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“You must be shapeless, formless, like water. 

When you pour water in a cup, it becomes the cup. 

When you pour water in a bottle, it becomes the bottle. 

When you pour water in a teapot, it becomes the teapot. 

Water can drip and it can crash.

Become like water my friend.” 

– Bruce Lee





— Contents

Chapter 1       11
  Introduction and thesis outline

Chapter 2       35
 De novo whole-genome assembly of a wild type yeast 
 isolate using nanopore sequencing
 

Chapter 3       59
 Genome assembly of the transposon-enriched 
 Allorhizobium strain LBA9072

Chapter 4       83
 Rapid de novo assembly of the European eel genome 
 from nanopore sequencing reads
 

Chapter 5       115
 Microbial diversity characterization of seawater in a pilot study 
 using Oxford Nanopore Technologies long-read sequencing

Chapter 6       147
 Summary and discussion

Addendum       159
 Nederlandse samenvatting
 Curriculum Vitae
 List of publications





11

Introduction and thesis outline

— Chapter 1



12



13

— Applications of DNA sequencing

Genome sequencing 
Nucleotide sequencing has revolutionized the discovery of genomic content and has enabled 
the scientific community to unveil the genetic code for a large range of organisms. Sequencing 
started in 1965 when the full sequence and structure of the first tRNA was detected, a molecule 
of 77 nucleotides1. Innovations in the next decade enabled completion of viral genomes in the 
kilobasepair (Kbp) range and at the end of the 1990’s this was already extended to megabasepair 
(Mbp) size genomes2. Sequencing technologies provide increasing data volumes because of 
advancements in the speed at which nucleotide sequences are detected, the effectiveness of 
library chemicals, and the degree of parallelization. 

Incredible efforts have been made to collect those datasets, as well as perform downstream 
analyses such as assemblies, annotations, and variant identification. These in turn enabled 
many biological applications and allowed the scientific community to investigate areas that 
had remained unreachable. An example of such an area is assembly; in the application known as 
‘genome assembly’ whole genomes are reconstructed based upon the overlap of small fragments. 
Those fragments, known as ‘reads’, are the readout of fragmented DNA molecules. 
Homology between reads allows resolving fragmentation into functional units such as 
chromosomes or plasmids. To accumulate adequate evidence for the reconstruction of those 
fragmented datasets, adequate sequencing ‘depth’ is required, which has pushed data generation 
to its current magnitude. Around 2008 whole genome (WGS) and whole exome sequencing (WES) 
have taken a giant leap and became a dominant factor in generating large datasets among 
multiple biomedical data science disciplines (Figure 1) 3. 

Unprecedented increase of WGS and WES data generation compared to other data science disciplines.

 

Figure 1 Cumulative number of datasets being generated for whole genome sequencing (WGS - SRA) and whole exome 
sequencing (WES - SRA). In comparison to molecular structure datasets such as X-ray and electron microscopy (EM - PDB), 

generating sequencing data has become the dominant player3.
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Currently we can generate terabase datasets in just a couple of days. Large amounts of data and 
increased computational capacity have allowed us to extend our reach in analyzing genomes that 
have previously been unresolvable due to their size and structural complexity. 

Functional genomics
Unraveling genomic content has been the initial motivation for developing sequencing 
technologies and bioinformatics. Furthermore, understanding the transcriptome is essential 
to investigate functional units of the genome and the molecular interaction that regulate cells 
and tissues. It is key to collect all transcript isoforms, structures such as splice variants and 
posttranscriptional modification, and lastly the change of expression of those transcripts during 
cellular and tissue functioning4. However, conserved genetic information in the DNA 
molecules combined with the functional effects through expression of transcripts and the 
translation to proteins is insufficient to explain the entire process of how cells and tissues 
derive their phenotype. 

Currently, the study of elements binding to DNA and DNA modifications (e.g. epigenetics) 
provides insight on the use and function of the genomic architecture that was not foreseen when 
the first full genome sequencing projects provided a detailed view of the nucleotide level. Among 
others, ENCODE (Encyclopedia of DNA Elements) has put in enormous effort into annotating the 
human genome and revealed that most functional annotations have a regulative nature and are 
not protein-coding5. This adds to the notion that the mechanism of regulation is just as impor-
tant compared to the unraveling of the structural genomic code or cataloguing transcript variati-
on among cells and tissues.

Diagnostics
A current gold-standard method is targeted sequencing, where we amplify a region of interest 
and sequence the amplified product. These efforts are used for, among others, variant detection, 
determination of structural variation, identification of isoforms and full-length mRNA 
sequencing. These sequencing data provide a detailed targeted insight on a region of interest 
and have proved to be a powerful tool for diagnostics. For this setup relatively small datasets 
(short regions and high coverage) are required to determine the genomic content. However, 
amplification introduces bias towards shorter molecules since shorter molecules are amplified 
faster compared to longer molecules. Hence the final amplified sample contains a bias towards 
the number of molecules in favor of shorter lengths, hindering quantitative analyses. 
Therefore, amplification-free sequencing does not only simplify library preparation protocols, 
in addition it circumvents skewness and can generate unbiased libraries facilitating the 
quantification of sequencing samples. 
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Furthermore, disease-related genomic aberrations are not solely bound to single target 
variations, therefore a more comprehensive assessment of the genome is often required. WGS 
provides information on the complete genome, including coding and non-coding regions, 
and offers a better approach towards copy number variation, genomic rearrangements, and other 
structural variations, causing WGS data to have a more predictive nature. Additionally, on a 
general note simplifying preparations decreases library preparation complexity in terms of time 
and machinery. This in turn allows in-field sequencing and bridges a gap between sample 
collection and identification for areas without the availability of high-tech equipment.

Metagenomics
Metagenomics is the readout of a set of sequencing reads from a pool of input DNA, with the aim 
of reconstructing which species are present within a sample. Furthermore, not all organisms in a 
complex bacterial sample can be cultured under laboratory conditions, therefore sequencing is 
needed to detect their presence and abundance. Because of the inequal quantities of represented 
organisms in a metagenomics sample, it is challenging to assemble all their complete genomes. 
However, with highly improved sequencing technologies, described below, assembly of genomes 
of poorly represented unculturable organisms using metagenomics comes within reach.
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— Brief summary of sequencing techniques

Sanger
Sanger sequencing relies on amplification of the input DNA molecule, denaturating double 
stranded DNA molecules to separate the strands, and the subsequent annealing of primers to 
single strand DNA molecules that form the start site of the sequencing (Figure 2 - step 1). Primer 
annealed single strand molecules are exposed to dNTPs (deoxynucleotide triphosphate) mixed 
with fluorescently labeled ddNTPs (dideoxy nucleotides) at low concentration. ddNTPs have both 
hydroxyl groups absent from the sugar backbone molecule to terminate the reaction when 
reached by the polymerase. This results in amplified DNA molecules of different lengths that 
require gel electrophoresis to determine the final incorporated nucleotide, and thereby the full 
sequence (Figure 2 - step 2 and 3). This imposes a major limitation towards sequencing many, 
or longer molecules. Furthermore, sequencing techniques based on amplification do not allow 
direct readout of the input molecule, making them susceptible to bias introductions. 
Finally, classical Sanger sequencing is designed to readout small DNA molecules, and the 
technique is unable to scale towards molecules of their original size, ranging from millions 
(for small bacterial genomes) to billions of base pairs (for human genomes or larger).

Three-step schematic overview of Sanger sequencing

 

Figure 2 Overview of the Sanger sequencing technique. 1) Denatured DNA molecule, primers form sequencing start site. 
DNA fragments are fluorescently labeled. 2) Size separation using gel electrophoresis and incorporated nucleotide identification. 

3) fluorescently labeled nucleotides are excited by laser allowing readout of the sequence. Figure adopted from 
Sigmaaldrich - Sanger sequencing steps and method9.
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Illumina - Next generation sequencing (NGS)
The name ‘next generation’ highlights the ability to overcome small quantity DNA sequencing. 
Compared to classical Sanger sequencing, NGS allows sequencing of millions of small molecules 
(max. 300 bp) in parallel. In short, double stranded input DNA is fragmented, denatured to single 
strand DNA and two distinct adapters (oligonucleotides) are ligated to either side of the small 
fragments. On a glass plate, also known as the flow cell chip, sequences that are complementary 
to the two distinct adapters are attached to the flow cell surface, allowing input DNA adapters 
to bind (Figure 2 – step 1). Then single stranded DNA is amplified using bridge amplification 
(Figure 3 – step 2, 3, 4 and 5), yielding local clusters of thousands of identical molecules, ready for 
sequencing by synthesis (Figure 3 – step 6). Fluorescently labeled nucleotides bind to their 
complementary part on the strand by DNA polymerase, and using a laser the last incorporated 
fluorescent label is excited, which serves as the sequencing signal. This generates digital images 
(Figure 3 – final illustration) and through image analysis the final sequence is determined. 

This sequencing technique is highly accurate, less then 0,1% of all sequenced nucleotides is 
classified incorrectly. This is mainly due to cluster generation, which boosts the sequencing signal 
significantly. However, this amplification also limits the length of DNA fragments that can be 
analyzed. The major drawback for data generated by this technique is therefore the millions of 
small fragments that must be aligned to increase the sequence length to resolve the original 
input DNA sequence. Such alignment tasks are resource-heavy and require complicated 
algorithms to overcome intricate genome structures. Furthermore, genomic regions such as 
repeats or low complexity regions are impossible to reconstruct using next generation sequencing 
data altogether, since those short reads do not provide sufficient overlap to elongate sequences 
that contain repetitiveness longer than the sequencing read itself.

Illumina sequencing technique converts incorporated fluoresently labeld bases in to digital images
 

Figure 3 Schematic overview of Illumina sequencing technology. 1) input DNA is attached to the flow cell chip, 2, 3, 4, 5 and 
6) bridge amplification generates clusters to increase the sequencing signal. Final illustration) sequencing signal is captured 

through digital imaging using the excitation of fluorescently labeled nucleotides, image analysis results in the final sequence. 
Figure adopted from6.
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Pacific Biosciences (PacBio) sequencing 
High throughput sequencing techniques that can overcome short read-lengths are referred to 
as third-generation sequencing. In contrast to Illumina sequencing, they operate on single DNA 
molecules. Since this technique captures signals originating from a single molecule the 
sequencing signal is much weaker compared to Illumina sequencing, hence more errors are 
introduced to the final readout. One of the most prominent platforms is PacBio single molecule 
real-time (SMRT) sequencing. SMRT libraries are generated through ligating adapters 
circularizing the input DNA and allowing a primer to bind to one of the adapters as the start site 
for a polymerase. The library is mobilized to millions of tiny wells, also known as zero mode 
wave guides (ZMW’s) (Figure 4 A), such that every ZMW contains a single molecule. A single 
polymerase is attached at the bottom of the well and incorporates fluorescently labeled 
nucleotides of which the emitted light is detected using lasers and is measured in real-time 
(Figure 4 B). Millions of ZMW’s are measured in parallel allowing the production of Gbp datasets 
and generating Kbp read-lengths during a single run.

Due to the circularized nature of this technique PacBio sequencing can generate two kinds of 
reads. The first kind is circular consensus sequences (currently marketed as HiFi reads), 
this technique can read a single molecule multiple times using the sequence multitude to correct 
for randomly introduced errors. Although high accuracy reads find their strength in circularization 
of single molecules, it simultaneously limits the maximum read-length and introduces an upper 
limit. The second kind is called continuous long read sequencing and can reach maximum 
read-lengths (up to 70 Kbp in length) at the cost of sequence accuracy. Since only a single 
read-out is generated during this mode no consensus can be derived. 

PacBio readout of single molecules from zero mode wave guides generates super long reads at the expense of accuracy

 

Figure 4 A) illustration of a zero mode wave guide, a small well with a polymerase attached to the bottom. 
B) fluorescently labeled nucleotides are incorporated by the polymerase, incorporated nucleotides emit a light signal 

that is captured by a laser system, converting intro a graph tracing the signal intensity over time, allowing the 
readout of the input DNA. Figure adopted from7.
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Nanopore sequencing
A relative newcomer to the third-generation sequencing field is Oxford Nanopore Technologies 
(ONT). Their technique utilizes a distinct method compared to the previously described 
techniques, which all rely on DNA polymerase. DNA molecules are guided through a pore protein 
embedded into a membrane. An electrical current is applied across the membrane (Figure 5 A). 
ONT uses the profile of electrical current distortions (squiggle profiles, Figure 5 B) 
to differentiate nucleotides as they pass through the pore protein. DNA molecules are 
prepared by ligating adapter sequences to both ends of the DNA fragment, motor proteins 
(Figure 5 A, motor protein in yellow) are attached to the molecule and control the speed at 
which the readout is performed. Since the determination of the final sequencing read is based 
on algorithmic interpretation of the squiggle profiles, controlling the speed is a crucial step. 
When nucleotides move rapidly through the pore the algorithm might not be able to 
differentiate nucleotides within the squiggle profile leading to error introduction. Currently, 
around 450 nucleotides per second move through the pore in a sliding window setup, which 
means multiple nucleotides occupy the pore protein at the same time. Hence signals captured in 
the squiggle profiles are electrical current distortions of a nucleotide 5-mer8 (Figure 5 A, 5-mer 
situated at the narrowest region of the pore), therefore leading to a multiplicity of states every 
time a base enters or leaves the pore shaft, at the top or bottom side, respectively. Five bases per 
moment in time and a four-base model yields 45=1024 different states, and the addition of base 
modifications only increases the total number of states exponentially, making basecalling a
challenging machine learning problem.

Pulling a single DNA molecule through the nanopore distorts the ion current, 
interpretation of those distortion signals yields the final readout

 

Figure 5 Schematic overview of Oxford Nanopore Technologies. A) nanopore embedded into a membrane with an ionic 
current through the nanopore, a motor protein (in yellow) controls the speeds at which DNA molecules are pulled 

through the pore to facilitate sequence accuracy. B) ionic current distortions are converted to graphs, called squiggle plots, 
which form the input data for machine learning algorithms to basecall the final sequencing readout. Figure adopted from9.

A B



20

Long read quality
The major benefit of third-generation sequencing techniques is the length of sequencing reads. 
With a theoretical indefinite upper limit (for ONT) this technique is essential for unraveling the 
structure of large genomes that have been unreachable up until this point. The downside of long 
read sequencing techniques (both ONT and PacBio) is that they have struggled to reach read 
accuracy comparable to gold-standard sequencing techniques such as Illumina. The quality of 
reads is expressed using Phred scores, which is a logarithmic metric to indicate the number of 
miscalled nucleotides. Q10 stands for 10% misclassified bases in a sequencing read, Q20 for 1% 
error and so on. Current ONT sequencing flow cells and chemistry yield read-lengths around 
10-100 Kbp (maximum reported reads range between 2-4 Mbp28) and deliver data in excess of 
around Q20. ONT originally delivered data with over 30% misclassifications (around 2015), 
indicating that within a relatively short time-span the quality of this sequencing technique 
has dramatically improved. 

Assembly evolution and genome complexity
Assembly has been an evolving strategy in reconstructing genomes from a set of smaller reads. 
There have been several approaches that have facilitated the scientific community aiming to 
resolve the genetic makeup from sequencing data. In the beginning hierarchical approaches were 
used, this strategy typically uses large insert BAC clones, where numerous clones cover the insert 
sequence in a tiling-path manner. Then a minimal tiling-path represents the consensus sequence 
of the insert sequence, hereafter, insert sequences are manually closed yielding the final 
assembly. This top-down approach utilizes preexisting knowledge that guides the 
assembly task at hand. 

Due to high-throughput parallel shot-gun sequencing and increased computational capabilities 
bottom-up approaches became within reach. Here no preexisting knowledge is required for the 
task at hand; piece back millions of reads to reconstruct a genome. First, the naïve approach. 
Theoretically one could find overlaps between two reads and then elongate those into larger 
contigs (contiguous sequences) until the full genome is assembled. Using a four letter alphabet 
{A,T,C and G} and 20 bases overlap, the uniqueness with which such a 20-mer is found in the 
genome equals to 420, which translates to once every 1 x 1012 base pairs. However, this 
uniqueness only upholds for exact matches and randomly distributed nucleotides. Since the 
distribution of nucleotides in biological sequences are not random, 20-mer overlaps are found 
much more frequently. The data quantities generated by NGS sequencing techniques and the 
erroneous nature of long read sequencing data cause assemblies to reach complexity levels 
to a point that simple base comparison becomes computationally infeasible.

Graph-based assembly approaches are a natural expansion of the naïve approach. The benefit 
for graph represented assemblies is to find a path that represents the genome, for which many 
strategies and algorithms already exists. Additionally, providing long distance information 
(e.g. node information from nodes other than closely positioned neighbors) graph complexities 
are resolved relatively simple.
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Overlap-graphs construct directional graphs based on overlap. Graphs are represented by nodes 
and directed edges, where nodes stand for overlap and edges denote the relation between the 
suffix overlap of one read to the prefix overlap of another. Overlaps are determined based on all 
reads vs. all reads alignment, where overlap lengths are recorded and following the path of the 
longest overlaps determine the final assembly. Similar to the naïve approach, introduction of 
sequencing errors complicates the assembly by introducing additional branches to the graph. 
Since this assembly approach finds it fundament in all reads vs. all reads alignment resolving 
large data sets, particularly for large genomes and long read sequencing data, becomes 
computationally infeasible. Hence the bottleneck for this approach is the computationally 
intensive all read vs. all read alignment causing the lack of scalability towards data set quantities 
currently generated15, 16. In chapter 4 we propose an alternative version adopted from this 
assembly strategy. The alternative strategy limits the search space of the computationally 
intensive all reads vs. all reads alignment, enabling analysis of large and complex genomes 
using overlap-graphs. 

A clever workaround managing large datasets is called a De Bruijn graph, were reads are 
represented by k-mers of a particular size (k-mer size ranges from 31 to 127 bases, typically 
k-mer sizes 31, 55, 77, 99 or 127 are applied). The De Bruijn graph is a representation of uniquely 
found k-mers and using a k-minus-1-kmer evaluation k-mers are linked together directionally. 
This simplifies the assembly graph significantly compared to overlap-graphs, allowing a better 
scalability for large datasets, both for large quantity data sets as well as for long-read erroneous 
data, and is currently the go-to method for short-read NGS assembly problems. However, the 
down-side of this method for longer reads is the loss of context, which is the most prominent 
benefit of long reads. 
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Long read assembly-quality and sequence accuracy
Since assembly is a major part of the downstream analysis, quality standards are required to 
assess the final assembly result, where we are interested in the completeness, level of 
fragmentation, accuracy, resource requirements, and speed of the assembly algorithm. 
For known (independently measured) genome size the completeness is based on the assembly 
length; the number of nucleotides in the completed assembly should meet the known 
genome size. The genome size can also be estimated from the sequencing data for genomes 
that are not yet characterized to evaluate the assembly completeness29. In case of multi-
chromosomal genomes, the level of fragmentation should ideally not exceed the number of 
chromosomes or plasmids. A correct number of fragments and completeness indicates that 
the genome is fully assembled at the chromosome level. Contig N50 metrics are useful to 
evaluate the level of fragmentation. N50 is a weighted median of fragment lengths and is 
calculated by size sorting contigs from large to small, where the N50 indicates the size of the 
contig that is found at 50% of the total assembly length. A complementary analysis to the 
forementioned technical metrics is to quantify the functional completeness of the final assembly. 
In essence such a heuristic quality control, for example provided by BUSCO, runs a gene prediction 
on the genomic data and compares the results to the expected gene content from (closely) related 
organisms. This yields estimates of assembly completeness and the deleterious effects of 
fragmentation. Reference data sets are stored in open-source data bases and include, among 
others, data for vertebrates, fungi, prokaryotes and plants17.

A well-known example, highlighting the importance of quality assessment, is the human 
reference genome project. Around twenty years ago the first human genome assembly was 
released and has set the standard for genomic applications such as alignment, variant detection, 
functional genomics, population genetics and epigenetic analysis30. The current gold-standard 
human reference genome (GRCh38.p13) is based on a mosaic collection of around twenty 
people, ~70% of which originates from a single individual31, 32. Hence the reference genome fails 
to represent the genomic content of any one person. The mosaic representation results in 
reference biases causing decreased accuracy for variant discovery, the association of 
gene-disease and other genetic analysis and left ~8% of the genome unresolved18, 19. 
In 2022 the telomere-to-telomere consortium, by combining multiple sequencing techniques 
and using the Verkko assembler, delivered a fully resolved, fully phased diploid representation of 
the human genome, where 20 of the 46 chromosomes are automatically assembled from 
telomer to telomer at 99.9997% accuracy20. 

Another difficulty for generating high quality assemblies arises from low sequencing read 
accuracy and homogeneous coverage along a genome. Downstream correction procedures, 
where correction methods are based on coverage multiplicity, allow per base assessment which 
correct misclassifications using a majority vote. Therefore, covering the same base position 
multiple times is essential for high accuracy assembly results, and it is important to generate 
sufficient and evenly spread coverage to ensure every position is covered at least three times 
to provide sufficient evidence during the majority vote. For this specific event overall genome 
coverage could be a deceptive source of information. For example, a 50 Mbp dataset from a 5 Mbp 
genome suggests 10x coverage, however it does not guarantee more than threefold coverage on 
every position. 
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Closer to reality, GC-enriched and repetitive regions, such as rRNA regions, appear to be difficult 
to sequence homogeneously and often yield read abundance on those regions departing from 
the theoretical coverage. Additionally, due to random sampling regions remain absent from the 
sequencing library independent of sequencing depth. Figure 6 shows how multiple platforms 
struggle to evenly cover the rRNA region, which is illustrated around 20 degrees, and recognized 
by a small green bar depicted in the CDS band (yellow band). For this region, Illumina MiSeq, 
NextSeq, Hiseq and PacBio have sharp peaks indicating a read enrichment over the repetitive 
rRNA region, however ONT delivers a rather even overall coverage.

Sequencing coverage difficulties among different platforms for GC enrichted rRNA regions

 

Figure 6 Partial visualization of single chromosome assembly for Fusobacterium sp. C1. 
Circle plot bands represent, from inside to outside, GC-content (black), Coding sequence (yellow), ONT read coverage (red), 

Miseq coverage (green), NextSeq coverage (orange), Hiseq coverage (purple) and PacBio coverage (blue). 
Peak heights indicate sequence read coverage indicating that most platforms struggle to cover 

the genome evenly in general and particularly for the rRNA region highlighted in green inside the CDS band 
around 20 degrees of the circle illustration. Figure adopted from21.
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Generating data using different platforms
The choice for a sequencing technique depends on several specifications, among others, 
data volume, data accuracy, read length, read count, cost, time and availability. Currently, most 
sequencing devices can generate high throughput data and yield incredibly large datasets. 
This is exemplified by the maximum output for different devices; HiSeq 4000 – 1 Tbp in 96 hours, 
HiSeq 2500 – 120 Gbp in 30 hours, PacBio Sequel – 60 Gbp in 30 hours, PacBio Revio – 360 Gbp 
in 24 hours, PacBio Onso – 150 Gbp in 48 hours, MinION – 50 Gbp in 48 hours, GridION – 250 Gbp 
in 72 hours, PromethION – 14 Tbp in 72 hours, see Figure 7. Maximum run-times are defined by 
the sequencing platforms and are usually based on depletion of biochemicals required for the 
sequencing run. 

The maximum number of sequencing reads for Illumina sequencing is defined by the number 
of generated read clusters on the flow cell chip, hence a longer sequencing run yields longer 
sequencing reads, however the number of reads remain the same. Similar to Illumina, for PacBio 
sequencing the maximum number of sequencing reads is limited by the availability of zero mode 
wave guides on the flow cell. However, for Oxford Nanopore Technologies the maximum number 
of reads is restricted by the size and volume of input DNA together with the speed at which a DNA 
molecule is pulled through the pore. Hence for fixed data volumes the maximum number of reads 
is proportional to the read length. 

Overview of maximum data generation capacity per sequencing run for multiple sequencing platforms

 

Figure 7 Selection of sequencing devices and their corresponding maximum output per sequencing run. 
Run-times are predefined by the sequencing platform and deviate from 24 to 72 hours. Platforms are visualized 

through color-coding; different versions of the same platform are depicted using different color shades. For truly large 
genomes with complex genomic structures currently only the PromethION device from Oxford Nanopore Technologies 

provides an adequate solution (single dot in upper-right corner). Figure adopted from22.
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Downstream analysis – alignment and difficulties
The ability to generate dataset volumes that contain multiple full genome copies has been 
the focus of interest ever since development of sequencing platforms. However downstream 
analysis has become more difficult for datasets of increasing volume, both computationally as 
well as storage and distribution. Hence the general focus is moving away from simply generating 
larger sequencing datasets. Since generating a large data set requires adequate computational 
methods it has become increasingly evident that the development of algorithms need to allow 
analysis of large and complex genome datasets. 

A simple workflow from sequencing data to the final de novo assembly involves: 
1) read alignment, 2) assembly with read overlap graphs and 3) error correction (either 
performed at the start, middle or end of the assembly procedure). Starting off de novo assembly 
is alignments. Long-read alignment quickly becomes problematic since every read must be 
compared to every other read to find overlap for assembly23. The total number of comparisons is 
n2, where n stands for the number of reads. This challenge becomes more prominent using larger 
datasets since the search-space increases quadratically. As an example, for de novo assembly we 
need multiple copies of the complete genome to allow reads to overlap. In a theoretical example 
we can use 50x coverage of a simple bacterial genome with an approximate genome size of 5 Mbp. 
Calculating the data volume needed for a 50x coverage of a 5 Mbp genome dataset yields a 
50 x 5 = 250 Mbp dataset. When using long reads with approximately 10 Kbp read lengths this 
dataset comprises 25,000 reads. For de novo assembly every read is compared against every other 
read leading to 25,0002 = 625,000,000 comparisons for a dataset containing a simple bacterial 
genome. Then, if every read is 10 Kbp long and assuming optimal global alignments, pairwise 
comparison requires a 10,000 x 10,000 dynamic programming matrix to compare all bases and 
find the best alignment between the two reads. Hence (6,2 x 108) x (1 x 104) x (1 x 104) = 6,2 x 1016 
(62 quadrillion base comparisons) (Figure 8, bacteria). Although modern alignment 
algorithms are much more sophisticated compared to this exemplified brute force alignment 
strategy, it does clearly indicate the challenge modern alignment algorithms are facing. 
For a diploid human genome (total genome size 6 Gbp), using similar data specifications, 
all reads vs. all reads alignment quickly skyrockets to a staggering 9 x 1014 read comparisons, 
and (9 x 1014) x (1 x 104) x (1 x 104) = 9 x 1022 base comparisons using 30 million 10 Kbp reads 
(Figure 8, human). 

Classical assembly strategies reconstructing the human genome have used thousands of CPU 
hours and over 100 Gb memory to finish the assembly of the human genome10. This implies that 
assemblies for truly large genomes, such as for plants that have high ploidy, require the entire 
lifespan of a specialized computer cluster to finish all comparisons (Figure 8, Tulipa gesneriana). 
Moreover, the lack of scalability puts a large pressure on both time and resources, making it 
unfeasible to reconstruct truly large genomes in a standardized fashion.
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In chapter 2 and 4 we have proposed an alternative strategy for larger genomes, where we have 
decreased the search space by strategically selecting short sequences, reads restricted to a fixed 
size are called seeds. Those seeds can be selected from alternative sequencing technologies, such 
as Illumina reads, or randomly sampled from long read sequencing data. Applying this alternative 
method to the example above reveals the release of resource pressure during de novo assembly 
and the scalability towards truly large genomes (Figure 8, “reads vs seeds” in blue).

All reads vs all reads alignment search-space increases exponentially, hence computationally infeasible for truly large genomes. 
Restricting reference data towards coverage and read length reliefs resource pressure significantly

 

Figure 8 Illustrating the exponential growth for all reads versus all reads using 50x coverage and 10 kbp reads. 
Genomes from small to large; bacterial genome ~5 Mbp, fungal genome ~100 Mbp, human (diploid) genome ~6 Gbp, 

Tulipa gesneriana genome (diploid) ~68 Gbp. Restricting reference data transforms the exponential search-space-growth 
during alignment to a nearly linear fashion and highlights the scalability particularly for truly large genomes (in blue).
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Reference-based assembly, de novo and hybrid de novo assembly 
Assembly has been a cornerstone in reconstructing amplicons and full genomes, the 
development of third generation sequencing data has been beneficial for, among others,
identification of structural variation. The most straightforward assembly method is 
reference-based assembly, where the genomic architecture of the organism of interest has been 
reconstructed in previous studies. This reference assembly is then used as a guide to reconstruct 
the sequencing data set, allowing for a swift and relatively simple assembly task. However,
most organisms that are of scientific interest do not have published assembly references and 
require a full reconstruction of the genetic code solely based on the sequencing data set. 

Such assembly is referred to as de novo assembly. NGS de novo assemblies usually yield high 
quality assemblies due to the high per base quality of those platforms. However, those kinds of 
sequencing data lack the ability to span over large repetitive regions and hence usually result in 
highly fragmented assembly results. Therefore, combining both short and long-read sequencing 
data provides the best of both worlds, referred to as hybrid de novo assembly.

Hybrid de novo assembly on the one hand provides a high quality yet highly fragmented backbone 
assembly, and then uses the comprehensive structural information delivered by third generation 
sequencing data to bridge gaps caused by large repetitive regions. During the past decade 
numerous assembly tools have been developed, some focusing on structural correctness and 
contiguity, others on relieving computation pressure and down scaling required resources. 
A definite gold-standard workflow has not fully emerged. The current gold-standard in finding 
the correct assembly method is to perform multiple assemblies and compare assembly results 
in order to answer the research question at hand13, 14, 24-26. 

Error correction
Resolving misclassified bases in the final genome assembly is another relatively resource 
intensive part of the assembly workflow for third generation sequencing data. A large variety 
of correction tools have been developed and essentially provide two flavors; first self-correction, 
where copies of long reads are aligned against each other and errors in a single copy are corrected 
using a majority vote. Those high quality long-reads are then used as input for de novo 
assembly and decrease the assembly complexity since the assembly graph does no longer 
contain split paths due to sequencing errors. PacBio yields HiFi reads based on this 
self-correction approach.

The second flavor uses data from multiple platforms, and similar to hybrid de novo assembly, 
combines the best of two worlds, long reads that provide structural information captured within 
the read itself can link contigs generated from NGS data. Those regions are then corrected based 
on the high quality of short-read sequencing data. Hybrid correction currently outperforms most 
self-correcting methods in terms of rescuing base misclassification. It is worth mentioning that 
hybrid correction usually requires lower memory resources despite higher CPU usage and requires 
the same organism to be sequenced through multiple platforms11-12. 
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The cost of genome sequencing
Starting off in the 90’s the human genome project was one of the first large scale sequencing 
projects, aiming to fully reconstruct the human genetic code. It took approximately 13 years, 
thousands of researchers and roughly $3 billion to reconstruct the chromosomes. A decade ago, 
that price had dropped to $10K, and the last couple of years prices have decreased even further 
around $600 per human genome. The speeds at which sequencing cost is declining outpaces 
Moore’s law, which states that the number of transistors on microchips double every two years, 
which translates to double computer power every two years. Technology improvements that 
follow the trend defined by Moore’s Law are known to perform exceedingly well, Moore’s Law is 
therefore a suitable comparison evaluating sequencing cost33. the National Human Genome 
Research Institute (NHGRI) has collected pricings for sequencing human genomes over time, 
see Figure 9. Here we clearly observe the drastic outpace of Moore’s Law, particularly since 2008 
where a prominent shift occurred moving away from Sanger sequencing and introducing NGS 
sequencing data technologies. 

Comparison of well-defined Moore’s law and sequencing cost, indicating the astonishing speed at which sequencing is evolving

 

Figure 9 Sequencing cost (in blue) compared to Moore’s law (in gray), developing technologies that follow 
Moore’s law are known to perform exceedingly well. The outpacing of this law is a strong indication of the promising 

impact of sequencing technology and its applications. Figure adopted from27.



29

To collect sequencing data researchers either send their isolated DNA to companies or obtain 
sequencing facilities inhouse. Using sequence service providers has been the gold-standard for 
many laboratories and institutes that do not have a core focus on genome analysis. The benefit 
of outsourcing sequencing projects is that per-base genome sequencing has become affordable 
and the per-base sequencing cost is now at the level of cents per base. Although it is true that 
sequencing cost has declined incredibly, there are considerable discrepancies in the total cost of 
genome sequencing, which stem from commercial purposes where media and even academic 
literature attempt to highlight technologies and platforms most opportunistically. A clear 
overview of the total sequencing expense therefore remains absent due to large variation 
between sequencing devices and release models, chemistries, bulk-ordering and sequencing 
service offers. However, to get an initial impression on the total sequencing cost the two most 
significant factors are equipment and chemistry (operation). The table below is a brief overview 
of those two costs. Price estimations are based on the most expensive variation reported, 
hence no bulk-ordering, special offers or discounts are taken into consideration.

Table 1 Two major factors for total sequencing cost, sequencing device (estimated regardless of machine type 
and release model) and chemistry (flow cells and library prep kits).

It also must be taken into consideration that to acquire sequencing devices, such as for Illumina 
and PacBio, additional environmental factors might have to be considered, such as temperature, 
humidity, air quality, cooling, and/or floor reinforcement. This could significantly contribute to 
the total cost for sequencing. ONT devices do not demand stringent environmental control 
requirements, only requiring temperatures between 18 and 24°C and thereby provide an 
advantage economically as well as facilitating user friendliness.
 

  Illumina   PacBio  Oxford Nanopore Technologies

Seq device ~ $100K – 1M  ~ $1M  ~ $2 - 50K

consumables $6K   $4K  $1.5 -3K
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— Thesis outline

In this thesis I evaluate what the impact of Oxford Nanopore Technologies on different genome 
sequencing applications is. I aimed to investigate whether the distinctive properties of long-read 
sequencing can be useful for several sequencing applications, with an emphasis on downstream 
bioinformatics analyses.

Chapter 2
We ask whether there is a large impact of the development of the ONT platform on genome 
assemblies using a wild yeast isolate. This yeast isolate contains GC-biased regions which make 
it difficult for sequencing technologies to generate homogeneous coverage. Additionally, 
this genome contains abundantly present duplications and repetitive content that yields 
fragmented assemblies using NGS data alone. We therefore additionally utilize long read 
sequencing data to close gaps and to resolve repetitive content.

Chapter 3
Here we investigate the genomic structure of an Allorhizobium strain (LBA9072) that was 
formerly considered Agrobacterium. Agrobacterium genomic architecture is usually of moderate 
complexity, including a couple of large chromosomes, a tumor-inducing plasmid, and additional 
plasmids of unknown function. Agrobacterium is extensively used for genetic engineering since 
this plant-pathogen can transfer and integrate parts of its own genome into the genome of the 
host plant. The genomic architecture of this strain contains many repetitive sequences; 
hence it deviates from most well-studied Agrobacterium strains. Those repetitive regions are 
larger than the longest NGS reads, additionally the architecture of microbial genomes is very 
dynamic between related strains and species. Both arguments suggest that long-read 
sequencing data might be needed to fully reconstruct the genomic content.
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Chapter 4
In this chapter we ask whether the MinION can be used to sequence large eukaryotic genomes. 
The throughput of the MinION has increased rapidly since its introduction, making this a 
possibility in theory. However, the data characteristics and quality require a rethink of the 
de novo assembly process. We have sequenced the genome of the endangered European eel 
(medium-large genome size) and assembled those data with a novel assembly algorithm that is 
tailored for large eukaryotic genomes. We have evaluated the assembly algorithm performance 
and compared total assembly length and structural correctness to the draft assembly genome 
generated using short reads alone. Additionally, we evaluated genome completeness, 
contiguity, and structural correctness, as well as the computational resources reuired.

Chapter 5
In this study we evaluate the utility of ONT sequencing to characterize microbial diversity in 
seawater from multiple locations. We test whether it is possible to characterize organisms at the 
species level, and if it supports the reconstruction of large contigs or entire genomes. 
We aimed to establish an initial workflow for environmental samples to assess the portable 
characteristics of the MinION device, using minimal resources and computing capacity. 

Chapter 6 
Finally, I summarize and discuss the preceding chapters, and highlight the overall 
conclusions regarding the applicability of ONT sequencing data towards large and complex 
genome reconstruction. Furthermore, I glance into future applications of 
long-read sequencing.
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— Abstract

Background
The introduction of the MinION sequencing device by Oxford
Nanopore Technologies may greatly accelerate whole genome sequencing.
Nanopore sequence data offers great potential for de novo assembly of
complex genomes without using other technologies. Furthermore, Nanopore
data combined with other sequencing technologies is highly useful for accurate
annotation of all genes in the genome. In this manuscript we used nanopore
sequencing as a tool to classify yeast strains.

Methods
We compared various technical and software developments for the
nanopore sequencing protocol, showing that the R9 chemistry is, as predicted,
higher in quality than R7.3 chemistry. The R9 chemistry is an essential
improvement for assembly of the extremely AT-rich mitochondrial genome. 
We double corrected assemblies from four different assemblers with PILON and
assessed sequence correctness before and after PILON correction with a set of
290 Fungi genes using BUSCO.

Results
In this study, we used this new technology to sequence and de novo
assemble the genome of a recently isolated ethanologenic yeast strain, and
compared the results with those obtained by classical Illumina short read
sequencing. This strain was originally named Candida vartiovaarae (Torulopsis
vartiovaarae) based on ribosomal RNA sequencing. We show that the
assembly using nanopore data is much more contiguous than the assembly
using short read data. We also compared various technical and software
developments for the nanopore sequencing protocol, showing that
nanopore-derived assemblies provide the highest contiguity.

Conclusions
The mitochondrial and chromosomal genome sequences
showed that our strain is clearly distinct from other yeast taxons and most
closely related to published Cyberlindnera species. In conclusion,
MinION-mediated long read sequencing can be used for high quality de 
novo assembly of new eukaryotic microbial genomes.

Keywords Nanopore sequencing, de novo genome assembly, wild type yeasts, 
ethanologenic, Candida, Cyberlindera
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— Introduction

With the development of robust second generation bioethanolprocesses, 
next to the use of highly engineered Saccharomyces cerevisiae strains1,2, 
non-classical ethanologenic yeasts are also being considered as production 
organisms3,4. In particular, aspects concerning the ability to use both C6 and 
C5 C-sources and feedstock derived inhibitor resistance have been identified 
as important for the industrial applicability of different production hosts3. 
In our previous studies we have identified a novel ethanologenic yeast, 
Wickerhamomyces anomala, as a potential candidate3. Based on this research, 
a further screen for alternative yeast species was initiated (Punt and Omer, 
unpublished study). Here we describe the isolation and genomic 
characterization of one of these new isolates, which was typed as 
Candida vartiovaarae based on ribosomal RNA analysis.

With the arrival of next generation sequencing and the assemblers that can 
use this type of sequencing data, whole genome shotgun sequencing of 
completely novel organisms has become affordable and accessible. 
As a result, a wealth of genomic information has become available to the 
scientific community leading to many important discoveries. 
While generating whole draft genomes has become accessible, these 
genomes are often fragmented due to the nature of these short read 
technologies5. Assembling short read data into large contigs proved to be 
difficult because the short reads do not contain the information to span 
repeated structures in the genome. Approaches to sequence the ends of 
larger fragments partially mitigated this problem6.

The new long read platforms from Pacific Biosciences and Oxford 
Nanopore Technologies made it possible to obtain reads that span many 
kilobases7. Assemblies using this type of data are often more contiguous 
than assemblies based on short read data8,9.

We have employed the Oxford Nanopore Technologies MinION device 
to sequence genomic DNA from the isolated Candida vartiovaarae strain. 
The same DNA was also used to prepare a paired end library for 
sequencing on the Illumina HiSeq2500. The sequence data were used 
in various assemblers to obtain the best assemblies.
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— Materials and methods

Strain selection and cultivation conditions
In our previous research3, a screening approach was developed to select for potential 
ethanologens using selective growth on industrial feedstock hydrolysates. Based on this 
approach, a previously identified microflora from grass silage was screened for growth on 
different hydrolysates from both woody and cereal residues. From this microflora, 
a strain was isolated (DDNA#1) after selection on a growth medium consisting of 10% 
acidpretreated corn stover hydrolysate, which was shown to be most restrictive in growth 
due to the presence of relatively high amounts of furanic inhibitors.

DNA purification
Cells were grown at 30°C on plates with YNB (without amino acids) medium supplemented
with 0.5% glucose. Cells were scraped from plates and resuspended in 5 ml TE. High MW
chromosomal DNA was isolated from yeast isolate DDNA#1 and Saccharomyces cerevisiae S288C 
using a Qiagen Genomic-tip 100/G column, according to the manufacturer’s instructions.

Pulsed field gel electrophoresis
In order to determine the size of intact chromosomes of DDNA#1, a BioRad CHEF Genomic 
DNA Plug Kit was used. Briefly, yeast cells were treated with lyticase and the resulting
spheroplasts were embedded in low melting point agarose. After incubation with RNase A and 
Proteinase K, the agarose plugs were thoroughly washed in TE. The DNA in the agarose plugs 
was separated on a 0.88% agarose gel in 1xTAE buffer on a Bio-Rad CHEF DRII system. The DNA 
was separated in four subsequent 12 hour runs at 3V/cm; run one and two used a constant 
switching time of 500 seconds, and in run three and four the switching time increased from 
60 seconds to 120 seconds. The gel was afterwards stained with ethidium bromide and imaged.

Genome size estimation and heterozygosity
A k-mer count analysis was done using Jellyfish10 v2.2.6 on the Illumina data. From the paired 
end reads, only the first read was truncated to 100 bp to avoid the lower quality part of the read. 
The second read was omitted from this analysis to avoid counting overlapping k-mers. 
Different k-mer sizes were used ranging from k=17 to 23. After converting the k-mer 
counts into a histogram format, this file was analyzed using the Genomescope11

tool, available at http://qb.cshl.edu/genomescope/ and 
https://github.com/schatzlab/genomescope.

Illumina library preparation, sequencing and quality control
High molecular weight DNA from both DDNA#1 and Saccharomyces cerevisiae S288C was 
sheared using a nebulizer (Life Technologies). The sheared DNA was used to make genomic
DNA libraries using the Truseq DNA sample preparation kit, according to the manufacturer’s 
instructions (Illumina Inc.). In the size selection step, a band of 330–350 bp was cut out of
the gel to obtain an insert length of ~270 bp. From the resulting libraries, 4.5 million fragments 
were sequenced in paired end reads with a read length of 150 nt on an Illumina HiSeq2500, 
according to the manufacturer’s instructions. 
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The HiSeq control software (HCS) and real time analysis (RTA) software, versions were 2.2.38 
and 1.18.61, respectively, were used. To ensure data integrity we have visualized read quality 
distributions with FastQC12 v0.11.7 and merged overlapping paired end reads, including 
trimming of low quality regions, using flash13 v1.2.11. Only trimmed and merged reads are 
used as input data for both Spades14 assemblies and assembly polishing.

MinION library preparation, sequencing and quality control
The genomic DNA was sequenced using nanopore sequencing technology. First the DNA 
was sequenced on R7.3 flow cells. Subsequently, multiple R9 and R9.4 flow cells were used to 
sequence the DNA. For R7.3 sequencing runs, we prepared the library using the SQK-MAP006 
kit from Oxford NanoporeTechnologies. In short, high molecular weight DNA was sheared with 
a g-TUBE (Covaris) to an average fragment length of 20 kbp. The sheared DNA was repaired 
using the FFPE Repair Mix, according to the manufacturer’s instructions (New England Biolabs). 
After cleaning the DNA with bead extraction, using a ratio of 0.4:1 Ampure XP beads (Beckman 
Coulter) to DNA, the DNA ends were polished and an A overhang was added with the NEBNext 
End Prep Module (New England Biolabs). 
Then, prior to ligation, the DNA was again cleaned by extraction using a ratio of 1:1 Ampure 
XP beads to DNA. The adaptor and hairpin adapter were ligated using Blunt/TA Ligase 
Master Mix (New England Biolabs). The final library was prepared by cleaning the ligation 
mix using MyOne C1 beads (Invitrogen).

To prepare 2D libraries for R9 sequencing runs, we used the SQK-NSK007 kit from Oxford 
Nanopore Technologies. The procedure to prepare a library with this kit is largely the same
as with the SQK-MAP006 kit. 1D library preparation was done with the SQK-RAD001 kit from 
Oxford Nanopore Technologies, which tags high molecular weight DNA using a transposase. 
The final library was prepared by ligation of the sequencing adapters to the tagmented 
fragments using the Blunt/TA Ligase Master Mix (New England Biolabs). 

The prepared libraries were loaded on the MinION flow cell, which was docked on the MinION 
device. The MinKNOW software (v0.50.2.15 for SQK-MAP006 libraries and v1.0.5 for 
SQK-NSK007 and SQK-RAD001 libraries) was used to control the sequencing process and 
the read files were uploaded to the cloud based Metrichor EPI2ME platform for base 
calling. Base called reads were downloaded in fastq format. We filtered the data to a per 
read average maximum error-rate distribution of 10% and a minimum of 10 kbp for quality 
and length, respectively. Only reads that meet these filtering thresholds were used for 
assemblies and post-assembly error correction.

Genome assembly and assembly correction
The sequence data from the Illumina platform was assembled using Spades v3.6.0, 
we performed a two-branch assembly strategy using either exclusively Illumina data 
or a hybrid approach combining both Illumina and nanopore data sets. 
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A set of four different assemblers is used to generate contigs exclusively based on nanopore 
data, Canu15 v1.3, Miniasm16 v0.2, TULIP17 v0.4 and Smartdenovo18 v1.07. These assemblers 
perform all vs. all alignments on filtered nanopore data to generate the final contigs, with the 
exception of TULIP, which aligns reads to a set of random 1,000 bp seed sequences comprising 
0.5 times the estimated ~12 Mbp genome size. Contigs of all assemblers were post-assembly 
corrected using Racon19, excluding Canu generated contigs, since Canu contains an integrated 
self-correction procedure prior to assembly. To obtain optimum sequence correctness the 
resulting contigs of these four assemblers were polished with Illumina data using PILON20 v1.18 
in a double iterative fashion. The sequencing data, including the final assembly, has been 
submitted to the European Nucleotide Archive and can be accessed at 
http://www.ebi.ac.uk/ena/data/view/PRJEB19912.

Genome assembly assessment based on gene prediction
As successful sequence polishing plausibly improves the accuracy of gene prediction, 
we assessed both assembly quality and PILON correction effects using BUSCO21 v3.0.2. 
We assessed our nanopore exclusive assemblies both before and after PILON correction using 
lineage database Fungi 0db9 containing 290 genes. BUSCO genome assembly assessments 
on Spades contigs correspond to assessments after PILON correction for nanopore derived 
contigs, since Spades contigs are based on Illumina data and do not require a post-assembly 
PILON correction. BUSCO identifies genes in genomic assemblies either as partial, single or 
double copy, or completely absent.

Full genome comparison
From 26S ribosomal RNA sequences available in the nucleotide database, Chen et al.22 have 
constructed a phylogenetic tree. From that phylogenetic tree we have observed that the 
closest relative for which whole genome sequences are available is Cyberlindnera jadinii. 
To compare our draft genome assembly to this yeast species, we retrieved assemblies of 
two Cyberlindnera jadinii strains, namely NBRC 0988 (GenBank accession number, 
DG000077.1) and CBS1600 (GenBank accession number, CDQK00000000.1). We also 
used Saccharomyce cerevisiae S288C (GenBank accession number, GCA_ 000146045.2) 
in this comparison. We aligned those assemblies to the corrected draft assembly of our strain 
using MUMmer’s alignment generator NUCmer23 v3.1). NUCmer’s output was filtered and 
the filtered results parsed to MUMmerplot, generating full-genome visualization 
between the pairs of different yeast species. Since Spades assembly-lengths are roughly 
twice the estimated genome size we additionally evaluated alignments between Spades 
hybrid and TULIP contigs. Alignments were performed using BWA-mem24 v0.7.15 with 
-x ontd2 settings and visualized using genome viewer Tablet25 v1.17.08.17.

Read mapping to mitochondrial genome
Reads generated on the Illumina platform were aligned to the published Candida 
vartiovaarae mitochondrial genome (Genbank accession number, KC993190.1) using 
Bowtie226 v2.2.5. Reads generated on the MinION platform were aligned using Minimap227 
v2.3-r546-dirty. Resulting bam files were sorted and viewed in IGV viewer v2.3.
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Figure 1 Pulsed field gel electrophoresis of Candida vartiovaarae DDNA#1 chromosomes. 
In lane 1, the chromosomes of Saccharomyces cerevisiae were loaded as a marker. Sizes of the chromosomes in 

the marker lane are indicated. In lane 2, thechromosomes of Candida vartiovaarae DDNA#1 were loaded.
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— Results and discussion

Pure cultures of candidate ethanologenic yeasts
From a screen on 10% acid-pretreated corn stover hydrolysate, about 70 individual clones 
were obtained, only five of which were able to grow well on purely synthetic YNB-based 
medium. To determine the taxonomic status of these clones, chromosomal DNA was 
isolated and used for PCR amplification of the ribosomal ITS sequence using ITS-specific 
primers28 (ITS1 andITS4). BLAST analysis of these ITS sequences of all 5 isolates revealed a 100% 
identity to Candida vartiovaarae (Torulopsis vartiovaarae: NCBI accession number KY102493)

All five isolates were grown on different C-sources and showed growth on glucose, 
mannose, cellobiose, xylose and glycerol, while growth on L-arabinose was variable. 
No significant growth was found on galactose and rhamnose. Good growth (on glucose) 
occurred between 20–30°C, at pH3-7 (optimum 25°C, pH4-5). Based on the results, 
we concluded that all five isolates originated from a single source in the grass silage 
sample. Subsequent experiments were therefore carried out with a single isolate now 
named DDNA#1.

Pulsed field gel electrophoresis
As a further means to validate our assembled contigs and determine if they match the 
actual chromosome length, we have separated the chromosomes on an agarose gel using 
pulsed field gel electrophoresis. The gel image in Figure 1 shows five bands that represent the 
chromosomes of this yeast strain. The smallest band has a length that corresponds to the 
length of the mitochondrial genome (33 kbp). Additional fragments of 450, 1200, and 1500 kbp 
are also found. The intensity of the band that runs above the 2200 kbp marker band suggests 
that it actually contains more than one distinct fragment. To make the genome size fit to the 
estimate derived from the assembly and k-mer analysis (~12.5 Mbp), three ~3 Mbp 
chromosomes should be postulated. The uncertainty in chromosome size estimate based on 
pulsed field electrophoresis gels is high because of the large chromosome size and the fact that 
it is difficult to determine if more than one fragment is present in the gel at a given position. 
Our conclusion that the top band represents three or more chromosomes is in agreement with 
the genome sequences of two related C. jadinii strains, namely CBS1600 and NBRC 0988.
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Genome size estimation and heterozygosity
The Illumina sequence data of our DDNA#1 isolate were submitted to the Genomescope 
software package to analyze the k-mer count distribution, using k-mer size = 19 at an 
average coverage of 28.0x (Figure 2). The ‘haploid’ genome is predicted to contribute to the 
most abundant fraction, which corresponds with the second peak (dotted line) in the plot 
(Figure 2). The first peak corresponds to sequence occurring exactly half as frequently as 
the main peak, so these are plausibly haplotypes. Due to the nature of k-mer counting, 
this peak often appears higher than the main peak, because a single SNP will affect all k-mers 
overlapping that position. The first two peaks contain about 10 Mbp of sequence. Additional 
peaks at higher coverage indicate duplications and repetitive DNA that are quite abundant, 
but correspond with less sequence than the second peak. Genomescope estimated a haploid 
genome size of between 12.00 and 12.01 Mbp. Additionally, Genomescope revealed 3.6% 
variety across the entire genome indicating that the genome of C. vartiovaarae has strong 
heterozygous properties (Table 1). A likely possibility is that areas in the genome are replicated 
and slightly diverged in sequence. This could also explain why we see a large tail of repeated 
k-mers (Figure 2). It could also explain why our assembly still remained fragmented despite the 
relatively large amount of nanopore data that was used in the assembly.
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Figure 2 Genome size estimation generated by Genomescope, providing a k-mer analysis (k = 19, from Jellyfish) 
to estimate haploid genome size, fraction of heterozygosity and coverage. 

Genomescope attempts to find k-mer count peaks, low and high coverage peaks indicating hetero- and 
homozygosity. (A) We find ~13× and ~28× coverage for hetero- and homozygous fractions in our dataset. 

Exact peakpositions are determined with a log transformation. Evaluating the slope between coverage points reveals 
the peak positions indicating hetero- and homozygosity, for lower and higher coverage, respectively.

Table 1 Most important metrics from Genomescope.

k = 19      k-mer coverage   28.0

property     min    max

Heterozygosity (%)    3.64    3.65

Genome Haploid Length (bp)   11,995,570   12,010,675

Genome Repeat Length (bp)   2,179,917   2,182,662

Genome Unique Length (bp)   9,815,653  9,828,014

Model Fit (%)     98.26    98.89

Read Error Rate (%)    0.13    0.13
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Illumina and MinION de novo genome assembly
We took six approaches to assemble the genome of DDNA#1, five assemblies based on 
sequencing data from a single platform (either Illumina or nanopore) and one hybrid 
assembly. The first approach used reads exclusively produced by the Illumina platform. 
After merging paired end reads we obtained ~1.7 Gbp of ~240 bp reads. Contigs generated 
by Spades remained short and the overall assembly was heavily fragmented. The N50 of this 
assembly was only ~4.3 kbp, its longest contig ~35 kbp. Spades generated 10,121 contigs and 
the entire assembly length was nearly twice the estimated ~12 Mbp haploid genome size. 
We also assembled Saccharomyces cerevisiae S288 C using a similar short read dataset that was 
made and sequenced in parallel. Here we obtained an assembly that consisted of 768 contigs 
with a longer N50 of 124 kbp.

Assembly comparison of Saccharomyces cerevisiae and DDNA#1 exclusively based on Illumina 
data highlights that Spades clearly struggles to reconstruct the genome of our isolate, possibly 
due to complex SNP arrangements. From these results we take that, even under high coverage 
conditions, ~240 bp reads do not provide sufficient power to resolve complex SNP distributions 
for highly heterozygous genomes. This illustrates the necessity of increased read length to fully 
reconstruct complex genomic structures such as those found in DDNA#1.

Secondly, we used Spades to generate a hybrid assembly that takes both Illumina and nanopore 
data as input. We used ~1.7 Gbp and ~208 Mbp Illumina and nanopore data sets, respectively. 
This hybrid approach performed by Spades resulted in an N50 of ~379 kbp, with the longest 
contig ~1.1 Mbp, and a total of 653 contigs and, although still relatively fragmented, it is 
interesting that it yielded a similar assembly length compared to the assembly exclusively 
based on Illumina data. The improvement of assembly statistics strongly indicates the positive 
effect of longer reads in resolving complicated genomes.

Hereafter, the four remaining approaches are all based on data solely generated by the 
Oxford Nanopore Technologies platform. Assembly lengths in particular are fairly similar 
between all four assemblies and all approximate the estimated ~12 Mbp haploid genome size. 
However, Miniasm, TULIP and Smartdenovo outperform Canu on N50, number of contigs and 
longest contig (Table 2). Lengths of the longest contig from both Smartdenovo and TULIP 
(~2,8 Mbp) corresponds to the suggestion of ~3 Mbp chromosomes shown using pulse field 
gel electrophoresis on intact chromosomal DNA (Figure 1). This suggests that both 
Smartdenovo and TULIP were able to fully reconstruct one of the three largest chromosomes 
of our isolate. Although Smartdenovo results the lowest number of contigs, which is mainly 
due to a filtering step that filters out very short contigs (shortest contig lengths 1,716 bp and 
73,332 bp for TULIP and Smartdenovo, respectively), TULIP generates the highest contiguity 
with N25 and N50 both around 1.6 Mbp compared to Smartdenovo that results in 1.4 Mbp 
and 900 kbp, respectively. Hence based on contiguity we prefer to take the TULIP result as 
the final assembly.

It is clear from these results that assemblies based on exclusively nanopore data achieve 
the most contiguous assemblies, as has been shown previously8,9.
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Assemblers  Canu   Miniasm  TULIP   Smartdenovo  Spades hybrid   Spades

Data type  ONT   ONT  ONT   ONT   ONT and Illumina  Illumina

Reads (#) 11,344   11,344   11,344   11,344   11,344 	 	   8,628,787

Coverage (x)  17	 	 17 	 	 17 	 	 17 	 	 17 	 	   135

GC-cont (%)  46 	 	 46 	 	 46 	 	 46 	 	 46 	 	   47

Bases (#)  208,357,153 	 208,357,153 	 208,357,153 	 208,357,153 	 208,357,153 	   1,688,824,952

Contigs   34 	 	 25 	 	 28 	 	 20 	 	 653 	 	   10.121

Assembly 

length (bp)  11,968,989 	 12,072,133 	 11,325,084 	 11,732,656 	 22,772,746 	   22,356,011

Genome 

size (Mbp)  12.5 	 	 12.5 	 	 12.5 	 	 12.5 	 	 12.5 	 	   12.5

N25 (bp)  959,647 	 1,361,451 	 1,591,600 	 1,429,838 	 824,043 	   7,876

N50 (bp)  805,206 	 1,020,131 	 1,586,208 	 902,730 	 379,588 	   4,318

N75 (bp)  456,000 	 506,710 	 619,623 	 456,270 	 200,675 	   2,041

Max 

length (bp)  1,430,409 	 1,569,347 	 2,792,203 	 2,800,024 	 1,101,756 	   34,707

Mean 

length (bp)  352,029 	 482,885 	 404,467 	 586,632 	 34,874 	 	   2,208

Min 

length (bp)  4,727 	 	 8,316	 	 1,716 	 	 73,332 	 	 128 	 	   128

Table 2 Data characteristics and assembly statistics.
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Figure 3 Coverage plot of the Candida vartiovaarae DDNA#1 mitochondrial genome. 
Reads from both the Illumina, and the nanopore platform were aligned to the Candida vartiovaarae mitochondrial 

genome (Genbank accession number, KC993190.1) to show the difference in coverage between the different 
platforms and chemistry versions.

We also used the nanopore datasets made with the R7.3 and R9 chemistry separately in the 
Canu assembler. The most notable difference between these assemblies is found in the
mitochondrial genome. Only 16 kbp of this 33 kbp genome could be assembled with the R7.3 
data, whereas the R9 assembly contained a complete mitochondrial genome (Genbank 
accession number, KC993190.1). The mitochondrial genome has a very low GC content (21%) 
and in the extragenic regions more A and T homopolymers are found. Very few R7.3 reads 
mapped to this region, but in the R9 dataset there are many more reads that represent this 
region (Figure 3). It has been shown that the R7.3 data especially has a bias against A 
and T homopolymers. Although this bias is still not fully absent29,30, it is reduced for R9 
chemestry, indicating technical enhancement and suggesting improved genomic 
reconstruction even for low complexity regions. Both after long read self-correction using Canu 
as well as for post-asssembly correction using Racon the contig sequences still contain errors15. 
We have used PILON and the complementary Illumina data from this strain to 
correct the assembled contigs twice. Homopolymer streches are paricularly difficult to 
base call accurately due to low complexity and lengths are usually underestimated. 
PILON correction leads to a minor assembly length increase since corrected homopolymer 
lengths adds to the final assembly size.
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Figure 4 BUSCO genomic assembly assessment using Fungi 0db9 database. 
Shown on the X-axis are 5 different assembler used in this study, including a hybrid assembly approach performed by Spades. 
Shown on the Y-axis are the Fungi 0db9 gene counts identified by BUSCO. Dark and light coloring shades indicate before and 

after PILON correction per classification type, respectively.

Genome assembly assessment based on gene prediction
BUSCO identifies the majority of genes from database Fungi 0db9 on nanopore derived 
assemblies. The number of single copy genes identified ranges from 145 to 188, between 45 
and 57 genes are partially recognized, and 53 to 92 genes are classified absent before PILON 
correction (Figure 4). After PILON correction nearly all genes are identified as single copies in 
the results from all four assemblers, giving support for the suggestion (based on genome size) 
that these assemblers yielded haploid genomes. Interestingly, gene identification on Spades
contigs, particularly for our hybrid assembly, identified 269 genes as double copy genes. 
Together with assembly lengths of twice the estimated genome size these results strongly 
suggest that Spades was able to separately assemble both haplotypes forming a diploid 
genome under hybrid conditions. Only 100 and 67 genes are identified as double and single 
copy genes, respectively, for the Illumina exclusive assembly, again indicating the 
necessity of long read data to maximally reconstruct highly heterozygous genomes.
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Genome comparison
We have compared the assembled contigs of our C. vartiovaarae isolate DDNA#1 strain 
to yeast genome sequences that are already deposited in the nucleotide database. 
Comparison of our yeast strain with the well characterized S. cerevisiae assembly showed 
negligible genomic similarity. From 26S ribosomal RNA sequences available in the nucleotide 
database, Chen et al.22 have constructed a phylogenetic tree. The closest relatives for which 
whole genome sequences are available are C. jadinii strains CBS1600 and NBRC 0988. 
An initial comparison between CBS1600 and NBRC 0988 revealed that these two strains show 
high homology (Figure 5A). The genomic similarity between our strain and C. jadinii strains 
CBS1600 and NBRC 0988 is much lower (Figure 5B and Figure 5C, respectively). Assemblies 
exclusively based on nanopore data compared to Spades hybrid assembly strongly suggests the 
diploid properties of our strain, at least to a partial extend. At nearly every position on >90% of 
the TULIP assembly length a Spades hybrid contig is aligned. Figure 6 shows the longest TULIP 
contig and the third longest TULIP contig, ~2.9 and ~1.6 Mbp, respectively, and alignment of 
all possible Spades hybrid contigs. For TULIP contigs sorted on length we observe this double 
coverage behavior for contigs down to ~84 kbp. Shorter TULIP contigs tend to be less 
consistently double covered or even lack coverage of a Spades hybrid contig all together. 
In conclusion, these data show that wild type yeast strains are very heterogeneous, despite a 
high similarity based on ribosomal RNA ITS sequences. Therefore, the data suggest that 
nanopore sequencing is an essential new tool to classify yeast strains.
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Figure 5 Full genome comparisons between different yeast species. 
Dashed lines indicate contigs (start and stop positions) and the area between dashed lines indicates the contig size. 

Blue and yellow dots are hits in reverse and forward orientation, respectively. Diagonal lines indicate sequence and synteny 
conservation across species. (A) Comparison between NBRC 0988 (vertical axis) and Cyberlindnera jadinii strains CBS1600 
(horizontal axis) with 8 kbp as minimal hot length. (B) Comparison between Candida vartiovaarae isolate DDNA#1 (vertical 

axis) and Cyberlindnera jadinii strain CBS1600 (horizontal axis) with 100 bp as minimal hit length. (C) Comparison 
between Candida vartiovaarae isolate DDNA#1 (vertical axis) and Cyberlindnera jadinii strain NBRC 0988 

(horizontal axis) with 100 bp as minimal hit length.
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— Abstract

The assembly of a transposon-enriched in-house Allorhizobium strain 
was improved from 154 contigs to two circular chromosomes and two 
additional plasmids using Oxford Nanopore Technologies (ONT) long-reads. 
We have assembled the sequencing data using assemblers Unicycler, 
Flye and Canu, using hybrid and de novo assembly strategies. 
Assembly differences are specifically apparent for the Canu assembly, 
where the large chromosome was still separated into two distinct contigs 
and unable to circularize a plasmid. Both hybrid and de novo assembly 
results show high sequence similarity compared to a reference, although 
some misassemblies are found within the Canu assembly. The frequency 
and location of two prominently present transposons are identified in 
addition to transposable elements found by the ISfinder tool. 
The lack of sequence similarity between the reference and the final 
assembly around transposon locations suggest that genomic 
diversification is facilitated by transposons.
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— Introduction

Here we investigate the genomic structure of an in-house Allorhizobium strain 
(LBA9072), recently reclassified and previously considered an Agrobacterium strain1. 
Bacteria of the genus Agrobacterium are soil-borne plant pathogens that 
cause crown gall disease and are also used extensively in genetic engineering2, 3. 
Its genome is usually of moderate complexity, consisting of 2 chromosomes 
(both circular), a tumor-inducing plasmid (pTi, usually ~200 Kb) and a larger 
‘cryptic plasmid’ of unknown function, and sometimes additional plasmids4-6. 
This pathogen can transfer and integrate a part of its genome 
(the tumor-inducing T-DNA, found on pTi) into a plant host, reprogramming 
cells to a proliferation state/ phenotype and resulting in plant tumor formation. 
Gene expression patterns of host plants show different characteristics which 
depend on bacterium strain, specialization of strains, plant species and infected 
cell-type7. The genomic structure of Allorhizobium is comparable however 
it contains two circular chromosomes. The genomic structure of the strain 
investigated in this study deviates from most well-studied strains since it 
contains large numbers of transposable elements that occur at multiple 
locations throughout the genome. The lengths of those transposons are longer 
that Illumina sequencing reads, hence preventing whole genome assembly 
using Illumina data alone. Since the genomic structure of bacterial genomes 
is highly versatile it is important to investigating the genomic structure of 
individual strains. In this study we investigate in detail how long-read 
sequencing data enables the assembly of complex genomic content, 
potentially resulting in chromosome-scale contigs. 
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— Materials and method

Illumina sequencing and Velvet assembly on Illumina data
We have generated 99-nucleotide paired-end reads on Illumina HiSeq with 150x coverage 
for our strain LBA9072 and used Velvet (version 1.2.03, k=63) [v1.1] to assemble the genome. 
Assembly statistics were calculated with custom Perl scripts and the assembly graph was 
visualized in Cytoscape [v3.4.0]. 

Initial nanopore sequencing and data processing
We produced long reads from genomic DNA using Oxford Nanopore Technologies (ONT) R6 
and R7 chemistry and aligned the long reads to the contigs exported by Velvet using LAST 
(version 4.60)8. We used simple settings: gap existence and extension penalties, 
mismatch penalty, and match reward all equal to 1. Additionally, we used the parameter 
-m 1000 to increase the alignment hit length until the hit occurs no more than a thousand 
times on the reference. This increases the number of alignments reported by sacrificing 
the precision, leading to a more reliable contig tiling across reads while allowing some 
erroneous alignments in the final report.

ONT sequencing
We have isolated additional genomic DNA from Agrobacterium strain LBA9072 strain using 
QIAGEN gravity-flow columns and produced another sequencing dataset with 400ng high 
molecular weight gDNA using R9.4 chemistry. We used a Rapid kit library preparation 
(SQK-RBK004) according to the manufacturer’s protocols (Oxford Nanopore Technologies, 
Oxford, UK) that allows for swift preparation (approximately 10 minutes) and sequenced 
for 48 hours granting MinKNOW software (v19.06.8) control to the MinION sequencing device. 

Assembly with Unicycler, Flye and Canu
Long-read data used for assembly were filtered on both length and quality. 
The Canu assembly was performed with >1,000 bp reads without quality threshold, 
a minimum overlap of 500 bp and a 1,000 reads target coverage for read correction. 
Unicycler and Flye have been restricted to use reads >3,000 bp that surpass the read quality 
threshold >10 PHRED, on a modest desktop (7 GB RAM and 8 CPU’s) running Ubuntu 16.04 LTS. 
Additionally, we have provided a 5 Mbp genome size estimate. Flye (V2.4.2)9 was used 
to perform de novo assembly using ONT data under default settings and using a minimal 
overlap length of 4,000 bp before considering merging contigs together. Unicycler (V0.4.7)10 
first uses Spades11 to generate a short-read based assembly graph and performs error correction 
using short read data, then uses long reads to scaffold short-read based contigs. 
Here assembly mode ‘normal’ (default) was used which is a setting that produces a balanced 
trade-off between genome completeness and assembly correctness. Gaps between contigs 
from high quality sequences are then filled in with long-reads, error corrected with Racon12 
and polished with Pilon (v1.18)13. Similar data filtering settings were provided, using only 
reads >3,000 bp with qualities >10 PHRED.
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Transposon count and assembly similarity verification using Mauve
Mauve (v2.4.0)14 was used to perform full genome progressive pairwise alignments to 
identify similarity among de novo assembly results, and between assemblies and reference 
strain Agrobacterium vitis S4. For circular assembly sequences we have reordered base positions 
and repositioned the cut generated by the individual assemblers to facilitate homology 
visualization. Additionally, we aligned two transposon sequences to the final Unicycler 
assembly result to identify the number of occurrences and location of those repeat sequences. 

Insertion element identification with ISfinder software
ISfinder15 was used to identify insertion sequences in the Unicycler assembly. ISfinder uses 
BLAST queries against a database of insertion elements to identify the family the insertion 
element originated from, as well as the covered length and homology identity to the reference. 
We have restricted identification to a minimum length of 300 bp, equivalent to a short 
protein of 100 amino acids and exceeding the length of Illumina reads.

Assembly visualizing 
We used the Circos package (v0.69)16 to visualize results in comparison to our Unicycler assembly 
results. We have visualized sequence similarities to genes originating from the Agrobacterium vitis 
S4 reference genome. Genes are aligned to the Unicycler contigs, both start and end positions 
from full and partial alignments are then converted to .bed file format and used as input for the 
Circos visualization. Similarly, we have generated bed files for locations of insertion elements 
identified by ISfinder and locations of two target transposon sequences. Sequencing data 
coverage of both Illumina and ONT sequencing technologies come from alignment files, and 
finally, we have compared the initial Velvet assembly to the Unicycler contigs. We have used bed 
files to report start and end position that we have retrieved from Minimap (V2.17-r954-dirty)17 
alignment files.
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— Results

Illumina sequencing data quality and Velvet assembly

 
Figure 1 A-B Illumina sequencing data quality control of paired-end sequencing data. 

Inspecting high-quality reads reveals sufficient quality for our paired-end dataset (>30 Phred). 
However, sequences are relatively short (max 100 bp in length), and quality drops are observed 
at the start and end of reads following the known sequencing characteristics corresponding to 
Illumina technology sequencing (Figure 1). Those reads are used as input sequences to generate a 
high-quality whole genome assembly using Velvet and combined with ONT sequencing 
data for hybrid assembly.
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Figure 2 High-quality whole genome assembly using Velvet. 
Complicated assembly graph due to present transposons indicated by red nodes. Ribosomal RNA contigs are depicted by a black 
node. The transposon depicted in the red box is split into four nodes due to single nucleotide differences. Contig nodes flanking 

the transposon are indicated in pink, grey indicates short (k-mer sized) nodes connected to neighbouring contigs.

Figure 2 shows contiguous sequences represented as nodes including the direction in which 
nodes are connected to their neighboring sequences (input and output directionality), and graph 
edges represent connections. Nodes that have increased coverage indicate repetitiveness and 
the coverage allows an estimation on how many times that sequence is observed throughout the 
complete assembly.

Velvet assembly graph visualisation and transposon connectivity
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The Illumina-based assembly of strain LBA9072 strain is relatively fragmented, consisting 
of 154 contigs, with an N50 of 197,590 bp and a total assembly length of 5,872,508 bp 
(Velvet version 1.2.03, k=63, Table 3). Inspecting the Velvet assembly revealed the genome 
assembly graph is mainly complicated by the presence of two transposons, one of length 
1,285 bp (Figure 2 zoomed-in section four red nodes) and another of length 935 bp 
(Figure 2 unboxed red node). These repeat contigs are connected to a multiplicity of neighboring 
nodes. The boxed repeat in red is connected to a total of 43 contigs, of which seven are connected 
on both left and right side of the repeat (Figure 2 zoomed-in section). Those 50 connections 
therefore initially suggest that this element is present 25 times throughout the genome. 
From here on it is referred to as the major transposon. The unboxed red repeat is similarly 
connected to a set of eight neighboring nodes and suggest the element is present eight times, 
from here on referred to as the minor transposon.

Sequences of nodes neighboring the major transposon (Figure 2 zoomed-in section pink nodes) 
are connected to tiny segments (Figure 2 zoomed-in section in gray), typically kmers 
representing 1-2 bp that do not result in contigs. A detailed view of neighboring nodes and 
transposon connectivity reveals the difficulty of resolving such context (Figure 2 zoomed-in 
section). Furthermore, the repeat in red itself is already split into 4 nodes, because of single 
nucleotide differences. In addition to this complexity, there are several copies of the 6.4 Kbp 
genes encoding ribosomal RNA (Figure 2 in black). The presence of this ensemble of repeat 
sequences results in the generation of a complex assembly graph, from which not a single 
complete plasmid or chromosome can be easily extracted using Illumina data alone.
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Initial nanopore sequencing and data processing
From an experimental Oxford Nanopore Technologies sequencing run we obtained ~13x coverage, 
13,158 sequencing reads, with a mean length of 5,611 bp and 12,211 bp N50 length. As the length 
of these reads often exceeds the lengths of the repeat elements, they could potentially be used to 
untangle complex contig connections that Illumina data alone cannot resolve (Figure 3 A)

 
Figure 3 A) schematic representation of a long-read that spans over a repetitive element (in red) merging 

two previously unresolved regions (in grey) into a single large contig. B) read alignment count that connect
left and right neighbors of the major transposon, alignment count ranges from one to ten reads and 

for two neighbors no alignment was observed.

Since a typical Velvet contig length is much larger compared to the read-length of this 
sequencing run most alignments are found in the middle of a Velvet contig. For repeat 
resolution we required a minimum of 2 independent reads that span over a repeat and connect 
the flanking contigs, in addition to an approximately correct distance between those contigs. 
Of the 13,158 reads, 483 aligned unambiguously to multiple contigs, and 585 links between 
contigs could be distilled. From those 585 links a subset is used to connect the major 
transposon: we analyzed 25 left and right neighboring nodes that are potentially connected 
to the major transposon (Figure 3 B). Rows represent the ‘left’ neighbors, columns the ‘right’. 
For almost every neighbor, there exist sufficient unambiguous links (between 3 and 10 reads) 
to a single other neighbor. One link has low evidence (a single alignment), and for two neighbors 
no evidence for a connection was observed. In those latter cases, the final placement could not be 
resolved since neighboring nodes themselves were present twice in the genome. 
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Using this linkage information, we were able to give our assembly a significant upgrade. 
However, read-lengths from this sequencing run are insufficient to resolve the 6.4 Kbp 
ribosomal RNA repeat and these manual curations are very labor intensive. Hence using this 
low coverage ONT sequencing dataset a complete assembly remained unobtainable.  

ONT sequencing

  Read length and quality distribution

  

  

 

 

Figure 4 Data quality visualization; quality on Phred scale, where Phred 10 equals 10% error rate. 

Table 1 ONT sequencing data statistics

Statistics   Count

Number of reads   170,955

Number of nucleotides (bp) 599,185,943

Maximum length (bp)  63,311

Mean length (bp)   3,504

Minimum length (bp)  1

Median length (bp)  2,121
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We obtained 600 Mbp in approximately 171,000 reads of sequencing data, which corresponds 
to approximately 120x coverage of a 5 Mbp genome (Table 1). The average read-quality was 
better than 10 on the Phred scale (10% error or less) and mean read-lengths were around 
3,500 bp (Figure 4). Read-length varies between 1 – 63,311 bp in length. These reads were 
filtered on quality and length and then used as input sequences for de novo assembly and 
combined with previously described Illumina sequencing data for hybrid assembly.

Two different assembly strategies
We have tested both long-read-only and hybrid de novo assembly strategies on this strain, 
with Canu and Fly using only ONT reads and Unicycler using both ONT and Illumina data. 
The resulting assemblies are similar in total genome size, number of contigs, contig lengths and 
sequence similarity. Using long-read data we have decreased the number of contigs to 4, 5 and 7 
contigs for Flye, Unicycler and Canu assembly results, respectively, compared to the Velvet 
assembly counting 154 contigs (Table 2). Despite different contig number and N50 lengths, 
total assembly lengths remain similar between all four results. The N50 length is very 
comparable between Flye and Unicycler, but much lower for Canu. Upon closer inspection of 
assembled contigs (Figure 5), the main reason for this appears to be that Canu fails to assemble 
the large single chromosome into a circular contig, but instead outputs two linear contigs. 
In addition, Canu reports a set of smaller contigs (28,042 and 17,253 bp) that have no clear 
counterpart in either the Flye or the Unicycler results (Figure 6 B triple asterisk). 
Finally, since only Unicycler uses sequencing data from two distinct platforms, only Unicycler 
was able to reconstruct the 5,386 bp phiX174 Illumina spike-in viral genome.
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Assembly visualization of two different assembly strategies

 

Figure 5 A) Unicycler assembly yields five circular contigs, one large chromosome and four additional plasmids. 
B) Flye assembly results in four circular contigs, one large chromosome and 3 additional plasmids similar 

in length compared to the Unicycler contigs. 
C) Canu outputs 7 contigs; Canu failed to circularize the large chromosome introducing at least two cuts that generate

 two individual linear contigs. Similarly, a 3 Kbp region is absent from the 190 Kbp plasmid, hence it remains linear.

Table 2 Assembly statistics
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Verifying assembly sequence similarity using Mauve and counting transposon copies
We subsequently investigated the structural quality of the assembled contigs by assessing their 
similarity to an Allorhizobium vitis strain with a fully assembled genome (refered to as S4)18. 
Comparing the assembly results to the S4 reference strain shows overall high sequence and 
structural similarity between all three assembly results. A striking feature is that the assembled 
chromosomes have high similarity to the two chromosomes of the reference, and that the 
largest differences are observed across the plasmids. This suggests that most essential genes are 
conserved on the chromosome and that the bacterium harbors ‘accessory’ genes using plasmid 
sequences. Despite the well-conserved structure between assembly and reference some genomic 
rearrangements are present. Due to those rearrangements and two additional cuts generated by 
the Canu assembler the alignment becomes rather complicated to interpret. A single large 
circular chromosome is presented for both Unicycler and Flye assembly results, whereas Canu 
results two linear contigs. Some genomic rearrangements are confirmed between all three 
assembly results. Among others, around locus 1.6 Mbp on our reference A. vitis S4 we observe a 
small region (Figure 6 A single asterisk) that is reversed and joined on the Unicycler, Flye and Canu 
assemblies (reverse sequences are depicted on the bottom side of the grey horizontal axis). On 
the Canu assembly this region is found at 4.7 Mbp since the two largest contigs are linear, hence 
sequence regions cannot be repositioned to facilitate the visualization (Figure 6 A). Another 
rearrangement is observed around locus 3.8 Mbp on the reference (Figure 6 A double asterisk) and 
corresponds to the same green region around 3.0 Mbp on the Unicycler and Flye assembly, and 
around 3.7 Mbp on the Canu assembly. 
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Figure 6 A) comparing the reference strain A. vitis S4 to all three assembly results. Coloring indicates similarity 

between segments, block heights indicate similarity between sequences. Black lines reveal contig ends and the grey 
horizontal line indicated directionality relative to the reference (forward orientation above the grey axis and reverse 

on the bottom half). B) The same assembly comparison without the S4 reference sequence to facilitate visualization.

A   Assembly structure comparison; Agrobacterium vitis S4, Unicycler, Flye and Canu

B   Assembly structure comparison without the reference strain
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Once we remove the reference strain and reorder the circular chromosomes from Unicycler and 
Flye, the visualization provides a much clearer impression on the quality of the assembly results. 
All three assemblies show high similarity to each other (Figure 6 colored block heights indicate 
sequence similarity). The two large linear Canu contigs are particularly misleading since a typical 
Allorhizobium genome comprises two larger chromosomes. Around 3.7 Mbp there exists a small 
region with low sequence identity between Flye, Unicycler and Canu assembly results (Figure 6 
B asterisk), interestingly this is located on one of the cuts introduced by Canu. Finally, the Canu 
assembly is structurally similar to both Flye and Unicycler results, however, Canu outputs its final 
contigs in reverse order. The start and end regions of Flye and Unicycler contigs are reversed and 
merged on the Canu assembly (Figure 6 B in red and green shaded areas, respectively). 
Furthermore, a low similarity region observed at the same position for Unicycler and Flye 
assemblies, and around the boundary of the first Canu contig (Figure 6 B single Asterix)
 in addition to some very small contigs (Figure 6 B triple Asterix).

From the Velvet assembly we retrieved the sequences of the two most prominent repetitive 
regions. Sequencing data coverage initially suggested those regions were present 25 and 8 times 
throughout the whole genome. By aligning those sequences to the Unicycler contigs we were able 
to verify that there are 25 and 9 copies of those regions respectively (Figure 7), consistent with 
the initial estimates based on the Velvet graph (Figure 2). 

Transposon count on Unicycler assembly

 
Figure 7 transposon count on Unicycler assembly contigs. The two transposon sequences retrieved from the Velvet assembly 

aligned to the Unicycler contigs. We found 25 copies of the major transposon and 9 copies of the minor transposon.
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Canu discontinuities based on ambiguous alignments
When aligning the two longest Canu contigs to the longest Unicycler contig and zooming in to 
the regions where the Canu contigs are disjoint we find either a small gap in between or a small 
overlap of the two Canu contigs. The top track indicates the locations of the Canu cuts on the 
Unicycler contig, followed by the position track in Mbp, the alignment position of gap and overlap 
region of Canu contigs and ambiguous read alignments on those regions (Figure 8 blue for ONT 
data and red for Illumina data). We found ambiguous alignments either in proximity (Figure 8 A) 
or directly on the cut location (Figure 8 B), for the gap and overlap region, respectively. 
This means reads align to the visualized location but also elsewhere in the genome, highlighting 
an unresolvable decision for assemblers based only on these reads. Despite a generous 80 times 
coverage of unambiguously aligned reads on those locations (data not shown) Canu is unable to 
merge the two contigs. A potential explanation for breaking up a contig could be the presence of 
insertion elements. Those elements have a repetitive nature and could cause reads to align 
ambiguously and in turn complicate decision-making processes that eventually lead to the 
introduction of a cut. Insertion elements, among which the major transposon, are situated in 
proximity to the two loci where a cut is introduced (Figure 9 around 1,330 and 3,800 Mbp).

Figure 8 A) Two largest linear Canu contigs aligned to the largest circular Unicyler contig indicated at the top (n1). 
A small gap in between the two linear Canu contigs is present around 1.3 Mbp. 

Ambiguous alignments are represented in blue and red for ONT and illumina sequencing data, respectively. 
Some ambiguities are observed in proximity to the gap region. 

B) Around 3.79 Mbp an overlapping region is present near the Canu cut, ambiguous alignments from both ONT and Illumina 
data, across and around the overlap, offer an explanation why Canu struggles to link those two contigs into a single sequence.

A     Gap region between the two largest Canu contigs B     Overlap of the two largest Canu contigs
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Unicycler assembly visualization and Velvet assembly comparison
Here we depict an overview of the Unicycler assembly contigs compared to our previous Velvet 
assembly results. From outwards to inwards (Figure 9), the position track in Kbp, followed by gene 
homology to the reference strain S4 (black). From the 5,433 genes provided from the 
reference strain we were able to align 4,400 to the Unicycler assembly. 3,993 genes on the n1 
contig, 216 on the n2 contig, 91 on the n3 contig and 99 on the n4 contig. The largest contigs has 
a higher gene homology compared to the plasmid sequences, interestingly the surroundings of 
a few insertion sequences show a clear lack of gene similarity (e.g., around 190 Kbp, 400 Kbp, 
2,500 Kbp, 3,800 Kbp). Interestingly, three of those loci are identified as insertion elements 
that are not classified as either the major or minor transposon. The absent gene similarity around 
those locations suggests that genomic diversification is facilitated by, and therefore found around, 
repetitive regions. Most insertion elements are observed inside the smaller contigs n2, n3 and n4. 
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Assembly, sequencing data coverage, transposon locations, and gene homology overview

Figure 9 
Track 1; Base position (in Kbp). 
Track 2; Shows the Unicycler homology to genes that originate from our reference strain A. vitis.
Track 3; Locations of insertion elements identified by ISfinder on the Unicycler contigs. 
Track 4; Unicycler contigs (excluding n5 that is too small to visualize). 
Track 5; Locations of the major transposon on the Unicycler contigs.
Track 6; Locations of the minor transposon on the Unicycler contigs. 
Track 7; sequencing data coverage (ONT data in blue overlapping Illumina data in red). 
Track 8; Velvet contigs >100 Kbp. 
Track 9; Velvet contigs between 40 and 100 Kbp. 
Track 10; Velvet contigs smaller then 40 Kbp. 
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The third track shows insertion sequences as found by the tool ISfinder. ISfinder identifies 
several different insertion sequences, the major and minor transposon are classified as insertion 
sequences from the IS5 family. However, it only reports a subset of the major and minor 
transposon locations compared to aligning the major and minor transposon sequences to the 
Unicycler contigs using Minimap2 (track five and six). Interestingly, BLAST results of the two 
transposon sequences from the Velvet assembly originate from the Rhizobium sp. 21/90 tumor 
inducing plasmid found in a Himalayan blackberry from Oregon USA at locus 104,603 - 105,694 
and 188,695 – 189,52819. Those hits have >98% identity over the complete transposon region 
and are both annotated as IS5 family transposases. Alignment to the genes from the S4 reference 
did not result in significant hits, unless the similarity threshold was relaxed considerably (only 
82% of the 935 bp was covered with <75% identity). The fourth track indicates the Unicycler 
contigs ordered from large to small (indicated by a blue shade from dark to light). The fifth and 
the sixth track reveal the locations of the major (black) and minor (grey) transposon copies that 
are aligned to the Unicycler contigs. Track seven is an overlay visualization of Illumina (red) and 
ONT (blue) data coverage. Interestingly, a large difference in coverage between ONT and 
Illumina data is observed for plasmid sequences, even though we have not performed a 
read-length selection. Finally, the eighth to tenth track depict the Velvet assembly results 
ordered from large to small contigs. Contigs >100 Kbp are indicated in bright red, followed by 
contigs between 100 Kbp and 40 Kbp and finally in dark red contigs <40 Kbp. The >100 Kbp track 
indicates the large chromosome is nearly complete, only a few gaps are introduced based on 
Illumina data alone. However, due to the repetitive structure some noise remains observed in the 
final track (small contigs overlap with the larger ones). High fragmentation is primarily observed 
for the plasmids, were some contigs range between 100 and 40 Kbp and many <40 Kbp contigs 
are observed. This represents low sequence complexity making it more difficult to assemble 
plasmids accurately. 
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— Abstract

We have sequenced the genome of the endangered European eel using 
the MinION by Oxford Nanopore, and assembled these data using a novel 
algorithm specifically designed for large eukaryotic genomes. For this 860 
Mbp genome, the entire computational process takes two days on a single
CPU. The resulting genome assembly significantly improves on a previous 
draft based on short reads only, both in terms of contiguity (N50 1.2 Mbp) 
and structural quality. This combination of affordable nanopore 
sequencing and light weight assembly promises to make high-quality 
genomic resources accessible for many non-model plants and animals.
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— Introduction

Just ten years ago, having one’s genome sequenced was the privilege of a 
handful of humans and model organisms. Spectacular improvements in 
high-throughput technology have since made personal genome sequencing 
a reality and prokaryotic genome sequencing routine. In addition, sequencing 
the larger genomes of non-model eukaryotes has opened up a wealth of 
information for plant and animal breeding, conservation, and 
fundamental research.

As an example, we and others1–3 have previously established genomic resources 
for the European eel (Anguilla anguilla), an iconic yet endangered fish species 
that remains resistant to efficient farming in aquaculture4, 5. A draft genome2, 
several transcriptomes1, 3–10, and reduced representation genome 
sequencing11 have already shed light on its evolution and developmental 
biology2, 12, 13, endocrinological control of maturation7, 9, metabolism14, disease 
mechanisms10, and population structure15, 16, thereby supporting both breeding 
and conservation efforts. However, compared to established model 
organisms, funds for eel genomics are naturally limited, and consequently 
the quality of current genome assemblies of Anguilla species is modest at 
best by today’s standards (Table 1).

The recent availability of affordable long-read sequencing technology17, 18 
by Oxford Nanopore Technologies (ONT) presents excellent opportunities 
for generating high-quality genome assemblies for any organism19. 
Flow cells for the miniature MinION sequencing device employ a maximum 
of 512 nanopores concurrently for reading single-stranded DNA at up to 
450 nucleotides per second, resulting in several gigabases of sequence during 
a two day run. As the technology does not rely on PCR or discrete strand 
synthesis events, DNA fragments can be of arbitrarily long length. 
The single-molecule reads are of increasingly good quality, with a sequence 
identity of ~75% for the older R7.3 chemistry17, to ~89% for the newer 
R9 chemistry (MinION Analysis and Reference Consortium, in preparation). 
Optionally, DNA can be read twice (along both strands) to yield a consensus 
‘2D’ read of higher accuracy (up to ~94% for R9).

Long-read sequencing technology is also offered by Pacific Biosciences (PacBio). 
This platform employs advanced optics to detect a polymerase operating 
on single DNA molecules, and has been commercially available since 2011. 
Both long-read technologies deliver roughly comparable quality and data 
volumes. PacBio sequencing has the advantages of an established, stable 
platform (which includes bioinformatics), as well as less bias in the error profile. 
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Species   Reference NCBI WGS Assembly methods Contigs/  Contig/scaffold  Scaffold gaps
    reference    scaffolds sum  N50

A. anguilla  2   AZBK01   CLC   969/923 Mbp*   1.7/77.6 kbp   134 Mbp
      bio + SSPACE

A. japonica  34   AVPY01   CLC   1.13/1.15 Gbp*   3.3/52.8 kbp   127 Mbp
      bio + SSPACE

A. rostrata  37   LTYT01   Ray + SSPACE   1.19/1.41 Gbp   7.4/86.6 kbp   223 Mbp

Species   Haploid genome size*  Repetitive fraction*  Heterozygous fraction*

A. anguilla  854.0–866.5 Mbp   15.5–20.0%    1.48–1.59%

A. japonica**  1.022 Gbp    38.7%     2.74%

A. rostrata  799.0–813.0 Mbp   12.2–16.9%    1.50–1.60%

Species   Reference NCBI WGS Assembly methods Contigs/  Contig/scaffold  Scaffold gaps
    reference    scaffolds sum  N50

A. anguilla  2   AZBK01   CLC   969/923 Mbp*   1.7/77.6 kbp   134 Mbp
      bio + SSPACE

A. japonica  34   AVPY01   CLC   1.13/1.15 Gbp*   3.3/52.8 kbp   127 Mbp
      bio + SSPACE

A. rostrata  37   LTYT01   Ray + SSPACE   1.19/1.41 Gbp   7.4/86.6 kbp   223 Mbp

Species   Haploid genome size*  Repetitive fraction*  Heterozygous fraction*

A. anguilla  854.0–866.5 Mbp   15.5–20.0%    1.48–1.59%

A. japonica**  1.022 Gbp    38.7%     2.74%

A. rostrata  799.0–813.0 Mbp   12.2–16.9%    1.50–1.60%

Table 1 Previous genome assemblies of Anguilla species. 
*Not all contigs obtained by de novo assembly were used in scaffold construction.

Table 2 Anguilla genome size predictions. 
*Ranges are the minimum and maximum values reported for three model fits at different k-mer lengths. 

Apparent repetitive sequence decreases with k-mer length, and heterozygosity increases with k-mer length. 
**For A. japonica, the model did not converge in most cases, presumably because of low coverage. These results are for k = 19.
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Advantages of ONT include the much lower equipment cost, and currently 
rapidly improving quality, read length and throughput. Comprehensive 
comparisons of both technologies are scarce20.

In contrast to short reads, long reads offer the possibility to span repetitive 
or otherwise difficult regions in the genome, resulting in strongly reduced 
fragmentation of the assemblies. This potential advantage does require the 
deployment of dedicated genome assembly algorithms that are aware of 
long-read characteristics. In addition, as single-molecule long-read 
technologies (by both PacBio and ONT) do suffer from reduced sequence 
identity, this likewise needs to be addressed by post-sequencing 
bioinformatics21–23. Dealing with these challenges has reinvigorated research 
into genome assembly methodology, resulting in several novel strategies24–28.

However, when dealing with large eukaryotic genomes, the computational 
demands for long-read assembly are often higher than for short reads 
(using De Bruijn-graphs), even though the raw data are more informative of 
genome structure. Especially now that sequencing very large plant and 
animal genomes is finally becoming both technologically feasible and 
affordable, the computational costs may turn out to be prohibitive. 
For example, using the state-of-the-art Canu assembly software25, assembling 
a human genome from long reads takes tens of thousands of CPU hours, 
or several days on a computer cluster (https://genomeinformatics.github.io/
NA12878-nanopore-assembly). As scaling behaviour is approximately 
quadratic with genome size, assembling a salamander29 or lungfish30 genome 
dozens of gigabases long would require several years on a cluster. 

We are currently developing a computational pipeline specifically intended 
for future sequencing of extremely large tulip genomes31 (up to 35 Gbp). 
Named TULIP (for The Uncorrected Long-read Integration Process), its primary 
purpose is to split up such large assembly problems into manageable 
subsets of long reads. Each subset can then be handled by a separate 
downstream de novo assembly process, in theory substituting quadratic scaling 
with nearly linear behaviour. Here, we use a prototype of this algorithm to 
assemble a new version of the European eel genome, based on Oxford 
Nanopore sequencing. The entire computational procedure takes two days 
on a desktop computer, and yields an assembly that is two orders of 
magnitude less fragmented than the previous Illumina-based draft.
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generated 15.6 Gbp of raw shotgun genome sequencing data (see Fig. 1 and Supplementary Table S1). Assuming 
an 860 Mbp haploid size, this corresponds to approximately 18-fold coverage of the genome. The bulk of the 
sequence is in long or very long reads (up to hundreds of thousands of nucleotides), although a fraction is com-
posed of very short reads or artifacts (e.g. 6 bp reads, Fig. 1). We used all raw reads for subsequent genome 
assembly.

Assembly strategy. We assembled the long nanopore sequencing reads using a prototype of an assembly 
strategy we are developing for very large genomes (M. Liem and C. Henkel, in preparation), named TULIP. Briefly, 
it takes two shortcuts compared to the established hierarchical approach21, 25. First of all, like Miniasm27, TULIP 
does not correct noisy single-molecule reads prior to assembly. Secondly, it does not perform an all-versus-all 
alignment of reads, but instead aligns reads to a sparse reference (of ‘seed’ sequences) that is representative for 
the genome. The result is a ‘seed graph’, which can be used to either partition the original long reads into many 
independent subsets for subsequent de novo assembly, or to immediately extract uncorrected scaffold sequences 
from. Here, we have chosen to use the latter functionality, and employed stand-alone post-assembly consensus 
applications to correct the resulting scaffolds.

Figure 2a illustrates all the steps we have taken during de novo assembly of the European eel genome. We 
employed previously generated Illumina shotgun sequencing reads as sparse seeds. Using a k-mer counting table, 
we identified merged read pairs that are suitably unique in the genome. Using strict criteria (see Methods), we 
could select 5019778 fragments of 270 bp, or 873058 of 285 bp, corresponding to 1.58-fold or 0.29-fold coverage 
of the genome, respectively. We subsequently used several random subsets of these fragments as a reference to 
align long nanopore reads against.

Using a custom script, we constructed a graph based on these alignments, in which the seed sequences are 
nodes, and edges represent long read fragments (Fig. 2b). A connection between two seeds indicates they co-align 
to a long read, and are therefore presumably located in close proximity in the genome. In theory, perfect align-
ments of very long reads to unique seeds should be sufficient to organize both sets of data into linear scaffolds.

Figure 1. Nanopore sequencing. Shown are the sequenced fragment size distributions for the (a) R7.3 
chemistry 2D reads, (b) R9 chemistry 1D reads, (c) R9 chemistry 2D reads and (d) R9.4 chemistry 1D reads. 
Dotted lines indicate the minimum (542 bp) and typical (1270 bp) read lengths that can be used for linking 
two seeds in the 0.29× overage 285 bp set. The minimum length is 2 × 285 bp with no more than 10% overlap 
between seeds. The typical length assumes an average of one seed per 985 bp (genome size divided by number of 
seeds).

Figure 1 Nanopore sequencing. 
Shown are the sequenced fragment size distributions for the 

(a) R7.3 chemistry 2D reads,          (b) R9 chemistry 1D reads, 
    (c) R9 chemistry 2D reads and          (d) R9.4 chemistry 1D reads. 

Dotted lines indicate the minimum (542 bp) and typical (1270 bp) read lengths that can be used for linking two seeds in the 
0.29× overage 285 bp set. The minimum length is 2 × 285 bp with no more than 10% overlap between seeds. The typical length 

assumes an average of one seed per 985 bp (genome size divided by number of seeds).
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— Results

Eel genome sizes and previous assemblies
Before launching a genome sequencing effort, an estimate of the size of the genome of interest 
is needed. For the genus Anguilla, several studies have used flow cytometry and other methods 
to arrive at C-values ranging from 1.01 to 1.67 pg (http://www.genomesize.com), corresponding 
to haploid genome sizes in the 1–1.6 Gbp range for both A. anguilla and A. rostrata. We previously 
estimated a genome size of approximately 1 Gbp for A. anguilla, using human cells as a reference2.
Based on their assembled genomes, Anguilla species exhibit a similarly wide range of apparent 
genome sizes (see Table 1). These draft assemblies are all based on previous-generation 
short-read technology, and relied on Illumina mate pairs to supply long-range information used 
in scaffolding. The resulting assemblies remain highly fragmented, with low N50 values even 
considering the technology used. We therefore examined k-mer profiles in the raw Illumina 
sequencing data, which can provide an estimate of the length of the haploid genome32, 33. 
Surprisingly, the predicted genome sizes are considerably – but consistently – smaller than 
previously estimated or assembled (Table 2 and Supplementary Fig. S1). In addition, all three 
examined genomes contain high levels of heterozygosity.

Nanopore sequencing 
We isolated DNA for long-read sequencing from the blood and liver of a fresh female European 
eel. Using three different generations of the ONT chemistry for the MinION sequencer, 
we generated 15.6 Gbp of raw shotgun genome sequencing data (see Fig. 1 and Supplementary 
Table S1). Assuming an 860 Mbp haploid size, this corresponds to approximately 18-fold coverage 
of the genome. The bulk of the sequence is in long or very long reads (up to hundreds of thousands 
of nucleotides), although a fraction is composed of very short reads or artifacts (e.g. 6 bp reads, 
Fig. 1). We used all raw reads for subsequent genome assembly.

Assembly strategy 
We assembled the long nanopore sequencing reads using a prototype of an assembly strategy 
we are developing for very large genomes (M. Liem and C. Henkel, in preparation), named TULIP. 
Briefly, it takes two shortcuts compared to the established hierarchical approach21, 25.
First of all, like Miniasm27, TULIP does not correct noisy single-molecule reads prior to assembly. 
Secondly, it does not perform an all-versus-all alignment of reads, but instead aligns reads to a 
sparse reference (of ‘seed’ sequences) that is representative for the genome. The result is a ‘seed 
graph’, which can be used to either partition the original long reads into many independent 
subsets for subsequent de novo assembly, or to immediately extract uncorrected scaffold 
sequences from. Here, we have chosen to use the latter functionality, and employed stand-alone 
post-assembly consensus applications to correct the resulting scaffolds. 
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Figure 2a illustrates all the steps we have taken during de novo assembly of the European eel 
genome. We employed previously generated Illumina shotgun sequencing reads as sparse seeds. 
Using a k-mer counting table, we identified merged read pairs that are suitably unique in the 
genome. Using strict criteria (see Methods), we could select 5019778 fragments of 270 bp, or 
873058 of 285 bp, corresponding to 1.58-fold or 0.29-fold coverage of the genome, 
respectively. We subsequently used several random subsets of these fragments as a 
reference to align long nanopore reads against. 

Using a custom script, we constructed a graph based on these alignments, in which the seed 
sequences are nodes, and edges represent long read fragments (Fig. 2b). A connection between 
two seeds indicates they co-align to a long read, and are therefore presumably located in close 
proximity in the genome. In theory, perfect alignments of very long reads to unique seeds should 
be sufficient to organize both sets of data into linear scaffolds. 

However, because of the errors still present in long nanopore reads, the alignments are 
imperfect, with missed seed alignments making up the bulk of ambiguities in the seed graph 
(i.e. forks and joins in the seed path). Additional uncertainties are introduced by spurious 
alignments and residual apparently repetitive seeds. The tangles these cause in the graph can be 
recognized locally, and are removed during a graph simplification stage (Fig. 2c). TULIP will visit 
every seed that has multiple in- or outgoing connections, and attempt to simplify the local graph 
topology by removing connections. For example, if a single seeds fails to align to a single 
nanopore read, this will introduce a ‘triangle’ in the graph (Fig. 2c, top example), in which the 
neighbouring seeds now share a direct connection (based on that single read). If the intermediate 
seed fits between the neighbouring seeds, TULIP will then remove the connection spanning the 
intermediate seed. If after this stage a seed still has too many connections, it might represent 
repetitive content and its links are severed altogether (Fig. 2c, second example). 
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However, because of the errors still present in long nanopore reads, the alignments are imperfect, with missed 
seed alignments making up the bulk of ambiguities in the seed graph (i.e. forks and joins in the seed path). 
Additional uncertainties are introduced by spurious alignments and residual apparently repetitive seeds. The 
tangles these cause in the graph can be recognized locally, and are removed during a graph simplification stage 
(Fig. 2c). TULIP will visit every seed that has multiple in- or outgoing connections, and attempt to simplify the 
local graph topology by removing connections. For example, if a single seeds fails to align to a single nanopore 
read, this will introduce a ‘triangle’ in the graph (Fig. 2c, top example), in which the neighbouring seeds now 
share a direct connection (based on that single read). If the intermediate seed fits between the neighbouring 
seeds, TULIP will then remove the connection spanning the intermediate seed. If after this stage a seed still has 
too many connections, it might represent repetitive content and its links are severed altogether (Fig. 2c, second 
example).

Finally, unambiguous linear arrangements of seeds can be extracted from the graph. Figure 3 illustrates a 
small fragment of the actual seed graph, with final linear paths (scaffolds) and removed connections indicated. 
These ordered seed scaffolds do not yet contain sequence data. These can subsequently be added from the orig-
inal nanopore reads and alignments, resulting in uncorrected scaffold sequences. The scaffolds are exported 
bundled with their constituent nanopore reads, and can be subjected to standard nanopore sequence correction 
procedures.

Assembly characteristics. We used several combinations of short seed sequences and aligned nanopore 
reads to optimize the assembly process. In most cases, we did not complete the entire assembly process by adding 
actual nanopore sequence. Therefore, distances between seeds (and scaffold lengths) are means based on multi-
ple nanopore reads. Adding specific sequence (and subsequently correcting scaffolds) can change these figures 
slightly. Supplementary Table S2 lists the assembly statistics for these experimental runs.

Both the contiguity and size of the assembly clearly improve upon adding more nanopore data (Fig. 4a,b). This 
suggests that at 18-fold coverage of this genome, and using the particular blend of data types available here, the 
assembly process is still limited by the total quantity of long read data.

Figure 2. Assembly strategy. (a) Stages in the TULIP assembly of the European eel genome. (b) Graph 
construction based on long read alignments to short seeds. Seeds are included in the graph as nodes if they align 
adjacent to each other to a long read. The apparent distance between the seeds is included as an edge property, 
as is the amount of evidence (i.e. number of alignments supporting the connection). (c) The initial seed graph 
based on alignments contains ambiguities, caused by missed alignments, repetitive seed sequences and spurious 
alignments. These are removed during the initial layout process, resulting in linear scaffolds. Where possible, 
these scaffolds are subsequently linked by further unambiguous long-distance co-alignments to long reads.

Figure 2 Assembly strategy. 
(a) Stages in the TULIP assembly of the European eel genome. 

(b) Graph construction based on long read alignments to short seeds. Seeds are included in the graph as nodes if they 
align adjacent to each other to a long read. The apparent distance between the seeds is included as an edge property, 

as is the amount of evidence (i.e. number of alignments supporting the connection). 

(c) The initial seed graph based on alignments contains ambiguities, caused by missed alignments, repetitive seed sequences 
and spurious alignments. These are removed during the initial layout process, resulting in linear scaffolds. Where possible,

these scaffolds are subsequently linked by further unambiguous long-distance co-alignments to long reads.
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Finally, unambiguous linear arrangements of seeds can be extracted from the graph. 
Figure 3 illustrates a small fragment of the actual seed graph, with final linear paths (scaffolds) 
and removed connections indicated. These ordered seed scaffolds do not yet contain sequence 
data. These can subsequently be added from the original nanopore reads and alignments, 
resulting in uncorrected scaffold sequences. The scaffolds are exported  bundled with their 
constituent nanopore reads, and can be subjected to standard nanopore sequence correction 
procedures.
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For the seeds, we investigated the effects of seed length (270 or 285 bp), as well as seed density (fractions and 
multiples based on the 873058 fragments available at 285 bp). There does not appear to be a clear advantage to 
choosing either 270 or 285 bp seeds. At identical densities, the two possibilities yield comparable assemblies in 
terms of size and contiguity.

For seed density, there does appear to be an optimum. As expected, low densities result in fragmentation and 
incompleteness (Fig. 4c,d). The assemblies with the highest seed density (1.3 or 1.7 million 270 bp sequences) 
do yield the highest N50 and assembly sum, but also exhibit increased fragmentation compared to lower seed 
densities. As Fig. 4c shows, the main difference with those assemblies is the appearance of many small scaffolds at 
high seed numbers. Accidentally, in this case the optimal seed density is around the ‘full’ set of 873058 fragments, 
of either 270 or 285 bp. Both also yield an assembly that is close to the estimated genome length. We selected the 
285 bp version as a candidate for an updated reference genome for the European eel.

Figure 4 summarizes several characteristics of the candidate assembly (before sequence addition or correction). 
The length distribution of the 2366 scaffolds (Fig. 4a) shows they range in size between 431 bp and 8.7 Mbp. The 
lower boundary is expected, as a minimal scaffold has to consist of at least two 285 bp seeds, and the graph con-
struction was executed with parameters allowing limited overlap between seeds. The cumulative scaffold length 
distributions (Fig. 4c) show that a considerable fraction of the genome is included in large scaffolds, with 232 scaf-
folds larger than a megabase constituting 56% of the assembly length. Seeds in the final scaffolds are connected by 
on average 7.4 nanopore read alignments. As can be seen in Fig. 4e, links removed during the graph simplification 
stage (mostly based on local graph topology only) were predominantly those supported by less evidence.

The final assembly retains 637792 seeds of 285 bp, equivalent to a maximum of 181.8 Mbp of Illumina-derived 
sequence. If the seed distribution is assumed to be essentially random (with local genomic architecture responsi-
ble for exceptions), the initial 873058 seeds should be spaced at a mean interval of 700 bp. As seeds are removed 
during simplification, larger ‘gaps’ filled with nanopore-derived sequence should appear. However, as Fig. 4f 
shows, gap lengths are heavily biased towards low and negative lengths (i.e. overlapping seeds). In this case, this 
could be an artifact of the very stringent seed selection procedure.

Figure 3. Graph simplifications. Scaffolds were extracted from a graph consisting of seed sequences (nodes) 
linked by nanopore reads (edges). Here, a small final scaffold (number 2231, 252.2 kbp) is shown in red in the 
context of the initial seed graph (all seeds at a distance of up to ten links from the final scaffold). Fragments of 
ten other scaffolds (blues) are directly or indirectly connected to scaffold 2231 by a few incorrect links (dotted 
lines). Seeds and links removed during graph simplification are shown in grey. Scaffolds can be discontinuous 
in the initial graph, as additional long-distance links are added in a later stage. The graph was visualized using 
Cytoscape (version 3.4.0).

Figure 3 Graph simplifications. Scaffolds were extracted from a graph consisting of seed sequences (nodes) linked by nanopore 
reads (edges). Here, a small final scaffold (number 2231, 252.2 kbp) is shown in red in the context of the initial seed graph (all 
seeds at a distance of up to ten links from the final scaffold). Fragments of ten other scaffolds (blues) are directly or indirectly 

connected to scaffold 2231 by a few incorrect links (dotted lines). Seeds and links removed during graph simplification are 
shown in grey. Scaffolds can be discontinuous in the initial graph, as additional long-distance links are added in a later stage. 

The graph was visualized using Cytoscape (version 3.4.0).
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Assembly characteristics
We used several combinations of short seed sequences and aligned nanopore reads to optimize 
the assembly process. In most cases, we did not complete the entire assembly process by adding
actual nanopore sequence. Therefore, distances between seeds (and scaffold lengths) are means 
based on multiple nanopore reads. Adding specific sequence (and subsequently correcting 
scaffolds) can change these figures slightly. Supplementary Table S2 lists the assembly statistics 
for these experimental runs. 

Both the contiguity and size of the assembly clearly improve upon adding more nanopore data 
(Fig. 4a,b). This suggests that at 18-fold coverage of this genome, and using the particular blend 
of data types available here, the assembly process is still limited by the total quantity of long read 
data. 

For the seeds, we investigated the effects of seed length (270 or 285 bp), as well as seed density 
(fractions and multiples based on the 873058 fragments available at 285 bp). There does not 
appear to be a clear advantage to choosing either 270 or 285 bp seeds. At identical densities, the 
two possibilities yield comparable assemblies in terms of size and contiguity. 

For seed density, there does appear to be an optimum. As expected, low densities result in 
fragmentation and incompleteness (Fig. 4c,d). The assemblies with the highest seed density 
(1.3 or 1.7 million 270 bp sequences) do yield the highest N50 and assembly sum, but also exhibit 
increased fragmentation compared to lower seed densities. As Fig. 4c shows, the main difference 
with those assemblies is the appearance of many small scaffolds at high seed numbers. 
Accidentally, in this case the optimal seed density is around the ‘full’ set of 873058 fragments,
of either 270 or 285 bp. Both also yield an assembly that is close to the estimated genome length. 
We selected the 285 bp version as a candidate for an updated reference genome for the European eel. 

Figure 4 summarizes several characteristics of the candidate assembly (before sequence 
addition or correction). The length distribution of the 2366 scaffolds (Fig. 4a) shows they range 
in size between 431 bp and 8.7 Mbp. The lower boundary is expected, as a minimal scaffold has to 
consist of at least two 285 bp seeds, and the graph construction was executed with parameters 
allowing limited overlap between seeds. The cumulative scaffold length distributions (Fig. 4c) 
show that a considerable fraction of the genome is included in large scaffolds, with 232 scaffolds
larger than a megabase constituting 56% of the assembly length. Seeds in the final scaffolds are 
connected by on average 7.4 nanopore read alignments. As can be seen in Fig. 4e, links removed 
during the graph simplification stage (mostly based on local graph topology only) were 
predominantly those supported by less evidence. 

The final assembly retains 637792 seeds of 285 bp, equivalent to a maximum of 181.8 Mbp of 
Illumina-derived sequence. If the seed distribution is assumed to be essentially random (with 
local genomic architecture responsible for exceptions), the initial 873058 seeds should be spaced 
at a mean interval of 700 bp. As seeds are removed during simplification, larger ‘gaps’ filled with 
nanopore-derived sequence should appear. However, as Fig. 4f shows, gap lengths are heavily 
biased towards low and negative lengths (i.e. overlapping seeds). In this case, this could be an 
artifact of the very stringent seed selection procedure. 
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Assembly quality. In order to assess its completeness and structural correctness, we added nanopore 
sequence to the selected TULIP assembly and aligned it to the Illumina-based draft genome2. As a high-quality 
reference genome for the European eel is not yet available, such a comparison need take into account the possi-
bility of error in either assembly. However, with appropriate caution, agreement between the assemblies – which 
are completely independent in both sequencing data and assembly algorithms – can confirm the integrity of both.

Figure 4. Characteristics of the final assembly. (a) Size distribution of final scaffolds, based on 285 bp seeds. 
Colours indicate alternative assembly runs, using subsets of the long read data. (b) Cumulative size of the final 
scaffolds, sorted by size. (c) and (d) Size distributions and cumulative size distributions for final scaffolds, 
based on both 270 and 285 bp seeds. Colours indicate alternative assembly runs, using different seeds sets. (e) 
Link evidence distribution in the initial graph (purple) and the final graph (orange) for the candidate assembly 
(285 bp seeds). (f) Distances between seeds in the initial graph (purple) and the final graph (orange) for the 
candidate assembly (285 bp seeds).

Figure 4 Characteristics of the final assembly. 
(a) Size distribution of final scaffolds, based on 285 bp seeds. 

Colours indicate alternative assembly runs, using subsets of the long read data. 
(b) Cumulative size of the final scaffolds, sorted by size. 

(c) and (d) Size distributions and cumulative size distributions for final scaffolds, based on both 270 and 285 bp seeds. 
Colours indicate alternative assembly runs, using different seeds sets. 

(e) Link evidence distribution in the initial graph (purple) and the final graph (orange) for the candidate assembly (285 bp seeds).
(f) Distances between seeds in the initial graph (purple) and the final graph (orange) for the candidate assembly (285 bp seeds).
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Assembly quality 
In order to assess its completeness and structural correctness, we added nanopore sequence to 
the selected TULIP assembly and aligned it to the Illumina-based draft genome2. 
As a high-quality reference genome for the European eel is not yet available, such a comparison 
need take into account the possibility of error in either assembly. However, with appropriate 
caution, agreement between the assemblies – which are completely independent in both 
sequencing data and assembly algorithms – can confirm the integrity of both. 

Figure 5a shows a full-genome alignment of the new (uncorrected) nanopore-based assembly 
to the 2012 draft2, based on best pairwise matches. This confirms that at this large scale, 
all sequence in the new assembly is also present in the older assembly. At first sight, the 
converse does not appear to be the case: the Illumina-based draft is 923 Mbp in size, and contains 
approximately 96 Mbp in scaffolds that have no reciprocal best match in the nanopore assembly 
(863.3 Mbp after sequence addition, see Supplementary Table S3). However, the non-matching 
sequences consist almost exclusively of very small scaffolds (mean/N50 664/987 bp). Since the 
Illumina-based draft assembly also contains 134 Mbp in gaps, these small scaffolds are plausibly 
sequences that could not be integrated correctly during the SSPACE scaffolding process34, 35. 
Both assemblies therefore roughly span the entire predicted genome of 860 Mbp.

Figure 5b–f show detailed alignments, based on the 5 largest nanopore scaffolds (6.1–8.9 Mbp 
uncorrected) and their best matches only. These alignments confirm that in this sample both 
assemblies are mostly collinear, with the smaller Illumina draft scaffolds usually aligning 
end-to-end on the larger TULIP scaffolds. Therefore, both presumably reflect the actual 
genomic organization. However, at this level of detail several structural incongruities between 
both assemblies also become apparent (indicated by arrowheads). For 16 scaffolds from the 2012 
draft, only part of the sequence is present in the selected TULIP scaffolds. In other words, at these 
loci both assembly protocols made different choices, based on the available 
sequencing information.

We therefore examined the evidence for the decisions made by TULIP. For each discrepancy, we 
examined the local neighbourhoods in the initial nanopore-based seed graphs (as in Fig. 3). If a 
draft scaffold is correct, at the inconsistency there should be multiple alternatives for the TULIP 
algorithm to choose from (Supplementary Fig. S2). As these subgraphs (Supplementary Figs S3–
S7) show, there is no evidence in the nanopore data for the older draft structure for any of the 16 
cases examined. On the contrary, most local graph neighbourhoods appear relatively simple and 
support unambiguous scaffolding paths. The links at these suspect junctions are supported by at 
least two (average six) independent nanopore reads, which reduces the 
likelihood of accidental connections (caused by e.g. chimeric reads).
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our original TULIP methodology, we were able to assemble the 860 Mbp genome of the European eel using 
18-fold nanopore coverage and sparse pre-selected Illumina reads in three and a half hours on a modest desktop 
computer. Including subsequent sequence correction, the entire process takes two days. This yields an assembly 
that is essentially complete and of high structural quality (Fig. 5).

Figure 5. Full-genome alignment of the final assembly. (a) The final uncorrected scaffolds (N50 = 1.19 Mbp, y-axis) 
were aligned to the 2012 A. anguilla assembly (N50 = 77.6 kbp, x-axis) using nucmer51 with minimum match length 
100, filtered for best pairwise matches between scaffolds (delta-filter -1), and plotted using the mummerplot --layout 
option. The grey area corresponds to small scaffolds in the 2012 assembly that are not part of a best reciprocal 
match. (b–f) More detailed alignments between the five largest nanopore scaffolds (y-axes) and their best matches 
in the 2012 draft assembly (x-axes). Grey vertical lines indicate scaffold boundaries. These figures were generated 
in R (version 3.3.1) based on mummerplot output. 2012 draft scaffolds with minimal contributions to the overall 
alignment were removed manually. Arrowheads indicate discrepancies between both assemblies.

Figure 5 Full-genome alignment of the final assembly. 
(a) The final uncorrected scaffolds (N50 = 1.19 Mbp, y-axis) were aligned to the 2012 A. anguilla assembly (N50 = 77.6 kbp, 

x-axis) using nucmer51 with minimum match length 100, filtered for best pairwise matches between scaffolds (delta-filter -1), 
and plotted using the mummerplot --layout option. The grey area corresponds to small scaffolds in the 2012 assembly that are 

not part of a best reciprocal match. 
(b–f) More detailed alignments between the five largest nanopore scaffolds (y-axes) and their best matches in the 2012 draft 
assembly (x-axes). Grey vertical lines indicate scaffold boundaries. These figures were generated in R (version 3.3.1) based on 

mummerplot output. 2012 draft scaffolds with minimal contributions to the overall alignment were removed manually. 
Arrowheads indicate discrepancies between both assemblies.
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Alternatively, the order of the draft scaffolds in the alignments already suggests which of the 
two assemblies is correct. If one of the 16 problematic scaffolds were to reflect the legitimate 
genome structure, this error in the new assembly would usually also affect the next aligning 
scaffold. However, in almost all cases, the neighbouring draft scaffold aligns end-to-end. 
This suggests that either the TULIP assembly intermittently features very large
rearrangements that accidentally always end at draft scaffold boundaries, or that the 
draft scaffolds are occasionally misconstrued.

The distribution of draft scaffolds along the nanopore-based scaffolds reveals an interesting 
pattern. The distribution of draft scaffold length along the genome is clearly non-random, 
with some regions assembled into just a few large scaffolds, whereas other regions (often up 
to a Mbp in size) are highly fragmented into very small scaffolds. This indicates that using 
short-read technology, certain genomic features are intrinsically harder to assemble than 
using long reads. 

Finally, we assessed the completeness of the nanopore assembly using BUSCO36. This method 
assumes complete assemblies to contain a high fraction of genes that are highly conserved in 
related species. From a set of 2586 common vertebrate genes, BUSCO was only able to recover 
78 complete and 106 fragmented genes (3.0% and 4.1%, respectively). 92.9% of orthologues 
are missing from the nanopore assembly, indicating very poor completeness. In this case, 
however, this is a result of the sequence characteristics of ONT data. 



101

Sequence correction
Currently, the ONT platform does not yield reads of perfect sequence identity. Like with PacBio 
data, therefore, at some point in the assembly process the single-molecule-derived sequence 
needs to be corrected by extracting a consensus from multiple reads covering every genomic 
position. Here, we opted for a standalone post-assembly correction step with Racon, which 
extracts a consensus from nanopore reads23. As some positions in the assembly are based on a 
single nanopore read (Fig. 4e), in this case this correction may not be sufficient. Therefore, we 
subsequently corrected with Pilon, which extracts a consensus based on alignment of Illumina 
reads to the noisy sequence37, 38. 

To assess the changes made by these correction algorithms, we counted and compared the 
occurrence of 6-mers in the draft Illumina-based assembly, the uncorrected TULIP assembly, and 
after correction (Fig. 6). These frequencies reveal several expected patterns17, specifically a slight 
underrepresentation of high CG content in Illumina-based sequence (draft and Pilon), and an 
underrepresentation of homopolymer sequence in nanopore-based sequence (TULIP and Racon). 
Overall, the correction steps bring the sequence similarity of the nanopore-based assembly closer 
to the Illumina-based draft, with the final corrected assembly having a high correlation to the 
draft (Fig. 6 lower left panel).

Sequence correction also has a strong positive impact on the BUSCO completeness assessment. 
As BUSCO relies on the prediction of gene structures, small artefactual deletions and insertions 
might cause it to miss genes. After correction with Racon, the BUSCO scores increased to 10.8% 
complete, 21.6% fragmented and 67.6% missing; correction with Pilon resulted in a further 
increase to 77.5% complete, 14.1% fragmented and 8.4% missing. An additional round of Pilon 
polishing resulted in a BUSCO assessment of 79.8% complete, 12.9% fragmented
and 7.3% missing. 

Sequence correction remains the most time-consuming stage of the assembly process, requiring 
22 and 24 hours (on a single CPU) for Racon and Pilon, respectively (Supplementary Table S3).
As TULIP bundles uncorrected scaffolds with its constituent nanopore reads, this process could 
still be sped up by parallelization, with individual scaffolds distributed over concurrent correction 
threads.
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One of the most striking outcomes of this eel genome sequencing effort is the close match between the genome 
size predicted from k-mer analysis (~860 Mbp) and the TULIP assembly (891.7 Mbp after corrections), and their 
distance from short-read-based assemblies. This can be explained either by the absence of a substantial fraction 
of the genome from the nanopore data or assembly, or by an artificially inflated genome size for the short-read 
assemblies. Full-genome alignment between both assemblies (Fig. 5a) suggests the latter phenomenon is at least 
partially responsible, as only tiny short-read scaffolds are absent from the long-read assembly. Furthermore, 
BUSCO analyses indicate the new assembly is approximately complete.

An analysis of the short-read A. anguilla2 and A. japonica35 assembly procedures implies that the scaffolding 
process, based on mate pair data, is responsible for the introduction of numerous gaps (Table 1). In addition, at 
the time we discarded a considerable fraction of the initial contigs, which was composed primarily of very small 
contigs that appeared to be artefactual (based on low read coverage or very high similarity to other contigs). 
Plausibly, such contigs – and the high residual fragmentation of these assemblies – are the result of the high levels 
of heterozygosity in these genomes (Supplementary Fig. S1).

Similar processes could also explain the even larger discrepancy between the predicted and assembled size 
of the recently published genome39 of the American eel A. rostrata (Table 1). As European and American eels 

Figure 6. Sequence identity in nanopore-based assemblies. The sequence similarity to the older draft of 
different stages of the nanopore assembly process (uncorrected TULIP, corrected by Racon23, and additionally 
corrected by Pilon37, 38) is illustrated by 6-mer frequency counts (generated using Jellyfish46). With every point 
a discrete 6-mer, colours indicate CG-content, and open circles indicate the two homo-6-mers. Scales are 
logarithmic. Also shown are Pearson correlation coefficients between the frequency distributions.

Figure 6 Sequence identity in nanopore-based assemblies. 
The sequence similarity to the older draft of different stages of the nanopore assembly process (uncorrected TULIP, 

corrected by Racon23, and additionally corrected by Pilon37, 38) is illustrated by 6-mer frequency counts (generated using 
Jellyfish46). With every point a discrete 6-mer, colours indicate CG-content, and open circles indicate the two homo-6-mers. 

Scales are logarithmic. Also shown are Pearson correlation coefficients between the frequency distributions.
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— Discussion

In this study, we have evaluated whether it is possible to sequence a vertebrate genome using 
Oxford Nanopore long-read technology, and quickly assemble it by means of a relatively simple 
and lightweight procedure. Using our original TULIP methodology, we were able to assemble the 
860 Mbp genome of the European eel using 18-fold nanopore coverage and sparse pre-selected 
Illumina reads in three and a half hours on a modest desktop computer. Including subsequent 
sequence correction, the entire process takes two days. This yields an assembly that is essentially 
complete and of high structural quality (Fig. 5). 

One of the most striking outcomes of this eel genome sequencing effort is the close match 
between the genome size predicted from k-mer analysis (~860 Mbp) and the TULIP assembly 
(891.7 Mbp after corrections), and their distance from short-read-based assemblies. This can be 
explained either by the absence of a substantial fraction of the genome from the nanopore data 
or assembly, or by an artificially inflated genome size for the short-read assemblies. Full-genome 
alignment between both assemblies (Fig. 5a) suggests the latter phenomenon is at least partially 
responsible, as only tiny short-read scaffolds are absent from the long-read assembly. 
Furthermore, BUSCO analyses indicate the new assembly is approximately complete. 

An analysis of the short-read A. anguilla2 and A. japonica35 assembly procedures implies that the 
scaffolding process, based on mate pair data, is responsible for the introduction of numerous gaps 
(Table 1). In addition, at the time we discarded a considerable fraction of the initial contigs, which 
was composed primarily of very small contigs that appeared to be artefactual (based on low read 
coverage or very high similarity to other contigs). Plausibly, such contigs – and the high residual 
fragmentation of these assemblies – are the result of the high levels of heterozygosity in these 
genomes (Supplementary Fig. S1).

Similar processes could also explain the even larger discrepancy between the predicted and 
assembled size of the recently published genome39 of the American eel A. rostrata (Table 1). 
As European and American eels interbreed in the wild40, a large difference in genome size is 
unlikely – although it could also provide an explanation for the observed limited levels of gene 
flow between the species15. 

The whole-genome alignments between the Illumina draft and the new nanopore-based 
assembly (Fig. 5) also serve to confirm the structural accuracy of both. In a representative sample 
(corresponding to of 4.2% of the genome), we observed 16 apparent assembly errors (Fig. 5b–f). 
In the absence of a high-quality reference, it is not straightforward to establish which assembly 
is correct. Our analyses, however, strongly suggest that in these cases the nanopore-based 
assembly is accurate. This is not unexpected: TULIP has access to far richer and more precise 
sequencing information than SSPACE, which had to rely on 2 × 36 bp mate pair data. Under such 
circumstances, a low number of incorrect joins between contigs is inevitable41. 
In fact, considering the fact that the SSPACE scaffolds analyzed in Fig. 5b–f consist of on the 
order of ten thousand very small contigs, a result with only 16 errors signifies better scaffolding 
performance than expected41. 
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In other aspects, the TULIP assembly is likely to be suboptimal. By design, scaffolds that could 
be merged based on long reads remain separate if these reads do not share a fortuitous seed 
alignment in the correct position. Similarly, large repetitive regions in the genome, as well as 
(sub) telomeric repeats will not always contain frequent 285 bp islands of unique sequence, and 
hence could be absent from the assembly. Although counterintuitive, this should not pose a major 
problem for some extremely large genomes. Survey sequencing indicates that the 32 Gbp axolotl 
genome contains mostly unique sequence29, as do many tulip genomes (C. Henkel, unpublished 
data). 

The selection of sparse seeds by the user adds an unusual level of flexibility to the assembly 
process. In an early phase of this study, we opted for essentially randomly placed Illumina-based 
seed sequences. This choice was motivated by their very high sequencing identity, which aids 
alignment quality when working with noisy long reads. This strategy should work equally well 
with PacBio data or early, error-prone nanopore chemistries (i.e. R7.3). 

The genome assembly generated here is a hybrid, incorporating two different sequencing 
technologies, three generations of nanopore sequencing, and two different animals. At the time, 
it was unavoidable to use a combination of multiple nanopore sequencing chemistries, as these 
rapidly replaced each other. Although the later R9 and R9.4 chemistries have better sequencing 
error profiles, they still retain structural biases that cannot be resolved by taking a consensus 
of nanopore data only (e.g. using Racon). In the final Pilon polishing stage, the nanopore data 
are therefore corrected using Illumina data obtained from a different eel specimen than used 
for nanopore sequencing. As the European eel is highly heterozygous (Table 2), in theory this 
generates a consensus between up to four different haplotypes. In practice, we expect this to have 
little influence on the quality of the final assembly, as the variation resulting from heterozygosity 
is much lower than the raw nanopore error rate. In other words, Pilon will treat SNPs and small 
indels not occurring in the Illumina data as sequencing errors to be corrected. 

With the speed at which the quality of reads produced by the ONT platform is improving18, 
it should soon be possible to avoid a hybrid assembly incorporating short reads altogether. 
A natural choice for seed sequences would then be the ends of long reads. Alternatively, seeds 
could be chosen to facilitate further sequence integration. If a high density genetic map is 
available for a species, map markers could serve as pre-ordered seeds. For example, with minor 
modifications, TULIP might be used to selectively add long read sequencing data only to single 
map marker bins (containing thousands of actual, unordered markers) resulting from a 
population sequencing strategy42. 
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The bottleneck for such strategies lies in the interplay between marker density and nanopore read 
length, where the latter currently appears to be limited chiefly by DNA isolation protocols43, 44. 
Conceivably, in the near future, the problem of genome assembly from sequencing reads will all 
but disappear: abundant megabase-sized reads of high sequence identity are becoming 
possible, which should span the vast majority of recalcitrant regions in medium-sized genomes 
that remain a challenge to short- and medium-read technologies. 

The fulfillment of such prophesies may still lie several years in the future. Therefore, we plan to 
further integrate and validate the candidate assembly generated here with long-range 
information obtained from optical mapping45, in order to develop a high-quality reference 
genome for the troubled European eel.
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— Methods

Eel samples
Two different European eels were used to generate the genome assembly. For all Illumina
sequencing, a female specimen caught in Lake Veere, The Netherlands, was used. These data 
were previously used for the Illumina-based draft assembly2. For nanopore sequencing, a farmed 
female eel was obtained from Passie voor Vis, Sevenum, The Netherlands. As the European eel is a 
panmictic species16, these sequenced eels belong to the same population. The experiments were 
approved by the animal ethical commission of Leiden University (DEC #13060), and carried out in 
accordance with the relevant guidelines and regulations. 

Genome size estimation and k-mer analyses
We used Jellyfish46 version 2.2.6 to count k-mers in sequencing reads and assemblies. In order 
to estimate genome size, we obtained frequency histograms for 19- to 25-mers in raw Illumina 
sequencing data. Reads were truncated to a uniform length of 76 nt, except for A. japonica, for 
which we used 100 nt (the model did not converge for short lengths). For the American eel, which
has been sequenced to much higher coverage than the European and Japanese species, we used a 
subset of the available data (NCBI Sequence Read Archive SRR2046741 and SRR2046672). 
Histograms were analyzed using the GenomeScope33 website in order to obtain estimates for 
genome sizes, heterozygosity and duplication levels.

Illumina seed selection
We selected unique seed sequences from 11.9 Gbp in sequence previously generated
at 2 × 151 nt on an Illumina Hiseq 2000 (NCBI Sequence Read Archive SRR5235521). Pairs were 
merged using FLASh47, requiring a minimum of 15 nt terminal overlaps, resulting in 29.16% 
merged fragments. In these, 25-mers were counted using Jellyfish. We used a custom script to 
filter out all fragments that contained 25-mers occurring over 25 times in the remaining data. 
This corresponds to a maximum occurrence of approximately 6.25× in the 860 Mbp genome. 
Finally, fragments were selected based on size (either 270 nt or 285 nt). 

MinION library preparation and sequencing
High MW chromosomal DNA was isolated from European eel blood and liver samples using a 
genomic tip 100 column according to the manufacturer’s instructions (Qiagen). For each nano-
pore sequencing library, we used 2–3 μg genomic DNA, approximately twice the recommended 
quantity. In this way, we compensated for the decreased molar quantities of DNA ends at incre-
ased fragment lengths (see below).

First the DNA was sequenced on R7.3 flow cells. Subsequently multiple R9 and R9.4 flow cells 
were used to sequence the DNA. For R7.3 sequencing runs we prepared the library using the 
SQK-MAP006 kit from Oxford Nanopore Technologies. Briefly, high molecular weight DNA was 
sheared with a g-TUBE (Covaris) to an average fragment length of 20 kbp. The sheared DNA was 
repaired using the FFPE repair mix according to the manufacturer’s instructions (New England 
Biolabs, Ipswich, USA). 
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After cleaning up the DNA with an extraction using a ratio of 0.4:1 Ampure XP beads to DNA the 
DNA ends were polished and an A overhang was added with the the NEBNext End Prep Module and 
again cleaned up with an extraction using a ratio of 1:1 Ampure XP beads to DNA the DNA prior to 
ligation. The adaptor and hairpin adapter were ligated using Blunt/TA Ligase Master Mix 
(New England Biolabs). The final library was prepared by cleaning up the ligation mix using 
MyOne C1 beads (Invitrogen).

To prepare 2D libraries for R9 sequencing runs we used the SQK-NSK007 kit from Oxford 
Nanopore Technologies. The procedure to prepare a library with this kit is largely the same as with 
the SQK-MAP006 kit. 1D library preparation was done with the SQK-RAD001 kit from Oxford 
Nanopore Technologies. In short, high molecular weight DNA was tagmented with a transposase. 
The final library was prepared by ligation of the sequencing adapters to the tagmented fragments 
using the Blunt/TA Ligase Master Mix (New England Biolabs). Library preparation for R9.4 
sequencing runs was done with the SQK-LSK108 and the SQK-RAD002 kits from Oxford 
Nanopore Technologies. The procedure to prepare libraries using the SQK-RAD002 kit was the
same as for the SQK-RAD001 kit. For SQK-LSK108 the procedure was essentially the same as for 
SQK-NSK007 except that only adapters and no hairpins were ligated to the DNA fragments. 
As a consequence the final purification step was done using Ampure XP beads instead of MyOne 
C1 beads. Libraries for R7.3 and R9 flow cells were directly loaded on the flow cells. To load the 
library on the R9.4 flow cell the DNA fragments were first bound to beads which were then loaded 
on the flow cell. 

The MinKNOW software was used to control the sequencing process and the read files were 
uploaded to the cloud based Metrichor EPI2ME platform for base calling. Base called reads were 
downloaded for further processing and assembly.

Nanopore read alignment
From the base called read files produced by the Metrichor EPI2ME platform sequence files in 
FASTA format were extracted using the R-package poRe version 0.17 (ref. 48). We used 
BWA-MEM49 (version 0.7.15-r1140) to align nanopore reads to selected seeds, using specific 
settings for each nanopore chemistry. The built-in -x ont2d setting (-k 14 -W 20 -r 10 -A 1 -B 1 
-O 1 -E 1 -L 0) is too tolerant for newer chemistries. We therefore optimized alignment settings 
(-k and -W only) on small subsets to yield the highest recall (number of aligning reads) at the 
highest precision (number of seeds detected/number of alignments). With all other settings as 
before, this yielded the following parameters: -k 14 -W 45 (R7.3 2D); -k 16 -W 50 (R9 1D); -k 19 
-W 60 (R9 2D); -k 16 -W 60 (R9.4 1D).

Genome assembly using TULIP
Currently, TULIP consists of two prototype scripts in Perl: tulipseed.perl and tulipbulb.perl 
(version 0.4 ‘European eel’). The tulipseed script constructs the seed graph based on input SAM 
files and a set seed length, and outputs a simplified graph and seed arrangements (scaffold 
models). tulipbulb adds seed and long read sequence to the scaffolds, and exports either a 
complete set of uncorrected scaffolds, or for each scaffold two separate files: the uncorrected 
sequence, and a FASTA ‘bundle’ consisting of all long reads associated with that scaffold.
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For each scaffold, we used the long read bundle and Illumina data to polish it according to ONT 
guidelines (https://github.com/nanoporetech/ont-assembly-polish). We first corrected 
nanopore-derived scaffolds with nanopore data using Racon22, based on alignments produced by 
Graphmap50 version 0.3.0. Ultimately Racon sequence correction is performed by SPOA51, which 
is a partial order alignment algorithm that generates consensus sequences.

Subsequently, we used previously generated2 Illumina data (NCBI Sequence Read Archive 
SRR5235521– SRR5235523), trimmed to Phred 30 quality values (using Sickle version 1.33, 
https://github.com/najoshi/sickle) in a second correction step using Pilon (version 1.21), an 
integrated software tool for assembly improvement37, 38. Pilon uses evidence from the alignment 
between short-read data and Racon-corrected scaffolds to identify events that are different in 
the draft genome compared to the support of short-read data. 

All genome assembly steps and analyses were performed on a desktop computer equipped with 
an Intel Xeon E3-1241 3.5 GHz processor, in a virtual machine (Oracle VirtualBox version 4.3.26) 
running Ubuntu 16.04 LTS with 28 GB RAM and 4 processor threads available. For the final 
candidate assembly, the TULIP scripts required a maximum of 4.4 GB RAM.

Genome alignment
Uncorrected scaffolds were aligned against the 2012 scaffolds using nucmer52 version
3.23, with settings --maxmatch and --minmatch 100, filtered for optimal correspondence 
(delta-filter -1), and visualized using mummerplot (with the --layout option). The five largest 
scaffolds were likewise aligned against the 2012 scaffolds, but with settings encouraging longer 
alignments ( --breaklen 1000 and --minmatch 25) and not filtered. The 285 nt seeds were 
aligned against the 2012 draft scaffolds using BWA-MEM with default settings. 

BUSCO assembly assessment
The completeness of the genome assemblies was tested with BUSCO36 (version 3.0.0), which 
tries to find orthologues of a curated dataset of near-universal genes in new assemblies. A more 
complete assembly will result in a higher percentage of genes retrieved. As the European eel is a 
primitive teleost, we used the vertebrate-specific orthologue catalogue (vertebrata_odb9, 
creation date 13-2-2016, 2586 genes) instead of actinopterygii_odb9, which is based 
predominantly on the genome sequences of advanced teleosts.
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Data availability 
The nanopore sequencing data are available in the European Nucleotide Archive 
(accession number PRJEB20018). The Racon- and Pilon-corrected candidate assembly is 
available at http://www.eelgenome.com.  The TULIP-scripts are available at 
https://github.com/Generade-nl 
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— Abstract

Objective
Currently the majority of non-culturable microbes in sea water are yet to be 
discovered, Nanopore offers a solution to overcome the challenging tasks 
to identify the genomes and complex composition of oceanic microbiomes. 
In this study we evaluate the utility of Oxford Nanopore Technologies (ONT) 
sequencing to characterize microbial diversity in seawater from multiple 
locations. We compared the microbial species diversity of retrieved 
environmental samples from two different locations and time points.

Results
With only three ONT flow cells we were able to identify thousands of 
organisms, including bacteriophages, from which a large part at species 
level. It was possible to assemble genomes from environmental samples 
with Flye. In several cases this resulted in >1 Mbp contigs and in the particular 
case of a Thioglobus singularis species it even produced a near complete genome. 
k-mer analysis reveals that a large part of the data represents species of 
which close relatives have not yet been deposited to the database. 
These results show that our approach is suitable for scalable genomic 
investigations such as monitoring oceanic biodiversity and provides a 
new platform for education in biodiversity.

Keywords Metagenomics, Oxford Nanopore Technologies, MinION sequencing, oceanic microbiome, 
k-mer analysis, genome assembly 
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— Introduction

Although marine microbes have been studied for multiple decades there is 
still little knowledge on species diversity in the largest ecological environments 
of our planet1-3. Current database collections are estimated to 
represent <5% of oceanic microbial communities4. Seawater contains 
many non-culturable organisms, hence to understand its microbial ecology 
we need to collect sequencing data from DNA samples obtained directly 
from the environment.

Large-scale metagenomics analyses of seawater have been performed 
already since 2004 showing remarkable species diversity5. However, 
even with availability of abundant sequencing technology resources a complete 
understanding on the entire diversity remains a challenging task. 
This is due to, among others, vast water volumes and huge amounts of microbe 
communities, which through temporal and spatial dynamics contribute to 
the existence of a near infinite number of ecosystems. Recent studies focussing 
on marine biodiversity show that a variety of sediments harbour different 
ecosystems that are particularly extreme in deep ocean environments. 
There have been many exploratory studies of harnessing marine microorganism 
for the production of bioactive compounds, with versatile medicinal, industrial, 
or agricultural applications6. 

Microbial diversity characterization has primarily relied on traditional 
high-throughput short-read sequencing methods, such as Illumina7-12 
or 454 sequencing5. Even though Pacific Biosciences single-molecule 
long-read sequencing has been used to catalogue the diversity of 
coral-associated microbial communities, these studies relied on amplification 
and 16S rRNA homology to position microbes taxonomically5, 7, 13, 9-11, 14. 
Amplification, however, introduces biases that results in over- and under- 
representation of particular species. Additionally, in some cases 16S rRNA 
identification fails to characterize microbial diversity due to variability in 
the 16S region15, –  for example, previous studies revealed that some 
universal primers have strong biases against the detection of pelagic bacteria 
(SAR11 group) and archaea4. 
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Hence 16S-based methods appear ineffective at comprehensively 
characterizing complex metagenomics samples such as from seawater. 
Furthermore, traditional 16S rRNA identification is limited to the detection
of microbe presence and does not yield further functional insights about
the organism. And finally, high-throughput short read sequencing methods 
require large scale infrastructure including sequencers and laboratories. 

In this pilot study we evaluate the utility of Oxford Nanopore Technologies (ONT) 
sequencing to characterize microbial diversity in seawater. 
ONT sequencing generates on average 10 Kbp reads, theoretically without 
upper limit, and bypasses the necessity of amplification. Our strategy aims 
to classify microbial diversification directly from environmental samples
 (two different oceanic locations were chosen) with minimal computational 
and financial cost over a relatively short time span. This will facilitate 
future scalable investigations such as monitoring oceanic biodiversity 
and the time and space dynamics these microbes are subject to.
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— Results

Sample collection, data quality control and verification of microbial content
We collected samples from coastal regions of both the Atlantic Ocean (west part of the English 
Channel – Roscoff, France, August 2017) and the south part of the North Sea (Wassenaarseslag, 
the Netherlands, July 2017 and August 2018). From here on, we refer to these as samples 1, 2 and 
3. MinION 48-hour sequencing runs on every sample resulted in three datasets with mean read 
lengths that range between 1,511 and 7,983 bp (Table 2). Our read length distributions indicate 
relatively suboptimal DNA samples that resulted in shorter reads (Figure 1) compared to ONT read 
length averages of laboratory cultures. This is particularly apparent for sample 1. The error rate 
expressed in PHRED indicates similar quality for the three runs, our average qualities 
fluctuate around PHRED 12 that stands for <10% error per read on average.
 

Read length and quality distributions of MinION sequencing runs

Figure 1 Read length and quality distributions of 48-hour run sequencing data for sample 1, 2 and 3 (from left to right). 
Mean read lengths vary from 1,511 up to 7,983 bp with similar base call qualities (around PHRED 12). 

Plots are based on NanoPlot plotting23

To assess quality of the data we analysed homologues sequences of the three longest reads for 
all three data sets. The results (Table 1) show that several of these reads are representative of 
bacterial species that were found to be dominant by the OneCodex analyses. One of the reads 
(France – Read ID 1) also showed that we have identified a representative of a bacteriophage of 
Pelagibacter. The limited coverage of the homologue genes indicates that we have identified a 
rather distant new relative of the published bacteriophage.
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Table 1 Blast alignment of longest raw sequencing reads. 
Sample) time and location of seawater samples, Read ID) read length identifier sorted from longest to smallest, 

Query length) the length of the read, Best hits*)* criteria for best hit; largest query coverage with highest identity 
and published study, Cov) alignment percentage that reads cover the reference, ID) alignment identity between 

query and reference, Ref length) length of the reference sequence.

To confirm that our double filtering method indeed selects for microbial DNA we have used 16S 
rRNA primers that are known to identify a wide range of microbial genomes. FastPCR aligns the 
currently ‘best available’ 16S rRNA primer sequences25 to raw sequencing data and shows 
microbial content in all three raw sequencing datasets. We found 23, 178 and 188 hits aligning 
both forward and reverse primers that span between 420 and 470 bp (Table 2). These hits have a 
minimum of 80% alignment identity and ranged up to 100% matches. Blast searches of regions 
that have <80% sequence identity did not result in hits originating from 16S rRNA hence do not 
contribute to the identification of microbial content and have been omitted. 

Table 2 Raw sequencing data statistics of sample 1,2 and 3
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Seawater characterization using k-mer classification
 

Figure 2 Taxonomic tree on a subset of the data generated from sample 1 data. 
Every node stands for a taxonomical ID that is supported with at least 831 reads. In red the most abundant species 

present in all three samples. Dark blue nodes together with the red node highlight the top-5 most abundantly present 
species in this sample. The yellow node indicates the most prominent species difference between the two locations. 
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Figure 3 A subset of the data set from sample 2, every node is supported with minimally 2048 reads. 
The red node indicates the most abundant species over all three datasets, together with dark blue nodes it 

comprises the top-5 most abundant species in this dataset. Particularly underrepresented is species 
Candidatus Pelagibacter (grey node) compared to sample 1 and 3.
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Figure 4 Taxonomic tree on a subset of sequencing data from sample 3, every node is supported with at least 588 reads. 

Again the red node indicates the overall most abundant species, and together with dark blues nodes they form the top-5 most 
abundant species for this dataset. Compared to the year before Flavobacteriales bacterium is underrepresented (green node).
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Using OneCodex26 we generated classification trees for the three datasets. These are built 
from raw sequencing data and indicate the taxonomic relation between the detected microbial 
classes. This relation is based on taxonomic identifiers (taxids) provided by the NCBI taxonomy 
database. For visualization purposes these taxonomic trees are subsets of the complete 
classifications: every node is supported with a minimum threshold of 831, 2,048 and 588 reads 
for samples 1, 2 and 3, respectively.

Despite the fact that a large part of all three datasets could not be classified (47%, 69% and 
38% for sample 1, 2 and 3, respectively), all taxonomic trees highlight the complexity of 
microbial communities present at a single site. None of our three datasets reveal an overall 
dominant species, with the largest differences between samples microbes that appear at low 
abundances. However 4.46% (sample 1), 15.66% (sample 2) and 7.82% (sample 3) of classified 
reads belong to Planktomarina temperata, which is therefore the most abundant species present
in the three data sets combined (Figure 2, Figure 3 and Figure 4, red nodes).

The top-5 most abundant species in sample 1 are: Candidatus Pelagibacter ubique (9.31% of 
Proteobacteria), bacterium TMED221 (8.61% of unclassified bacteria), Flavobacteriaceae 
bacterium TMED238 (4.48% of the FCB group), Planktomarina temperata (4.46% of 
Proteobacteria) and Cryomorphaceae bacterium MED-G11 (4.16% of the FCB group) (Figure 2, red 
and dark blue nodes). Approximately 2% of classified reads belong to species Nereida ignava, 
compared to less than 0.04% from sample 2 and 3 it is the most prominent difference between 
the two locations (Figure 2, yellow node).

In the second sample four of the top-5 most abundant species belong to the same species: 
Planktomarina temperata (15.66% of Proteobacteria), Flavobacteriales bacterium UBA3446 
(5.54% of the FCB group), Flavobacteriales bacterium UBA7358  (5.30% of the FCB group), 
Flavobacteriales bacterium UBA4585 (5.12% of the FCB group) and Flavobacteriales bacterium 
UBA7429 (4.41% of the FCB group) (Figure 3, red and dark blue nodes). Even though 
Planktomarina temperata reads are abundantly present in all three samples they are particularly 
enriched (15.66%) in this sample compared to 7.82% from the next year and 4.46% from France. 
Additionally, the presence of Candidatus Pelagibacter ubique is underrepresented in this sample, 
1% of all classified reads belong to this species, compared to ~11% and 9% in sample 1 and 3, 
respectively (Figure 3, grey node). 

Finally, the top-5 most abundant species from sample 3: Candidatus Pelagibacter ubique 
(9.24% of Proteobacteria), Oceanospirillales bacterium TMED91 (8.12% of Proteobacteria), 
gamma proteobacterium SCGC AAA168-P09 (8.08% of Proteobacteria), Planktomarina 
temperata (7,82% of Proteobacteria) and gamma proteobacterium SCGC AAA168-I18 (7.25% of 
Proteobacteria) (Figure 4, red and dark blue nodes). Interestingly, the species gamma 
proteobacterium are classified strain specific (Figure 4, dark blue nodes) as opposed to 
Flavobacteriales bacterium species from sample 2 and is less abundant in this sample (1.6%) 
compared to the year before (5.9%) (Figure 4, green node). 
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Figure 5 A) Venn diagram comparison of identified species by OneCodex, highlighting species 

that are time and space dependent and also microbes that are not. 
B) Overall OneCodex classification ranks per dataset, the majority of classified reads have been linked to a species.

The taxonomic levels assigned by OneCodex range from kingdom down to species-specific. 
Reads that cannot be linked to a particular taxonomic level are labelled ‘no rank’. 
In total 1,750, 3,017 and 2,007 taxids are assigned to the data of sample 1, 2 and 3, respectively. 
More than half of the ranks that OneCodex was able to classify are assigned to species level 
(Figure 5 B) in all three samples.
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Interestingly, at least 484 microbes are identified in all three samples (Figure 5 A). 
Some highlights include: 92 different Flavobacteriaceae bacterium and Flavobacteriales bacterium 
strains; 19 different Candidatus Pelagibacter strains; 18 Pelagibacteraceae bacterium and 6 SAR 
strains. This indicates that these communities are less time and location dependent compared 
to the 262 and 1,127 species that were found exclusively in France or Dutch areas, respectively. 
Furthermore, 607 and 129 species are exclusively observed in the Netherlands. As they exist at 
different times, they provide an initial impression of the time-dependent dynamics of these local 
communities. Finally, 135 and 77 species could be identified that are present at both locations, 
however only detectable at particular times. This could be an indication that even over large areas 
microbes are subject to time regulated dynamics.
 
Metagenomics assembly on raw sequencing data and 
blast verification on the top-3 longest contigs
In an attempt to very OneCodex classification results as well as to assess the current 
metagenomics assemblers capabilities we subsequently assembled the three datasets separately. 
We have assembled our complex metagenomics datasets with Flye and retrieved 256, 1,735 and 
968 contigs with mean coverage of 14x, 13x and 10x from samples 1, 2 and 3, respectively 
(Table 3). Coverage on contigs ranged up to 62, 89 and 107 for samples 1, 2 and 3, respectively,  
with a lower-bound of 3x coverage for all three assemblies. As expected, assembly statistics 
on sample 1 show the least optimal assembly results (lowest number of contigs, smallest mean 
and max contig lengths and smallest N50 values) given that the data volume of this sample was 
smallest combined with shortest average read lengths. Notably, although it has higher coverage, 
assembly results from sample 2 did not exceed results from sample 3. On the contrary, 
sample 3 resulted better average contig length, maximum contig length and N50 values 
compared to sample 2 (Table 3 and Table 4).

Table 3 Flye assembly statistics
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Impressively, Flye was able to reconstruct a full genome from our third sample: 75% of our 
1.6 Mbp contig aligns with 80% identity to Candidatus Thioglobus singularis of which its 
complete genome is a single circular chromosome of 1.7 Mbp, with only 20x coverage on this 
particular contig (Table 4). The longest contig (219 Kbp) assembled from sample 1 represents a 
fragment of an entire genome and aligns with 88% identity to Candidatus Pelagibacter ubique, 
from which reads are most abundantly present in sample 1 (Table 4).

Even though OneCodex indicates that only 397 reads originate from Candidatus Actinomarina, 
Flye was able to reconstruct contigs that exceed the length of the currently available reference 
sequence. The second (141 Kbp) and third (137 Kbp) longest contigs aligned with 82% and 79% 
identity to the reference that is just 41 Kbp in size (Table 4). Similarly, Flye results in a top-3 
longest contigs from sample 2 and 3 that align with high homology to the reference and all 
contigs exceed the length of the reference sequence (Table 4).
 

Table 4 Blast alignment for top-3 longest contigs for sample 1, 2 and 3. ID) identity number provided by Flye, 
Query len) the length of the contigs, Cont cov) data coverage for every contig, Best hits *) * criteria for best hit; 

largest query coverage with highest identity and published study, Query cov) how much of the contig covers the
 reference sequence, Aln ID) alignment identity between the reference and contig, Ref len) the length of the 

reference sequence the contig is aligned to.
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Comparison of Flye assembly and raw sequencing data 
using OneCodex characterization
In order to verify if new species could be identified after assembly we have compared the 
OneCodex classifications using assembly results to the classification results based on raw 
sequencing data. Using the 256 contigs Flye was able to reconstruct OneCodex identified 41 
species in total from sample 1 (Figure 6). Since reads that originate from Flavobacteriaceae and 
Pelagibacteraceae are represented in high abundance it is no surprise that detailed species-level 
classification for these two families appeared most effective, into 9 and 12 strains (out of the 41 
classified species), respectively. OneCodex is able to identify 12 species only after assembly, 
these include 11 deferent Pelagibacteraceae bacterium strains and a SAR86 strain.

Although OneCodex was able to identify the most species using assembly results of sample 2, 
no prominent strain-specific enrichment was observed exclusively for assembly results in this 
sample. From the 209 species that are identified Flye favoured 5 species during assembly: 
Alphaproteobacteria bacterium (10 strains), Euryarchaeota archaeon (15 strains), 
Flavobacteriaceae bacterium (23 strains), Flavobacteriales bacterium (18 strains) and 
Gammaproteobacteria bacterium (19 strains). 

Species diversification of assembly results from sample 3 appeared best for 14 different 
Flavobacteriaceae bacterium strains, 13 gamma proteobacterium strains, and 13 strains of 
Gammaproteobacteria bacterium. Notably, 6 Pelagibacteraceae bacterium strains could be 
identified using assembly results, that could not be classified based on raw sequencing 
data alone.

Species classification comparison of raw data and Flye assembly results

 

Figure 6 Species classification on sample 1,2 and 3. 
Lighter shades indicate identified species on raw sequencing data, darker shades highlight 

species only identifiable after assembly. 
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Data quality of unclassified reads and additional in silico PCR analysis
Poor read quality and relatively short read lengths could be a potential reason explaining 
why OneCodex was unable to classify taxids. Therefore, we investigated quality and length of 
unclassified reads (Figure 7). Although average lengths are shorter, and average quality values 
have a larger distribution, the differences are minimal compared to raw sequencing data 
(Figure 7). These statistics indicate that, in theory, the reads should provide OneCodex with 
sufficient information to resolve classifications. That OneCodex was not able to classify these 
reads even to the most general taxonomic levels (such as kingdom or phylum) adds to the 
notion that these reads originate from species that are novel. 
 

Read length and quality distributions of unclassified reads

Figure 7 Read length and quality distributions of data that OneCodex labels unclassified. 
On average reads are shorter compared to raw sequencing data, however these lengths should still be sufficient 

to use for k-mer species characterization. Average quality distributions are very comparable to reads which 
OneCodex was able to classify species with.
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The proportion of reads for which no classification could be assigned ranges between 38% and 
69% compared to the raw sequencing data (Table 5) and provides a general impression on the 
amount of potentially novel microbes that thrive in these waters. Since OneCodex is particularly 
tailored to the identification of microbial DNA, unclassified reads potentially belong to 
non-microbial organisms. We therefore performed an additional round of in silico PCR analysis 
to inspect the presence of any remaining microbial 16S rRNA fragments. Interestingly, we found 
at least 10 more reads in sample 2 that have over 80% homology with our primers, showing that 
microbial content still exists within these unclassified reads (Table 5).

Table 5 Data statistics on reads for which OneCodex could not resolve any classification

 

Inspection of low complexity regions in unclassified reads 
using tandem repeat analysis
An additional circumstance that might explain why reads are left unclassified is the presence of 
low complexity regions such as repeat elements. These elements cause k-mers to contain the 
exact same genomic content making it impossible to assign them uniquely to specific taxa or even 
to a more general taxonomic level. We have analysed the presence of repeat elements with 
Tandem Repeat Finder22 in raw sequencing data and compared these to repeat counts of the 
unclassified reads. In none of our samples did we observe an increased presence of repetitive 
elements, on the contrary, the repetitive element count is lowered in every case (Figure 8).
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Figure 8 tandem repeat analysis, counts per read and comparison between raw sequencing data and 
unclassified data set for different locations and time. Repeat counts are represented in bins, the bins indicate 

the number of occurrences per read. 

Taking together the data characteristics and the lack of both general taxonomical classification 
and highly abundant regions of low complexity suggest that these reads indeed originate from 
novel species. It highlights at least the absence of these species in currently publicly available 
OneCodex database, and provides a general glimpse of the amount of unknown species that 
comprise oceanic microbiomes.
 

Tandem repeat count on raw sequencing data and OneCodex unclassified reads
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— Materials and method

Sample collection and DNA isolation from salt water
Approximately 10 liter salt water of both locations was filtered through a double filter setup 
(Figure 9 A). 1.2 µm and 0.22 µm filters are used to remove eukaryotes and phages/ viruses from 
the samples, respectively (Figure 9 B). Water is passed through a 1.2 µm filter that aims to 
capture eukaryotic cells on top and is discarded, the remaining water is passed through a 0.22 µm 
filter during a second filtering round. The microbial material is captured on top of the filter, 
water that passed through this filter contains phage/viral material and is discarded afterwards. 
Material captured on the 0.22 µm filter represents the microbiome of our sample and was 
used for cell lysis. 

 Filtered biological sample and schematic respresentation of double filter setup

Figure 9 A) Filter setup; 0.22 µm containing biological material that represents the oceanic microbiome 
B) A schematic visualization of double filter setup. Discard eukaryotic cells during the first and viral/ phage 

content during the second filtering round.

To obtain high quality DNA we used the DNeasy PowerWater Kit (Qiagen), with minimal 
adjustments, according to the manufacturer’s protocol. The largest adjustment was 
supplementing an enzyme set (Lysozyme, Mutanolysin and Lysostaphin) for a more extensive 
cell lysis. DNA from both North Sea samples was sequenced subsequent to DNA isolation, 
however we obtained a suboptimal yield from DNA isolation of sample 2 and amplified the
isolation to meet the minimal input requirements for sequencing. Sample 1 was filtered through 
the double filter setup and temporarily stored at -20 °C and long term stored at -80 °C, 
DNA isolation and sequencing were performed after approximately 11 months of storage.
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DNA library preparation, sequencing, data quality control and statistics
We used R9.4 flow cells for sequencing all three seawater samples. Libraries were prepared using 
rapid kits (SQK-RAD004) available at that time according to the manufacturer’s protocols 
(Oxford Nanopore Technologies, Oxford, UK). Data acquisition and base-calling were performed 
by MinKNOW (v19.06.8) controlling the MinION that sequenced the samples in 48-hours. 
Read-length and read-quality distributions were visualized using NanoPlot23, and read counts, 
base counts and average read lengths were obtained using custom made scripts.  

Using in silico PCR analysis to verify microbial genomes
To highlight the presence of microbial genomes FastPCR24 was used to perform in silico PCR 
analysis using primer pair sequences for identification of bacteria and archaea. FastPCR allows 
users to upload a set of primer sequences and reports, among others, positions and length of hits 
found on the input data. We used the currently ‘best available’ rRNA primer pair, primer 1 and 2 
are 17 and 21 bp long, respectively, with a total amplicon size of 464 bp (primer 1: 5’-CCTACGG-
GNGGCNGCAG-3’, primer 2: 5’-GACTACNNGGGTATCTAATCC-3’). FastPCR verifies both forward 
and reverse primer sequences and due to the erroneous nature of our long read technology we 
have set a threshold of =>80% alignment identity to the primer sequences, with the exception 
that no errors may occur at the last position on the 3’ end of the primer sequences. 
Since OneCodex is primarily tailored to classification of microbial data we used FastPCR, 
in a similar fashion, to verify any remaining microbial content in the unclassified reads.

K-mer based metagenome characterization of microbial sequences from seawater
OneCodex uses a k-mer based taxonomic classification algorithm to characterize microbial data. 
It uses a reference database containing 53,193, 27,020, 1,724, 1,756 and 168 bacterial, viral, 
fungal, archaeal and protozoan genomes, respectively. A default k-mer size of 31 bp is used to 
break up every read from the input data and compares them to a database that contains every 
k-mer that is uniquely linked to a taxonomic group. OneCodex classifies reads based on a set of 
k-mers that together uniquely identify taxonomic groups, single read hits are taken as the 
minimum threshold for identification in this study. OneCodex also provides reads for which no 
unique taxonomic classification could be found, we subtracted these reads from the initial input 
data using the command line interface (CLI) provided by OneCodex. We filter these reads using 
a project ID (provided by the web interface), the original dataset and set the taxonomic label to 
0. For these reads we inspect the presence of microbial 16S rDNA and repetitive content in an 
attempt to explain the unresolved classification. 
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Assembly of long read metagenomics samples using the Flye assembler
Flye27 is currently one of the few de novo assembly pipelines that allows genomic reconstruction of 
complex metagenomics samples with coverage as low as 2x. We have downloaded the assembly 
software from the GitHub repository (v2.6), used the metagenome default settings and provided 
the raw sequencing data. For sample 1 and 3 we used all available raw sequencing data, 
for computational effectiveness we used half of the sample 2 data set. We have verified the 
top-3 longest contigs using BLAST alignment with high homology parameters and selected the 
best hits based on largest query coverage with highest identity and literature references.

Repetitive content analysis for unclassified reads
To investigate the repetitive nature of reads that remained unclassified after OneCodex 
characterization we used Tandem Repeat Finder software (v4.09)22, developed by Boston 
University, with default settings. The software locates repetitive patterns and reports their 
locations, sizes and copy numbers in a repeat table format. We have parsed both raw sequencing 
and unclassified data from sample 1, 2 and 3 to Tandem Repeat Finder and inspected the repeat 
occurrences on every read. With a custom-made script the frequencies of these occurrences on 
every read for every sample are summarized and expressed in 1, 2-5, 5-10 and >10 occurrences 
bins and plotted with R ggplot234.  
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— Discussion

In this study, we have investigated the use of Nanopore sequencing for seawater 
metagenomics. Our main aims were to investigate the effectiveness of DNA isolation from 
samples directly obtained from the environment, optimize laboratory protocols for maximum 
sequencing results and evaluation of current metagenomics identification and assembly 
software. We used multiple isolation procedures, several different storage methods and 
subjected the data to a set of different analysis software. With only three ONT flow cells we were 
able to identify thousands of organisms, including bacteriophages, from which a large part at 
species level. It was possible to assemble genomes from environmental samples with Flye. 
In several cases this resulted in >1 Mbp contigs and in the particular case of a Thioglobus singularis 
species it even produced a near complete genome.

Although the enzyme cocktail used for cell lysis in our study was designed to break down cell walls 
for a wide range of bacteria there are potentially microbes that are immune to our lysis step. 
This might result in an underrepresentation of specific microbial communities compared to what 
truly thrives at these locations at that time. A possible solution, instead of lysing microbes with an 
enzyme set, would be to subject samples to mechanical lysis using silica beads or a combination 
of both. During experimental 12-hour sequencing runs (data not shown) we have observed that 
combining silica beads and enzymes during isolation yields significantly more sequencing data 
compared to isolation using only enzymes.

The double filter method separates eukaryotes and phages/viruses from bacteria in our sample. 
However, OneCodex still classifies a few hundred reads as either eukaryotic or viral. Eukaryota are 
particularly enriched for Dikarya, a subkingdom of fungi that are known to dominate the marine 
fungi fraction of environmental samples at European coastal regions32. These reads might have 
come from eukaryotic cells that are smaller than our largest filter (1.2 µm) or particles of these 
species that simply float around and were picked up by the smallest filter.

DNA molecules of our samples possibly suffered from fragmentation due to ice crystal formation 
during eleven months -20 and -80 oC storage. Additionally the yield of some sequencing runs is 
relatively low since biological material was dry frozen to the filter, making it more difficult to 
suspend the material during cell lysis. Under ideal circumstances DNA should be sequenced 
immediately after isolation circumventing DNA strand damage and loss of material.
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The presence of viral DNA might be an indication that we have used too much water on a single 
filter, causing the accumulation of biological material to the point where the filter became 
saturated. A saturated filter might catch particles smaller than the smallest filter size and 
contaminate the isolation with material that would have otherwise passed through. 
On the other hand, viral DNA could be present due to infection of microbes, which could be 
recognized by inspecting flanking regions of the read containing the viral DNA to contain microbe 
specific genes. Additionally viruses could enter the microbial metagenomics pool when they are 
present at the outside of bacteria and pass through the double filter setup via hitchhiking.

We initially performed de novo assembly in order to find out whether we could obtain longer 
contigs for particularly abundant species. Due to low coverage and the high diversity in our 
sample it is no surprise that this was possible for just a limited number of species. It is actually 
encouraging that with such diversity and limited sequence depth we could still identify more 
than thousand organisms at the species level. Moreover, metagenomics analysis is a relative 
newcomer in the field of genetics hence both laboratory protocols and analytical pipelines still 
need improvement to result higher accurate and more robust solutions for sample such as 
seawater.

We have performed an in silico PCR analysis to identify 16S RNA sequences in our raw sequence 
dataset. This showed that even under high error rate conditions reads contain enough homology 
to detect well conserved genes. This method could potentially be utilized to detect other genes in 
a similar fashion, for example genes that encode antibiotics biosynthesis.

While OneCodex was able to identify the diversity of a substantial amount of our samples, 
it could not resolve any classification for a large part of our data. The large k-mer size is most 
probably a crucial factor for unclassified data, due to the relatively low quality (approximately 
10% error) of long-read data 10 bp would be a more suitable k-mer size. We confirmed that the 
data quality of these reads (both read length and quality distributions) are within acceptable 
bounds and observed no particular repetitive element enrichment compared to the reads that 
contributed to classifications.
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Sequences that are representative of species that are currently unknown might explain the 
unclassified state of those reads, and are therefore valuable for contribution of a deeper 
understanding of the microbial marine fingerprint. Moreover, open access databases might 
not contain genomic information on particular microbes since obtaining genomes that are 
particularly large or come from non-culturable (non-culturable organisms are indicated with 
‘Candidatus’ labels) microbes remains a complicated task. For example, although available, 
protists are poorly represented in the OneCodex database, perhaps because their genomes are 
often extremely large (for dinoflagellates up to 270 Gbp33). Hence, microbes that are less 
thoroughly investigated might not have been included into the OneCodex genome selection. 
Since OneCodex is tailored to the identification of single cell organisms it probably will leave 
reads from multicellular organisms unclassified. Although no strong evidence was observed, 
lenient BLAST alignment of the top-3 longest reads of every sample did identify some small 
homologue regions with sequences from plant or algae in the NCBI database.

Despite the fact that these experiments are pilot studies we have observed promising results 
for both laboratory protocols and species identifications analysis. As described above, sample 
collection, DNA isolation and species identification is still hindered by both technical and 
biological difficulties. However our method provides a good impression on the elegance of our 
method that comes from its robustness and simplicity. We have performed equivalent 
experiments in student field practical assignments with similar marine samples, and students 
showed that even under more restricted conditions (12-hour sequencing runs) large biodiversity 
could still be detected. This indicates that the simplicity of our setup provides an ideal setting for 
student exercises, that will surely facilitate educational programs in genetics and bioinformatics.
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Summary introduction
In this thesis I highlight the applications of Oxford Nanopore Technologies (ONT) sequencing. 
This technique is a relatively new approach in the sequencing field, where nanopores are 
embedded in a membrane, DNA molecules are pulled through nanopores and an electrical 
current serving as the sequencing signal. This technique yields reads-lengths of >10Kbp and 
has no theoretical upper limit towards read-length. The positive impact on data quality due to 
improved chemistry is underlined, improved chemistry leads to less sequencing errors and a more 
homogeneous coverage over complex genomic architectures. Benefits for increased read-lengths 
are assessed for resolving fragmented genome assemblies that were previously based solely on 
short-read sequencing data. Furthermore, the assembly of a large genome using ONT data is 
described, indicating ONT is a suitable candidate for resolving extremely large genomes using 
sophisticated assembly approaches. And finally, the potential for on-site sequencing is 
evaluated. Exploiting simplicity, mobility and accuracy provided by this new technique.

The central hypothesis of this thesis is that Oxford Nanopore Technologies long-read 
sequencing can be valuable for established genomics applications, such as whole genome 
sequencing (chapters 2–4) and metagenomic characterization of microbial communities 
(chapter 5). Here, I reconsider this general proposition in light of the results of the preceding 
chapters. In addition, I discuss the prospects for emerging and future genomics applications 
based on the possibilities presented by ONT data.

The quality of long- read sequencing and assemblies 
ONT sequencing differs from traditional sequencing methods in the way that nucleotides are 
directly measured using electrical signals as opposed to synthetic copies or surrogate markers 
such as fluorescent labels. Multiple nucleotides (5-mers) occupy the pore shaft at the same time, 
hence it is the set of nucleotides that cause the electrical interference to determine the final 
profile. This profile signal needs to be, algorithmically, untangled to identify a single sequenced 
base. Therefore, basecalling algorithms yield the interpretable sequencing reads, and by 
improving basecalling algorithms sequencing data quality is subsequently increased even for 
previously sequenced projects1. ONT initially allowed 30 nucleotides per second to pass through 
the nanopore. The number of bases processed by a single pore was limited since basecalling 
algorithms struggled to differentiate nucleotides that passed through the pore too quickly, 
resulting in extremely low sequencing quality. Restricting the sequencing speed to 30 bases per 
second yielded ~70% accuracy. Currently ONT can process ~450 bases per second yielding reads 
>10Kbp with accuracy between ~90-99%. Chapter 2 highlights the effect of improved 
sequencing speed, basecalling and chemistry for a highly heterozygous yeast strain. 

However, to generate accurate haplotypes for this genome additional sequence accuracy is 
required. From BUSCO analysis we observed genes that remained absent from our best 
assembly results. The difference in alignment hit, due to error introduction, is highlighted by the 
comparison of identified genes before and after error correction. 
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Where more genes are identified when sequence accuracy is increased. Compared to other 
studies, which use coverages ranging from 70x up to 1000x, our dataset has relatively low 
coverage. Hence slight coverage increase could aid in resolving any remaining assembly 
difficulties as well as increase sequence accuracy due to increased evidence for the error-
correction procedure2-4.

Since assembly algorithms struggle to define the ends of circular DNA, circularization for complex 
genomes remains a challenging task. In this study we have not investigated the architecture of 
mitochondrial DNA or circularization of plasmids. Hence it would be beneficial to subject the final 
assembly results to circularization software designed specifically for closing circular contigs from 
assemblers using long read data2, 5. 

In chapter 2 and 3 we have evaluated a multitude of assembly, consensus calling and correction 
tools, which have performed anywhere from mediocre to promising. Most assembly strategies 
are comparable and result in relatively small differences. Highlighting the origin of those small 
discrepancies and deciding upon the final assembly is tedious and a labor-intensive matter. 
The currently available tools leave room for user-friendly workflows, including base level and 
genome wide visualizations. These workflows should report progress at alignment, assembly, 
consensus, and correction level to facilitate decision making for downstream analysis. 
Off-the-shelf assembly workflows would increase the speed at which genome analysis is 
performed, and reliefs investigations for large sequencing datasets. The current gold-standard 
is performing multiple assembly strategies and continue in a result-based fashion. Analysis tools 
for small to medium-size genomes show comparable yet still slightly different assembly results 
causing comparison between analyses to be extremely difficult7, 9. 

De novo assembly results based on long-reads for small genomes show promising 
reconstructions. Assemblies for medium-large genome sizes of comparable quality, 
such as investigated in chapter 4, are increasingly publicly available. However, separated 
haplotypes of such organisms have yet to be uncovered since base-level quality has only 
recently become of sufficient quality to accurately phase chromosomal copies10. 

Despite increased capability towards evenly spread coverage, increased read-length and 
improvement towards low-complexity regions, for ultra large genomes additional development 
is required6. Sequencing ultra large genomes at routine level requires an additional 
developmental update particularly towards sequencing speed and cost. For instance, 
sequencing the genome of Paris japonica, a plant species with a genome size of unprecedented 
scale, estimated genome size ~150 Gbp for a single genome copy8. Sequencing a genome of this 
magnitude requires just under one hour on a fully loaded PromethION (that is 48 flow cells, each 
~$2.000 and utilizing ~ 2.500 pores at 450 bases per second) for a single genome copy. 
Hence, although feasible, sequencing at the required sequencing depth for such genomes still 
takes days and is very resource intensive. Evaluating the distinct ONT improvements towards 
read-length, read-accuracy and throughput, ONT is a pioneer entering the truly large-genome 
research area6. 
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The cost of genome sequencing
Evaluating the cost of genome sequencing using Moore’s Law has made it clear that incredible 
amounts of sequencing data are going to be generated. These data volumes indicate the 
necessity of efficient downstream analysis software. Currently, sequencing data has become 
more affordable as opposed to costs for analyzing large datasets using computer clusters. 
The benefit of decreased cost and increased sequencing speed and throughput is lost when data 
analysis requires thousands of CPU hours on an expensive dedicated cluster. We therefore need 
to provide the scientific community with more sophisticated tools for processing large datasets, 
that are less computationally intensive, require less memory, are faster and more user friendly. 

Sequencing anything anywhere 
Standard lab technicians are not experienced with command line tools and do not possess the 
skills to adequately adapt to alternative results. This clearly present gap could be bridged by 
using standardized metrics and formats, easily accessible free yet sophisticated software that 
is backed-up with logical visual representations.

In line with the skewed relation between generating and analyzing data is the size of 
sequencing machines, currently the smallest sequencing device is just the size of a large 
USB stick and provides mobility to allow infield sequencing, discussed in chapter 5. 
However, infield generated data needs to be processed by computer clusters or at least a 
high-end laptop with sufficient energy supply. Fully exploiting this mobility characteristic 
requires downscaled processing power and memory consumption.

From amplicon to in situ metagenome sequencing and assembly 
In chapter 5 we used metagenomics to identify the microbial diversity using ONT, which is a first 
step in understanding the oceans biocomplexity and ecology. However, to know which species 
thrive at which locations is only the start of understanding the ecology behind microbial 
diversity. To functionally assess microbial capabilities full genome assemblies are required, 
this would for example lead to increased understanding towards resistance mechanisms used 
by microbial communities to survive the harsh oceanic conditions or reveal the mechanistic 
property to interchange genomic content through plasmids. Additionally, it would highlight 
the diversification of species in a time and space fashion, enabling to monitor the health of 
oceans, seas and rivers that are the foundation of life on land. 

To fully allow in-field monitoring of seawater, DNA isolation and library preparation methods 
need to be performed at location. In chapter 5 we have isolated the DNA under laboratory 
conditions. Although this procedure follows a very simple guideline, collecting high molecular 
weight DNA from marine organisms is particularly challenging due to excessive metabolites 
secretion that co-precipitates with DNA11. Hence optimization for high molecular weight DNA 
isolation regarding on site sequencing needs additional development towards speed and 
ease-of-use.
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Additionally, isolated high molecular weight DNA requires library preparation to allow the 
sequencing device to bring molecules in proximity of sequencing pores and to read-out bases 
using an electrical current. Equipment for those preparations should meet desired requirements 
to be able for in situ use. Voltrax library preparation provides a potential solution and is able to 
prep isolated DNA in a matter of minutes, however, due to the lack of purification steps isolated 
high molecular weight DNA could be rather contaminated. Hence even with small and easy-to-
use devices such as Voltrax, in situ DNA isolation and purification remains challenging11.

Moreover, chemistry required for sequencing requires specific storage limitations; 
both flow cells and chemistry are temperature-sensitive and refrigerator capacity for in-field 
expeditions are usually inconsistent due to the lack of adequate power supply12. 

Finally, additional analysis is required to position identified species phylogenetically. Onecodex 
(used in chapter 5) is beneficial to place organisms quickly and easily into context of existing 
databases, easing time constraints and labor complexity. However, it lacks branch unity and 
cannot indicate the genetic distance between species and position them relative to each other. 
Furthermore, it only offers enhanced functionality using a paid license which adds to resource 
pressure and making it difficult for researchers to compare results. Previous studies show 
successful phylogenetic placement under remote conditions using JModelTest, hence this could 
be a potential candidate for downstream analysis on metagenome samples from seawater13.

The future of Oxford Nanopore Technologies sequencing and its applications 
With the use of the current best flow cells and chemistry sequence accuracies of Q20 are achieved, 
translating to >99% read accuracy after basecalling. These methods allow molecules attached to 
the nanopore to be unzipped and both single strand copies are pulled through a pore reading-out 
the base sequence. Although sequencing both separated single strands was already introduced 
by Oxford Nanopore Technologies in ~2015, it was later replaced by single strand sequencing 
chemistry. However, chemistries to sequence both separated single strands have recently been 
released again by Oxford Nanopore Technologies. Here the information of both single strands 
is utilized to reduce basecalling errors by combining the sequencing signals. As the double 
stranded molecule found its way to the pore, one of the two strands is pulled through the pore, 
called the template strand. Subsequently unzipping the double stranded DNA leaves the 5’ end of 
the complementary strand in proximity of the pore using a tether molecule attached to the 
membrane. As the sequencing reaches the end of the molecule, with some likelihood, 
the complement strand immediately follows the template strand through the same pore. 
From the output signal reads that transition one after the other with similar sequence lengths 
and complementary base composition are detected as pairs, referred to as a duplex pair.

Earlier basecalling methods either uses single strand signals or join signals from both 
template and complementary strands, called ‘paired decoding’. On the one hand simplex 
basecalling (processing the signal of a single strand individually) is very fast however yields higher 
error rates. On the other hand, feeding both strands to a neural network basecalling algorithm 
decoding base pairs yield high accuracy sequences at the expense of resources and time. 
Decoding base pairs is computationally intensive, up to five times slower compared to simplex 
basecalling and therefore lacks scalability14. 
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The novel quality increase for ‘stereo duplex basecalling’ finds its origin by feeding base 
information, quality scores and the sequencing signal for both template and complement strand 
to a ‘stereo’ basecaller. This basecalling method is simple, fast, and robust allowing for better 
scalability towards generating large amounts of data over a reasonable time frame while yielding 
Q30 sequencing reads. With read-quality approaching gold-standard sequencing platforms 
Oxford Nanopore Technologies appears a promising technique for analyses that require high 
accuracy on base pair level, such as SNP detection and haplotype identification, particularly 
for polyploid genomes. 

Even though we observe an outpacing of Moore’s Law (Figure 9 - introduction) regarding 
sequencing cost, long read sequencing remains relatively expensive. Under more cost efficient 
conditions long-read sequencing is also a well-suited candidate for functional genomics analysis. 
The ability to prepare samples libraries without amplification circumvents the introduction of 
sequence-specific biases, where some molecules are underrepresented, and others excessively 
amplified allowing precise quantification. Long-read sequences can span full-length transcripts 
in a single read, hence avoiding complicated transcript assemblies, allowing simplified 
identification, and requiring fewer sequencing reads to identify the same number of genes 
compared to short read methods15. Furthermore, since full-length transcripts are recorded using 
single reads, they are exceptionally valuable for the characterization of structural variation such 
as isoforms. Isoforms can exhibit different functional properties and expression levels, and they 
are extremely difficult to determine using short reads. Additionally, structural variation is used 
across a broad spectrum of research areas, where it has shown significant importance to 
understand cancers in clinical settings all the way up to encoding target traits in agricultural 
studies. Structural variation spans, in many cases, Mbp stretches in the genome and are 
impossible to capture in a single read using gold-standard sequencing techniques. 
Hence those regions are sequenced in a fragmented fashion and reassembled to uncover the full 
structural variation using gold-standard techniques. This yields misassemblies and the absence 
of regions that are prone to amplification biases using other sequencing methods. Furthermore, 
since long reads provide increased alignment specificity the number of ambiguous alignments is 
significantly reduced, rescuing alignment regions that are lost using short read methods.

And finally, the sensitivity of sequencing signals and developments in artificial intelligence 
allows nanopore sequencing to detect modified bases. The epigenome is a complicated 
framework existing of a multitude of chemical compounds dictating DNA functionality. 
The higher order structure orchestrating the genome function comprises, among others, 
CpG methylation, nucleosome occupancy, chromatin accessibility, histone modifications and 
protein binding events that aid in proper segregation of chromosomes16, 17. The most well-known 
epigenetics component is CpG methylation and is associated with suppressing gene transcription 
under hyper methylated promotor conditions or transcription activation for hypo- and 
hypermethylation of the promotor region and gene body, respectively. A gold-standard method 
to detect methylation is whole genome bisulfite sequencing, where unmethylated cytosines are 
replaced, at first using uracil and later by thymine nucleotides, revealing the methylation 
fingerprint. However, this method requires complicated bisulfite conversion steps, 
amplification and yields short reads. Hence this strategy is particularly difficult to apply for 
low complexity regions such as GC-islands. Oxford Nanopore Technologies methylation 
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identification has been shown to perform with similar accuracy compared to gold-standard 
methods. In addition, it offers the benefit of increased read-length and the absence of 
amplification, allowing better alignments for low complexity regions, avoiding complicated 
laboratory procedures, and only utilizing the sensitive sequencing signal and adjusted 
basecalling algorithm18. Applications for functional genomics and epigenetics have proven 
their worth for specific scientific bottlenecks and have bridged knowledge gaps of areas left 
untouched by traditional technologies. The current cost perspective makes Oxford Nanopore 
Technologies specifically attractive for specialized cases, whether that is to identify genes 
surrounded by repetitive content, quantify splice variants with repetitive content, generating 
methylation fingerprints over long range epigenetic elements or to close assembly gaps for 
large and complex genomes. When Oxford Nanopore Technologies reaches a cost-effective 
ratio comparable to gold-stand methods it will find its true potential and will open a new era 
for standardized sequencing and data processing allowing the analysis of anything, 
by anyone, everywhere.

To boldly go where no man has ever gone before 
Suggested by the rapid read-length improvements it becomes more realistic to hypothesize 
that future sequencing will transform from a read-out of fragments method into a 
telomer-to-telomere sequencing fashion. Currently, the maximum read-lengths reported are 
>4 Mbp, compared to >10 Kbp during 2010 indicating it will not be long before end-to-end 
telomere sequencing is the gold standard. Sequencing entire chromosomes would bring 
significant benefits compared to current sequencing technologies, as it circumvents assembly 
for whole genome sequencing altogether. Downscaling computational load will relieve the 
scientific community of computationally intensive downstream analysis and will free scientist 
from dedicated computer clusters and command line tools.

Furthermore, sequencing speed is based on the number of nucleotides passing through the 
nanopore; to protect accuracy speeds are currently limited to 450 nucleotides per second. 
This sweet spot allows modern deep learning algorithms to determine the base sequence with
up to Q30 accuracy. Increasing sequencing speed using those basecalling models would 
cause accuracy reduction as sequencing signals become too difficult to untangle. 
However, deep learning improvements resulting in more sophisticated neural network 
basecallers could increase sequencing speed up to a theoretically derived maximum of >106 
nucleotides per second19. Exploiting the maximum sequencing speed could sequence a single 
human genome copy in just under two hours using a single pore. Such reduced computational 
pressure and increased sequencing speed will allow analysis of DNA content of any organism on 
a mediocre laptop in a matter of minutes, as opposed to a matter of days using dedicated and 
expensive computer clusters.
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Additionally, standardized analysis workbenches should aid to reduce the time constraints even 
further, enabling scientists to navigate through the genomic content quickly and easily in a 
comprehensive, user-friendly, and visually appealing manner. Although read-lengths approach 
chromosome lengths, additional progress for chemistries must be made to, among others, avoid 
the entanglement of such long molecules during the isolation and unzipping of the double 
stranded DNA molecule.

Another potential application for future Oxford Nanopore Technologies that circumvents cell 
lysis to obtain high molecular weight DNA is the ability to sequence DNA/ RNA directly from the 
cell. Bringing the nucleus in proximity of the outer membrane and strategically incorporating a 
nanopore on both the nuclear envelop as well as on the outer membrane the nuclear interior could 
be connected to the sequencing pore. Using the intrinsic machinery that regulates proliferation 
to control entanglement and folding, DNA molecules can exit the nuclear envelope through the 
outer membrane into the sequencing pore. This would in turn bypass complicated entanglement 
of very large molecules and at the same time evade DNA molecule breakage that frequently 
occurs due to invasive laboratory procedures such as pipetting or mechanical lysis.

With one large leap of faith, in line with single cell nucleus sequencing, it might be possible to 
return the sequenced DNA or RNA through an additional feedback-pore. The unwinding of the 
DNA strands is then facilitated by proteins to collect and reposition proteins that are attached 
to the DNA strand. This allows the read-out of a single cell’s entire genomic content without the 
need to sacrifice the sample. And would enable researchers to generate paired datasets that are 
statistically of incredible value avoiding biological variation on a cellular level.
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Introductie
In dit proefschrift focus ik op de toepassingen van Oxford Nanopore Technologies (ONT) 
sequencing. Deze techniek is een relatief nieuwe benadering in het sequencing-veld, 
waarbij nanoporiën zijn ingebed in een membraan, DNA-moleculen door nanoporiën worden 
getrokken en een elektrische stroom dient als het sequencing-signaal. Deze techniek levert 
sequenties (“reads”) van >10Kbp op en heeft theoretisch geen bovengrens voor de lengte van 
reads. De positieve impact op de datakwaliteit als gevolg van verbeterde chemie is uitgelicht, 
verbeterende chemie leidt tot minder sequentiefouten en een meer homogene verdeling van 
reads over complexe genomische architecturen. De voordelen van langere read lengtes zijn 
beoordeeld voor het oplossen van genoomassemblages die gefragmenteerd blijven met 
gebruik van uitsluitend korte-read-sequentiedata. Vervolgens is de assemblage van een groot 
genoom met ONT-data beschreven, wat laat zien dat ONT een geschikte kandidaat is voor het 
oplossen van extreem grote genomen met geavanceerde assemblagesoftware. En tot slot komt 
het potentieel van ONT sequencing naar voren voor in-het-veld sequencing, waarbij gebruik 
wordt gemaakt van de eenvoud, mobiliteit en de datakwaliteit die worden geboden door deze 
nieuwe techniek.

De centrale hypothese van dit proefschrift is dat Oxford Nanopore Technologies data waardevol 
kunnen zijn voor gevestigde genomics toepassingen, zoals volledige genoom sequencing 
(hoofdstukken 2–4) en het karakteriseren van metagenomen voor microbiële gemeen- 
schappen (hoofdstuk 5). Hier evalueer ik deze algemene stelling in het kader van de beschreven 
resultaten van de voorgaande hoofdstukken. Daarnaast bespreek ik de vooruitzichten voor 
opkomende en toekomstige genomics-toepassingen op basis van de mogelijkheden die 
worden geboden door ONT data.

De kwaliteit van long-read sequencing en assemblages
ONT-sequencing verschilt van traditionele sequencing-methoden doordat nucleotiden 
rechtstreeks worden gemeten met behulp van elektrische signalen in plaats van synthetische 
kopieën of markers zoals fluorescerende labels. Meerdere nucleotiden (5-mers) bezetten 
tegelijkertijd een porie, daarom is het de set van nucleotiden die de elektrische interferentie 
veroorzaken. Dit profielsignaal moet via algoritmes worden ontrafeld om een enkele base te 
identificeren. Het zijn dus de algoritmes die de uiteindelijke reads aanleveren en door deze 
algoritmes te verbeteren kan de kwaliteit van sequentie data zelfs verbeteren voor eerder 
geanalyseerde projecten1. ONT liet aanvankelijk 30 nucleotiden per seconde door de
 nanoporie passeren. De snelheid waarmee het aantal nucleotiden door een enkele porie werden 
gehaald werd gelimiteerd omdat algoritmes moeite hadden om nucleotiden te onderscheiden uit 
een set van nucleotiden die tegelijk de porie bezetten als deze te snel door de porie bewegen. 
Dit resulteerde in een bijzonder lage sequentiekwaliteit. Het beperken van de snelheid tot 30 
basen per seconde leverde een nauwkeurigheid van ~70% op. Momenteel kan ONT ~450 basen 
per seconde doorlaten, wat reads oplevert van >10Kbp met een nauwkeurigheid tussen 
~90-99%. Hoofdstuk 2 benadrukt het effect van verbeterde sequentiesnelheid, 
verbeterde algoritmes en chemie voor een zeer heterogene giststam.
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Om echter nauwkeurige haplotypes voor dit genoom te genereren, is extra sequentiekwaliteit 
vereist. Uit een BUSCO-analyse bleek dat uit onze beste assemblageresultaten er nog steeds 
genen ongeïdentificeerd bleven. De impact van deze sequencing fouten wordt benadrukt door 
de vergelijking van geïdentificeerde genen vóór en na foutcorrectie. Waarbij meer genen worden 
geïdentificeerd wanneer de sequentienauwkeurigheid wordt verhoogd. Het volume van datasets 
word voor sequencing uitgedrukt in het aantal kopieën van het genoom (“coverage”). 
Vergeleken met andere studies, die coverage gebruiken variërend van 70x tot 1000x, heeft onze 
dataset relatief lage coverage. Daarom kan een toename van data helpen bij het oplossen van 
eventuele resterende assemblageproblemen, evenals het verhogen van de sequentiekwaliteit 
door meer bewijs te leveren voor de foutcorrectieprocedure2-4.

Aangezien assemblagealgoritmen moeite hebben om de uiteinden van circulair DNA te 
definiëren is het assembleren van circulaire constructen voor complexe genomen een 
uitdagende taak. In deze studie hebben we de architectuur van mitochondriaal DNA of circulaire 
plasmiden niet onderzocht. Een logische volgende stap zou dus zijn om de assemblageresultaten 
te onderwerpen aan software dat specifiek is ontworpen voor het sluiten van circulaire contigs 
voor long-read data2, 5.

In hoofdstuk 2 en 3 hebben we een veelvoud aan assemblage-, consensus en correctietools 
geëvalueerd, die variëren van middelmatig tot veelbelovend. De meeste assemblagestrategieën 
zijn vergelijkbaar en resulteren in relatief kleine verschillen. Het benadrukken van de oorsprong 
van die kleine discrepanties en het beslissen over de uiteindelijke assemblage is een tijdrovende
en arbeidsintensieve aangelegenheid. De momenteel beschikbare tools bieden ruimte voor 
verbetering van gebruiksvriendelijke workflows, inclusief visualisaties van base niveau tot 
genoomwijd. Deze workflows zouden voortgang moeten rapporteren op het niveau van 
alignment, assemblage, consensus en correctie om besluitvorming voor downstream analyse 
te faciliteren. Kant-en-klare assemblageworkflows zouden de snelheid waarmee 
genoomanalyse wordt uitgevoerd verhogen en onderzoeken verlichten voor grote sequentie- 
datasets. De huidige standaard is het uitvoeren van meerdere assemblagestrategieën en 
doorgaan op een resultaatgerichte manier. Analysetools voor genomen van klein tot middelgroot 
tonen vergelijkbare maar niet identieke assemblageresultaten waardoor vergelijking tussen 
analyses uiterst moeilijk is7, 9.

De novo assemblageresultaten op basis van long-read data voor kleine genomen laten 
veelbelovende reconstructies zien. Assemblages voor medium-grote genoomgroottes van 
vergelijkbare kwaliteit, zoals onderzocht in hoofdstuk 4, zijn steeds vaker openbaar beschikbaar. 
Echter, afzonderlijke haplotypen van dergelijke organismen moeten nog worden gepubliceerd, 
deze inhaalslag word nu pas gemaakt omdat de kwaliteit pas recentelijk van voldoende kwaliteit 
is geworden om chromosomale kopieën nauwkeurig te faseren10.
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Ondanks een verhoogde capaciteit om een gelijkmatige coverage te bereiken, langere reads te 
genereren en verbetering naar low-complexity regio’s, zijn voor ultra-grote genomen 
aanvullende ontwikkeling vereist6. Het routinematig sequencen van ultra-grote genomen 
vereist een aanvullende ontwikkelingsupdate die met name gericht op de snelheid van sequencen 
en de kosten. Bijvoorbeeld, het sequencen van het genoom van Paris japonica, een plantensoort 
met een genoomgrootte van ongekende omvang, geschatte genoomgrootte ~150 Gbp voor een 
enkel genoomkopie8. Het sequencen van een genoom van deze omvang duurt iets minder 
dan een uur op een volledig geladen PromethION (dat wil zeggen 48 flowcellen, elk ~$2.000 
en gebruikmakend van ~ 2.500 poriën bij 450 basen per seconde) voor een enkele genoomkopie. 
Daarom, hoewel haalbaar, duurt het sequencen op de vereiste sequentiediepte voor dergelijke 
genomen nog steeds dagen en is het zeer duur. Voor wat betreft de verbeteringen van 
read-lengte, read-kwaliteit en schaalbaarheid is ONT een pionier die het onderzoeksgebied 
van echt grote genomen mogelijk maakt6.

De kosten van genoomsequencing
Het evalueren van de kosten van genoomsequencing met behulp van de Wet van Moore heeft 
duidelijk gemaakt dat ongelooflijke hoeveelheden sequentiegegevens worden en zullen worden 
gegenereerd. Deze datavolumes geven de noodzaak aan van efficiënte software voor downstream 
analyse. Momenteel is sequencing-data betaalbaarder geworden in tegenstelling tot de 
kosten voor het analyseren van grote datasets met behulp van computerclusters. 
Het voordeel van verminderde kosten, verhoogde sequencing-snelheid en schaalbaarheid gaat 
verloren wanneer gegevensanalyse duizenden CPU-uren vereist op dure toegewijde clusters. 
We moeten daarom de wetenschappelijke gemeenschap voorzien van meer geavanceerde tools 
voor het verwerken van grote datasets, die minder rekenintensief zijn, minder geheugen 
vereisen, sneller zijn en gebruiksvriendelijker zijn.

Alles en overal sequencen
Standaard laboratoriumtechnici hebben geen ervaring met commandline tools en beschikken 
niet over de vaardigheden om zich adequaat aan te passen aan alternatieve resultaten. 
Dit duidelijk aanwezige hiaat kan worden overbrugd door gestandaardiseerde eenheden en 
formaten te gebruiken, gemakkelijk toegankelijke, gratis maar geavanceerde software 
die wordt ondersteund met logische visuele representaties.

Voor het idee alles overal kunnen sequencen is de omvang van sequencingmachines belangrijk, 
momenteel is het kleinste sequencingapparaat slechts zo groot als een grote USB-stick en biedt 
mobiliteit om sequencing in het veld mogelijk te maken, dit wordt besproken in hoofdstuk 5. 
Echter, veld gegenereerde gegevens moeten worden verwerkt door computerclusters of op zijn 
minst een high-end laptop met voldoende energievoorziening. Het volledig benutten van dit 
mobiliteitskenmerk vereist afgeschaalde verwerkingskracht, geheugen- en energieverbruik.
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Van amplicon tot in situ metagenoomsequencing en assemblage
In hoofdstuk 5 hebben we metagenomics gebruikt om de microbiële diversiteit te identificeren 
met behulp van ONT, wat een eerste stap is in het begrijpen van de biocomplexiteit en ecologie 
van de grote wateren. Echter, het bepalen welke soorten gedijen op welke locaties is slechts het 
begin van het begrijpen van de ecologie achter de microbiële diversiteit. Om deze diversiteit 
functioneel te beoordelen zijn volledige genoomassemblages nodig. Deze kennis kan bijvoorbeeld 
leiden tot een beter begrip van de resistentiemechanismen die door microbiële gemeenschappen 
worden gebruikt om de harde oceaansomstandigheden te overleven of om de mechanistische 
eigenschap te onthullen voor het uitwisselen van genetisch materiaal via plasmiden. 
Bovendien zou het de diversificatie van soorten op een tijd- en ruimtelijke manier kunnen 
ontrafelen waardoor de gezondheid van oceanen, zeeën en rivieren die de basis van het leven 
op het land vormen, kan worden gevolgd. Om in-field monitoring van zeewater adequaat toe 
te passen moeten DNA-isolatie- en laboratoriummethoden ter plaatse worden uitgevoerd. 
In hoofdstuk 5 hebben we het DNA onder laboratoriumomstandigheden geïsoleerd. Hoewel deze 
procedure een zeer eenvoudige richtlijn volgt, is het verzamelen van lang moleculair DNA van 
mariene organismen bijzonder uitdagend vanwege overmatige afscheiding van metabolieten 
die co-precipiteren met DNA11. Daarom moet optimalisatie voor isolatie van lang moleculair 
DNA met betrekking tot sequencing op locatie verder worden ontwikkelt zowel wat betreft 
sequencingsnelheid alswel wat betreft het gebruiksgemak. Apparatuur voor het voorbereidingen 
van DNA voor sequencing moet voldoen aan de gewenste eisen om in situ te kunnen worden 
ingezet. Voltrax laboratorium voorbereiding biedt een potentieel oplossing en is in staat om 
geïsoleerd DNA in een kwestie van minuten klaar te maken, echter, als gevolg van het gebrek aan 
zuiveringsstappen, zou geïsoleerd hoogmoleculair DNA nogal verontreinigd kunnen zijn. 
Zelfs met kleine en gebruiksvriendelijke apparaten zoals Voltrax blijft in situ DNA-isolatie en 
-zuivering uitdagend11. Bovendien vereist de chemie die nodig is voor sequencing specifieke 
opslagbeperkingen; zowel flowcellen als chemie zijn temperatuurgevoelig en de koelkast- 
capaciteit voor veldexpedities is meestal onregelmatig vanwege het gebrek aan adequate 
stroomvoorziening12. Ten slotte is aanvullende analyse vereist om geïdentificeerde soorten 
fylogenetisch te positioneren. Onecodex (gebruikt in hoofdstuk 5) is gunstig om organismen 
snel en gemakkelijk in de context van bestaande databases te plaatsen, dit scheelt tijd en 
verlicht de arbeidscomplexiteit. 
Aan het analyse portaal dat Onecodex biedt ontbreekt echter de phylogenetische afstand tussen 
soorten, welke naar boven gehaald kan worden door een tijdrovende methode zoals multiple 
sequence alignment. Bovendien biedt het alleen uitgebreide functionaliteit met een betaalde 
licenties waardoor kosten toenemen en het voor onderzoekers moeilijk maakt om resultaten te 
vergelijken. Eerdere studies tonen succesvolle fylogenetische plaatsing onder afgelegen 
omstandigheden met behulp van JModelTest, daarom zou dit een potentieel kandidaat kunnen 
zijn voor downstream-analyse van metagenoommonsters uit zeewater13.
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De toekomst van Oxford Nanopore Technologies-sequencing en de toepassingen
Met het gebruik van de huidige beste flowcellen en chemie worden kwaliteiten van Q20 bereikt, 
wat zich vertaalt naar >99% nauwkeurigheid. Deze methoden maken het mogelijk om van de 
moleculen die door de nanoporie worden gehaald de basenvolgorde uit te lezen. Hoewel het 
sequencen van beide gescheiden enkelstrengs DNA al in ~2015 door Oxford Nanopore 
Technologies werd geïntroduceerd, werd het later vervangen door chemie van slechts één kopie 
uitleest. Echter, chemieën om beide gescheiden enkelstrengs DNA te sequencen zijn 
recentelijk opnieuw uitgebracht door Oxford Nanopore Technologies. Hier wordt de informatie 
van beide enkelstrengs DNA gebruikt om basecalling-fouten te verminderen door de sequentie-
signalen te combineren. Zodra het dubbelstrengsmolecuul zijn weg naar de porie heeft gevonden, 
wordt één van de twee strengen door de porie getrokken, deze streng wordt de templatestreng 
genoemd. Vervolgens laat na ontvouwen van het dubbelstrengs-DNA het 5’-eind van de 
complementaire streng in de nabijheid van de porie achter met behulp van een bevestigings- 
molecuul dat aan het membraan is bevestigd. Naarmate de sequencing het einde van het 
molecuul bereikt, volgt met enige waarschijnlijkheid de complementaire streng onmiddellijk 
de templatestreng door dezelfde porie. Vanuit de sequencing signalen worden reads die na 
elkaar overgaan met vergelijkbare sequentielengtes en complementaire base-samenstelling 
gedetecteerd als paren, aangeduid als een duplexpaar.

Eerdere basecalling-methoden gebruiken ofwel signalen van enkelstrengs DNA of 
gecombineerde signalen van zowel template- als complementaire strengen, ‘paired decoding’ 
genoemd. Enerzijds is simplex basecalling (het verwerken van het signaal van een enkele streng 
individueel) zeer snel maar levert hogere foutpercentages op. Anderzijds, het voeden van beide 
strengen aan een neuraal netwerk basecalling-algoritme levert nauwkeurige sequenties op ten 
koste van middelen en tijd. Het decoderen van gecombineerde signalen is een rekenkracht 
intensief proces, tot wel vijf keer trager vergeleken met simplex basecalling en ontbreekt 
daardoor aan schaalbaarheid14. De noviteit van de kwaliteitsverbetering voor ‘stereo duplex 
basecalling’ vindt zijn oorsprong door base informatie, kwaliteitsscores en het sequentiesignaal 
voor zowel de template- als complementaire streng te voeden aan een ‘stereo’ basecaller. 
Deze basecalling-methode is eenvoudig, snel en robuust en maakt betere schaalbaarheid 
mogelijk om grote hoeveelheden gegevens te genereren over een redelijke tijdsperiode, 
welke Q30 kwaliteiten kan genereren. Met kwaliteit die de standaard sequencing-platforms 
benadert, lijkt Oxford Nanopore-technologie een veelbelovende techniek voor analyse die een 
hoge nauwkeurigheid op base niveau vereisen, zoals SNP-detectie en haplotype-identificatie, 
met name voor polyploïde genomen.
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Hoewel we een overtreffing van de Wet van Moore (Figuur 9 - inleiding) zien wat betreft de 
kosten van sequencing in het algemeen, blijft long-read sequencing relatief duur. Onder meer 
kostenefficiënte omstandigheden is long-read sequencing ook een geschikte kandidaat voor 
functionele genomics-analyse. Het vermogen om samples voor te bereiden zonder amplificatie 
voorkomt de introductie van biases waarbij sommige moleculen ondervertegenwoordigd zijn en 
andere overmatig worden versterkt. Zonder deze biases kan nauwkeurige kwantificering 
mogelijk worden gemaakt. Long-read-sequenties kunnen volledige transcripten in één keer 
beslaan, waardoor ingewikkelde transcript-assemblages worden vermeden en vereenvoudigde 
identificatie mogelijk is. Hierdoor is er minder data nodig om hetzelfde aantal genen te 
identificeren in vergelijking met methoden voor short-read sequencing15. 
Bovendien zijn volledige transcripten die direct worden geregistreerd, uitzonderlijk waardevol 
voor de karakterisering van structurele variatie zoals isoformen. Isoformen kunnen verschillende 
functionele eigenschappen en expressieniveaus vertonen, en ze zijn uiterst moeilijk te bepalen 
met behulp van short-read sequencing. Bovendien wordt structurele variatie gebruikt over een 
breed spectrum van onderzoeksgebieden die lopen van het begrijpen van kankers in een klinische 
setting tot aan het coderen van commercieel aantrekkelijke eigenschappen voor de agrarische 
sector. Structurele variatie strekt zich in veel gevallen uit over Mbp-stukken in het genoom en 
is onmogelijk vast te leggen met een enkele read vanuit traditionele sequencing-technieken. 
Daarom worden die regio’s, met traditionele data, sequentieel in stukjes gelezen en opnieuw 
samengesteld om de volledige structurele variatie te onthullen. Voor de standaard sequencing 
technieken leidt dit tot misassemblages en het ontbreken van regio’s die vatbaar zijn voor 
amplificatie-biases. Bovendien, omdat long-reads een verhoogde aligneringspecificiteit bieden, 
wordt het aantal onduidelijke alignments aanzienlijk verminderd, in vergelijking met short-read 
sequencing data.
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En tot slot, dankzij de gevoeligheid van sequentiesignalen en ontwikkelingen in kunstmatige
intelligentie, kan nanopore-sequencing gemodificeerde basen detecteren. Het epigenoom is 
een ingewikkeld raamwerk bestaande uit een veelheid van chemische verbindingen die de 
functionaliteit van DNA dicteren. De hoog over structuur die de genomische functie orkestreert, 
omvat onder andere CpG-methylatie, nucleosoombezetting, chromatine-toegankelijkheid, 
histonmodificaties en proteïnebindende gebeurtenissen die helpen bij de juiste segregatie van 
chromosomen16, 17. Het meest bekende epigenetische component is CpG-methylatie en is 
geassocieerd met het onderdrukken van gen-transcriptie onder hypergemethyleerde 
promotoromstandigheden of transcriptieactivering voor hypo- en hypermethylering van het 
promotorgebied en een gen, respectievelijk. Een standaard methode om methylering te 
detecteren is whole genome bisulfite sequencing, waarbij ongemethyleerde cytosines worden 
vervangen, eerst met uracil en later door thymine nucleotiden, waardoor de methylerings- 
fingerprint wordt onthuld. Deze methode vereist echter ingewikkelde bisulfietconversiestappen, 
amplificatie en levert short-read data op. Daarom is deze strategie met name moeilijk toe te 
passen voor regio’s met een lage complexiteit zoals GC-eilanden. Oxford Nanopore Technologies 
methyleringsidentificatie heeft aangetoond vergelijkbare nauwkeurigheid te behalen in 
vergelijking met standaard methoden. Bovendien bieden ze het voordeel van langere reads en 
de afwezigheid van amplificatie, wat betere alignments mogelijk maakt voor regio’s met een lage 
complexiteit, het vermijd ingewikkelde laboratoriumprocedures, en heeft alleen het sequencing 
signaal nodig en een basecalling-algoritme18. 

Toepassingen voor functionele genomics en epigenetics hebben hun waarde bewezen voor 
specifieke wetenschappelijke knelpunten en hebben kennislacunes overbrugd van gebieden 
die onaangeroerd zijn gebleven door traditionele technologieën. Het huidige kostenperspectief 
maakt Oxford Nanopore Technologies specifiek aantrekkelijk voor gespecialiseerde gevallen, 
of dat nu is om genen te identificeren die omringd zijn door repetitieve sequenties, 
splice-varianten met repetitieve inhoud te kwantificeren, methyleringsfingerprints over 
lange reeksen epigenetische elementen te genereren of assemblage fragmenten te sluiten 
voor grote en complexe genomen. Wanneer Oxford Nanopore Technologies een kosteneffectieve 
verhouding bereikt die vergelijkbaar is met standaard methoden, zal het zijn ware potentieel 
vinden en zal het een nieuw tijdperk openen voor gestandaardiseerd sequencen, waardoor de 
analyse van “alles door iedereen, overal” mogelijk wordt.
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Moedig gaan waar niemand ooit geweest is
Zoals gesuggereerd wordt door de verbeteringen in read lengtes, wordt het realistischer om 
te hypothetiseren dat toekomstige sequencing zal transformeren van een methode voor het 
uitlezen van fragmenten naar een telomeer-tot-telomeer-sequencing-mode. Momenteel zijn 
de maximale leeslengtes die worden gerapporteerd >4 Mbp, in vergelijking met >10 Kbp in 2010, 
wat aangeeft dat het niet lang zal duren voordat telomeer-tot-telomeer-sequencing de 
standaard is. Het sequencen van hele chromosomen zou aanzienlijke voordelen met zich 
meebrengen in vergelijking met huidige sequencing-technologieën, omdat het de assemblage 
voor hele-genoom-sequencing volledig buitenspel zet. Het verkleinen van de computationele 
druk zal de wetenschappelijke gemeenschap verlichten van rekenintensieve downstream-
analyses en zal wetenschappers bevrijden van toegewijde computerclusters en 
commandline software.

Bovendien is de sequencing snelheid gebaseerd op het aantal nucleotiden dat door de nanopore 
passeert, om de nauwkeurigheid te beschermen zijn de snelheden momenteel beperkt tot 
450 nucleotiden per seconde. Deze snelheid maakt het mogelijk voor moderne deep learning 
algoritmen om de basenvolgorde met een nauwkeurigheid tot Q30 te bepalen. Het verhogen van 
de sequentiesnelheid met behulp van die basecalling-modellen zou echter leiden tot een 
vermindering van de nauwkeurigheid omdat sequentiesignalen te moeilijk worden om te 
achterhalen. Desalniettemin zouden verbeteringen in deep learning, resulterend in meer 
geavanceerde neurale netwerk basecallers, de sequentiesnelheid kunnen verhogen tot een 
theoretisch maximum van >106 nucleotiden per seconde19. Het benutten van de maximale 
sequencing snelheid zou een enkel kopie van het menselijk genoom in iets minder dan twee uur 
kunnen worden uitgelezen met behulp van een enkele porie. Een dergelijke verminderde 
computationele druk en verhoogde sequentiesnelheid zullen de analyse van DNA-inhoud van elk 
organisme op een middelmatige laptop in een kwestie van minuten mogelijk maken, 
in plaats van dagen met behulp van toegewijde en dure computerclusters.
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Bovendien zouden gestandaardiseerde analyse-werkbanken moeten helpen om de 
tijdbeperkingen nog verder te verminderen, waardoor wetenschappers snel en gemakkelijk door 
de data kunnen navigeren op een uitgebreide, gebruiksvriendelijke en visueel aantrekkelijke 
manier. Hoewel read lengtes de lengtes van chromosomen benaderen, moet er aanvullende 
vooruitgang worden geboekt met laboratoriumtechnieken om, onder andere, verstrengeling 
of breken van dergelijke lange moleculen tijdens het isoleren en ontvouwen van het 
dubbelstrengs-DNA-molecuul te vermijden.

Een andere potentiële toepassing voor toekomstige Oxford Nanopore Technologies die cellysis 
omzeilt om lang moleculair DNA te verkrijgen, is het vermogen om DNA / RNA rechtstreeks uit 
de cel te sequencen. Door de kern in de nabijheid van het buitenmembraan te brengen en 
strategisch een nanopore op zowel de kern envelop als op het buitenmembraan te incorporeren, 
kan het binnenste van de kern worden verbonden met de sequentieporie. 
Door gebruik te maken van het intrinsieke mechanisme dat proliferatie regelt om verstrengeling 
en vouwing te regelen, kunnen DNA-moleculen de kern envelop verlaten door het buiten- 
membraan in de sequentieporie. Dit zou op zijn beurt de ingewikkelde verstrengeling van zeer 
grote moleculen omzeilen en tegelijkertijd het breken van DNA-moleculen vermijden dat vaak 
voorkomt als gevolg van invasieve laboratoriumprocedures zoals pipetteren of mechanische lysis.

Met een beetje fantasie zou het zelfs mogelijk kunnen zijn om het uitgelezen DNA of RNA terug 
te voeren via een extra feedbackporie. Het afwikkelen van de DNA-strengen wordt dan 
gefaciliteerd door shaperone eiwitten die de losgekoppelde eiwitten verzameld en terug plaatst 
na het sequencen. Dit maakt de uitlezing van de volledige genomische inhoud van een enkele cel 
mogelijk zonder de noodzaak om de cel op te offeren. En zou onderzoekers in staat stellen om 
gepaarde datasets te genereren die statistisch enorm waardevol zijn, waarbij biologische variatie 
op cellulair niveau wordt vermeden.
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