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■ Abstract Rhizobia are soil bacteria that can engage in a symbiosis with legu-
minous plants that produces nitrogen-fixing root nodules. This symbiosis is based
on specific recognition of signal molecules, which are produced by both the bacterial
and plant partners. In this review, recognition factors from the bacterial endosym-
bionts are discussed, with particular attention to secreted and cell surface glycans.
Glycans that are discussed include the Nod factors, the extracellular polysaccharides,
the lipopolysaccharides, the K-antigens, and the cyclic glucans. Recent advances in
the understanding of the biosynthesis, secretion, and regulation of production of these
glycans are reviewed, and their functions are compared with glycans produced by other
bacteria, such as plant pathogens.
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INTRODUCTION

Various bacterial species that belong to theα-proteobacteria and the order
Rhizobiales (112) can engage in a symbiosis with plants of the leguminous family
(160). These bacteria, which, based on this symbiotic behavior, are collectively
called rhizobia, have the unique capacity to induce the formation of root nodules
in the host plant by the production of specific signal molecules called Nod factors
(101, 162, 174). The rhizobia are also able to invade the plant tissue via so-called
infection threads, resulting in a differentiated root nodule-inhabiting form of the
bacteria that exists inside the cells of the host plant (27). This differentiated form
of the bacteria, called bacteroids, can fix gas phase nitrogen into ammonia (88).
The fixed nitrogen, in the form of ammonia or alanine (183), is supplied to the
host plant, which, in turn, supplies the bacteria with various nutrients (87). The
rhizobial species are genetically a very diverse group (175), as is illustrated by
their recent division into four different families, the Rhizobiaceae, the Phyllobac-
teriaceae, the Hyphomicrobiaceae, and the Bradyrhizobiaceae (112). Within these
four families, only a limited number of genera have the capacity to engage in a
nitrogen-fixing symbiosis with leguminous plants. Currently these genera include
Rhizobium, Sinorhizobium, Mesorhizobium, Bradyrhizobium, Azorhizobium, and
Allorhizobium(40).

Despite this genetic diversity, it has become clear that these genera of bacte-
ria have many common genetic and biochemical characteristics related to their
capacity to establish a successful symbiosis. These common factors include the
capacity to recognize specific signal molecules, such as flavonoids (153), from
the host plants and to produce special signal molecules, such as the Nod factors,
which apparently are not produced by other related genera. In addition, common
factors include specialized structural adaptations and special regulation of classes
of molecules also occurring in most other soil bacteria. These molecules serve
specialized functions during symbiotic conditions, such as (a) different growth
conditions, (b) the presence of many potentially toxic compounds (e.g. phenolics
and enzymes), and (c) the need to avoid a defense response of the plant host. For
instance, it can be expected that a wide variety of cell surface characteristics of
the rhizobia are different from those of other related soil bacteria. However, the
identification of common adaptations is hampered by the fact that different plant-
host species offer very different habitats for the guest bacteria (leading to host
specificity) and that the evolution of various bacterial traits has occurred conver-
gently from many different genetic backgrounds, as shown by the genetic diversity
mentioned above. The identification of various common rhizobial characteristics
that are involved in symbiosis was facilitated by the apparent clustering of various
groups of genes encoding these characteristics on transmissible genetics elements,
such as large plasmids in all rhizobial genera (28, 57, 83), and large transposable
elements, such as the so-called symbiosis islands, inMesorhizobiumspp. (171).
Other common rhizobial characteristics have been identified by a detailed analy-
sis of factors that were expected to be involved in a symbiotic capacity, such as
specialized nitrogen and carbon metabolism (87, 88), cell surface characteristics
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(27, 94), secreted factors (54, 55, 181, 186), and specialized uptake systems (87,
111, 184). Regarding the recognition processes underlying the specialization of
various subgroups of rhizobia for different host plants (i.e. host specificity), the
rhizobia as a group are specialized for the structure and regulation of production of
their cell surface and secreted glycans, including glycolipids, which are the major
focus of this review. This statement applies, namely, for the characteristics of the
Nod factors (48), the extracellular polysaccharides [EPSs (13)], the K-antigens
(94), the cyclic glucans (25), and the lipopolysaccharides [LPSs (94)]. Although
the extent of the specialization, compared with that of non-rhizobial species from
theα-proteobacteria, is not always clear (except perhaps for the Nod factors, which
seem to be uniquely produced by the rhizobia), there are various unique chemical
features or unique combinations of chemical features that seem to be associated
with the capacity to engage in a symbiosis with leguminous plants. This review
highlights such common chemical features of the glycans listed above and links
these with biological functionality. Owing to the constraints of space and to many
excellent, recently published reviews in various books (160, 167, 168) and journals
(22, 28, 35, 45, 78, 80, 104, 114, 120, 131, 156, 166, 178), this review mainly refers
to new data that have been published in the last 2 years. The reader is also referred
to the summary of the recent meeting of the International Society of Molecular
Plant-Microbe Interactions (95), the proceedings of this meeting (45), and the
proceedings of the 12th International Congress on Nitrogen Fixation (129).

NOD FACTORS

Structure, Biosynthesis, and Secretion of Nod Factors

The chemical structures of Nod factors produced by>30 rhizobial strains have
been studied in detail (Figure 1, Table 1). Because the set of strains analyzed is
quite representative for all rhizobial genera and geographic regions where they

Figure 1 General structure of the Nod factors produced by rhizobia. The presence of substituents
numbered R1–R9 is variable within various strains of rhizobia. For identities of these substituents
and references, see Table 1. In the absence of specific substituents, the R groups stand for hydrogen
(R1), hydroxy (R2, R3, R4, R5, R6, R8, and R9), and acetyl (R7).
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occur, the discovery of many new Nod factor structures is not expected. All Nod
factors produced by rhizobia, with the exception of one minor Nod factor produced
by Sinorhizobium frediiUSDA191 (11), consist of an oligosaccharide backbone
of ß-1,4-linkedN-acetyl-D-glucosamine. A fatty acyl group is always attached to
the nitrogen of the non-reducing saccharide. Because of the resemblance of the
oligosaccharide backbone to a fragment of chitin, the Nod factors are often called
lipo-chitin oligosaccharides (LCOs). All rhizobia appear to produce complex
mixtures of LCO species. Differences in structures occur as result of the fol-
lowing variations:

1. Variation in the number ofN-acetyl-D-glucosamine units. Most commonly,
LCOs that vary in length from three to sixN-acetyl-D-glucosamine units
are produced; however, a strain ofM. loti was shown to produce a dimeric
LCO species (122).

2. The presence or absence of strain-specific substituents, indicated as R1 to
R9 in Figure 1. In terms of the number of substituents found, one can
distinguish bacterial strains that produce LCOs with only a few
modifications, such asR. leguminosarumbv. viciaestrains, which contain
only an acetyl substituent at position R4, or many modifications, such asS.
fredii strain NGR234.

3. Variation of the structure of the fatty acyl moiety attached. LCOs can
contain one of a broad variety of fatty acyl groups that also occur
commonly as moieties of the phospholipids. It is thought that the ratios of
the common types of fatty-acyl substituents reflect the composition of the
fatty acyl pool that is present as components of the phospholipids.
C18–C22 (ω-1)-hydroxy fatty acyl, which are possible intermediates in the
synthesis of C23 (ω-1) hydroxy fatty acyl groups found in the rhizobial
LPS, can be present in the LCOs produced byS. meliloti(41).

4. The presence or absence of specialα,β-unsaturated fatty acyl moieties.
These can be present in the LCOs produced byS. meliloti, R.
leguminosarumbiovarsviciaeandtrifolii, R. galegae, andM. huakuii. The
relative abundance of LCOs containing a special fatty acyl (as compared
with common fatty acyl moieties) in the mixtures produced varies
considerably in the different strains tested (101, 159, 162, 185). Some
researchers have not been able to detect LCOs that contain highly
unsaturated fatty acyl moieties inR. leguminosarumbiovartrifolii (124).
This difference from earlier results was suggested, by van der Drift et al
(177), to result from a difference in the tested strain or in the laboratory
conditions used to grow the bacteria.

The biosynthesis of Nod factors has been studied extensively (48, 92). Several
proteins encoded by the so-callednod, nol, andnoegenes have been shown to play
a role in the biosynthesis of LCOs (Figure 1). For some of these proteins, detailed
biochemical analyses have indicated their position in the biosynthetic pathway
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leading to the production of LCOs, including various strain-specific modifications
(48, 92, 158). The NodC, NodB, and NodA proteins play a pivotal role in the syn-
thesis of the LCO-backbone structure, by their function as chitin oligosaccharide
synthase, chitin oligosaccharide deacetylase, and acyl transferase, respectively
(3, 66, 86, 145, 165). These functions were demonstrated by in vitro enzymatic
activity of purified protein for the NodB protein only (86). Further biochemical
studies on the function of the NodC protein are still in progress and will lead to
further insights into the mechanism of chitin synthesis, a process that is still poorly
understood (89, 91, 93). The acyl group used as a substrate for the acyltransferase
NodA, which biochemical function is the least understood, has been shown to be
delivered directly by an acyl carrier protein (141). The functions of the NodC
and NodA proteins have been shown to be specialized in several rhizobial species.
Namely, the NodC proteins ofS. meliloti, M. loti, andR. leguminosarumare dif-
ferent in that the average chain lengths of the chitin oligosaccharides produced
are different (90, 143). The NodA proteins ofR. leguminosarumandS. meliloti
have been shown to be specialized for the transfer ofα,β-unsaturated fatty acyl
moieties (64, 142, 143).

In most studies, LCOs were isolated from the spent culture for structural analy-
sis, which indicates the existence of a secretion mechanism (158). Because LCOs
are hydrophobic molecules, they might be present in the medium as multimeric
forms or are attached to carrier compounds such as extracellular cyclic glucans or
one of the many secreted rhizobial proteins (15, 54, 181). However, proof for this
hypothesis is still lacking. ThenodI andnodJgenes, which are members of the
type-I transport protein family (48), have been shown to play a role in the secre-
tion of LCOs (32, 52, 164). However, in knockout mutants of thenodI andnodJ
genes, substantial amounts of LCOs are still found to be secreted in the medium
(32, 52, 164), indicating that other transport mechanisms are also operational. Be-
cause the LCOs are unlikely to be able to flip-flop over the membrane bilayer (69),
such alternative transport mechanisms are likely mediated by proteins. Candidates
for such proteins are ABC-type transport proteins related to NodI and NodJ (23)
or the RND type of efflux pump proteins, such as NolF, G, H, and I, which are
found inS. meliloti(4, 148).

Regulation of Nod Factor Biosynthesis

Nod factors are produced in response to inducers that are secreted from the plant
roots. The most potent of these inducers belong to the group of flavonoids (153).
Other molecules, such as the betaines (e.g. stachydrine and trigonelline) and the
aldonic acids (e.g. erythronic acid and tetronic acid), are active as inducers in
some rhizobial species at much higher concentrations (61, 153). The induction of
Nod factor production is specific for the structure of the flavonoid. The specificity
of this process has been shown to be mediated by the protein NodD, which is a
positive transcriptional regulator belonging to the LysR family and found in all
rhizobial species (82, 153, 163). In several rhizobial strains, multiple isoforms
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of the nodD genes are found which, forS. meliloti, have been shown to be spe-
cialized in their response to different groups of flavonoids. This multiplication of
the nodD genes is thought to have evolved so that the bacteria could adapt the
structures of the Nod factors to their interactions with multiple hosts that secrete
different flavonoids (41). The transcriptional regulation by NodD in several rhi-
zobia is further complicated by the occurrence of one or more other LysR family
members, calledsyrMgenes, that coregulate the production of Nod factors appar-
ently independently from flavonoids (6, 77, 153). It is interesting that thesyrM
gene is also involved in the production of the extracellular polysaccharides (see
below; 50, 118). InB. japonicum, the NodV and NodW proteins belonging to
the two-component type of regulatory proteins are involved in the recognition of
the iso-flavonoid genistein (102). Nod factor production inB. japonicumis also
regulated by thenolAgene (103).nolA, which encodes three functionally distinct
proteins, is probably involved in mediating specificity toward different soybean
genotypes via the regulation ofnodD2(63).

In addition to positive regulators of Nod factors production, negative regulation
is observed. In the generaSinorhizobiumandRhizobium, a repressor callednolR
has been identified that can bind to particular target sequences in the promoter
regions of genes involved in Nod factor synthesis (98).

Nod factor production might also be regulated at the posttranscriptional level,
which was suggested by the results of a recent study showing that the pres-
ence of several modifications of the Nod factors is regulated by growth tem-
perature (123). A likely mechanism for the findings reported by Olsthoorn et al
is that the activity of the acetyltransferase NodX, which is involved in the sub-
stitution of an acetyl at position R5 (Figure 1, Table 1), is strongly temperature
dependent.

Little is known about the regulation of Nod factor synthesis in soil or in planta
after the initial infection steps. Although it has been shown that thenod genes
that are essential for Nod factor synthesis are switched off at later stages of the
symbiosis, there is no information on the regulatory mechanisms responsible for
this down-regulation (152, 157).

Function of the Nod Factors

The Nod factors are pivotal for the capacity of rhizobia to induce root nodules and
various other responses that are related to the infection process in the host plant
(38, 76, 158). The recognition mechanism underlying this induction process is
currently unknown, but it is the subject of several current intense investigations
(46, 51, 75, 76, 80, 156). It will be of particular interest to find out whether the
signal recognition of the structurally analogous chitin oligosaccharides, which
play a role in plant defense and vertebrate embryogenesis, shares similar molecular
mechanisms (5, 169).

In conjunction with their pivotal function in the root nodule formation and in-
fection processes, the Nod factors play a major role in the determination of host



P1: FRK

August 2, 2000 10:17 Annual Reviews AR110-09

ROOT NODULATION & INFECTION FACTORS 265

specificity of these processes. The host-specific characteristics are based on the
structural variations in the Nod factors produced by rhizobial strains that have
different host ranges. Although it could be postulated that all variations found
in the Nod factors reflect adaptations to the host range of the particular rhizobial
strain under study, this is by no means demonstrated for all found modifications.
It can also be argued that several of the variations found could merely be artifacts,
which result from artificial cultural conditions that lead to overproduction of the
Nod factors even in wild-type strains. Furthermore, some of the complexities of
the mixtures of Nod factors produced could be the result of the loss of some of
the particularly labile groups, such asO-acetyl orO-carbamyl groups, during the
isolation procedure. However, in many cases it is very clear that modifications
found in the structures of Nod factors are important as host range determinants
(28, 35, 44, 53, 78, 104, 114, 156, 158). Most clearly this is the case for modifi-
cations at R5 of the reducing terminus of the Nod factors (Figure 1, Table 1).
Three examples of the importance of modifications in Nod factor structures are
the following: (a) The presence of the sulfyl substituent in the Nod factors of
S. meliloti is essential for host-specific nodulation ofMedicago sativaand pre-
vents nodulation on other host plants such asVicia sativa(101); (b) theO-acetyl
substituent in the Nod factors ofR. leguminosarumbv. viciaeTOM and A1 is es-
sential for cultivar-specific nodulation of pea (56, 125); (c) the fucosyl substituent
in the Nod factors of many rhizobia is essential for determining a broad host range,
for example for several plant species belonging to the tribe of Phaseoleae (105).
Furthermore, modification of this fucosyl moiety is important for nodulation and
infection of various host plants (18, 36, 79, 127, 136).

At the non-reducing terminus, modifications such as the carbamoyl or acetyl
groups at R4 and the methyl group at R1 have also been shown to be important
for establishing nodulation capacity for various host plants (39, 84, 85, 162). Of
particular importance for determining host specificity is the presence of special
α,β-unsaturated fatty acyl moieties in the Nod factors of various rhizobial strains
(2, 43, 159, 162, 185). It recently has become apparent that the occurrence of an
α,β-unsaturated fatty acyl moiety is correlated with the capacity to nodulate the
leguminous species belonging to the Galegeae tribe (185). It is interesting that the
plants belonging to this tribe form a particular type of indeterminate nodules (i.e.
long-shaped nodules that contain a persistent meristem), which are characterized
by their ontogeny from inner cortical root cells (76).

EXOPOLYSACCHARIDES

Structure, Biosynthesis, and Secretion of Exopolysaccharides

The structures of EPSs produced by>20 strains of rhizobia have been studied
(13, 178). As in many other proteobacteria, the EPS consists, at least partly, of large
heteropolymers formed from repeating unit structures. The carbohydrate com-
ponents found in rhizobia are mainly common monosaccharides likeD-glucose,
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Figure 2 Structures of repeating units of exopolysaccharides of several rhizobia. Shown are
the structures of the repeating units of EPS I (A) and EPS II (B) of S. melilotistrain SU47, the
consensus structure of K-antigen found in variousSinorhizobiumstrains (C), the EPS structures
of R. leguminosarumbv. trifolii strains LPR5 (D), and strain 4S (F ), andR. leguminosarumbv.
viciae strain 248 (E). The structures are derived from the work of Becker & P¨uhler (13), van
Workum & Kijne (178), and Reuhs et al (137). Functions of glycosyltransferases are from the
work of Becker & Pühler (13) and van Workum et al (179). Abbreviations: Glc, glucose; Gal,
galactose; GlcA, glucuronic acid; Kdx, any 1-carboxy-2-keto-3-deoxy sugar; pyr, pyruvate; Suc,
succinate; Ac, acetate.

D-galactose,D-mannose,L-rhamnose,D-glucuronic acid, andD-galacturonic acid.
The repeat units are highly variable up to the species level, as is exemplified by
the occurrence of different repeat units within the same biovarieties ofR. legu-
minosarum, for example, the biovarstrifolii andviciae (Figure 2). Some of the
saccharide units can be modified by acetyl, pyruvyl, succinyl, and hydroxubu-
tanoyl groups. The resulting complexity is often aggravated by the occurrence
of multiple forms of EPS of the same repeat subunit or different repeat subunits.
For example, inS. meliloti, two different EPS classes, called EPS I (a succino-
glycan) and EPS II (a galactoglucan), have been identified (Figure 2). In both
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of these forms of EPS, two different size classes can be distinguished: a class of
high-molecular-weight molecules, consisting of thousands of saccharide units, and
a class of low-molecular-weight molecules, consisting of 8–40 saccharide units
(70, 188).

The biosynthesis of the rhizobial EPS has been most extensively studied for
the succinoglycan ofS. meliloti. The genes responsible for the synthesis of the
precursor molecules, the repeating units, and polymerization, calledexoandexs,
have been identified by mutant studies and based on their homology with genes
from other bacterial species (13). The identification of these genes was facilitated
by their clustering on a megaplasmid (100). Unlike LCO synthesis (92, 113), the
synthesis of the repeating unit of the EPS proceeds via a prenyl carrier, which results
in the formation of a lipid-linked octasaccharide intermediate (173). The glycosyl
transferases involved in each successive step in the synthesis of the repeating units
have all been identified, except for the transferase involved in the addition of the
terminal saccharide of the repeat unit (13; Figure 2). In addition, several proteins
involved in secretion (ExsA) and polymerization (ExoQ, ExoT, and ExoP) have
been identified (13, 14, 70, 71). Homologous gene products that are involved in
the synthesis and secretion of EPS II ofS. meliloti (15) and the EPSs of other
rhizobial species (Figure 2), such asR. leguminosarumbv. trifolii (99, 132, 178)
andB. japonicum(16), have also been reported. The prediction of the biochemical
function of these homologs has been difficult in many cases (13) owing to limited
sequence similarities, which is not surprising because even functionally closely
related glycosyl transferases tend to have little sequence similarity. Nevertheless,
biochemical function can be quite conserved, as was demonstrated by Pollock et al
(132), by the functional exchange of theR. leguminosarum pssDEgenes (Figure 2)
with thespsKgene ofSphingomonassp.

In addition to the EPS polymerization enzymes ExoP (14), ExoQ, and ExoT
(71), secreted glycanases also play an important role in regulation of EPS chain
length (Figure 3). Such secreted glycanases have been identified inS. meliloti
[called ExoK and ExsH (186)] andR. leguminosarumbv. viciae[called PlyA and
PlyB (55)]. Although the ExsH and PlyA/B glycanases share no obvious sequence
homology, their secretions are both dependent on type I transport proteins, called
PrsD and PrsE (54, 186). The PrsD and PrsE transport proteins also play a role
in the secretion of the NodO protein, which has an as yet unknown function in
nodulation (54). In contrast, ExoK is probably secreted by thesecsignal peptide-
dependent system (55). Detailed analysis of the activity of the ExoK and ExsH
proteins has shown that their enzymatic activity is influenced by the presence of
succinyl and acetyl modifications of the succinoglycan (188). The absence of the
acetyl group increases the susceptibility of succinoglycan to cleavage, whereas
the absence of the succinyl group decreases the susceptibility in a more dominant
way (188). The apparent stringent regulation of EPS cleavage has been demon-
strated by York & Walker (187), who showed that the ExoK and ExsH proteins
specifically hydrolyze nascent succinoglycan only during a limited period after its
synthesis.
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Figure 3 A model for the function of regulation of exopolysaccharide biosynthesis and depoly-
merization inS. meliloti. The figure is based on the model by Becker & P¨uhler (13) and recent
new data that are discussed in the text (34, 50, 71, 147).

Regulation of Exopolysaccharide Biosynthesis

Various factors have been shown to regulate both the quantity and structural fea-
tures of EPS. InS. meliloti, these factors include (a) osmolarity of the medium,
which regulates the relative abundance of low- and high-molecular-weight forms
of EPS I (26); (b) nitrogen starvation, which up-regulates EPS production and
favors the production of low-molecular-weight EPS I forms (50); and (c) phos-
phate limitation, which stimulates production of EPS, most clearly noticeable by
a relatively higher production level of EPS II (147). Various regulatory genes that
regulate synthesis of EPS I and EPS II have been identified inS. meliloti(Figure 3);
however, their interconnectedness is not yet understood, and a detailed overview
of their target genes is not yet available. The identification of several key regula-
tory genes and several homologs in other rhizobia (60, 115, 116) is now leading to
some general insights into the molecular mechanism of EPS regulation (13). In
S. meliloti, most notable is the role of the MucR protein, which is a key regulator
of the relative levels of EPS I and II (Figure 3). The MucR protein, which is very
similar to the Ros proteins ofAgrobacteriumspp. andR. etli, exerts its positive or
negative regulation of the EPS biosynthesis genes probably directly by binding to
a conserved DNA sequence called the Ros box (160). Other regulatory proteins,
such as ExoR, ExsB, ExoR, ExoS/ChvI, ExpG, and ExpR (Figure 3), seem to be
more specialized for the production of only one of the EPS classes; however, this
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picture might be misleading because cross-talk between the regulatory switches
shown in Figure 3 has not yet been directly studied. Illustrative for the high level
of regulatory complexity are the recent results of Dusha et al (50) on the regula-
tion of EPS production by nitrogen starvation. These authors have shown that the
SyrM protein ofS. melilotiis involved in regulating the relative ratios of low- and
high-molecular-weight forms of EPS I. Because SyrM production is negatively
regulated by SyrB (6) and positively regulated by NodD3 (see the paragraph on
Nod factor regulation), which in turn is regulated by flavonoids and nitrogen lim-
itation [via NtrC (50)], this suggests many possibilities of co-regulation of Nod
factor and EPS production. It is very likely that still other connections with known
regulatory mechanisms that are involved in various cell surface factors will be
discovered. For instance, an interesting question is whether the quorum-sensing
control mediated byN-acyl homoserine lactones, which are probably involved
in regulating infection or nodulation (74, 95, 144, 155), also plays a role in the
regulation of EPS synthesis. That this might be the case is suggested by data
obtained on the regulation of EPS production in the plant pathogenPantoea stew-
artii , which apparently is under stringent control of anN-acyl homoserine lactone
that is involved in disease symptoms (12).

Although other factors, such as sulfur limitation, have been reported to regulate
EPS synthesis as well, the regulation by these factors has not been studied at a
molecular level. Completely unexplored is the effect of plant-determined factors
that play a role in later stages of the symbiosis, such as oxygen concentration.
It can be expected that the identification of the complex regulatory networks in
which SyrM and SyrB are involved will lead to further insights on the importance
of late symbiotic factors in EPS production and modification. Such studies will
certainly be rewarding because it has already been shown that certain rhizobia can
produce EPS molecules in later stages of the symbiosis that are quite distinct from
the EPS in the free-living stage, as has been shown in theB. japonicum-soybean
symbiosis (1, 170).

Function of Exopolysaccharides

Owing to its abundance, highly charged nature, and location at the extracellular
surface, EPS is expected to function in protection against environmental factors,
attachment to surfaces, and osmoregulation. By its effect on the Donan potential, it
also influences ion transport. However, extensive studies of the symbiotic pheno-
types of many rhizobial mutants that are disturbed in EPS production have shown
that EPS also plays a major role in the infection of the leguminous host plants (13).
Some major complicating factors in all of these studies have been that the symbi-
otic phenotypes of the studied mutants in many cases differ in various rhizobia-
host plant interactions and that the symbiotic phenotype was often masked by
other factors, which could compensate for the loss of the capacity to produce EPS.
This latter apparent redundancy of EPS has probably even been underestimated
in initial studies with EPS I ofS. meliloti, because of the stringent regulation of
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compensating factors such as EPS II and K-antigens (see below) under the chosen
laboratory conditions. A major breakthrough in the understanding of the sym-
biotic role of EPS has come through the discovery that the external addition of
low-molecular-weight fractions of EPS could complement the defects in the in-
fection phenotype of EPS mutants (9, 47). The subsequent discoveries that the
S. melilotilow-molecular-weight forms of EPS I, as well as EPS II, are able to res-
cue the defects of EPS mutants at picomolar concentrations indicated the existence
of a specific recognition system for EPS oligosaccharides in the plant host (9, 70).
It can be suggested that this recognition system is involved in the suppression
of a defense response by the plant host, based on observations that EPS mutants
usually are more active in eliciting a plant defense response (119, 128). However,
molecular details on the underlying recognition system remain completely obscure.
Therefore, there is currently no explanation for seemingly conflicting observations,
such as the possibility of complementing defects in EPS I synthesis with the struc-
turally completely different EPS II fragments (70) and the apparent inability of
heterologous EPS to complement EPS mutants ofS. frediistrain NGR234 andR.
leguminosarumbv. trifolii (47).

LIPOPOLYSACCHARIDES AND K-ANTIGENS

Structure, Biosynthesis, and Regulation of
Lipopolysaccharides and K-Antigens

Rhizobial LPSs and K-antigens are often discussed as one group because they
usually are both tightly linked to the cell surface and because of the common oc-
currence of various special saccharide residues, such as Kdo (3-deoxy-D-manno-
2-octulosonic acid). However, because rhizobial K-antigens are structurally very
distinct from rhizobial LPSs in all other aspects (e.g. K-antigens do not always
contain Kdo, and lipid anchors have not been found at all, whereas their occur-
rence is standard in LPSs), their joint discussion merely reflects historical lines of
investigation (94).

Considering the great complexity of LPS structures, only a few rhizobial LPS
structures have been described in detail. The most complete structure, which de-
scribes all three easily separable parts of LPS (i.e. the lipid A, core chain, and
repeat unit of the O-antigen chain), has been reported (59) only for the LPS of
R. etli (Figure 4). Identification of parts of the LPS structures from several other
organisms shows that the LPSs of various rhizobia are highly variable, especially
for O-antigen, but also in their core region and the lipid A moiety (94). A typicality
of the LPS structures of rhizobia is the occurrence of the very long chain hydroxy
fatty acids, such as 27OH-C28:0 (81), which seem to be exclusively found in the
LPSs of theα-proteobacteria (20, 21) and also in the Nod factors (see above).
Structural details of the lipid A and core regions of LPS have been shown to be
very useful markers to recognize the phylogenetic relationships of rhizobia (94).
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Figure 4 The structure of the core region and part of the O-antigen chain of lipopolysaccharide
of R. etlistrain CE3, from Forsberg & Carlson (59). The position of the 27-OH-C28:0 at the C5 of
GlcN-onate is hypothetical. Abbreviations: GalA, galacturonic acid; GlcA, glucuronic acid; Kdo,
3-deoxy-D-manno-2-octulosonic acid; GlcN-onate, 2-amino-2-deoxygluconic acid; QuiNAc, 2-
N-acetamido-2,6-dideoxyglucose (N-acetylquinovosamine); GlcN, glucosamine; Man, mannose;
3MeRha, 3-O-methylrhamnose; Fuc, fucose.

For instance, the core oligosaccharides ofSinorhizobiumstrains appear to be quite
different from those ofRhizobiumorBradyrhizobium, in that they are the dominant
antigenic region of the LPS (94).

Still very little is known about the genes that are involved in LPS biosynthesis,
and progress is slow, which is not surprising considering the variability and com-
plexity of LPS structures and the general lack of homology between functionally
similar glycosyl transferases. Relatively well studied are the genes fromR. etli,
for which some of the genes involved in LPS core and O-antigen synthesis are
located on a plasmid (62, 180). Concerning the genes involved in the biosynthesis
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of the lipid A moiety, considerable progress has been made by a comparison with
theEscherichia colisystem (7, 8, 29). A recent model postulates that the specific
structures found in rhizobia are derived from intermediates that resemble the LPS
structures ofE. coli (94).

Based on epitope mapping with monoclonal antibodies raised against O-antigen
structures, evidence has been obtained that the structure of LPS is differentially
regulated during symbiosis (27). Especially during the later stages of symbiosis,
quite abrupt changes in LPS epitopes occur, indicating that this is the result of
degradation or modification of LPS structures rather than repression of their syn-
thesis (72). It is interesting that such rapid changes in the LPS structure during
Vicia infection take place in the same region in which the synthesis of some outer
membrane proteins of the infecting bacteria is repressed (111). Currently, no in-
formation is available on the genetic and physiological bases that underlie these
observed changes. However, further analysis of the regulatory mechanisms under-
lying LPS modifications induced by plant exudate factors, such as the anthocyanin
identified by Duelli & Noel (49), could lead to possible clues as to how rhizobial
LPS synthesis is regulated in planta.

Structures of the K-antigen are as diverse as those observed with the O-antigen
chains of LPS. Already within the same species, such asS. meliloti, the K-antigens
can differ greatly in structure. Although, within the genusSinorhizobium, a general
consensus structure (Figure 2) has been formulated (94), two exceptions to the
rather non-stringent defined repeat unit have already been identified (68, 137, 139).

Composition analysis showed that K-antigen-like acidic polysaccharides of
other species of the Rhizobiaceae family are not similar to the consensus struc-
ture formulated forSinorhizobiumspp., with the exception ofAgrobacterium
strains (94, 139). A very interesting observation is that the host-root exudate
and flavonoids that induce Nod factor synthesis are able to increase the production
of K-antigen and change the minor to major K-antigen ratio inS. fredii(138, 140).

For a recent overview of K-antigen biosynthesis, the reader is referred to
Kannenberg et al (94). The biosynthesis of K-antigens has still been studied
only in S. melilotiRm41 (97) and, in most detail, in a mutant derivative of strain
Rm41 that is no longer able to produce EPS because of a mutation in theexoB
gene (30). Detailed analysis of various classes of mutants affected in K-antigen
biosynthesis in this strain indicates that the biochemical pathways for K-antigens
and LPS may share common steps.

Function of Lipopolysaccharides and K-Antigens

As in all gram-negative bacteria, LPS is essential for their survival under all growth
conditions, which makes their study very difficult. Studies of the symbiotic phe-
notypes of various mutants in which the LPS synthesis is altered indicate that
LPS plays an important role during the infection process (27, 94). The fact that at
least all nonpleiotropic LPS mutants are able to infect plant tissue to some degree
indicates that LPS is not specifically involved in the initial steps of the symbiosis
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up to root hair infection. However, it is very possible that other factors are able to
complement the defects in LPS. The source of such a caveat is that initiation of
the infection thread requires the presence of rhizobia at the site of infection, and
therefore the capsule (in which LPS is dominantly present) would seem to be the
required element. Nevertheless, LPS seems to play a more apparent role in the later
stages of root nodule invasion, release from the infection thread, and symbiosome
development. Because the infection process is tightly linked to the formation of
a full-grown nodule, it is clear that defects in these infection steps also influence
the nodulation phenotype. Generally, LPS seems to be less important for plants
belonging to the Galegeae tribe, which form indeterminate nodules (see above).
However, proof for any host-specific adaptation is still lacking, and some results
strongly argue against this. For instance,R. leguminosarumbv. viciaestrains that
are genetically engineered to produce suitable Nod factors can successfully invade
Lotus japonicusplants (127), whereas the natural symbiont of this plant (M. loti) is
extremely different from these rhizobia in the composition of its LPSs (94). How-
ever, host-specific features of LPS were suggested by results obtained by Dazzo
et al (37), who found that the LPSs ofR. leguminosarumbv. trifolii promoted
infection thread formation in clover, an effect that was not observed with the LPS
obtained from heterologous rhizobia.

Microscopic studies of responses of plants inoculated with LPS mutants have in-
dicated that rhizobial LPS is involved in suppressing a host-plant defense response
(130), possibly in analogy with a role for the LPS of plant pathogens (154). The
same function could be postulated as a function for the K-antigens ofS. meliloti,
because K-antigens can functionally replace EPS biosynthesis in symbiosis (30).
However, K-antigen is functionally different from EPS in that it can induce the
transcription of the isoflavonoid biosynthetic pathway in alfalfa leaves, which is
indicative of the triggering of defense responses (17).

CYCLIC GLUCANS

Structure, Biosynthesis, and Secretion of Cyclic β Glucans

Although the occurrence of cyclicβ-linked glucans is not unique for the
rhizobia [they are also produced by some bacterial species that fall outside the
α-proteobacteria group (172)], they are certainly best studied in these organisms.
In the generaRhizobiumand Sinorhizobium, these molecules are linked solely
by β-(1,2) glycosidic bonds with degrees of polymerization (25) ranging from 17
to 25 (R. leguminosarum) or ≤40 (S. meliloti). Species ofBradyrhizobiumpro-
duce cyclic glucans containing bothβ-(1,3) andβ-(1,6) glycosidic linkages. These
molecules contain 10 to 13 glucose residues and appear (Figure 5) to be branched in
structure (146). Cyclicβ-(1,2) glucans may become charged through the addition
of anionic substituents, depending on the growth phase of the cultures. The pre-
dominant substituent on the cyclic glucans fromS. melilotiissn-1-phosphoglycerol
linked to C6, which is derived from the head group of phosphatidylglycerol (25).
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Figure 5 The structure of a cyclicβ-(1,6)-β-(1,3)-glucan ofB. japonicum. The structure
is according to Rolin et al (146). The position of the phosphocholine residue is arbitrarily
chosen at one of theβ-(1,3)-linked saccharide units. The functions of the NdvB and NdvC
proteins in the formation of the glycosidic linkages are hypothetical and based on the results
of Bhagwat et al (19).

Recently, a gene fromS. melilotiwas identified that is necessary for the addition
of the phosphoglycerol substituents (182). The introduction of this gene, called
cgmB, into aR. leguminosarumstrain, which normally synthesizes only neutral
cyclic glucans, resulted in the production of phosphoglycerol-containing cyclic
glucans. InBradyrhizobiumspp. (Figure 5), the cyclic glucans are uncharged in
character but contain the zwitterionic substituent phosphocholine (146).

The biosynthesis of cyclicβ-(1,2) glucans ofSinorhizobiumandRhizobiumis
dependent on the NdvB protein. The NdvB protein is very large (inS. meliloti, 319
kDa) and has been shown to form a covalent intermediate with the glucan backbone
during biosynthesis (189). Also, the biosynthesis ofβ-(1,3)–β-(1,6)-linked cyclic
glucan fromBradyrhizobiumspp. involves a close relative of the NdvB protein.
In addition, a second protein, called NdvC, has been identified, which, based on
mutant studies, is probably involved in the formation of theβ-(1,6) linkages (19).

During logarithmic growth, the cyclicβ-glucans are predominantly localized
within the periplasmic compartment. At stationary growth stage, depending on
culture conditions, high amounts of cyclic glucan produced may also be found
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extracellularly (65). The secretion of cyclic glucans to the periplasm and the
extracellular environment is mediated by the NdvA protein, which is the ABC
component of a type 1 secretion system.

Regulation and Function of Cyclic Glucans

In analogy with the role of membrane-derivedβ-linked oligosaccharides in the
periplasm ofE. coli, the cyclic glucans have been thought to be involved in pro-
tection against hypoosmotic conditions (96). Consistent with this hypothesis are
the observations that several mutants that are defective in cyclic glucan synthesis
are impaired for growth in hypoosmotic media and that cyclic glucan synthesis
by most rhizobial species is regulated by osmotic conditions (25). However, be-
cause these observations do not apply to all rhizobia and because the effect of
mutations leading to a defect in cyclic glucan biosynthesis are very pleiotropic,
conclusive evidence for the role of cyclic glucans in osmoprotection is still lack-
ing (25). Enigmatic with the presumed role of cyclic glucans in protection against
hypoosmolarity is the observation that rhizobia also produce large amounts of
cyclic glucans during the symbiosome stage, because the osmotic environment
within the nodule is likely to be relatively high enough to inhibit glucan biosyn-
thesis in free-living rhizobia (25, 73). This could indicate that cyclic glucans also
have an additional function during symbiosis. A possible function of the cyclic
glucans could be to serve as a means of transport for other signal molecules into the
plant tissue, which is suggested by the capacity of cyclicβ-(1,2)-glucan to form
inclusion complexes with hydrophobic guest molecules (117). Specifically, it has
been shown that the solubility of legume-derived flavonoids (117) and Nod factors
(151) is greatly increased in the presence of cyclic glucans and cyclic dextrans,
respectively. Recently, Bhagwat et al have obtained convincing evidence that the
cyclic glucans ofB. japonicumcan function as specific suppressors of a plant de-
fense response (19). This was shown by a detailed study of a mutant affected in
thendvCgene, which, consequently, produced a mutant form of its cyclic glucan
that is devoid ofβ-(1,6) linkages. In contrast to the wild-type cyclic glucan, the
mutant form was not able to suppress a fungalβ-glucan–induced plant defense
response and had a much lower affinity for the putative membrane receptor protein
(19). Because bacteria belonging to other proteobacterial tribes that also produce
cyclic β glucans are often characterized by their ability to infect eukaryotes, it is
tempting to speculate that cyclicβ glucans play a general role in the suppression
of host plant defense responses (25).

GENERAL CONCLUSIONS AND FUTURE PROSPECTS
FOR RESEARCH

From the above concise review of the recent literature, it can be concluded that
rhizobial cell surface and secreted glycans play a major role in the symbiotic inter-
action with their leguminous host plants. It is also clear that in all rhizobia there
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is an apparent redundancy as to the biological functions performed. Furthermore,
mutations in genes involved in the synthesis of these glycans can have various
pleiotropic effects. This redundancy and pleiotropy have greatly hampered stud-
ies that were aimed at linking structural features with biological function. The
only glycans that are apparently exempt from this rule are the Nod factors, which
are absolutely crucial for the capacity of rhizobia to induce the formation of root
nodules and to infect the host tissue. Because of this, it has been relatively easy
to identify functions of the Nod factors and to obtain detailed information on
structure-function relationships. However, a major bottleneck in the study of the
symbiotic function of all glycan molecules identified up to this point remains the
absence of knowledge of plant factors that are involved in their recognition. Such
studies are very difficult because of the very low concentrations at which various
glycans (such as Nod factors and EPS oligosaccharides) are active and, as a conse-
quence the expected high affinity of the receptor proteins involved. The technical
difficulty of such studies is compensated for by their challenging nature, because
still very little is known about high-affinity binding sites for carbohydrates in gen-
eral. Fortunately, it can be expected that the recent rapid progress in development
of molecular genetic techniques in several model legumes (95, 150) will soon lead
to better insights into glycan recognition systems of leguminous plants, which will
make it possible to link the great wealth of knowledge obtained on the rhizobial
system with plant genetics. The fact that glycans such as EPSs, K-antigens, LPSs,
and cyclic glucans are likely to be involved in suppressing a plant-defense response
will guarantee a further impact of these studies on investigations of plant-pathogen
interactons. Considering the structural resemblance of Nod factors to oligosaccha-
rides, which have been shown to play a role in embryogenesis of zebrafish, such
studies might even have a broad impact in the field of vertebrate development (5).

From the bacteriological viewpoint, several technical advances will also give
many new possibilities for further unraveling the molecular dialog between rhi-
zobia and leguminous plants. For instance, the use of color varieties of the green
fluorescent protein as a marker for bacterial infection will enable more sophis-
ticated competition experiments (161). Competition experiments, which can be
used to simulate the natural situation in soil, might show that various rhizobial fac-
tors whose inactivation leads to only minor phenotypes can be very important in
symbiosis. Future studies on the role of glycans will also be greatly helped by the
big advances in new technologies that will assist in the determination of complex
carbohydrate structures or biochemical function of their biosynthetic enzymes,
such as new mass spectrometry instrumentation (176) and better tools for protein
crystallization studies. Perhaps the most important advance can be expected to
come from the large-scale analyses of the genomes of several rhizobial species
and related species from theα–proteobacteria group. The identification of genetic
differences and similarities among symbiotic factors of rhizobia and the virulence
factors of pathogens, such asBrucella abortus[used as an example because this or-
ganism has already been shown (111) to share interesting analogies with rhizobia]
will undoubtedly lead to a better understanding of the rhizobium-plant symbiosis
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in an evolutionary context. Furthermore, the application of mRNA screening using
chips coated with arrays of fragments of all known bacterial genes will provide
tools to better understand the complexity of symbiotic gene regulation, which is
still poorly understood, especially at the later stages of symbiosis (121).
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53. Fernández-López M, D’Haeze W, Van
Montagu M, Holsters M. 1998. Changes
in the glycosylation pattern at the reduc-
ing end of azorhizobial Nod factors af-
fect nodulation efficiency.FEMS Micro-
biol. Lett.158:237–42

54. Finnie C, Hartley NM, Findlay KC,
Downie JA. 1997. TheRhizobium legumi-
nosarum prsDEgenes are required for se-
cretion of several proteins, some of which
influence nodulation, symbiotic nitrogen
fixation and exopolysaccharide modifica-
tion. Mol. Microbiol. 25:135–46

55. Finnie C, Zorreguieta A, Hartley NM,
Downie JA. 1998. Characterization ofRhi-
zobium leguminosarumexopolysaccharide
glycanases that are secreted via a type I ex-
porter and have a novel heptapeptide repeat
motif. J. Bacteriol.180:1691–99

56. Firmin JL, Wilson KE, Carlson RW, Davies
AE, Downie JA. 1993. Resistance to nodu-
lation of cv Afghanistan peas is overcome

by nodXwhich mediates anO-acetylation
of the Rhizobium leguminosarumlipo-
oligosaccharide nodulation factor.Mol.
Microbiol. 10:351–60

57. Flores M, Mavingui P, Girard L, Perret X,
Broughton WJ, et al. 1998. Three repli-
cons ofRhizobiumsp. strain NGR234 har-
bor symbiotic gene sequences.J. Bacteriol.
180:6052–53

58. Folch-Mallol JL, Marroqui S, Sousa S,
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107. López-Lara IM, van den Berg JDJ,
Thomas-Oates JE, Glushka J, Lugtenberg
BJJ, Spaink HP. 1995. Structural identi-
fication of the lipo-chitin oligosaccharide
nodulation signals ofRhizobium loti. Mol.
Microbiol. 15:627–38
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