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—  Abstract

Objective
Currently the majority of non-culturable microbes in sea water are yet to be 
discovered, Nanopore offers a solution to overcome the challenging tasks 
to identify the genomes and complex composition of oceanic microbiomes. 
In this study we evaluate the utility of Oxford Nanopore Technologies (ONT) 
sequencing to characterize microbial diversity in seawater from multiple 
locations. We compared the microbial species diversity of retrieved 
environmental samples from two different locations and time points.

Results
With only three ONT flow cells we were able to identify thousands of 
organisms, including bacteriophages, from which a large part at species 
level. It was possible to assemble genomes from environmental samples 
with Flye. In several cases this resulted in >1 Mbp contigs and in the particular 
case of a Thioglobus singularis species it even produced a near complete genome. 
k-mer analysis reveals that a large part of the data represents species of 
which close relatives have not yet been deposited to the database. 
These results show that our approach is suitable for scalable genomic 
investigations such as monitoring oceanic biodiversity and provides a 
new platform for education in biodiversity.

Keywords Metagenomics, Oxford Nanopore Technologies, MinION sequencing, oceanic microbiome, 
k-mer analysis, genome assembly 
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—  Introduction

Although marine microbes have been studied for multiple decades there is 
still little knowledge on species diversity in the largest ecological environments 
of our planet1-3. Current database collections are estimated to 
represent <5% of oceanic microbial communities4. Seawater contains 
many non-culturable organisms, hence to understand its microbial ecology 
we need to collect sequencing data from DNA samples obtained directly 
from the environment.

Large-scale metagenomics analyses of seawater have been performed 
already since 2004 showing remarkable species diversity5. However, 
even with availability of abundant sequencing technology resources a complete 
understanding on the entire diversity remains a challenging task. 
This is due to, among others, vast water volumes and huge amounts of microbe 
communities, which through temporal and spatial dynamics contribute to 
the existence of a near infinite number of ecosystems. Recent studies focussing 
on marine biodiversity show that a variety of sediments harbour different 
ecosystems that are particularly extreme in deep ocean environments. 
There have been many exploratory studies of harnessing marine microorganism 
for the production of bioactive compounds, with versatile medicinal, industrial, 
or agricultural applications6. 

Microbial diversity characterization has primarily relied on traditional 
high-throughput short-read sequencing methods, such as Illumina7-12 
or 454 sequencing5. Even though Pacific Biosciences single-molecule 
long-read sequencing has been used to catalogue the diversity of 
coral-associated microbial communities, these studies relied on amplification 
and 16S rRNA homology to position microbes taxonomically5, 7, 13, 9-11, 14. 
Amplification, however, introduces biases that results in over- and under- 
representation of particular species. Additionally, in some cases 16S rRNA 
identification fails to characterize microbial diversity due to variability in 
the 16S region15, –  for example, previous studies revealed that some 
universal primers have strong biases against the detection of pelagic bacteria 
(SAR11 group) and archaea4. 
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Hence 16S-based methods appear ineffective at comprehensively 
characterizing complex metagenomics samples such as from seawater. 
Furthermore, traditional 16S rRNA identification is limited to the detection
of microbe presence and does not yield further functional insights about
the organism. And finally, high-throughput short read sequencing methods 
require large scale infrastructure including sequencers and laboratories. 

In this pilot study we evaluate the utility of Oxford Nanopore Technologies (ONT) 
sequencing to characterize microbial diversity in seawater. 
ONT sequencing generates on average 10 Kbp reads, theoretically without 
upper limit, and bypasses the necessity of amplification. Our strategy aims 
to classify microbial diversification directly from environmental samples
 (two different oceanic locations were chosen) with minimal computational 
and financial cost over a relatively short time span. This will facilitate 
future scalable investigations such as monitoring oceanic biodiversity 
and the time and space dynamics these microbes are subject to.
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—  Results

Sample collection, data quality control and verification of microbial content
We collected samples from coastal regions of both the Atlantic Ocean (west part of the English 
Channel – Roscoff, France, August 2017) and the south part of the North Sea (Wassenaarseslag, 
the Netherlands, July 2017 and August 2018). From here on, we refer to these as samples 1, 2 and 
3. MinION 48-hour sequencing runs on every sample resulted in three datasets with mean read 
lengths that range between 1,511 and 7,983 bp (Table 2). Our read length distributions indicate 
relatively suboptimal DNA samples that resulted in shorter reads (Figure 1) compared to ONT read 
length averages of laboratory cultures. This is particularly apparent for sample 1. The error rate 
expressed in PHRED indicates similar quality for the three runs, our average qualities 
fluctuate around PHRED 12 that stands for <10% error per read on average.
 

Read length and quality distributions of MinION sequencing runs

Figure 1 Read length and quality distributions of 48-hour run sequencing data for sample 1, 2 and 3 (from left to right). 
Mean read lengths vary from 1,511 up to 7,983 bp with similar base call qualities (around PHRED 12). 

Plots are based on NanoPlot plotting23

To assess quality of the data we analysed homologues sequences of the three longest reads for 
all three data sets. The results (Table 1) show that several of these reads are representative of 
bacterial species that were found to be dominant by the OneCodex analyses. One of the reads 
(France – Read ID 1) also showed that we have identified a representative of a bacteriophage of 
Pelagibacter. The limited coverage of the homologue genes indicates that we have identified a 
rather distant new relative of the published bacteriophage.
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Table 1 Blast alignment of longest raw sequencing reads. 
Sample) time and location of seawater samples, Read ID) read length identifier sorted from longest to smallest, 

Query length) the length of the read, Best hits*)* criteria for best hit; largest query coverage with highest identity 
and published study, Cov) alignment percentage that reads cover the reference, ID) alignment identity between 

query and reference, Ref length) length of the reference sequence.

To confirm that our double filtering method indeed selects for microbial DNA we have used 16S 
rRNA primers that are known to identify a wide range of microbial genomes. FastPCR aligns the 
currently ‘best available’ 16S rRNA primer sequences25 to raw sequencing data and shows 
microbial content in all three raw sequencing datasets. We found 23, 178 and 188 hits aligning 
both forward and reverse primers that span between 420 and 470 bp (Table 2). These hits have a 
minimum of 80% alignment identity and ranged up to 100% matches. Blast searches of regions 
that have <80% sequence identity did not result in hits originating from 16S rRNA hence do not 
contribute to the identification of microbial content and have been omitted. 

Table 2 Raw sequencing data statistics of sample 1,2 and 3
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Seawater characterization using k-mer classification
 

Figure 2 Taxonomic tree on a subset of the data generated from sample 1 data. 
Every node stands for a taxonomical ID that is supported with at least 831 reads. In red the most abundant species 

present in all three samples. Dark blue nodes together with the red node highlight the top-5 most abundantly present 
species in this sample. The yellow node indicates the most prominent species difference between the two locations. 
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Figure 3 A subset of the data set from sample 2, every node is supported with minimally 2048 reads. 
The red node indicates the most abundant species over all three datasets, together with dark blue nodes it 

comprises the top-5 most abundant species in this dataset. Particularly underrepresented is species 
Candidatus Pelagibacter (grey node) compared to sample 1 and 3.



125

 

 
Figure 4 Taxonomic tree on a subset of sequencing data from sample 3, every node is supported with at least 588 reads. 

Again the red node indicates the overall most abundant species, and together with dark blues nodes they form the top-5 most 
abundant species for this dataset. Compared to the year before Flavobacteriales bacterium is underrepresented (green node).
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Using OneCodex26 we generated classification trees for the three datasets. These are built 
from raw sequencing data and indicate the taxonomic relation between the detected microbial 
classes. This relation is based on taxonomic identifiers (taxids) provided by the NCBI taxonomy 
database. For visualization purposes these taxonomic trees are subsets of the complete 
classifications: every node is supported with a minimum threshold of 831, 2,048 and 588 reads 
for samples 1, 2 and 3, respectively.

Despite the fact that a large part of all three datasets could not be classified (47%, 69% and 
38% for sample 1, 2 and 3, respectively), all taxonomic trees highlight the complexity of 
microbial communities present at a single site. None of our three datasets reveal an overall 
dominant species, with the largest differences between samples microbes that appear at low 
abundances. However 4.46% (sample 1), 15.66% (sample 2) and 7.82% (sample 3) of classified 
reads belong to Planktomarina temperata, which is therefore the most abundant species present
in the three data sets combined (Figure 2, Figure 3 and Figure 4, red nodes).

The top-5 most abundant species in sample 1 are: Candidatus Pelagibacter ubique (9.31% of 
Proteobacteria), bacterium TMED221 (8.61% of unclassified bacteria), Flavobacteriaceae 
bacterium TMED238 (4.48% of the FCB group), Planktomarina temperata (4.46% of 
Proteobacteria) and Cryomorphaceae bacterium MED-G11 (4.16% of the FCB group) (Figure 2, red 
and dark blue nodes). Approximately 2% of classified reads belong to species Nereida ignava, 
compared to less than 0.04% from sample 2 and 3 it is the most prominent difference between 
the two locations (Figure 2, yellow node).

In the second sample four of the top-5 most abundant species belong to the same species: 
Planktomarina temperata (15.66% of Proteobacteria), Flavobacteriales bacterium UBA3446 
(5.54% of the FCB group), Flavobacteriales bacterium UBA7358  (5.30% of the FCB group), 
Flavobacteriales bacterium UBA4585 (5.12% of the FCB group) and Flavobacteriales bacterium 
UBA7429 (4.41% of the FCB group) (Figure 3, red and dark blue nodes). Even though 
Planktomarina temperata reads are abundantly present in all three samples they are particularly 
enriched (15.66%) in this sample compared to 7.82% from the next year and 4.46% from France. 
Additionally, the presence of Candidatus Pelagibacter ubique is underrepresented in this sample, 
1% of all classified reads belong to this species, compared to ~11% and 9% in sample 1 and 3, 
respectively (Figure 3, grey node). 

Finally, the top-5 most abundant species from sample 3: Candidatus Pelagibacter ubique 
(9.24% of Proteobacteria), Oceanospirillales bacterium TMED91 (8.12% of Proteobacteria), 
gamma proteobacterium SCGC AAA168-P09 (8.08% of Proteobacteria), Planktomarina 
temperata (7,82% of Proteobacteria) and gamma proteobacterium SCGC AAA168-I18 (7.25% of 
Proteobacteria) (Figure 4, red and dark blue nodes). Interestingly, the species gamma 
proteobacterium are classified strain specific (Figure 4, dark blue nodes) as opposed to 
Flavobacteriales bacterium species from sample 2 and is less abundant in this sample (1.6%) 
compared to the year before (5.9%) (Figure 4, green node). 
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Figure 5 A) Venn diagram comparison of identified species by OneCodex, highlighting species 

that are time and space dependent and also microbes that are not. 
B) Overall OneCodex classification ranks per dataset, the majority of classified reads have been linked to a species.

The taxonomic levels assigned by OneCodex range from kingdom down to species-specific. 
Reads that cannot be linked to a particular taxonomic level are labelled ‘no rank’. 
In total 1,750, 3,017 and 2,007 taxids are assigned to the data of sample 1, 2 and 3, respectively. 
More than half of the ranks that OneCodex was able to classify are assigned to species level 
(Figure 5 B) in all three samples.

Comparison of OneCodex species classification between different locations and time interval and overall identified ranks
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Interestingly, at least 484 microbes are identified in all three samples (Figure 5 A). 
Some highlights include: 92 different Flavobacteriaceae bacterium and Flavobacteriales bacterium 
strains; 19 different Candidatus Pelagibacter strains; 18 Pelagibacteraceae bacterium and 6 SAR 
strains. This indicates that these communities are less time and location dependent compared 
to the 262 and 1,127 species that were found exclusively in France or Dutch areas, respectively. 
Furthermore, 607 and 129 species are exclusively observed in the Netherlands. As they exist at 
different times, they provide an initial impression of the time-dependent dynamics of these local 
communities. Finally, 135 and 77 species could be identified that are present at both locations, 
however only detectable at particular times. This could be an indication that even over large areas 
microbes are subject to time regulated dynamics.
 
Metagenomics assembly on raw sequencing data and 
blast verification on the top-3 longest contigs
In an attempt to very OneCodex classification results as well as to assess the current 
metagenomics assemblers capabilities we subsequently assembled the three datasets separately. 
We have assembled our complex metagenomics datasets with Flye and retrieved 256, 1,735 and 
968 contigs with mean coverage of 14x, 13x and 10x from samples 1, 2 and 3, respectively 
(Table 3). Coverage on contigs ranged up to 62, 89 and 107 for samples 1, 2 and 3, respectively,  
with a lower-bound of 3x coverage for all three assemblies. As expected, assembly statistics 
on sample 1 show the least optimal assembly results (lowest number of contigs, smallest mean 
and max contig lengths and smallest N50 values) given that the data volume of this sample was 
smallest combined with shortest average read lengths. Notably, although it has higher coverage, 
assembly results from sample 2 did not exceed results from sample 3. On the contrary, 
sample 3 resulted better average contig length, maximum contig length and N50 values 
compared to sample 2 (Table 3 and Table 4).

Table 3 Flye assembly statistics
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Impressively, Flye was able to reconstruct a full genome from our third sample: 75% of our 
1.6 Mbp contig aligns with 80% identity to Candidatus Thioglobus singularis of which its 
complete genome is a single circular chromosome of 1.7 Mbp, with only 20x coverage on this 
particular contig (Table 4). The longest contig (219 Kbp) assembled from sample 1 represents a 
fragment of an entire genome and aligns with 88% identity to Candidatus Pelagibacter ubique, 
from which reads are most abundantly present in sample 1 (Table 4).

Even though OneCodex indicates that only 397 reads originate from Candidatus Actinomarina, 
Flye was able to reconstruct contigs that exceed the length of the currently available reference 
sequence. The second (141 Kbp) and third (137 Kbp) longest contigs aligned with 82% and 79% 
identity to the reference that is just 41 Kbp in size (Table 4). Similarly, Flye results in a top-3 
longest contigs from sample 2 and 3 that align with high homology to the reference and all 
contigs exceed the length of the reference sequence (Table 4).
 

Table 4 Blast alignment for top-3 longest contigs for sample 1, 2 and 3. ID) identity number provided by Flye, 
Query len) the length of the contigs, Cont cov) data coverage for every contig, Best hits *) * criteria for best hit; 

largest query coverage with highest identity and published study, Query cov) how much of the contig covers the
 reference sequence, Aln ID) alignment identity between the reference and contig, Ref len) the length of the 

reference sequence the contig is aligned to.
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Comparison of Flye assembly and raw sequencing data 
using OneCodex characterization
In order to verify if new species could be identified after assembly we have compared the 
OneCodex classifications using assembly results to the classification results based on raw 
sequencing data. Using the 256 contigs Flye was able to reconstruct OneCodex identified 41 
species in total from sample 1 (Figure 6). Since reads that originate from Flavobacteriaceae and 
Pelagibacteraceae are represented in high abundance it is no surprise that detailed species-level 
classification for these two families appeared most effective, into 9 and 12 strains (out of the 41 
classified species), respectively. OneCodex is able to identify 12 species only after assembly, 
these include 11 deferent Pelagibacteraceae bacterium strains and a SAR86 strain.

Although OneCodex was able to identify the most species using assembly results of sample 2, 
no prominent strain-specific enrichment was observed exclusively for assembly results in this 
sample. From the 209 species that are identified Flye favoured 5 species during assembly: 
Alphaproteobacteria bacterium (10 strains), Euryarchaeota archaeon (15 strains), 
Flavobacteriaceae bacterium (23 strains), Flavobacteriales bacterium (18 strains) and 
Gammaproteobacteria bacterium (19 strains). 

Species diversification of assembly results from sample 3 appeared best for 14 different 
Flavobacteriaceae bacterium strains, 13 gamma proteobacterium strains, and 13 strains of 
Gammaproteobacteria bacterium. Notably, 6 Pelagibacteraceae bacterium strains could be 
identified using assembly results, that could not be classified based on raw sequencing 
data alone.

Species classification comparison of raw data and Flye assembly results

 

Figure 6 Species classification on sample 1,2 and 3. 
Lighter shades indicate identified species on raw sequencing data, darker shades highlight 

species only identifiable after assembly. 
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Data quality of unclassified reads and additional in silico PCR analysis
Poor read quality and relatively short read lengths could be a potential reason explaining 
why OneCodex was unable to classify taxids. Therefore, we investigated quality and length of 
unclassified reads (Figure 7). Although average lengths are shorter, and average quality values 
have a larger distribution, the differences are minimal compared to raw sequencing data 
(Figure 7). These statistics indicate that, in theory, the reads should provide OneCodex with 
sufficient information to resolve classifications. That OneCodex was not able to classify these 
reads even to the most general taxonomic levels (such as kingdom or phylum) adds to the 
notion that these reads originate from species that are novel. 
 

Read length and quality distributions of unclassified reads

Figure 7 Read length and quality distributions of data that OneCodex labels unclassified. 
On average reads are shorter compared to raw sequencing data, however these lengths should still be sufficient 

to use for k-mer species characterization. Average quality distributions are very comparable to reads which 
OneCodex was able to classify species with.
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The proportion of reads for which no classification could be assigned ranges between 38% and 
69% compared to the raw sequencing data (Table 5) and provides a general impression on the 
amount of potentially novel microbes that thrive in these waters. Since OneCodex is particularly 
tailored to the identification of microbial DNA, unclassified reads potentially belong to 
non-microbial organisms. We therefore performed an additional round of in silico PCR analysis 
to inspect the presence of any remaining microbial 16S rRNA fragments. Interestingly, we found 
at least 10 more reads in sample 2 that have over 80% homology with our primers, showing that 
microbial content still exists within these unclassified reads (Table 5).

Table 5 Data statistics on reads for which OneCodex could not resolve any classification

 

Inspection of low complexity regions in unclassified reads 
using tandem repeat analysis
An additional circumstance that might explain why reads are left unclassified is the presence of 
low complexity regions such as repeat elements. These elements cause k-mers to contain the 
exact same genomic content making it impossible to assign them uniquely to specific taxa or even 
to a more general taxonomic level. We have analysed the presence of repeat elements with 
Tandem Repeat Finder22 in raw sequencing data and compared these to repeat counts of the 
unclassified reads. In none of our samples did we observe an increased presence of repetitive 
elements, on the contrary, the repetitive element count is lowered in every case (Figure 8).
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Figure 8 tandem repeat analysis, counts per read and comparison between raw sequencing data and 
unclassified data set for different locations and time. Repeat counts are represented in bins, the bins indicate 

the number of occurrences per read. 

Taking together the data characteristics and the lack of both general taxonomical classification 
and highly abundant regions of low complexity suggest that these reads indeed originate from 
novel species. It highlights at least the absence of these species in currently publicly available 
OneCodex database, and provides a general glimpse of the amount of unknown species that 
comprise oceanic microbiomes.
 

Tandem repeat count on raw sequencing data and OneCodex unclassified reads
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—  Materials and method

Sample collection and DNA isolation from salt water
Approximately 10 liter salt water of both locations was filtered through a double filter setup 
(Figure 9 A). 1.2 µm and 0.22 µm filters are used to remove eukaryotes and phages/ viruses from 
the samples, respectively (Figure 9 B). Water is passed through a 1.2 µm filter that aims to 
capture eukaryotic cells on top and is discarded, the remaining water is passed through a 0.22 µm 
filter during a second filtering round. The microbial material is captured on top of the filter, 
water that passed through this filter contains phage/viral material and is discarded afterwards. 
Material captured on the 0.22 µm filter represents the microbiome of our sample and was 
used for cell lysis. 

 Filtered biological sample and schematic respresentation of double filter setup

Figure 9 A) Filter setup; 0.22 µm containing biological material that represents the oceanic microbiome 
B) A schematic visualization of double filter setup. Discard eukaryotic cells during the first and viral/ phage 

content during the second filtering round.

To obtain high quality DNA we used the DNeasy PowerWater Kit (Qiagen), with minimal 
adjustments, according to the manufacturer’s protocol. The largest adjustment was 
supplementing an enzyme set (Lysozyme, Mutanolysin and Lysostaphin) for a more extensive 
cell lysis. DNA from both North Sea samples was sequenced subsequent to DNA isolation, 
however we obtained a suboptimal yield from DNA isolation of sample 2 and amplified the
isolation to meet the minimal input requirements for sequencing. Sample 1 was filtered through 
the double filter setup and temporarily stored at -20 °C and long term stored at -80 °C, 
DNA isolation and sequencing were performed after approximately 11 months of storage.
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DNA library preparation, sequencing, data quality control and statistics
We used R9.4 flow cells for sequencing all three seawater samples. Libraries were prepared using 
rapid kits (SQK-RAD004) available at that time according to the manufacturer’s protocols 
(Oxford Nanopore Technologies, Oxford, UK). Data acquisition and base-calling were performed 
by MinKNOW (v19.06.8) controlling the MinION that sequenced the samples in 48-hours. 
Read-length and read-quality distributions were visualized using NanoPlot23, and read counts, 
base counts and average read lengths were obtained using custom made scripts.  

Using in silico PCR analysis to verify microbial genomes
To highlight the presence of microbial genomes FastPCR24 was used to perform in silico PCR 
analysis using primer pair sequences for identification of bacteria and archaea. FastPCR allows 
users to upload a set of primer sequences and reports, among others, positions and length of hits 
found on the input data. We used the currently ‘best available’ rRNA primer pair, primer 1 and 2 
are 17 and 21 bp long, respectively, with a total amplicon size of 464 bp (primer 1: 5’-CCTACGG-
GNGGCNGCAG-3’, primer 2: 5’-GACTACNNGGGTATCTAATCC-3’). FastPCR verifies both forward 
and reverse primer sequences and due to the erroneous nature of our long read technology we 
have set a threshold of =>80% alignment identity to the primer sequences, with the exception 
that no errors may occur at the last position on the 3’ end of the primer sequences. 
Since OneCodex is primarily tailored to classification of microbial data we used FastPCR, 
in a similar fashion, to verify any remaining microbial content in the unclassified reads.

K-mer based metagenome characterization of microbial sequences from seawater
OneCodex uses a k-mer based taxonomic classification algorithm to characterize microbial data. 
It uses a reference database containing 53,193, 27,020, 1,724, 1,756 and 168 bacterial, viral, 
fungal, archaeal and protozoan genomes, respectively. A default k-mer size of 31 bp is used to 
break up every read from the input data and compares them to a database that contains every 
k-mer that is uniquely linked to a taxonomic group. OneCodex classifies reads based on a set of 
k-mers that together uniquely identify taxonomic groups, single read hits are taken as the 
minimum threshold for identification in this study. OneCodex also provides reads for which no 
unique taxonomic classification could be found, we subtracted these reads from the initial input 
data using the command line interface (CLI) provided by OneCodex. We filter these reads using 
a project ID (provided by the web interface), the original dataset and set the taxonomic label to 
0. For these reads we inspect the presence of microbial 16S rDNA and repetitive content in an 
attempt to explain the unresolved classification. 
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Assembly of long read metagenomics samples using the Flye assembler
Flye27 is currently one of the few de novo assembly pipelines that allows genomic reconstruction of 
complex metagenomics samples with coverage as low as 2x. We have downloaded the assembly 
software from the GitHub repository (v2.6), used the metagenome default settings and provided 
the raw sequencing data. For sample 1 and 3 we used all available raw sequencing data, 
for computational effectiveness we used half of the sample 2 data set. We have verified the 
top-3 longest contigs using BLAST alignment with high homology parameters and selected the 
best hits based on largest query coverage with highest identity and literature references.

Repetitive content analysis for unclassified reads
To investigate the repetitive nature of reads that remained unclassified after OneCodex 
characterization we used Tandem Repeat Finder software (v4.09)22, developed by Boston 
University, with default settings. The software locates repetitive patterns and reports their 
locations, sizes and copy numbers in a repeat table format. We have parsed both raw sequencing 
and unclassified data from sample 1, 2 and 3 to Tandem Repeat Finder and inspected the repeat 
occurrences on every read. With a custom-made script the frequencies of these occurrences on 
every read for every sample are summarized and expressed in 1, 2-5, 5-10 and >10 occurrences 
bins and plotted with R ggplot234.  
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—  Discussion

In this study, we have investigated the use of Nanopore sequencing for seawater 
metagenomics. Our main aims were to investigate the effectiveness of DNA isolation from 
samples directly obtained from the environment, optimize laboratory protocols for maximum 
sequencing results and evaluation of current metagenomics identification and assembly 
software. We used multiple isolation procedures, several different storage methods and 
subjected the data to a set of different analysis software. With only three ONT flow cells we were 
able to identify thousands of organisms, including bacteriophages, from which a large part at 
species level. It was possible to assemble genomes from environmental samples with Flye. 
In several cases this resulted in >1 Mbp contigs and in the particular case of a Thioglobus singularis 
species it even produced a near complete genome.

Although the enzyme cocktail used for cell lysis in our study was designed to break down cell walls 
for a wide range of bacteria there are potentially microbes that are immune to our lysis step. 
This might result in an underrepresentation of specific microbial communities compared to what 
truly thrives at these locations at that time. A possible solution, instead of lysing microbes with an 
enzyme set, would be to subject samples to mechanical lysis using silica beads or a combination 
of both. During experimental 12-hour sequencing runs (data not shown) we have observed that 
combining silica beads and enzymes during isolation yields significantly more sequencing data 
compared to isolation using only enzymes.

The double filter method separates eukaryotes and phages/viruses from bacteria in our sample. 
However, OneCodex still classifies a few hundred reads as either eukaryotic or viral. Eukaryota are 
particularly enriched for Dikarya, a subkingdom of fungi that are known to dominate the marine 
fungi fraction of environmental samples at European coastal regions32. These reads might have 
come from eukaryotic cells that are smaller than our largest filter (1.2 µm) or particles of these 
species that simply float around and were picked up by the smallest filter.

DNA molecules of our samples possibly suffered from fragmentation due to ice crystal formation 
during eleven months -20 and -80 oC storage. Additionally the yield of some sequencing runs is 
relatively low since biological material was dry frozen to the filter, making it more difficult to 
suspend the material during cell lysis. Under ideal circumstances DNA should be sequenced 
immediately after isolation circumventing DNA strand damage and loss of material.
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The presence of viral DNA might be an indication that we have used too much water on a single 
filter, causing the accumulation of biological material to the point where the filter became 
saturated. A saturated filter might catch particles smaller than the smallest filter size and 
contaminate the isolation with material that would have otherwise passed through. 
On the other hand, viral DNA could be present due to infection of microbes, which could be 
recognized by inspecting flanking regions of the read containing the viral DNA to contain microbe 
specific genes. Additionally viruses could enter the microbial metagenomics pool when they are 
present at the outside of bacteria and pass through the double filter setup via hitchhiking.

We initially performed de novo assembly in order to find out whether we could obtain longer 
contigs for particularly abundant species. Due to low coverage and the high diversity in our 
sample it is no surprise that this was possible for just a limited number of species. It is actually 
encouraging that with such diversity and limited sequence depth we could still identify more 
than thousand organisms at the species level. Moreover, metagenomics analysis is a relative 
newcomer in the field of genetics hence both laboratory protocols and analytical pipelines still 
need improvement to result higher accurate and more robust solutions for sample such as 
seawater.

We have performed an in silico PCR analysis to identify 16S RNA sequences in our raw sequence 
dataset. This showed that even under high error rate conditions reads contain enough homology 
to detect well conserved genes. This method could potentially be utilized to detect other genes in 
a similar fashion, for example genes that encode antibiotics biosynthesis.

While OneCodex was able to identify the diversity of a substantial amount of our samples, 
it could not resolve any classification for a large part of our data. The large k-mer size is most 
probably a crucial factor for unclassified data, due to the relatively low quality (approximately 
10% error) of long-read data 10 bp would be a more suitable k-mer size. We confirmed that the 
data quality of these reads (both read length and quality distributions) are within acceptable 
bounds and observed no particular repetitive element enrichment compared to the reads that 
contributed to classifications.
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Sequences that are representative of species that are currently unknown might explain the 
unclassified state of those reads, and are therefore valuable for contribution of a deeper 
understanding of the microbial marine fingerprint. Moreover, open access databases might 
not contain genomic information on particular microbes since obtaining genomes that are 
particularly large or come from non-culturable (non-culturable organisms are indicated with 
‘Candidatus’ labels) microbes remains a complicated task. For example, although available, 
protists are poorly represented in the OneCodex database, perhaps because their genomes are 
often extremely large (for dinoflagellates up to 270 Gbp33). Hence, microbes that are less 
thoroughly investigated might not have been included into the OneCodex genome selection. 
Since OneCodex is tailored to the identification of single cell organisms it probably will leave 
reads from multicellular organisms unclassified. Although no strong evidence was observed, 
lenient BLAST alignment of the top-3 longest reads of every sample did identify some small 
homologue regions with sequences from plant or algae in the NCBI database.

Despite the fact that these experiments are pilot studies we have observed promising results 
for both laboratory protocols and species identifications analysis. As described above, sample 
collection, DNA isolation and species identification is still hindered by both technical and 
biological difficulties. However our method provides a good impression on the elegance of our 
method that comes from its robustness and simplicity. We have performed equivalent 
experiments in student field practical assignments with similar marine samples, and students 
showed that even under more restricted conditions (12-hour sequencing runs) large biodiversity 
could still be detected. This indicates that the simplicity of our setup provides an ideal setting for 
student exercises, that will surely facilitate educational programs in genetics and bioinformatics.
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