
Alkynes in covalent enzyme inhibitors: down the kinetic
rabbit hole
Mons, E.

Citation
Mons, E. (2024, April 11). Alkynes in covalent enzyme inhibitors: down the
kinetic rabbit hole. Retrieved from https://hdl.handle.net/1887/3734191
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3734191
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3734191




11



12

Chapter 1



13

Once Upon a Time: Serendipitous Discovery of Alkynes as Electrophiles

1

1.	 Resurgence of Covalent Drugs

Enzymes are involved in all biochemical processes, ranging from (proteolytic) degradation of 
macromolecules to the installation and removal of post-translational modifications (PTMs). 
PTMs can affect protein affinity and/or function, but can also function as ‘messenger tags’ 
that facilitate communication among cellular components. Receptor kinases phosphorylate 
downstream effector proteins to relay extracellular growth signals, initiating a signaling cascade 
that affects gene expression by relocation of transcription factors to the nucleus, effectively 
enabling the cell to respond to changes in the extracellular environment.1 This process is tightly 
regulated by phosphatases that reverse phosphorylation.2 Histone methyltransferases (HMTs) 
and histone acetyltransferases (HATs) respectively methylate or acetylate histones thus affecting 
gene transcription. These epigenic alterations are reversed by histone demethylases (HDMs) 
and histone deacetylases (HDACs).3-4 Ligases install ubiquitin (Ub) chains onto (misfolded) 
proteins to mark them for proteasomal degradation, which is counteracted by proteases that 
cleave Ub from the protein.5 Interference with enzymatic activity has proven to be a viable 
drug development strategy as the pathophysiology of many diseases is associated with enzyme 
deficiency or overexpression, aberrant activity, and/or incorrect enzyme function.6-7 Enzyme 
inhibitors have been approved for treatment of various pathological conditions including 
metabolic and degenerative diseases, viral/bacterial infections, cancer, and inflammation. 
Small molecules that interfere with enzyme activity have always been popular, but the past 
decade marked the rise of highly effective targeted covalent inhibitors (TCIs) – designed to 
interact with their target through the formation of a covalent adduct.8

Conventional small molecule inhibitors (<500 Da) interfere with protein function as long as 
they are bound to their protein target.6, 9-10 The noncovalent interactions with the protein target 
are reversible, and protein function will be regained when unbound protein is released upon 
inhibitor dissociation. The drug target engagement can be prolonged by covalent modifiers that 
harbor a – strategically placed – electrophilic moiety (commonly referred to as the ‘warhead’) 
to form a covalent bond with a nucleophilic amino acid residue in the protein (e.g. cysteine, 
serine, threonine).8, 11-12 The resulting protein–drug adduct is linked through a(n) (ir)reversible 
covalent bond that is much stronger than typical noncovalent interactions. Irreversible 
inhibition – typically defined as a drug residence time exceeding the normal lifespan of the 
target protein 7, 13 – has clear therapeutic advantages: systemic drug exposure is minimized as 
protein function can only be restored by de novo protein synthesis. Consequently, therapeutic 
effect is maintained long after the compound has been cleared from circulation (PK-PD 
decoupling).10-11, 14-15

Irreversible covalent modifiers were actively avoided in pharmaceutical drug development 
programs: the ability to covalently modify the target protein raised concerns about promiscuous 
reactivity with off-target proteins.8, 16-19 Reactive electrophilic moieties have been implied as a 
risk factor for idiosyncratic adverse drug reactions (IADRs) and hepatotoxicity, 20-25 though it 
must be mentioned that the majority of this research was based on the unintentional formation 
of highly reactive, highly electrophilic metabolites.26 The complex underlying mechanism of 
IADRs – the possibly life-threatening toxicity affecting a small subset of susceptible patients 
– is largely unclear but may be immune-mediated, making them difficult to predict.23, 27-29 
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Furthermore, even if the covalent inhibitor is perfectly target-selective, covalent modification 
may lead to hapten formation – immune activation by a covalently modified protein (fragment) 
that, in case of an irreversible binding mode, persists after protein degradation.29-30 Reversible 
covalent drugs were perceived as a safer alternative,31-33 as they will eventually dissociate from 
their protein target and have a lower propensity to form a proteolysis-stable hapten.

From avoided liabilities and accidental discoveries...

Approved drugs that act through irreversible covalent modification of their (protein) target 
are more prevalent than would be expected based on the efforts of pharmaceutical companies 
to eliminate compounds with potentially reactive functionalities.8, 12 Ironically, there are many 
examples of effective covalent drugs with satisfying toxicity profiles among the most-prescribed 
drugs worldwide,11 and many can be found on the WHO (World Health Organization) Essential 
Medicines Lists.34 Their covalent mechanism of action was often discovered after their clinical 
utility had been well established, typically years after their first synthesis and sometimes long 
after they hit the market (Figure 1).35 The most well-known unintended covalent inhibitor is 
acetylsalicylic acid (aspirin), the pharmaceutically active component in ancient medicinal 
consumption of willow bark.36 Marketed in 1899 as a pain reliever and anti-inflammatory 
agent, aspirin is without doubt the most used drug worldwide: approximately 40,000 tons are 
produced annually – good for >111 billion tablets of 325 mg. Its mechanism of action remained 
elusive until the 1970s,37-38 when aspirin and other non-steroidal anti-inflammatory drugs 
(NSAIDs) were found to block biosynthetic production of prostaglandins causing inflammation, 
a discovery awarded with the 1982 Nobel Prize in Physiology or Medicine. The exact molecular 
mechanism was elucidated decades after its first clinical use: aspirin acetylates Ser530 of the 
cyclooxygenase (COX) enzymes (isoforms COX-1 and COX-2), thereby irreversibly inhibiting 
the biosynthetic transformation of arachidonic acid to prostaglandins.36, 39-41

Pharmaceutical companies remained reluctant to include irreversible covalent modifiers in 
their drug development efforts, despite numerous examples of efficient and safe breakthrough 
therapies that were later found to have a covalent mode of action such as β-lactam penicillin 
antibiotics,42 proton pump inhibitor (es)omeprazole (Prilosec, Nexium) for treatment of 
esophageal reflux and heartburn,43-44 and antiplatelet agent clopidogrel (Plavix) to prevent 
thrombosis events.45-46 These covalent (pro)drugs are successfully used as long-term therapies 
and have shown to be safe in millions of patients.11 Their bad reputation is not helped by 
the irreversible covalent binding mode of chemical warfare agents such as nerve gas sarin (a 
fluorophosphonate that phosphonylates the catalytic Ser203 of acetylcholinesterase AChE) 47 
and blister agent mustard gas (a class of sulfur mustards – bearing a 2-chloroethyl sulfide 
warhead – that alkylate the N7 guanidine in DNA).48 Controversially, mustard gas sparked the 
development of cancer chemotherapy: victim autopsy revealed leucopenia and affected bone 
marrow function,49 which resulted in the development of the less volatile nitrogen mustard 
DNA alkylating agents (e.g. mechlorethamine (Mustargen), chlorambucil (Leukeran)) 
that became the first cytotoxic chemotherapeutics for treatment of lymphoma.50-53 This is 
not the only class of covalent chemotherapy drugs developed in the previous century: DNA 
cross-linking agent cisplatin (Platinol, cis-diamminedichloroplatinum(II)), proteasome 
inhibitor carfilzomib (Kyprolis, PX-171-007), antimetabolites fluorouracil (Adrucil, 5-FU) 
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and floxuridine (Fudr),54-55 and many more chemotherapeutic agents have an (unintentional) 
irreversible covalent binding mode.12

... To desired modalities

A shift in paradigm was initiated in the 1990s, when the pharmaceutical industry was presented 
with pharmacological kinase targets that required complete and sustained inhibition.10, 56‑58 
Noncovalent screening hits could only suppress EGFR signaling of the acquired EGFRT790M 
mutant for a short period, and prolonged inhibition was required to improve in vivo antitumor 
activity. Computational analysis revealed a nonconserved cysteine residue near the inhibitor 
binding site,59 which could be covalently targeted by incorporation of a strategically placed 
electrophilic acrylamide warhead. This led to the development of multiple irreversible covalent 
clinical drug candidates 60‑61 that showed no remarkable toxicity and were able to overcome 
(acquired) T790M-mediated resistance to noncovalent EGFR inhibitors gefitinib (Iressa, 
ZD1839) and erlotinib (Tarceva, CP-358774) with ‘pretty spectacular’ antitumor activity 
in patients suffering from non-small cell lung carcinoma (NSCLC).56-57 In 2013, the first two 
irreversible targeted covalent inhibitors (TCIs) – inhibitors designed to have a covalent binding 
mode – were approved for clinical use: 8, 35 afatinib (Gilotrif, BIBW 2992) for treatment of 
gefitinib-resistant NSCLC and ibrutinib (Imbruvica, PCI-32765) for treatment of B-cell 
malignancies. Coincidentally, both teams chose to incorporate an acrylamide warhead – a  
cysteine-reactive Michael acceptor that covalently modifies the target protein and shows 

Figure 1  |  Development timeline of (ir)reversible covalent drugs. Shown are the chemical structure, name of the 
active ingredient, the year of first clinical approval, and the year that the irreversible covalent binding mechanism 
was reported. The covalent warhead is shown in bold. Asterix marks targeted covalent inhibitors (TCIs) that were 
designed to have a covalent binding mode.
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moderate intrinsic reactivity with nontargeted thiols.62 Lack of promiscuous reactivity with 
nontargeted thiols is a desirable feature: cross-reactivity with nontargeted nucleophiles not 
only increases the risk of aforementioned idiosyncratic adverse effects, but adduct formation 
with biologically relevant thiols – such as glutathione (GSH) present in serum and cytochrome 
P450 (CYP) enzymes in human liver microsomes (HLM) – also renders the inhibitor susceptible 
to rapid depletion and (extrahepatic) metabolic inactivation.21, 63-65 Nowadays, pharmaceutical 
drug discovery programs still favor the acrylamide warhead because it balances on-target 
reactivity with acceptable selectivity: in 2022, nine out of ten clinically approved TCIs feature 
an acrylamide warhead.12, 66-67 There is a clear need for novel cysteine-targeting electrophiles 
extending beyond these Michael acceptors to further improve the reactivity and safety profiles 
of irreversible TCIs.8, 62, 68

2.	 Acetylenes in Drug Development and Chemical Tools

The acetylene group is a privileged structural element that has been featured in clinical 
compounds targeting various therapeutic areas.69 In these noncovalent drugs, the alkyne is used 
as an isostere for many functional groups to improve potency or modulate the drug metabolism 
pharmacokinetic (DMPK) profile. Covalent reactions of nonactivated alkynes with cellular 
nucleophiles are either metal-catalyzed or radical-mediated (e.g. thiol–yne coupling (TYC)70‑73), 
or are enabled by (metabolic) conversion to form a reactive intermediate. Inactivation of 
enzymes in the CYP family has been reported for nonactivated acetylenes: metabolic oxidation 
of alkynes generates ketene or alkynone intermediates, and these electrophilic intermediates 
can form a covalent adduct with nucleophilic residues in CYP enzymes (Figure 2A).74-76 An 
exception are clinically approved Parkinson inhibitors selegiline (Eldepryl, E-250) and 
rasagiline (Azilect, VP-1012) that form a covalent adduct with monoamine oxidase B (MAO-B) 
through a nonactivated propargylamine moiety (Figure 2B).77 However, a more electrophilic 
ynimine/allenamine intermediate is likely responsible for the observed covalent adduct with 
the flavin adenine dinucleotide (FAD) co-factor N5 nitrogen.

The most prominent application of terminal alkynes is in chemical biology, where they are 
frequently used as bioorthogonal Click handles.69 These reagents are unreactive toward 
biological functionalities (bioorthogonal) while participating in simple and high yielding 
reactions that are compatible with mild (aqueous) conditions and – aside from the desired 
product – only generate unoffensive byproducts (Click reaction).78-79 Terminal alkynes have 
a low propensity of spontaneous engagement in covalent adducts with cellular components 
but can selectively form a triazole adduct in the Copper-catalyzed azide–alkyne cycloaddition 
(CuAAC) (Figure 2C).80-81 The CuAAC is extensively used in various protein labeling strategies 
such as the popular activity-based protein profiling (ABPP): 67, 82 proteome incubation with 
a residue-selective reagent bearing an alkyne handle is followed by treatment with a tagged 
azide and a Cu(I) catalyst, after which the labeled proteins can be enriched and/or visualized, 
depending on the detection tag on the azide reagent (Figure 2C). The toxic copper catalyst 
in the CuAAC is not compatible with living cells and organisms, which was overcome by 
the development of a strain-promoted azide–alkyne cycloaddition (SPAAC) that employs 
a cyclooctyne derivatives of the alkynyl motif (Figure 2D).81 The drawback of the SPAAC is 
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Figure 2  |  The acetylene group in covalent drug development and chemical biology tools. Electrophilic warheads 
are shown in blue, with the reactive carbon marked with a blue circle. (A) Metabolic activation of acetylenes to 
form reactive ketene or alkynone intermediates can result in undesired inactivation of cytochrome P450 (CYP) 
isoforms. (B) Covalent MAO-B inhibitors selegiline (Eldepryl, E-250) and rasagiline (Azilect, VP-1012) form a 
covalent adduct with the FAD (flavin adenine dinucleotide) co-factor through a propargylamine group. An allenic 
intermediate is responsible for the observed reactivity. (C) Terminal nonactivated alkynes as bioorthogonal Click 
handles in chemical biology reagents. The proteome is incubated with alkyne-tagged protein-reactive reagent 
followed by Cu(I)-catalyzed coupling of the azide-labeled reporter tag in a copper-catalyzed azide–alkyne 
cycloaddition (CuAAC) to visualize protein labeling. (D) Cyclooctynes as bioorthogonal Click handles. The strain-
promoted azide–alkyne cycloaddition (SPAAC) does not require toxic Cu(I)-catalyst. (E) Activated alkynes form 
adducts with (biological) thiols such as glutathione (GSH). Introduction of an electron-withdrawing group on the 
C1 carbon generates a thiol-reactive electron-deficient alkyne warhead. (F) Electron-deficient ynamide warheads 
used in chemical tools and TCIs have a higher (indiscriminate) thiol reactivity with GSH than nonactivated alkynes.
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azide-independent labeling of biological functionalities, as the ring-strain and/or increased 
hydrophobicity of a strained alkyne also enhances undesired reactivity with cysteine thiols.83 
The importance of bioorthogonal and Click chemistry was recognized by the 2022 Nobel Prize 
in Chemistry.84

An electron-rich acetylene motif is unlikely to spontaneously engage in covalent adduct 
formation with biological thiols, but so-called electron-deficient alkynes are an upcoming 
class of cysteine-targeting warheads. Electron-deficient alkynes are generated by introduction 
of an electron-withdrawing group (EWG) onto the alkyne C1 or C3 carbon that increases the 
electrophilicity, while introduction of an electron-donating group (EDG) has the opposite 
effect (Figure 2E).85 The intrinsic thiol reactivity of activated (electron-deficient) alkynes 
has been employed in chemical tools for chemoselective cysteine modification – specifically 
alkynoic amides/esters and alkynones,86 ethynyl-triazolyl-phosphinates (ETPs),87 and 
arylpropiolonitriles (APNs).68, 88 Moreover, electron-deficient ynamide warheads have been 
prominently featured in various drug candidates, including clinical covalent BTK inhibitors 
acalabrutinib (Calquence, ACP-196) 89 and tirabrutinib (Velexbru, ONO/GS-4059).90 The 
increased electrophilicity of the 2-butyanamide and propynamide/propiolamide warheads 
compared to nonactivated alkynes comes at the cost of promiscuous adduct formation with 
nontargeted cellular thiols (Figure 2F),85, 91 though the 2-butyanamide in acalabrutinib was 
still less reactive towards GSH than the corresponding acrylamide.89 Increased promiscuous 
thiol reactivity is also observed for the class of alkynyl-substituted heteroarenes 68 – 
(electron-deficient) heteroaryl moieties modified with an alkynyl group – including but 
not limited to the 2-alkynylthiazoles,92 alkynyl benzoxazines,93 alkynylpyrimidines,94  
ethynylthienopyrimidines,95 and ethynylpurines.96 

Nonactivated acetylenes were considered ‘inert’ towards proteins under physiological conditions 
until 2013, when two research groups – both active in the field of chemical biology to study the 
ubiquitin-proteasome system – independently discovered that nonactivated terminal alkynes 
can covalently modify catalytic cysteines.97-98

3.	 On Terminal Alkynes that React with Catalytic Cysteines

Ubiquitination is a post-translational modification (PTM) that involves installation of ubiquitin 
(Ub) – a 76-amino acid protein – onto a lysine residue of the target protein by the E1-E2-E3 
ligase cascade enzymes.99-100 The target protein can be monoubiquitinated on multiple residues 
but commonly Ub chains are formed by conjugating one of the ubiquitin lysine amines or the 
N-terminal amine to the C-terminus of another Ub (Figure 3). Which linkage is formed is driven 
by the E2-E3 ligase combination, and chain topology impacts the destiny of the ubiquitinated 
protein: K48 chains enhance proteasomal degradation of the ubiquitinated protein, while K63 
chains have a role in inflammatory signaling.100-102 The process of ubiquitination is reversed by 
deubiquitinating enzymes (DUBs) – proteases that cleave the native isopeptide bond between 
the C-terminus of the distal Ub and the Lys residue in the target protein or a Lys residue or 
the N-terminus of M1 in the proximal Ub (Figure 3A).103-104 Human DUBs are divided into 
classes: there is one class of zinc-dependent metalloDUBs (JAMM) and six known classes 
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of human cysteine DUBs (CysDUBs) based on the catalytic domain (USP, OTU, UCH, MJD, 
MINDY, and ZUFSP).99 Some DUBs indiscriminately cleave all linkage types (e.g. USP21) 103 
while others exhibit a specificity or preference for proteolytic cleavage of a certain diUb linkage 
(e.g., OTULIN for M1, OTUB1 for K48).104 The full ‘ubiquitin code’ is much more complex, 
with mixed linkages, branched chains, phosphorylated or acetylated Ub, and incorporation of 
ubiquitin-like (Ubl) modifiers SUMO, Nedd8, ISG15, or UFM.100-101

Chemical tools to study in vitro DUB and Ubl protease activity have a key role in our current 
understanding of the Ub(l) system.104-106 Proteolytic DUB activity can be evaluated using a 
ubiquitinated model substrate (e.g. diUb), with resolution of the substrate (diUb) and the 

Figure 3  |  Chemical tools to study deubiquitinase (DUB) activity. (A) DUB-mediated proteolysis of native diUb 
chains. (B) General design of CysDUB activity-based probes (ABPs). The reactive carbon in the electrophilic 
warhead is aligned with the carbonyl in native ubiquitinated substrates. Covalent adduct is typically visualized 
by an increase in deconvoluted mass (intact protein MS) or a band shift after gel electrophoresis with 
detection by protein staining, in-gel fluorescence, or immunoblotting. (C) Chemical synthesis of triazole-linked 
non‑hydrolyzable diUb substrates. 
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smaller product (monoUb) by gel electrophoresis, but this is restricted to recombinant purified 
proteases. Early on, activity-based probes (ABPs) with a monoUb recognition element enabled 
identification of novel CysDUBs and concurrent assessment of DUB activity profiles in cell 
lysates (Figure 3B).5, 105 On the C-terminus of the recognition element (Ub1–75 or UbΔG), an 
electrophilic warhead (e.g. VME, VS, Br2) is installed with careful positioning of the reactive 
center in alignment with a native isopeptide bond, and a detection element (e.g. a fluorophore 
such as Rho, TMR, or Cy5, or an epitope/reporter tag such as biotin or HA) is usually placed at 
the N-terminus.105-106 Nucleophilic attack of the catalytic Cys residue (CysDUB) to the warhead 
(ABP) generates a covalent adduct that can be detected by protein resolution using SDS-PAGE 
followed by immunoblotting (reporter tag) or direct in-gel fluorescence scanning (fluorophore). 

Nowadays, the molecular toolbox to monitor proteolytic activity of DUBs and Ubl proteases 
contains a variety of assay reagents based on (chemically) modified Ub(l).5, 106-107 Advances in 
the chemical Ub(l) synthesis have been instrumental in the efficient synthesis of Ub(l)‑based 
assay reagents.108-110 Linear chemical synthesis of Ub(l) by solid phase peptide synthesis 
(SPPS)111 conveniently enables introduction of (fluorescent) detection tags,104, 112 synthesis 
of Ub(l) variants,113-115 and selective modification of a single amino acid residue – essential 
features in the preparation of assay tools to interrogate DUB activity/specificity towards specific 
linkage types.109 The cellular role and binding affinity of various Ub(l) chains can be studied 
with non-hydrolyzable Ub(l) conjugates 116 – synthetic conjugates linked by an enzymatically 
stable amide isostere that mimics the native isopeptide bond but is resistant to DUB cleavage 
(e.g. triazole 116-117 or oxime 118) (Figure 3C). The distal building block Ub-Prg is obtained by 
coupling propargylamine to chemically synthesized Ub1–75, thus replacing the C-terminal Gly76 
to mimic the alignment of native diUb. In the proximal building block, an azidonorleucine 
(Anl) residue replaces the lysine residue that will be ubiquitinated. Finally, the proteolytically 
stable triazole-linked diUb is obtained by Click chemistry. 

Serendipitous discovery of the in Situ thiol–alkyne addition

To study the inhibitory potency of various diUb linkages spanning the active site of UCHL3, 
Ekkebus and co-workers from the Ovaa group prepared nonhydrolyzable diUbs to prevent 
premature proteolytic degradation of the inhibitory diUb (Figure 3C).97 Surprisingly, building 
block Ub-Prg inhibited the UCHL3 proteolytic activity by itself with unprecedented potency 
(IC50 < 40 pM) (Figure 4A). Intact protein analysis of recombinant purified UCHL3 incubated 
with Ub-Prg revealed an increased deconvoluted mass, corresponding to covalent addition 
of a single Ub-Prg (Figure 4B). SDS-PAGE analysis indicated quantitative formation of a 
stable covalent adduct within one minute, which was resistant to reducing agents (BME, 
DTT) and denaturing conditions (heating to 94 °C) (Figure 4C). Preincubation of UCHL3 
with thiol alkylating agents (NEM, IAc) abolished adduct formation, indicative of cysteine 
modification. Adduct formation in MelJuSo cells expressing wild-type or catalytic CS mutant 
CysDUBs upon incubation with TMR-Ub-Prg – a Ub-Prg analogue modified with the 
fluorophore 5-carboxytetramethylrhodamine (TMR) on the N-terminus – was in line with 
specific modification of the catalytic cysteine residue. Covalent adduct with (TMR-)Ub-Prg 
was detected for members of all four CysDUB families known at that time (UCH, USP, OTU, 
and MJD), including notoriously unreactive members of the OTU DUB family that could not be 
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probed with other Ub-ABPs. This reactivity was combined with an excellent target selectivity: 
Ub-Prg adduct was not observed with the nontargeted cysteines in cysteine proteases of other 
classes (e.g. SENP6, UBE1) nor with cysteine-rich BSA.

The covalent UCHL3–Ub-Prg adduct was stable to mild acid but was labile to strong acid, as 
is to be expected for a thiovinyl linker. However, preincubation of UCHL3 with NONOates 
(producing the water-soluble radical scavenger NO) or galvinoxyl free radical did not impair 
adduct formation (Figure 4C), contradicting a radical-mediated thiol–yne mechanism. 
Finally, the crystal structure of Ub-Prg bound to the vOTU (viral ovarian tumor DUB) of 
CCHFV (Crimean Congo hemorrhagic fever virus) unambiguously revealed a covalent adduct 

Figure 4  |  Serendipitous discovery of terminal alkynes that react with cysteine deubiquitinases (CysDUBs) by 
Ekkebus et al.97 (A) Building block Ub-Prg (synthetic Ub1–75 or UbΔG modified with a propargyl warhead on the 
C-terminus) inhibits proteolytic UCHL3 activity through covalent modification of the catalytic cysteine residue. 
The reactive carbon is aligned with the carbonyl in native ubiquitinated substrates. (B) Intact protein MS of 
covalent UCHL3–Ub-Prg adduct reveals an increase in deconvoluted mass corresponding with addition of a 
single Ub‑Prg. (C) SDS-PAGE gel analysis of recombinant UCHL3 incubated with Ub-Prg under different reaction 
conditions. Visualization by Coomassie protein staining. (D) Protein crystallography of Ub-Prg bound to CCHFV 
(Crimean Congo Hemorrhagic Fever Virus) OTU domain reveals a covalent Markovnikov-type thiovinyl adduct 
(PDB: 3ZNH). (E) Covalent adduct formation of propargylamide analogues with recombinant UCHL3, as detected 
by SDS-PAGE analysis. Alignment with site of cysteine attack in native substrate (see Figure 3A) is marked with 
blue. 

UCHL3–Ub-Prg
covalent adduct

adduct
UCHL3

Thio
l a

lky
lat

ing
 ag

en
ts 

(IA
c, 

NEM)

Acid
ic 

(pH
 2.

6)

Alka
lin

e (
pH

 9.
3)

Acid
ic 

(pH
 4.

5)

Stro
ng

 ba
se

 (N
aO

H)

Rad
ica

l s
ca

ve
ng

er 
(N

ONOate
s)

C

76

N
H

UbΔG-Prg
ABP

Deconvoluted mass (Da) 

Δ = Ub-Prg

E

A Covalent UCHL3–Ub-Prg adduct

Structural limitations on the acetylene

Red
uc

ing
 ag

en
ts 

(D
TT, 

BME)

SDS-PAGE analysis D Crystal structure

UbΔGG-hex
adduct with UCHL3

UbΔG-2
unreactive with UCHL3

UbΔG-5
unreactive with UCHL3

UbΔG-9
adduct with UCHL3

UCHL3 adduct

Cys

76

N
H

Ub1–75

76N
H

Ub1–75
76

N
H

Ub1–75
76H

N
Ub1–74

UCHL3
N
H S

UCHL3 + Ub-Prg
CCHFV OTUUb1–75-Prg

Markovnikov-type
thiovinyl linker

B Intact protein MS



22

Chapter 1

with a Markovnikov-type vinyl thioether between the catalytic cysteine thiol and the internal 
alkyne carbon (Figure 4D). UCHL3–ABP adduct formation with Ub(ΔG)-Prg analogues 
provided insight on the structural limitations of the terminal alkyne warhead (Figure 4E). 
Terminal methylation of the alkyne disrupted adduct formation with Ub(ΔG)-2, suggesting the 
terminal CH proton has an important role. The backbone amide was found to be unimportant 
as covalent adduct was still observed with but-3-ynyl analogue Ub(ΔG)-9 as well as with 
Ub(ΔG)‑Prg isostere Ub(ΔGG)-Hex. Geminal dimethylation of the internal carbon impaired 
adduct formation with Ub(ΔG)-5, so it was not possible to exclude formation of an allenic 
intermediate at the enzyme active site.

Another serendipitous discovery of covalent adduct formation with Ub(l)-Prg

Around the same time, Sommer and co-workers 98 independently discovered that SUMO2-Prg 
can form a covalent adduct with SENP1, a human SUMO-specific cysteine protease (Figure 5A). 
In agreement with the findings of Ekkebus et al.,97 SDS-PAGE analysis revealed an mass increase 
corresponding with a covalent SENP1–SUMO2-Prg adduct that was stable to denaturing and 
reducing conditions, and its formation was unaffected by strict exclusion of light, presence of 
radical scavenger sodium ascorbate or mildly acidic conditions.98 Mutagenesis studies of key 
catalytic residues provided valuable insight into the reaction mechanism (Figure 5B). SENP1 
has a catalytic triad that consists of Cys603, His533 and Asp550, in which Cys603 acts as the 
nucleophile after His533 deprotonates the thiol to form the active thiolate (Figure 5C).119 The 

Figure 5  |  Serendipitous discovery of covalent adduct formation of SUMO2-Prg with SENP1 by Sommer et al.98 
Structural SUMO2 representation based on noncovalent SENP1–SUMO2 complex (PDB: 2CKH). (A) Formation of 
a covalent SENP1–SUMO2-Prg adduct. (B) Mutagenesis studies with (mutant) recombinant SENP1. Proteolytic 
activity against a SUMOylated model substrate and covalent adduct formation with SUMO2-Prg were detected 
by gel analysis. (C) Simplified reaction mechanism for SENP1-mediated proteolysis of SUMOylated protein 
substrates, adapted from the general mechanism for CysDUBs.120 The stepwise reaction involves stabilization of 
the anionic tetrahedral intermediate in the oxyanion hole, via stabilizing interactions with the Gln597 residue.
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SENP1C603S and SENP1H533A mutants were proteolytically inactive and were no longer able to 
process the SUMOylated model protein (Figure 5B). Covalent adduct with ABPs SUMO2-Prg 
and SUMO2-VS was not observed for the C603S mutant but the H533A mutation did not 
affect adduct formation with either ABP, indicating the thiol–alkyne reaction may not require 
formation of an active thiolate. SENP1-catalyzed proteolysis of native SUMOylated substrates 
involves stabilization of an anionic tetrahedral intermediate in the oxyanion hole, through 
interaction with the polar Gln597 residue (Figure 5C).119 Based on the maintained covalent 
adduct formation with the SENP1Q597A mutant, the authors proposed an in  situ proximity-
driven reaction mechanism that does not involve stabilization in the oxyanion hole, though the 
role of stabilizing interactions with backbone amides cannot be excluded.

Mechanism of covalent thiol–alkyne addition

The serendipitous discoveries that Ub(l)-alkyne ABPs can form a Markovnikov-type thiovinyl 
adduct with the catalytic cysteine thiol of cysteine proteases prompted investigations into 
the reaction mechanism of this novel and unexpected reaction (Scheme 1). The proposed 
mechanisms can be divided into four general classes: radical-mediated addition to the 
alkyne (Scheme 1A), nucleophilic concerted thiolate addition to the alkyne (Scheme 1B), 
nucleophilic/radical addition to a more reactive allenic intermediate (Scheme 1C), and 
nucleophilic stepwise thiolate addition to the alkyne (Scheme 1D).

One of the best-known thiol–alkyne reactions forming a thiovinyl product is the radical-
mediated thiol–yne coupling (TYC) (mechanism A1 in Scheme 1A).121 Here, the sulfonyl radical 
attacks at the terminal C1 carbon forming an anti-Markovnikov-type thiovinyl product.122 
This mechanism was quickly excluded after the crystal structure of the vOTU–Ub-Prg adduct 
revealed a Markovnikov-type vinyl thioether adduct (Figure 4D). Ekkebus and co-workers 97 
comment that existence of an alkyne radical in solution seems unlikely in presence of radical 
scavengers, but they argue that the potential existence of radical species at the enzyme active 
site cannot be eliminated. They proposed another radical-mediated mechanism that does 
generate the correct Markovnikov-type adduct (mechanism A2 in Scheme 1A) but this thiyl 
radical addition to the more substituted C2 carbon contradicts the established reactivity in 
radical alkyne reactions: acetylenes undergo radical addition on the least substituted carbon – 
the terminal C1 carbon of propargylamine.123 

Ekkebus 97 and Sommer 98 both proposed a concerted proximity-driven in situ thiol(ate)–alkyne 
addition mechanism (mechanism B in Scheme 1B). Here, the Markovnikov-type thiovinyl 
adduct is formed via direct nucleophilic attack of the catalytic cysteine thiol(ate) to the 
quaternary C2 carbon of the alkyne, with concurrent protonation of the terminal C1 carbon. 

An alternative explanation to the observed thiol–alkyne addition provided in the work of 
Ekkebus et al. 97 is that the unreactive alkyne is in equilibrium with a more reactive allenic 
intermediate at the enzyme active site (Scheme 1C).124 Ynamine and ynamide groups are 
known to undergo base-mediated isomerization to form the more electrophilic allenamines/
allenamides 125-126 that exhibit reactivity towards cysteine residues.127 Moreover, allenamides 
are bioisosteres of the popular acrylamide warhead.68, 128 It is unlikely that the thiol–alkyne 
addition proceeds via base-mediated formation of an allenic Ub-Prg intermediate in solution, 
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prior to enzyme binding, since covalent adduct proceeded to form in acidic buffers (Figure 4C). 
However, formation of an allenic intermediate at the enzyme active site cannot be ruled out 
based on the current data. Nucleophilic attack of a thiolate to the internal C2 carbon of the 
allenimide warhead generates a Markovnikov-type thiovinyl product (mechanism C1 in 
Scheme 1C).127 Alternatively, radical intermediates are known to be involved in thiol addition 
of cysteine proteases to allenyl esters/amides (mechanism C2 in Scheme 1C).129 Thiyl radical 
addition to terminal allenes is possible at the terminal C1 and the quaternary C2 carbon and, 
contrary to radical attack on propargylamine (Scheme 1A), is expected to form the observed 
Markovnikov-type thiovinyl product.123, 130 

Finally, an alternative nucleophilic mechanism is suggested by Arkona and Rademann.131 They 
propose an enzyme-templated stepwise reaction, with stabilization of a secondary carbanion 
intermediate in the protease oxyanion hole (mechanism D in Scheme 1D). This stepwise 
mechanism resembles the mechanism of cysteine/serine protease-mediated proteolysis of 
native amide bonds (Figure 5C): proteolysis involves stabilization of an anionic intermediate in 
the oxyanion hole, via interactions with polar residues such as glutamine.120, 132 Covalent adduct 
formation of SUMO2-Prg with the SENP1Q597A mutant does not support this mechanism 
(Figure 5B), though the role of stabilizing interactions with backbone amides cannot be 
excluded.

4.	 Scope of this Dissertation

In this dissertation, the scope and versatility of the thiol–alkyne addition to covalently modify 
targeted cysteine residues with nonactivated alkynes is further evaluated. The nonactivated 
terminal alkynes have the potential to be the perfect electrophile for irreversible covalent drug 
development: alkynes exhibit an unprecedented target reactivity with excellent thiol selectivity, 
thereby outperforming cysteine-reactive electrophilic moieties currently used in targeted 
covalent inhibitors (TCIs).

An essential step in covalent drug development is experimental detection of the covalent 
adduct to validate the covalent binding mode. In the first part of this thesis, we elaborate on 
the theoretical framework for evaluation of (ir)reversible covalent inhibitors. The wide array of 
technologies that have been employed in (recent) drug discovery are reviewed in Chapter 2. 
These technologies strictly discriminate between a noncovalent protein–drug complexes and 
protein and drug engaged in a covalent protein–drug adduct. Next, as a covalent binding mode 
affects the relevant kinetic parameters to assess the structure-activity relationship (SAR) of an 
inhibitor, the theoretical background on kinetic evaluation of (ir)reversible covalent inhibitors 
is provided in Chapter 3. Here we illustrate how reaction conditions affect the read-out and 
what assumptions are embedded in the algebraic equations to fit kinetic data. The theory is 
accompanied by kinetic simulations, step-wise protocols for experimental enzymatic activity 
assays and subsequent data analysis tailored to various covalent binding modes. 

In the second part, the potential of the nonactivated alkyne as latent electrophile in small 
molecule covalent inhibitors is explored. Ekkebus 97 and Sommer 98 both used relatively large 
recognition elements (>8 kDa). Preliminary evaluations with small molecule CatS/Casp1 
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inhibitors (<1.8 kDa) – replacing the aldehyde warhead with an alkyne – were unsuccessful. 
In Chapter  4, we first evaluate whether replacing an isoelectric nitrile warhead with an 
alkyne is a successful approach, as this is more likely to correctly place the internal alkyne 

Scheme 1  |  Proposed reaction mechanisms for Markovnikov-type thiovinyl adduct formation between 
a catalytic cysteine thiol(ate) and an Ub(l)-Prg ABP. (A) Direct addition of thiyl radical to the terminal alkyne. 
(B) Proximity‑driven in  situ thiol–alkyne addition with concerted nucleophilic attack and protonation. 
(C) Tautomerization of the terminal alkyne moiety to a thiol-reactive allenic intermediate at the enzyme active 
site prior to nucleophilic (top) or radical (bottom) addition. (D) Stepwise enzyme-templated thiol(ate)–alkyne 
addition via stabilization of a secondary carbanion intermediate in the enzyme oxyanion hole.
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carbon in juxtaposition to the catalytic cysteine residue. As a proof-of-principle, we designed 
several alkyne derivatives of odanacatib (ODN), a reversible covalent inhibitor of cysteine 
protease cathepsin K (CatK) with a nitrile warhead. Potency, reversibility and covalent adduct 
formation of the alkyne analogues are evaluated on recombinant CatK as well as cultures of 
human osteoclast cells. Finally, protein crystallography is employed to validate formation of a 
Markovnikov-type covalent thiovinyl linker. In Chapter 5, the scope is extended to noncatalytic 
cysteines – less nucleophilic (nonconserved) cysteine residues that are targeted by covalent 
kinase inhibitors. Aside from compatibility with kinases – the most popular protein class for 
irreversible drug development – adduct formation with a noncatalytic cysteine residue could 
also provide mechanistic insight as kinases do not have an oxyanion hole to stabilize anionic 
intermediates (Scheme 1D). The irreversible covalent acrylamide warhead in dual EGFR/
HER2 inhibitor neratinib is replaced by an alkyne warhead, and preliminary results on covalent 
adduct formation with the tyrosine kinase domain of EGFR are reported. 

The third part focuses on the versatility and mechanism of the in situ thiol–alkyne reaction. 
In Chapter 6, the impact of substituents on the alkyne warhead is explored. Covalent adduct 
formation with a panel of ubiquitin-based ABPs bearing substituents on the internal and terminal 
position of the propargylamide warhead is evaluated in cellular lysates and on recombinant 
DUBs. Moreover, MS evaluation of a covalent adduct with a deuterated propargylamide 
analogue provides evidence on the existence of an allenic intermediate (Scheme 1C). 

Finally, the most important findings are summarized in Chapter 7. The potential impact of the 
in situ thiol–alkyne reaction is placed in the context of covalent drug discovery and an outlook 
will be provided on the future prospects of this work.
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