
Lesion detection in digital breast tomosynthesis: human reader
experiments indicate no benefit from the integration of information from
multiple planes
Balta, C.; Reiser, I.; Broeders, M.J.M.; Veldkamp, W.J.H.; Engen, R.E. van; Sechopoulos, I.

Citation
Balta, C., Reiser, I., Broeders, M. J. M., Veldkamp, W. J. H., Engen, R. E. van, & Sechopoulos,
I. (2023). Lesion detection in digital breast tomosynthesis: human reader experiments indicate
no benefit from the integration of information from multiple planes. Journal Of Medical
Imaging, 10. doi:10.1117/1.JMI.10.S1.S11915
 
Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3736701
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3736701


RESEARCH PAPER
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ABSTRACT. Purpose: In digital breast tomosynthesis (DBT), radiologists need to review a stack
of 20 to 80 tomosynthesis images, depending upon breast size. This causes a sig-
nificant increase in reading time. However, it is currently unknown whether there is
a perceptual benefit to viewing a mass in the 3D tomosynthesis volume. To answer
this question, this study investigated whether adjacent lesion-containing planes pro-
vide additional information that aids lesion detection for DBT-like and breast CT-like
(bCT) images.

Method: Human reader detection performance was determined for low-contrast tar-
gets shown in a single tomosynthesis image at the center of the target (2D) or shown
in the entire tomosynthesis image stack (3D). Using simulations, targets embedded
in simulated breast backgrounds, and images were generated using a DBT-like
(50 deg angular range) and a bCT-like (180 deg angular range) imaging geometry.
Experiments were conducted with spherical and capsule-shaped targets. Eleven
readers reviewed 1600 images in two-alternative forced-choice experiments. The
area under the receiver operating characteristic curve (AUC) and reading time were
computed for the 2D and 3D reading modes for the DBT and bCT imaging geom-
etries and for both target shapes.

Results: Spherical lesion detection was higher in 2D mode than in 3D, for both
DBT- and bCT-like images (DBT: AUC2D ¼ 0.790, AUC3D ¼ 0.735, P ¼ 0.03;
bCT: AUC2D ¼ 0.869, AUC3D ¼ 0.716,P < 0.05), but equivalent for capsule-shaped
signals (DBT: AUC2D ¼ 0.891, AUC3D ¼ 0.915, P ¼ 0.19; bCT: AUC2D ¼ 0.854,
AUC3D ¼ 0.847, P ¼ 0.88). Average reading time was up to 134% higher for 3D
viewing (P < 0.05).

Conclusions: For the detection of low-contrast lesions, there is no inherent visual
perception benefit to reviewing the entire DBT or bCT stack. The findings of this
study could have implications for the development of 2D synthetic mammograms:
a single synthesized 2D image designed to include all lesions present in the volume
might allow readers to maintain detection performance at a significantly reduced
reading time.
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1 Introduction
Digital breast tomosynthesis (DBT) has been shown to achieve improved breast cancer detection
compared to digital mammography (DM).1–4 In DBT, several low-dose 2D projections of
the compressed breast, acquired from different angles, are reconstructed into a pseudo-3D
volume.5,6 This reduces tissue overlap and can result in improved detection performance. As
a result, several screening trials have shown improved cancer detection rates and in settings
where the initial recall was high, lower recall rates, with DBT compared to DM.2,7–14

As opposed to DM, DBT requires readers to review an image stack comprising all planes
resulting from the reconstruction of the DBT volume instead of a single 2D image. The increased
time required to review the entire image stack substantially increases radiologists’ workload,
especially when reading breast cancer screening exams.15–19 Therefore, there is a need to alleviate
the burden on radiologists through alternative reading strategies, such as artificial intelligence-
based display and navigation. However, human reader strategies in volumetric medical image
interpretation are not yet well understood.20

Several reader studies have investigated lesion detection and search in real and simulated
computed tomography (CT) images, comparing reader performance in the entire image stack
(3D reading mode) or in individual images of the image stack (2D reading mode). In 2006, Ellis
et al. demonstrated that a stacked image display improved reading both in performance and
speed, compared to viewing individual CT slices in a tiled display.21 In 2013, Drew et al. inves-
tigated radiologists’ search strategies in CT lung nodule detection and discovered that
radiologists either inspected small regions in the image while scrolling back and forth
(“drillers”) or inspected individual slices of the CT scan (“scanners”). The nodule detection
rate of drillers was significantly higher than that of scanners. These findings might indicate that
“drillers” were able to incorporate information from adjacent slices into their search process.22

Yu et al. compared human reader performance in a 2D and 3D reading mode using phantom
images acquired on a diagnostic CT scanner. The phantom consisted of low-contrast spheres of
multiple diameters embedded in a uniform background. In the 2D reading mode, images
through the center of a sphere were displayed, while in 3D reading mode, readers were allowed
to scroll through adjacent images. One reader improved the percentage of correct responses
made out of the total number of responses by 0.02 when reading in 3D mode, which was
statistically significant. The other two readers performed equally or better in 2D reading mode,
but the differences were not statistically significant.23 Abbey et al. investigated human observer
performance in 2D and 3D search tasks in simulated isotropic power-law and white noise vol-
umes. Their 2D and 3D classification images indicated little use of information across multiple
slices. For large signals embedded in power-law noise, the efficiency of human readers was
greater in the 2D than in the 3D reading mode.24 Packard et al. investigated the impact of
reconstructed slice thickness on signal known exactly (SKE) detection of simulated spherical
lesions embedded in breast CT (bCT) patient images, for a range of lesion sizes. An optimal
slice thickness was found, that increased with lesion size,25 indicating that useful information
was present in adjacent regions of the breast volume in the vicinity of the lesion.

Little work has been done investigating 3D reading strategies in DBT. The DBT volume has
unique properties compared to CT, namely the depth resolution in DBT is non-isotropic and
depends on the DBT system scan range as well as the extent of the object in the direction
of the X-ray tube scan.26 Our preliminary studies have indicated that human reader performance
does not improve when information on adjacent is provided.27,28

Hence, in this work, we further explore the question of whether human readers are able to
integrate information from adjacent planes in a 3D lesion detection task, for breast imaging both
with DBT and bCT. Images for the reader studies were generated using a directional power-law
model with embedded spherical and cylindrical targets and “imaged” with both DBT (50 deg
scan angle) and bCT (180 deg scan angle).
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2 Materials and Methods
The DBT images in this study were generated by projecting and reconstructing simulated breast
tissue for a DBT-like system with an angular scan range of 50 deg and for a bCT (bCT)-like
geometry with a scan range of 180 deg. The purpose of generating two image sets was to allow a
comparison of reader performance in DBT, which has a non-isotropic depth resolution, to reader
performance in CT images with isotropic resolution.

The reconstructed images were read by human readers, who reviewed the full 3D stack of
planes by playing a movie (ciné mode) and the static 2D plane through the lesion center only.
Signal detectability and reading times for both viewing modes were evaluated. Additional details
on the methods used are given in the Supplementary Material.

2.1 Simulated Breast Tissue
Anthropomorphic breast backgrounds were generated using a validated breast tissue model that
produces textures similar to those observed in mammography and DBT.29–31 This validated breast
tissue model allows for generating realistic breast structures that exhibit directionality, similar to
the structures embedded in real breast parenchyma, which are typically directed towards the
nipple.32 Realistic breast backgrounds were generated with different realizations of directionality
orientation and strength based on measurements from clinical mammograms in earlier work of
Reiser et al.33

2.2 Simulated Breast Lesions
As a first step, two simplistic lesion shapes were investigated, a 4 mm diameter spherical signal
and an elongated signal created as a capsule with a prolate symmetry. The capsule-shaped signal
was included to produce a target that persists for a longer time, as it is present in a larger number
of image planes. The capsule was formed by adding two 4 mm diameter half-spheres to the ends
of a cylinder, to make a capsule with an overall length of 8 mm (Fig. 1). The capsule was aligned
perpendicular to the reconstructed images to extend across more planes than the sphere. Edges of
both shapes were smoothed by filtering the signals with a Gaussian function with a standard
deviation of σ ¼ 0.3 mm.

2.3 Image Simulations
The simulated backgrounds and lesions were numerically projected and reconstructed using the
ASTRA toolbox (iMinds-Vision Lab, University of Antwerp, Belgium).34 The image simulation

Fig. 1 3D volumetric rendering of the simulated signals. The axis measurements provide the
actual position of the lesions in the simulated background cubes.
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assumed a parallel X-ray beam geometry where the X-ray source and detector follow a prede-
fined circular trajectory around the object. To be able to discriminate any possible effects of the
incomplete angular sampling due to the limited angle nature of DBT, two imaging geometries
were studied; a DBT-like geometry with an angular scan range of 50 deg and 25 projections and a
bCT-like geometry with a range of 180 deg and 180 projections.

The volumes were reconstructed using filtered-back projection with a Hanning window.
To simulate DBT images that better reflect the asymmetric voxel sizes of clinical images,
binning was performed along the z-axis by averaging planes in groups of five, resulting
in images at a 1 mm spacing, with an in-plane pixel size of 0.2 × 0.2 mm2. The final 3D
array size was 256 × 256 × 51 pixels3. This array size coincides with the image size used in
the reader study.

From each reconstructed image volume, a single 2D image and a 3D image stack were
extracted. The 3D image stack for bCT and DBT included 26 planes in total. To simulate lesions,
3D signals were inserted at the center of the 3D image stack. The 2D image was the plane through
the lesion center, extracted from the 3D stack. Thus, the signal amplitude was equal in 2D or 3D.
Signal amplitude was set so that readers would achieve ∼80% correct responses when reviewing
the 2D image only, based on the results of a small pilot reader study.

2.4 Reader Study
The 3D viewing mode was a ciné loop at a fixed speed of 10 frames per second. The readers
could not control the scrolling speed, but they could go over the loop as many times as needed to
arrive at a decision. This was done to ensure that the readers would interpret the whole 3D stack
of images rather than immediately scroll to the lesion center, which would mean they are per-
forming a 2D detection task while neglecting the adjacent image planes.

The visualization of signals was different for the spherical and capsule-like signal shapes.
For the sphere, the diameter of the signal visualized in planes above or below the center was
smaller, while for the capsule, the signal persisted at the same diameter in about five adjacent
image planes (Fig. 2). This repetition of the signal across multiple planes of a 3D volume was the
reason for also performing this study with capsule-shaped signals in addition to the spherical
ones. Figure 3 shows reconstructions of the spherical and capsule signals across multiple adja-
cent planes. For the bCT-like geometry with isotropic depth resolution, the signals are visualized
in planes consistent with Fig. 2. For the DBT geometry, both the sphere and capsule is still seen
perceived in planes that are further from the in-focus plane, which is caused by the poor depth
resolution of DBT due to the limited angle scan.

Signal amplitude was set so that readers achieved ∼80% correct responses when viewing the
2D image through the center of the sphere, and was determined in pilot experiments.

Low-contrast signal detection performance was measured through two-alternative forced-
choice (2AFC) experiments. In each trial, a signal-absent and a signal-present image were
shown, and the reader was instructed to select the signal-present image. The readers knew

Fig. 2 Example of the planes spanning over the sphere and capsule. Due to their low contrast, the
lesions were mostly visible in the central plane that intersected each corresponding lesion.
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that the lesions had a circular cross-section in the plane of view, but were not informed that one
of the signals, the capsule, was elongated along the depth direction. There was no time limit to
arrive at a decision, and reading times were recorded for each image pair. Horizontal and ver-
tical location cues were displayed on both signal-present and signal-absent images (Fig. 4). In
the cine-loop display, the horizontal cues indicated the depth of the displayed plane within the
volume, such that the horizontal and vertical cues formed a cross at the center of the volume.
Figure 5 shows the succession of a sphere embedded into backgrounds both for the bCT-like
and the DBT imaging geometries.

One hundred trials were performed for each experimental condition. Each trial showed two
different breast backgrounds, which required generation of 200 breast volumes. There were a
total of eight experimental conditions (sphere or capsule, 2D or 3D, 50 deg, or 180 deg angular
range). 11 medical physicists participated in the reader study with experience in DM and DBT
varying from 1 to 20 years and 1 to 15 years, respectively.

The study was performed in a reading room with low ambient light, similar to the clinical
conditions. The study was performed using a DICOM-calibrated 12 MP high-luminance DM/
DBT monitor (Coronis Uniti (MDMC-12133), Barco, Belgium) using an in-house developed
2AFC software.28

Fig. 4 3D viewing mode of the capsule-like lesion (signal is on the left image): (a) 50 deg DBT
images and (b) 180 deg bCT-like images.

Fig. 3 Visualization of the sphere and capsule in planes above and below the plane through the
target center (z ¼ 0) for (a) 180 deg bCT and (b) 50 deg DBT. Plane spacing is 1 mm. Only the
center region of the image array is shown.
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2.5 Statistical Analysis
Multiple-reader, multiple-case (MRMC) analysis of all reader responses was performed using
iMRMC software (iMRMC version 4.0, Division of Imaging, Diagnostics, and Software
Reliability, OSEL/CDRH/FDA, Silver Spring, Maryland, United States).35–37

The reader-specific area under the receiver operating characteristics curve (AUC) values and
their 95% confidence intervals were computed following U-statistics using the one-shot method
of Gallas.35 The reader-averaged AUC was calculated by averaging the reader-specific, non-para-
metric AUC. A P-value of 0.05 or less was considered to indicate a statistically significant
difference.

Reading times, defined as the time spent per trial (or image pair), were compared between
3D and 2D viewing using two-sample unpaired t-tests. P < 0.05 was considered indicative of a
statistically significant difference. Reading time outliers, defined as values extending above 2
standard deviations of the mean under a given condition, were removed since the reading could
have been interrupted.

3 Results

3.1 Detection Performance
Reader-averaged AUC for 2D and 3D viewing modes are shown in Tables 1 and 2 for angular
ranges of 50 deg and 180 deg, respectively. For the sphere detection in DBT images, the readers

Table 1 Mean AUC for all readers and difference in 2D and 3D viewing mode for the 50 deg
angular range DBT images.

Signal Mean AUC2D Mean AUC3D Difference p-value

Sphere 0.790 0.735 0.055 <0.05

Capsule 0.891 0.915 −0.024 0.19

Fig. 5 Visualization of the sphere embedded into backgrounds in multiple adjacent planes. Plane
spacing is 1 mm. (a)–(d) 180 deg bCT-like images (e) and (f) 50 deg DBT images.

Table 2 Mean AUC of the readers and difference in 2D and 3D viewing mode for the 180 deg
angular range bCT-like images.

Signal Mean AUC2D Mean AUC3D Difference P-value

Sphere 0.869 0.716 0.153 <0.05

Capsule 0.854 0.847 0.006 0.88
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had a higher AUC2D than an AUC3D with a difference of 0.055 (P < 0.05). For capsule detection
in DBT images, the difference between average AUC2D and average AUC3D was not statistically
significant (P ¼ 0.19) (Table 1).

Table 2 shows the mean AUC of the readers in the bCT-like images. For the sphere detection,
the readers had a higher AUC2D than anAUC3D with a difference of 0.153 (P < 0.05). Regarding
the detection of the capsule, readers’AUC2D andAUC3D were not found to be statistically differ-
ent (P ¼ 0.88).

The reader-averaged AUC results for the 50 deg and the 180 deg angular range for the detection
of spheres and capsules are shown in Fig. 6. The 3D sphere detection was the most difficult task for
both angular ranges resulting in the lowest AUC values. The lowest average AUC value of 0.716
was observed in the 180 deg images followed by the average AUC of 0.735 in the 50 deg images.
All individual AUC values of all readers for all conditions are given in the Supplementary Material.

3.2 Reading Time
As shown in Fig. 7 and Tables 3 and 4, the average reading time per trial was up to 134% higher
for 3D than for 2D viewing. The difference in reading time was higher for the spherical target
than for the capsule, as shown in Tables 3 and 4. Also, the conditions with the lowest AUCs had
the longest reading times. For all signals (sphere and capsule) reading time outliers were found to
be 20% out of the total number of 2D and 29% out of the total number of 3D cases, respectively.

Fig. 6 Comparison of reader-averaged AUC results in 2D and 3D reading modes for all exper-
imental conditions. The total length of error bars is 2 standard deviations.

Fig. 7 Comparison of reader-averaged reading times in 2D and 3D reading modes for all exper-
imental conditions. The total length of error bars is 2 standard deviations.
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4 Discussion
This work is the first step to forming an understanding of viewing strategies for 3D medical
images and particularly whether humans integrate signals over adjacent planes. The main find-
ings are: (1) for spherical signals, 3D viewing reduced observers’ detection performance, (2) for
elongated spherical signals 3D viewing was equal to 2D viewing, and (3) these findings were
similar in images of two different acquisition angular ranges investigated simulating DBT
and bCT.

Reader performance for detecting the spherical or capsule-shaped targets was equal in the
2D CT mode, which is expected since CT images are true cross-sectional images. On the other
hand, in DBT, the 2D detection performance of the capsule-shaped target was greater than that of
the spherical-shaped target, which is also in agreement with the more projection-like nature of
DBT imaging, which is considered a “quasi-3D” but not a true 3D image volume.

The lack of integration across multiple slices provides an explanation for the lower detection
performance of readers demonstrated in the 3D tasks. With the target being present in a random
location in the image, Abbey et al.24 used localization efficiency to assess the extent of 3D image
information that is being processed by human observers. Even though a basis image formation
model was used, their findings are consistent with ours. Readers were more efficient in the 2D
task than the 3D task for a 4 mm diameter target, even though it spanned multiple planes.24

Since 3D viewing of volume images does not seem to benefit the readers, this finding is of
relevance for reducing the DBT reading times by the use of a 2D image.

Synthetic mammograms (SM), i.e., planar DM-like images generated from the DBT data,
has been investigated for their potential for providing an overview of the DBT volume. Thus far,
the development and evaluation of SM has focused on eliminating the conventional 2D mammo-
gram, which is acquired along with the DBT during breast cancer screening.38–41

Our findings suggest that an “ideal SM,” that consisted of all suspicious lesions present in
the DBT volume, could eliminate the need for reading the DBT volume altogether, since no
additional information is contained in DBT planes outside of the focus of a lesion. Such an “ideal
SM” might be generated by utilizing artificial intelligence (AI) approaches42–44 to detect suspi-
cious lesions present in the DBT volume and then fitting a minimally bent plane through the
locations of suspicious findings45 or by blending the suspicious findings from the various DBT
planes onto one SM plane.46 In breast cancer screening, an AI-generated 2D SM has resulted in
better lesion detection performance and in faster reading time compared to DM45 with non-inferi-
ority of radiologist interpretation performance.46

The study has limitations. First, images consisted of simulated signals and backgrounds.
While the backgrounds have been validated to be realistic in earlier studies,30 the use of simplistic
lesion-like signals may not reflect the typical clinical findings. Since our motivation is not spe-
cific to any particular clinical finding but to investigate whether the presence, or absence, of a
signal triggers the human visual system differently in 2D than in 3D viewing, our approach is

Table 4 Mean reading times for the 180 deg bCT-like images.

Signal
Mean reading
time 2D (s)

Outliers
excluded (%)

Mean reading
time 3D (s)

Outliers
excluded (%)

Mean reading
time increase (%) P-value

Sphere 5.3 7.2 12.4 4.6 134.0 <0.05

Capsule 5.5 5.3 7.9 10.7 43.6 <0.05

Table 3 Mean reading times for the 50 deg DBT images.

Signal
Mean reading
time 2D (s)

Outliers
excluded (%)

Mean reading
time 3D (s)

Outliers
excluded (%)

Mean reading
time increase (%) P-value

Sphere 5.6 4.7 11.9 9.5 112.5 <0.05

Capsule 3.0 3.6 5.7 4.4 90 <0.05

Balta et al.: Lesion detection in digital breast tomosynthesis. . .

Journal of Medical Imaging S11915-8 Vol. 10(S1)



based on simulated signals. Also, having a perfectly aligned capsule-like signal in the z-direction
might be clinically impossible, but it was deliberately used to assess the impact of the lower depth
resolution in DBT, which causes signals to be “replicated” or “blurred” into adjacent image
planes—whereas the capsule-like signal extended over multiple image planes both in DBT and
CT.6,47 Another limitation of this study is that we investigated a signal-known-exactly detection
task, which is different from the clinical reading where radiologists typically perform a search of
an unknown lesion. However, we presume that if there is any difference between the 2D and 3D
reading conditions this would have been projected similarly on a signal-known-exactly task and
a clinical reading task. In the future, with the advent of technology in terms of SM image
generation from DBT, clinical SM images (optimized to include all suspicious regions in the
composite image) should be investigated and benchmarked with our results.

These preliminary results are not intended to provide reading strategies. Future technologi-
cal advancements are required to tackle the unnecessary image information and excessive “scroll-
ing” involved in DBT. This would have a clinical impact in situations where reading time
reduction and sensitivity are of concern, such as in the case of DBT screening. The insights
gained in this study and perhaps on follow-up studies along the lines discussed above could
provide valuable information when developing new alternative reading strategies for tomo-
graphic and pseudo-tomographic imaging.

5 Conclusion
In this human reader study with stylized low-contrast lesions embedded in simulated breast back-
grounds, no inherent visual perception benefit to reviewing the entire DBT or bCT stack was
found. This suggests that lesion detection performance might be maintained in an ideal 2D SM
that includes all lesions present in the DBT image volume.
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