP 100 o~ [2 % (0bs,; — MedP,))|
(°)‘VZZ| Obs;; + MedP,; |

=1 j=1

where Obs“j is jth observation of the ith individual, MedPi,j isthe median value of
the 200 simulations corresponding to Obs, ; Mis the total number of observations
of allindividuals; mis the number of observations of the ith individual; and N is
the total number of individuals.

The effect of altered CSF dynamics on brain ECF PK

The effect of altered CSF volume and flow on the drug exposure in the brain
ECF and CSF was studied using human LeiCNS-PK3.0. Simulations were
performed for six drugs with different physicochemical properties. Test drugs
included methotrexate, acetaminophen, phenytoin, atenolol, raclopride, and
risperidone. A fixed 1-compartment plasma PK model of human was applied
across all drugs in order to isolate the impact of CSF parameters from other
variables. Rat Kp  values and the associated AF were adapted for humans. The
resulting drug concentration ratio of brain ECF-to-SAS was compared between
the physiological, two- and five-fold CSF volume and flow. SAS in this setting
represents lumbar CSF PK profile, while brain ECF represents the brain PK
profile, assuming no active transport takes place at the level of the brain cells.
Brain ECF is an intermediate compartment between brain microvasculature
and brain cells and therefore unaltered drug exposure in brain ECF will imply
unaltered drug exposure in brain cells. Two- and five-folds changes were
selected to reflect the changes of CSF volume and CSF flow in CNS diseases
as reported in Table 1. For example, the volume of the ventricles increase by
4.57%/year during healthy aging [31], which in the course of 20 years will result
in the expansion of the ventricles to about 250%. The CSF flow, measured at the
aqueduct of patients with idiopathic normal pressure hydrocephalus patients,
increases to 370% of its physiological value [32].
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Sensitivity analysis

Asensitivity analysis was performed using the human version of LeiCNS-PK3.0
toidentify the main parameters that define the PK profiles at the brain ECF, brain
ICF and SAS. The sensitivity analysis was carried out using four drugs with
distinct physicochemical properties: acetaminophen, morphine, methotrexate,
and raclopride. The CNS parameters were varied individually by 1.1, 1.5, and 2
folds, and resulting PK descriptors, C__, T ., and AUC, in the selected

compartments were compared to those of the physiological situation, using the
sensitivity index calculated as:

Y,
Sensitivity index = log, 7d
o

whereYdandYoarethepharmacokineticdescriptors(C T and AUC) of the

max! " max/

altered and physiological values, respectively.

Data analysis and software

Plasma PK model parameters were estimated using NONMEM version 7.4.3
(ICON, Dublin, Ireland) [33]. General data analysis and visualization and
LeiCNS-PK3.0 simulations were performed using R version 3.6.1 [34], where
simulations were performed using RxODE package version 0.9.1-0 [35], using
the LSODA (Livermore Solver for Ordinary Differential Equations) Fortran
package. Algebraic equations were solved using Maxima Computer Algebra
System version 19.01.2x (available from http:// maxima.sourceforge.net).
Literature data were extracted with WebPlotDigitizer version 4.2 (https://apps.
automeris.io/wpd/).

Results

Plasma PK models

The empirical plasma model parameters of the rat and human are displayed in
Table 4. Rat plasma PK model parameters were estimated with good precision
and the models accurately described the observed plasma drug concentrations.
The plasma PK model of methotrexate, however, slightly overpredicted the
data. Human plasma models of acetaminophen and morphine were available
from the literature [36], while plasma PK model parameters of oxycodone and
indomethacin were developed.
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Model evaluation

The CNS model of LeiCNS-PK3.0 was developed using bottom-up modeling
relying on physiological information only. Evaluation of the model predictions
was performed using published PK data from different brain regions, and thus
model evaluation is independent from model development.

Rat LeiCNS-PK3.0 evaluation

Figure 2 and Supplementary Fig. 2a-b depict the VPC plots of rat LeiCNS-
PK3.0 simulations against the measured drug concentrations of 10 drugs
(Supplementary table 1). LeiCNS-PK3.0 adequately predicted the observed
data in the brain ECF, lateral ventricles (LV), and cisterna magna (CM), with
some exceptions. Methotrexate brain ECF and quinidine 20 mg LV concentrations
were slightly underpredicted. Phenytoin brain ECF and CM and quinidine
CM concentrations were underpredicted towards the end of the simulation.
Remoxipride 4, 8, 16 mg predictions captured the peak of the observations but
overpredicted the remaining observations. LeiCNS-PK3.0 additionally predicted
brain homogenate (BH) concentrations, but less adequately. The model
overpredicted quinidine and remoxipride 0.7 mg and underpredicted phenytoin
40 mg observations and raclopride peak concentration.
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Figure 2. Model evaluation of the rat LeiCNS-PK3.0 model. Visual predictive checks plots
compared in vivo measured drug concentration (black dots) in multiple CNS locations to the
median (solid line) and 95% prediction intervals (colored band) of 200 model simulations. ECF brain
extracellular fluid, LV lateral ventricles, CM cisterna magna, BH brain homogenate
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In addition, LeiCNS-PK3.0 performance was evaluated by calculating the relative
accuracy error and its derivatives: %AFE and %AAFE that assess the model's
bias and typical PK profile predictability, respectively. Supplementary Fig. 2C
displays a box plot of relative accuracy errors. %AFE (95% confidence interval)
of brain ECF, LV, CM and BH were 90% (67-120), 77% (41-146), 80% (56-116),
and 64% (6-643), respectively. These values deviate by a maximum of 35% from
the optimum value of 100% and are indeed within two-fold error. %AAFE (95%
confidence interval) were 140% (118-167), 139% (85-229), and 149% (120-185)
forbrain ECF, LV and CM, respectively, which deviate by < 50% and are within two-
fold error. BH predictions were less accurate, with a %AAFE of 322% (99-1045).

SMAPEs, besides, were calculated for comparison with LeiCNS-PK1.0. SMAPE of
LeiCNS-PK3.0 (vs LeiCNS-PK1.0) were 65% (vs 72%), 71% (vs 71%), 70% (vs 69%),
and 105% (vs 91%) for brain ECF, LV and CM and BH, respectively.

Human LeiCNS-PK3.0 evaluation

Figure 3 displays the VPC plots of the human LeiCNS-PK3.0 simulations against
the measured concentration-time profiles of four drugs (Supplementary table 1).
The plots show that LeiCNS-PK3.0 adequately predicted the brain ECF and SAS
concentrations. Acetaminophen and indomethacin SAS concentration were
underpredicted to some extent. %AFE (Supplementary Fig. 3) of brain ECF and
SAS were 92% and 56%, respectively. %AAFE of brain ECF and SAS were 109%
and 179%, respectively. All error values were within the two-fold error limit.
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Figure 3. Model evaluation of the human LeiCNS-PK3.0 model. Visual predictive checks plots
compared in vivo measured drug concentration (black dots) in multiple CNS locations to the
median (solid line) and 95% prediction intervals (colored band) of 200 model simulations. ECF brain
extracellular fluid, SAS subarachnoid space

Effect of altered CSF dynamics on brain ECF and

CSF pharmacokinetics

PK profiles of brain ECF and SAS compartments at different CSF flow and volumes
areshownin Fig. 4a, b foracetaminophen and Supplementary Fig. 4a-eand 5 a-e
for methotrexate, phenytoin, atenolol, raclopride, and risperidone. Changes in
CSF volume and flow altered SAS but not brain ECF PK profile and hence changed
the brain ECF-SAS ratio. Within the SAS, decrease in CSF volume or increase
in CSF flow results in an earlier T__, higher C__, and a faster clearance. The
observed changes of T and C__ atthe SAS compartment was the same for all

max'

drugs regardless their physicochemical properties.

Sensitivity analysis

LeiCNS-PK3.0 sensitivity analysis was performed to identify the CNS model
parameters that influence the PK profiles at the brain ECF, brain ICF, and SAS.
The identified parameters were drug- and CNS compartment-dependent. Brain
ECF and ICF PK profiles were sensitive to active transport at BBB as reflected

by brain-to-plasma unbound drug partitioning (Kp , volume and surface

)
uu,ECF
area of brain cells, width of BBB and tight junction pore, and pH of brain ECF and
ICF. The SAS PK profile was sensitive to active transport at BCSFB given by the
CSF-to-plasma unbound drug partitioning (Kp,, .,,), CSF flow, and SAS volume.

LeiCNS-PK3.0 sensitivity analysis results are shown in Supplementary Fig. 6.
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Discussion

LeiCNS-PK3.0 simulations showed that altered CSF dynamics resulted in a shiftin
the drug concentration ratio of brain ECF-to-SAS CSF, where SAS CSF PK profiles
but not brain ECF PK profiles were affected. This observation is independent of the
drug’s physicochemical properties, as it is assumed in the model that transport
into and out of the SAS CSF is mediated by CSF flow and does not involve barrier
transport. This implies a context-specific surrogacy of lumbar CSF-to-brain
ECF PK profiles and thus this relationship is not suitable for interpopulation or
interspecies translation. LeiCNS-PK3.0 simulations, thus, reproach the classical
assumption of the prediction of lumbar CSF drug concentration to brain ECF drug
concentrations [2], which is in line with previous findings [3].

LeiCNS-PK3.0 performance

LeiCNS-PK3.0 is an improved and a more mechanistic version of LeiCNS-PK1.0
[6, 7], where the physiological processes of non-specific binding and pH effect on
drugionization and passive transport across BBB and BCSFB have been addressed.
LeiCNS-PK3.0 predictions are based exclusively on plasma PK, CNS physiological
parameters, drug physicochemical properties, and in vitro measurements. LeiCNS-
PK3.0 predicts brain non-specific binding using a drug property, i.e. lipophilicity,
which is either measured at the early stages of drug development or predicted with
QSAR approaches. This makes lipophilicity more efficient to use compared to the
formerly-used brain unbound drug fraction (f,,), which requires brain tissue.

LeiCNS-PK3.0 predictions are predominantly unbiased as indicated by the below
35% %AFE. The model, however, slightly underpredicts drug concentrations of
human SAS, but within the two-fold error margin. Drug concentration-time
profiles of rat brain ECF, LV, and CM and of human brain ECF and SAS were
adequately predicted. %AAFE errors, which indicate the model prediction of
typical PK profiles, were within the two-fold error limit, with human brain ECF
predictions deviating less than 10%.

LeiCNS-PK3.0 predicted BH PK profiles less adequately which could be the result
of the unaccounted for physiological processes such as brain metabolism, active
transport at the brain cells, specific binding of drugs to target receptor, etc. BH
predictions of raclopride, a known dopamine D2 receptor substrate [37], displayed
the largest erroramong other drugs. %AAFE of BH without including raclopride was
223% compared to 322% with raclopride. Future inclusion of receptor binding and
other physiological process is anticipated to improve LeiCNS-PK3.0 predictions.
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Figure 4. Pharmacokinetic profiles of acetaminophen at brain extracellular (ECF) fluid and
subarachnoid space (SAS) at physiological and a two- and b five-fold altered cerebrospinal
fluid (CSF) volume and flow. Changing CSF dynamics affects SAS pharmacokinetics and not brain
ECF pharmacokinetics. ECF brain extracellular fluid, SAS subarachnoid space
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LeiCNS-PK3.0 predictions of human brain intracellular fluid (ICF) PK profiles
are depicted in supplementary Figs. 8. Both brain ECF and ICF represent the
sites of drug action, which makes their PK profiles of top interest to drug
developers. Brain ICF PK profiles cannot be validated with in vivo PK profiles, as
such data are not attainable. Imaging techniques do not distinguish intracellular
and extracellular drug. The brain slice method could be used to investigate the
concentration and time dependency of the equilibrium between the brain ECF,
represented by the buffer, and brain ICF [38]. This in vitro method is, however,
limited by the loss of the whole brain context as a number of physiological
processes such as bulk flows are missed, in addition to the limited duration of
tissue viability.

Sensitivity analysis: implications to LeiCNS-PK3.0 assumptions

A number of LeiCNS-PK3.0 parameters were calculated based on certain
assumptions about CNS physiology, some of which were found by the sensitivity
analysis to largely affect CNS PK. The affected assumptions were: surface of the

brain cells membrane (SA__,), CSF flow, and active transport.

BCM)

SA;., Was calculated using brain cells volume and number, assuming that
all brain cells are spheres of equal radii. CSF flow was assumed constant in
ventricles and the subarachnoid space, which does not reflect the physiology.
Active transport was accounted for by calculating AF using Kp  whose value is
dependent on dosing and measurement techniques. Improving the mechanistic
description of these parameters should be a priority of future investigations and

willincrease the confidence in LeiCNS-PK3.0 predictions.

New non-specific binding model

Brain non-specific binding in LeiCNS-PK3.0 is presented as a time-dependent
process; a diffusion clearance describes the drug partitioning between brain
ECF/ICF and phospholipids of the brain cell membrane. This is based on two
assumptions. First, phospholipids of the brain cellmembrane play a determinant
role in non-specific binding within brain compared to the negligible role of
brain proteins e.g. albumin [23, 39], neutral lipids [20], and other components
of brain cells [22]. The second assumption relates to P
biological lipophilicity. Octanol-water system represents a simplified model
of drug partitioning between aqueous and lipid phases, compared to the
phospholipid bilayer of the brain cellmembrane. P__ , for example, neglects the
partitioning of charged molecules to phospholipids. Anumber of studies have
demonstrated the correlation of P_._and brain non-specific binding. P_._was

oct-w oct-w

representation of

oct-w
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shown to explain about 52% (reported as R?) of the variability in experimentally-
) in brain [14] and
about 44-74% (reported as R?) of the variability in experimentally-measured
fraction of unbound drug in brain (fu’b) [11,12,13]. This evidence indicates that
P.... Provides an adequate predictor of brain non-specific binding.

measured volume of distribution of unbound drug (V,

u,brain

pH effect on drug ionization and its effect on drug

transendothelial transport

Drug molecules in the CNS ionize depending on the compartment-specific pH
and the drug-specific acid and base ionization constants. In LeiCNS-PK3.0, it is
assumed that charged molecules can cross the barriers by paracellular diffusion
only, ignoring the transcellulartransport of charged species and paracellular route
preference to cationic drugs [8]. Charged drug transcellular and paracellular
transport rate is, however, negligible compared to neutral species transport rate
and is not expected to critically influence LeiCNS-PK3.0 predictions.

In vivo studies addressing the impact of CSF dynamics on brain ECF
versus CSF PK profiles

A number of studies have supported the surrogacy of the CSF PK profiles to
those of brain ECF, based on studies performed in rats, for both actively and
passively transported drugs [2, 40, 41]. These studies are based, however, on
CSF samples collected at the cisterna magna. Cranial CSF, including CSF at the
cisterna magna, isin a relatively faster equilibrium with brain ECF, as compared
to the distal lumbar CSF. In contrast to what is generally assumed, it has been
shown in bothin silico [42] and preclinical and clinical studies [43] that lumbar
CSF does notreflect the PK profiles of brain ECF or even cisternaland ventricular
CSF. In addition, our LeiCNS-PK3.0 sensitivity analysis suggests that brain ECF
and ICF pharmacokinetic profiles are insensitive to CSF-related parameters. In
a similar modeling study, the sensitivity analysis of a permeability-limited CNS
PBPK model demonstrated that multiple factors while affecting the PK profiles
of lumbar CSF, did not affect those of brain or even cranial CSF [42].

Preclinical and clinical studies that address the impact of altered CSF volume
and/or flow on brain CSF PK profiles are rare, due to the associated technical
and ethical restrictions. In addition, changing one CNS parameter in isolation
is more of a hypothetical situation rather than can truly be realized in in vivo
studies. Notwithstanding, a number of studies have addressed the impact
of acetazolamide-induced reduction of CSF flow on brain ECF and CSF PK
profiles. Acetazolamide is a carbonic anhydrase inhibitor drug, which reduces
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CSF production and flow by about 50%. Methotrexate exposure in the ventricular
CSF of three patients was altered following acetazolamide administration, where
the terminal elimination half-life increased [44] in agreement with the altered
simulated profiles in Fig. 4 and supplementary Fig. 4 of this manuscript. The
PK profile of alovudine measured in rat brain ECF with microdialysis was not
altered in response to acetazolamide co-administration [45]. The PK profiles of
5-fluorouracil at rat brain ECF and cisterna magna CSF were altered to different
extents following acetazolamide administration, implying the context dependency
of drug concentration ratio of brain ECF to CSF [46]. It can be concluded as
supported by LeiCNS-PK3.0 simulations and the in vivo preclinical and clinical
studies that the lumbar CSF to brain ECF drug concentration ratio is context-
dependent and this ratio might be altered in response to a change in CSF dynamics.

Absence of CNS IV and its implications

LeiCNS-PK3.0 accounts for interindividual variability (IIV) of the plasma
pharmacokinetic parameters, but not that of the CNS physiology parameters. The
impact of the 11V of CNS parameters on PK profiles is more prominent when drug
transportis dependent on a certain parameter. For example, acetaminophen's, a
slightly lipophilic and paracellularly-transported molecule, brain ECF PK profile
is sensitive to the tight junction pore diameter (Supplementary Fig. 6). Thus, IV of
the tightjunction pore diameter might account for the larger observed variability of
brain ECF PK profile compared to that of plasma (Fig. 2, top panel). Acetaminophen
PK profile while assuming nominal variabilities of 30% and 50% (as coefficient of
variation, %CV) on physiological CNS parameters showed slightly wider 2.5th and
97.5th percentiles, which therefore better described the observed variability of the
PK data (Supplementary Fig. 7).

The variability of the individual observed CNS concentrations relative to typical
predicted profile was within three-fold error as indicated by %0MARA. For humans,
%MARA errors were 182%, 238% for brain ECF and SAS, respectively, while for
rats these were 207%, 229%, and 216% for brain ECF, LV, and CM, respectively.
Identification of variability of CNS model parameters and associated covariates
is crucial for predicting the individual PK profiles, which remains challenging due
to the limited data, e.g. on CNS physiology and measured drug concentrations,
required for estimating this level of variability.

Patho-pharmacokinetics require a systems approach

CNS drug exposure in healthy and diseased conditions is a function of both
physiological and drug properties. In a healthy CNS, a number of mechanisms
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contribute to the rate and extent of the actual drug transport across the BBB,
resulting in a brain ECF PK profile that may substantially differ from that of
plasma. Achangein any of the parameters that govern the PK at brain ECF and ICF,
as identified by the sensitivity analysis, would potentially result in altered CNS
drug exposure. This is particularly crucial in CNS diseases, in which the complex
and multifactorial disease-specific pathophysiology would result in a distinct
CNS PK profiles compared to those of a healthy CNS. In epilepsy, for instance,
the increased expression of active efflux transporters at BBB is associated with a
lower drug exposure in brain and hence resistance to therapy [47]. Furthermore,
patients with traumatic brain injury showed higher morphine concentrations of
the injured brain tissue ECF than those of the uninjured tissue, which is potentially
due to decreased tight junction and active transporters expression at the BBB
[7, 48]. Mechanistic, systems-based approaches such as PBPK modeling account
for drug and CNS physiological properties in addition to the multidimensional
disease pathology and are thus better suited for adequate PK predictions in
healthy and diseased CNS. The shortage of knowledge on (patho-) physiological
parameters and mechanisms remains a major challenge to translating CNS PBPK
models between healthy and diseased populations.

LeiCNS-PK3.0 applications

LeiCNS-PK3.0 applications include predicting PK profiles of small drugs in a
healthy CNS and in patients with CNS diseases, e.g. Alzheimer's, and exploring
mechanistically the impact of CNS disease pathophysiology on CNS PKii.e. patho-
pharmacokinetics. These applications are supported by mechanistic detailing of
different physiological processes that for example distinguishes paracellular and
transcellular transports, but also accounts for brain cells and lysosomes, a feature
that was not supported in similar published CNS models [42, 49, 50]. LeiCNS-
PK3.0is thus useful at early stages of drug development to support (pre-) clinical
study design and decision-making, e.g. dose selection and sampling time points.

Conclusion

In conclusion, we improved our published LeiCNS-PK1.0 by accounting for brain
non-specific binding and readdressing pH effect on drug ionization and passive
transport. LeiCNS-PK3.0 simulations demonstrated that altered CSF dynamics
changes brain ECF-to-SAS drug concentration ratio and implied a context-
dependent PK surrogacy of lumbar SAS to brain ECF.
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Supplementary material

Supplementary table 1. Rat and human unbound drug concentrations sampled from different
CNS locations and used to evaluate LeiCNS3 model

Plasma Brain,,, CSF, CSF, CSF, . Totalbrain Reference
Rat
Acetaminophen X X X X [1]
Atenolol X X [2]
Methotrexate X X X X [3]
Morphine X X [4, 5]
Paliperidone X X X [6]
Phenytoin X X [6]
Quinidine X X X X X [7]
Raclopride X X [8]
Remoxipride X X X X X [6,9,10]
Risperidone X X [6]
Human
Acetaminophen X [11,12]
Indomethacin X [13,14]
Morphine X X [15]
Oxycodone X X [16]
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Supplementary table 2. LeiCNS-PK3.0 physiological parameter values of rats and humans

Species Rat values Human values
Parameter Value (range) Reference  Value (range) Reference
Volumes Total brain (Vm) 1.8° [17,18] 1250 [19-22]
(mL) (1110 - 1380)
Brain extracellular ~ 0.36° [23] 253 [23-27]
fluid (V) (217 - 300)
Brain intracellular 1.44° [23] 1000¢ [23]
fluid (V,.,)
Brain cell 0.018¢ [28] 12.5¢ [28]
lysosomes (V)
Brain 0.054¢ [29] 45 (37 - 50)¢ [25,30,31]
microvasculature
(V)
Total cerebrospinal  0.28¢ [32-34] 140
fluid (V) (0.155 - 0.4)
Lateral ventricles 0.0075" [33,35-37] 20(11-16) [38-42]
(v,) (0.003 - 0.015)
3rd & 4t ventricles 0.0075 3(2.3-3.7) [40, 41]
(v,.) (0.003-0.015)
Cisterna magna 0.017 [3, 43] 1 [44]
(V)
Subarachnoid 0.135 [45] 116 (110-116)  [46-48]
space (V,,.)
Flows Cerebral blood 2.87¢ [29, 49] 689 (644-722)  [50-52]
(mL min-") flow (Qgg,)
Brain ECF bulk 0.0002 [53-55] 0.22 [56]
flow (Qg,) (0.18E3-0.2E%?)
CSF flow (QCSF) 0.0022 [33,57] 0.42 [48,58-61]
(0.18E2-0.22E7?) (0.28-0.68)
Surface areas Blood brain 155 (150 - 188) [62-64] 150000 [65-73]
(cm?) barrier (SA,,;) (140 E3-360 E?)
Blood CSF barrier 25m [62] 15000 [74,75]
(SABCSFB)
Brain cell membrane 4250° [76] 2666520° [77,78]
(SABCM)
Lysosomes 2700 [79] 19802607 [79-83]
membrane (SA,,.)
Width (pm) Blood brain 0.5(0.2-0.5) [84] 0.5(0.2-0.4) [70, 85]
barrier (W)
Blood CSF barrier
(WBCSFE)
Number Total brain cells 3.32E8 [76] 1.71EM8 [77,78]
(Nbr,ceus)
Pore size(pm) Blood brain 0.001 [86] 0.0007 [86,87]
barrier (pTJy,,) (0.0008- 0.001)
Blood CSF barrier 0.009 [86] 0.0027 [86]

(pTJ

ECSFB)
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Supplementary table 2. Continued

Species Rat values Human values

Parameter Value (range) Reference  Value (range) Reference
Effective BBB Transcellular 99.8° [9, 88, 89] 99.820 [9, 88, 891]
surfacearea  transport (SA,,;,)

(%) BCSFB Transcellular 99.8¢ 99 8t

transport (SA

BCSFE,T)
BBB paracellular 0.006" [86] 0.004u [86]
transport (SA

BBB,P)

BCSFB paracellular  0.05¢ [86] 0.016u
transport (SAg g5 )

pH Plasma (pH,) 7.4 [90] 7.4 [90]
Brain
microvasculature
(pH,,)
Brain extracellular 7.3 [91] 7.3 [91]
fluid (pH,,)
Cerebrospinal 7.3 [92] 7.3 [92]
fluid (pH,,)
Brain cells (pH,,) 7.0 [91] 7.0 [91]
Brain cell 5.0 [91] 5.0 [91]
lysosomes (pH )

2 Based on rat brain weight (1.88 gm) and density (1.04-1.05 gm ml-1)

® Calculated as 15-20 (20 was used)% of total brain volume

@ Calculated as 80% of total brain volume

d Calculated as 1.25% (1/80) of ICF volume; based on liver lysosomes

¢ Calculated as 3% of total brain volume

fCalculated as 3.67% of total brain volume

9 Mean of the 4 values

" Assuming equal volumes of the ventricles; based on volumes of three-month-old rats

"Calculated as 5.7% of total CSF volume and according to cisterna magna geometry

iCalculated as 48% of total CSF volume, based on measurement performed in 9-day-old rats

“Calculated as 2.6% of total cardiac output

'Based on 50% of CSF bulk flow

™ Based on three-month-old rats, surface area at lateral ventricles (and 3rd and 4th ventricles)
is assumed 50% of total surface area

"Based on 0.1 of BBB surface area, surface area at lateral ventricles (and 3rd and 4th ventricles)
isassumed 50% of total surface area

°Based on ICF total volume, total number of brain cells, (1)and assuming spherical cells to
calculate the radius which is used with total number of brain cells to calculate total surface area
of brain cellmembranes

P Based on lysosomes total volume and the average radius of rat kidney lysosomes (0.2 pm)

9Based on lysosomes total volume and the average radius of monkey kidney and rat kidney
lysosomes (0.1875 pym)

"Based on 1500 gm brain

s Based on relative length of intercellular space (0.03 pm) and cell perimeter (17 pm) [9, 93]

tAssumed the same as rats

“Based on an endothelial cell perimeter of 17 um
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Supplementary equations

Paracellular clearance across the blood-brain (BBB) and blood-cerebrospinal
fluid (BCSFB) barriers (Qpggs pcsrs)
the drug (Dag, cm?/sec), the molecular weight of the drug (MW, in g/mol),
diffusion width across BBB/BCSFB (width, . ..;), and surface areas
(SApggs/acsrs) Of BBBand BCSFB. BBB and BCSFB surface areas were corrected
with effective surface area factors for BBBand BCSFB (Supplementary table 2)
to account for surface area dedicated for paracellular transport.

was calculated using aqueous diffusivity of

Daq = —4.113 — 0.4609 * logMW

Daq

QPseB/BCSFB = * SAPggB/BCSFB

WidthBBB/BCSFB

Transcellular clearance across the blood-brain (BBB) and blood-cerebrospinal
fluid (BCSFB) barriers (Qt,,, 5ccrs) Was calculated based on transmembrane
permeability of the drug (P ™"se!lar cm/sec), octanol-water partition coefficient
BBB/BCSFB ) of BBB and BCSFB. BBB and BCSFB
surface areas were corrected with effective surface area factors for BBB and

(logP), and surface areas (SAt

BCSFB (Supplementary table 2) to account for surface area dedicated for
transcellular transport only.

P transcellular
0

QtBBB/BCSFB = 0.5% * SAtBBB/BCSFB

Equation calculating the influx and efflux asymmetry factors at the BBB and BCSFB:

AFgpp,in
_ Kpuwpcr * Qcar * Qecr + KPuwcwm * QPssp * Qcse + Qcar * (KPuwrcr * (AFEBB,ef * PHFpcp * Qtppp + QPppp) — QPsps)
PHFyy * Qtgpp * (KPuucm * Qcsr — Qcar)

AFgpp.er
__ Kpuwecr * Qcsr * Qecr + KPuuem * Qcsr * (AFppp,in * PHFyy * Qtgpp + QPsas) + Qcr * (KPuuscr * Qs — AFs5,in
KPuugcr ¥ PHFgcr * Qtggp * Qcpr

AFy in
_ Kpuupcr * Qcsr * Qecr — Qcsr * (Kpuu,LV * Qcpr + KDuucm * QpEL‘SFB) = Qcpr * (KPyuy * (AFLV,ef * PHF,y * Qtpcspp + (
PHFyy * Qtpcsep * (Kpuucm * Qese — Qcar)

AFLV,ef
_ KPuwscr * Qe * Qscr = Qese * (KPuwcm * (AFuyin * PHFyy * Qtycspp + QPpeses) + KPuwwy * Qesr) + Qcar * (—KPuuiv
Kpyuy * PHFLy * Qtpcsep * Qcpr

AFrpy in
_ Qcsr * (QCEI-‘ * (Kpuu,LV - Kpuu,EM) = KPuwcem * QpBL‘SFB) + Qcgr * (—KPyu,cm * (AFTI-‘V,ef * PHFrpy * Qtpcsrp + QPpesrs.
PHFyy * Qtgcsep * (KPuwcm * Qesr — Qcar)

AFrpy,ep
_ Qcsr * (QCEF * (Kpuu,w - KPuu,EM) — KPuucm * (AFTFV,in * PHFyy * Qtpesep + QpBESFB)) + Qcar * (—KPuucm * Qbsesrs
B Kpuw,cm * PHFrpy * Qtpesep * Qcpr
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AFggsor- efflux asymmetry factor across the blood brain barrier; AF ... = influx

asymmetry factor across the blood brain barrier; AF, : efflux asymmetry
factor across the blood cerebrospinal fluid barrier at lateral ventricles; AF , ;-
influx asymmetry factor across the blood cerebrospinal fluid barrier at lateral
ventricles; AF ., . efflux asymmetry factor across the blood cerebrospinal
fluid barrier at 3™ and 4™ ventricles; AF, . influx asymmetry factor across
the blood cerebrospinal fluid barrier at 3@ and 4™ ventricles; Kp,, cu: Cisterna
magna-to-plasma unbound drug concentration ratio; Kp,, ...: brain extracellular

fluid-to-plasma unbound drug concentration ratio; Kp .: lateral ventricles-

uu,LV*
to-plasma unbound drug concentration ratio; PHF_..: pH factor of brain
extracellular fluid; PHF : pH factor of lateral ventricles; PHF,, : pH factor of
brain microvasculature; PHF__ : pH factorat 3 and 4™ ventricles; Q. cerebral
blood flow; Q.. cerebrospinal fluid flow; Q... brain extracellular fluid bulk
flow; Qpg,,: paracellular transport clearance at blood brain barrier; Qp, g
paracellular transport clearance at blood cerebrospinal fluid barrier; Qt,,:
transcellular transport clearance at blood brain barrier; Qt :transcellular

BCSFB®
transport clearance at blood cerebrospinal fluid barrier
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Supplementary figure 2. Model evaluation of the rat LeiCNS-PK3.0 model. A-B) Visual predictive
checks plots compared in vivo measured drug concentration (black dots) in multiple CNS locations
to the median (solid line) and 95% prediction intervals (colored band) of 200 model simulations.
C) Boxplot of the relative accuracy error calculated for different drugs. Green and yellow solid
lines represent two- and five- fold error, respectively. ECF: brain extracellular fluid, LV: lateral
ventricles, CM: cisterna magna, BH: brain homogenate.
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Supplementary figure 2. Continued.
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Supplementary figure 3. Model evaluation of the human LeiCNS-PK3.0 model. Boxplot of
the relative accuracy error calculated for different drugs. Green and yellow solid lines represent
two- and five- fold error, respectively. ECF: brain extracellular fluid, SAS: subarachnoid space.
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Supplementary figure 4 a-e. Pharmacokinetic profiles of test drugs at brain extracellular (ECF)
fluid and subarachnoid space (SAS) at physiologic and two-fold altered cerebrospinal fluid
(CSF) volume and flow. Changing CSF dynamics affects SAS pharmacokinetics and not brain
ECF pharmacokinetics. Test drugs included methotrexate, phenytoin, atenolol, raclopride, and

phenytoin
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Supplementary figure 5 a-e. Pharmacokinetic profiles of test drugs at brain extracellular (ECF)
fluid and subarachnoid space (SAS) at physiologic and five-fold altered cerebrospinal fluid
(CSF) volume and flow. Changing CSF dynamics affects SAS pharmacokinetics and not brain
ECF pharmacokinetics. Test drugs included methotrexate, phenytoin, atenolol, raclopride, and

phenytoin
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Supplementary figure 7. LeiCNS-PK3.0 simulations of acetaminophen with interindividual
variability of empirical plasma model in addition to nominal variability of CNS parameters of
0%, 30%, and 50% (as %coefficient of variation). The added CNS variability results in slightly
wider 2.5" and 97.5" percentiles that can better describe observed variability. CV: coefficient of
variation (%), ECF: brain extracellular fluid; LV: lateral ventricles; CM: cisterna magna.
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Supplementary figure 8. LeiCNS-PK3.0 predictions of the PK profiles of acetaminophen,

indomethacin, morphine, oxycodone at plasma, brain ECF, brain ICF, and subarachnoid space.
ECF: brain extracellular fluid, ICF: brain intracellular fluid, SAS: subarachnoid space.
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