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BACKGROUND: Understanding the variability across the human population with respect to toxicodynamic responses after exposure to chemicals, such
as environmental toxicants or drugs, is essential to define safety factors for risk assessment to protect the entire population. Activation of cellular
stress response pathways are early adverse outcome pathway (AOP) key events of chemical-induced toxicity and would elucidate the estimation of
population variability of toxicodynamic responses.

OBJECTIVES:We aimed to map the variability in cellular stress response activation in a large panel of primary human hepatocyte (PHH) donors to aid
in the quantification of toxicodynamic interindividual variability to derive safety uncertainty factors.

METHODS: High-throughput transcriptomics of over 8,000 samples in total was performed covering a panel of 50 individual PHH donors upon 8 to
24 h exposure to broad concentration ranges of four different toxicological relevant stimuli: tunicamycin for the unfolded protein response (UPR),
diethyl maleate for the oxidative stress response (OSR), cisplatin for the DNA damage response (DDR), and tumor necrosis factor alpha (TNFa) for
NF-jB signaling. Using a population mixed-effect framework, the distribution of benchmark concentrations (BMCs) and maximum fold change were
modeled to evaluate the influence of PHH donor panel size on the correct estimation of interindividual variability for the various stimuli.

RESULTS: Transcriptome mapping allowed the investigation of the interindividual variability in concentration-dependent stress response activation,
where the average of BMCs had a maximum difference of 864-, 13-, 13-, and 259-fold between different PHHs for UPR, OSR, DDR, and NF-jB
signaling-related genes, respectively. Population modeling revealed that small PHH panel sizes systematically underestimated the variance and gave
low probabilities in estimating the correct human population variance. Estimated toxicodynamic variability factors of stress response activation in
PHHs based on this dataset ranged between 1.6 and 6.3.
DISCUSSION: Overall, by combining high-throughput transcriptomics and population modeling, improved understanding of interindividual variability
in chemical-induced activation of toxicity relevant stress pathways across the human population using a large panel of plated cryopreserved PHHs
was established, thereby contributing toward increasing the confidence of in vitro-based prediction of adverse responses, in particular hepatotoxicity.
https://doi.org/10.1289/EHP11891

Introduction
One of the main responsibilities of the liver is the metabolism of en-
dogenous and xenobiotic substances making the liver susceptible to
chemical-induced injury through exposure to environmental toxi-
cants or drugs. Indeed, the development of liver injury is one of the
most frequent adverse outcomes in in vivo chemical safety testing.1,2

Environmental toxicants, such as pesticides, volatile organochlorine
chemicals, perfluorinated alkyl substances, aflatoxins, ormicrocystins,
are known to contribute to the development of liver disease, including
development of fatty liver disease and hepatocellular carcinoma.3–5

Also, particular drugs are known to induce liver injury,which is one of
the main reasons for drug withdrawal from the market.6 Therefore, it
is key to improve prediction of chemical-induced hepatotoxicity

causing the development of liver disease and accurately account
for interindividual variability within the human population.

For the evaluation of liver injury by environmental toxicants or
drugs, primary human hepatocytes (PHHs) are currently consid-
ered to be the gold standard of tissue culture models for human
liver toxicity.7 Despite their disadvantages, such as dedifferentia-
tion and source limitations, they closely resemble human hepato-
cytes in vivo, allowing for the study of chemical-induced liver
injury.8 Therefore, PHHs from different donors form an excellent
basis to get a deeper understanding of interindividual variability in
toxicodynamic responses.

For chemical safety assessment, a default uncertainty factor (UF)
of 10 is used for interindividual variability, with the goal to equally
account for toxicokinetic (TK) and toxicodynamic (TD) variability
each with a standard UF of 3.16.9 The original value of 10was based
on expert judgement and anecdotal evidence.10,11 Research then
focused on justifying those values, because they had already been
widely adopted and hard to change. Statistical justifications were
found using distributions of the slopes of probit analyses (which, in
theory, measure interindividual variability), but the data came from
acute toxicity experiments in inbred laboratory animals.11 The focus
shifted on separating TK from TD variability and finding the cover-
age (fraction of the population protected) of the factor 10, particu-
larly in human sensitive populations, such as children.12 A decisive
advance came frommeta-analytic reviews of metabolic variability in
humans, but they focused on TK, noting that TD data were scarce
and inadequate (Dorne13 and related papers).While the variability of
TK properties has received much investigation and are integrated in
computational TK prediction models,14–17 the quantitative aspects
of interindividual TD variability are still poorly understood. Recent
studies have started to tackle TD variability (although in fact,
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in vitro TK variability may contaminate such results), using
Bayesian statistical methods.18–20 However, they examined only a
very limited set of phenotypic toxicity end points. Whether the UF
of 10 is enough to capture the full human population variability for
various toxicity pathways is still unclear, and that hampers reliable
risk assessments. There is a need for data-driven interindividual
UFs,which are both chemical and end point specific.

During chemical-induced stress, cellular defensive mechanisms
are activated to restore homeostasis. Well-known stress responses
are the oxidative stress response in reaction to accumulation of reac-
tive oxygen species (ROS) regulated by nuclear factor, erythroid 2
like 2 (NFE2L2/NRF2)21,22; the unfolded protein response (UPR)
activated upon accumulation of misfolded proteins in the endoplas-
mic reticulum (ER) regulated by three sensors, endoplasmic reticu-
lum to nucleus signaling 1 (ERN1/IRE1a), activating transcription
factor 6 (ATF6), and eukaryotic translation initiation factor 2 alpha
kinase 3 (EIF2AK3/PERK)23–25; the DNA damage response
mediated by tumor protein P53 (TP53/P53) signaling upon DNA
damage26–28; and NF-jB signaling upon inflammatory condi-
tions.29,30Monitoring the activation of these adaptive stress responses
upon chemical exposure can give insight into liver injury liabilities of
chemicals as well as the underlying modes-of-action.31,32 Because of
the protective functions of adaptive stress responses, interindividual
variations in their activities affect adverse outcomes such as liver
injury.33 Quantitative insight in these variations among the human
population would allow the derivation of data-driven toxicodynamic
UFs specifically for each type of stress response, thereby enabling
better predictions of liver injury liabilities.

Omics approaches, such as transcriptomics, are powerful
tools to fully map differences in adaptive stress response sig-
naling networks across different patients. Several studies have
already used transcriptomics approaches to compare differen-
ces between chemical-induced stress responses in different
liver cell culture models.34,35 Due to advances in this area, novel
approaches such as targeted templated oligo-sequencing (TempO-
Seq) technology can now be used, which allow for transcriptome
mapping of gene sets of interest in a high-throughput fashion.36,37

This allows large-scale population studies and accurate analyses of
interindividual variability in transcriptomic perturbations for the
improvement of liver injury liability assessment. When combining
experimental transcriptomic data with population modeling, an esti-
mate of the variance across the entire population can be derived, an
approach taken by Blanchette et al.20 for the evaluation of the var-
iance in chemical-induced cardiotoxicity.20,38

Here, to map the interindividual variability in stress response
activation upon chemical exposure, we profiled the transcriptome
for over 8,000 samples covering a large panel of 50 cryopreserved
PHHs derived from different individuals and exposed to a broad
concentration range of specific stress response–inducing com-
pounds, namely diethyl maleate, tunicamycin, cisplatin, and tumor
necrosis factor alpha (TNFa) to induce the oxidative stress, UPR,
DNA damage, and NF-jB signaling, respectively. Chemical-
induced perturbation of the transcriptome was evaluated upon 8
and 24 h of exposure using TempO-Seq technology.36 In combina-
tion with population modeling, these data allowed us to evaluate
the influence of PHH panel sizes on the correct estimation of inter-
individual variance in chemical stress responses and exemplify the
need of data-driven toxicodynamic UFs, which will contribute to
improved prediction of chemical-induced liver injury liabilities.

Methods

Cell Culture
Plateable cryopreserved PHHs39 were derived from the safety mar-
gin of liver tissue resected in case of hepatic tumors from 54 different

individuals (KaLy-Cell) with permission of the national ethics com-
mittees and regulatory authorities (Excel Table S1). For plating,
PHHs were thawed in a warmwater bath at 37�C and diluted in pre-
warmed universal cryopreservation recovery medium (UCRM)
(IVAL) followed by centrifugation at 170× g for 20 min at room
temperature (RT). Thereafter, cell pellet was diluted in seeding uni-
versal primary cell plating medium (UPCM) (IVAL), and viability
was assessed using the Trypan blue exclusion method.40 Cells were
plated at a density of 70,000 cells in 100 lL per well in 96-well
BioCoat Collagen ICellware plates fromCorning.After 6 h,medium
was refreshed with seeding UPCM medium. PHHs showing <70%
confluency 24 h after plating were discarded from further analysis
leading to a panel of PHHs derived from in total 50 individuals.
Characteristics of these PHHs are depicted in Figure S1 and Excel
Table S1, including information regarding confluency and day
of plating. Demographic information of donors was given by the
hospital and received simultaneously with the resection. To
evaluate variability in dedifferentiation upon culturing of PHHs,
PHHs in suspension directly upon thawing or from matching
snap-frozen liver tissue were also analyzed derived from eight
individuals (Excel Table S1, columnWT analyzed).

Cell Treatment
Prior to compound exposure, PHHs were first washed after 24 h of
attachment using 1 × phosphate-buffered saline (PBS) to remove
unattached cells. Exposures were done using William’s E medium
supplemented with 100 U=mL penicillin and 100 lg=mL strepto-
mycin. PHHs were exposed to four reference compounds in a broad
concentration range known to induce specific stress response path-
ways (Table S1), namely tunicamycin (0:0001–10 lM) and diethyl
maleate (1–3,300 lM) from Sigma, TNFa (0:1–33 ng=mL) from
R&D systems, and cisplatin “Ebewe” 1 mg=mL concentrate for so-
lution for infusion (0:1–100 lM).32 To evaluate variability in stress
response activation by hepatotoxicants, PHHs were exposed to a
broad concentration range (1–100×Cmax) of acetaminophen, pro-
pylthiouracyl, nitrofurantoin, ticlopidine, nefazodone, and diclofe-
nac (Table S1) from Sigma. All compound stocks, except for TNFa
and cisplatin, were prepared using dimethylsulfoxide (DMSO) from
BioSolve and stored at −20�C. End concentration of DMSO in all
conditions were kept identical at 0.2%. TNFa was reconstituted in
1 × PBS containing 0.1% bovine serum albumin at a concentration
of 10 lg=mL.

Cell Viability
To evaluate cytotoxicity, lactate dehydrogenase (LDH) leakage
was evaluated after 24 h of exposure for all compounds and con-
centrations tested in the culture medium of PHHs using a cytotox-
icity detection kit from Roche (catalog number 11644793001)
according to instructions by provider. As a positive control, PHHs
incubated for 5 min with 1% triton were taken along. Collected
medium was stored at 4�C for a maximum of 3 d before analysis.
Upon analysis, medium samples were diluted 10× with 1 × PBS
and measured in triplicate. Absorbance was measured at 490 nm
with a VICTOR plate reader (PerkinElmer). Cell viability was
determined for three biological replicates for each condition for
each PHH.

Targeted Sequencing
The transcriptome was analyzed after exposure to the four refer-
ence compounds (tunicamycin, diethyl maleate, TNFa, or cispla-
tin in a broad concentration range) for 8 and 24 h for the whole panel
of 50 PHHs and with the hepatotoxicants for the identified three most
and least sensitive PHHs in stress response activation (acetamino-
phen, propylthiouracyl, nitrofurantoin, ticlopidine, nefazodone, and
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diclofenac from 1 to 100× Cmax) for 24 h. The transcriptome was
analyzed using the targeted TempO-Seq technology (BioSpyder
Technologies, Inc.). First, cells were washed with 1 × PBS and lysed
with 50 lL 1× TempO-Seq lysis buffer (provided by BioSpyder)
per well. Lysates were incubated for 15 min at RT and stored at
−80�C. Samples were shipped for TempO-Seq analysis36 using the
S1500+ gene set of National Institute of Environmental Health
Sciences (NIEHS)41 supplementedwith additional stress response rel-
evant genes (Excel Table S2) at BioSpyder and sequenced using a
HiSeq 2,500 ultrahigh-throughput sequencing system (Illumina). For
each condition and PHH, three biological replicates were analyzed
derived fromdifferentwells on separate plates on the same experimen-
tal day. To evaluate variability in dedifferentiation, samples from
PHHs in suspension directly upon thawing, snap-frozen liver tissue, or
PHHs grown two-dimensional (2D) for 24 h derived from the identi-
fied most or least sensitive PHHs from in total eight individuals were
analyzed using the targetedwhole-transcriptome panel in combination
with TempO-Seq technology (BioSpyder) (Excel Table S2). Datasets
are available in the BioStudies Database (http://www.ebi.ac.uk/
biostudies) under accession numbers S-TOXR1035, S-TOXR1036
andS-TOXR1705.

Transcriptomics Dose-Response Analysis and Statistics
For the analysis of TempO-Seq transcriptome data, as a first step,
reads were aligned by BioSpyder technologies using the TempO-
Seq R package. Derived raw counts were normalized using R ver-
sion 4.0.0 (R Development Core Team) and the DESeq2 R pack-
age42 with the functions DESeqDataSetFromMatrix (design= ∼ 1),
estimateSizeFactors, and counts (normalized= TRUE) using
default settings and subsequently log2 transformed. For each PHH
and condition, three biological replicates were analyzed and repre-
sented as themean. A library size cut-offwas used of 100,000 counts
to eliminate samples having a low amount of total counts (Figure
S2). Pearson’s correlation of the gene expression profiles between
replicates and sampleswas calculated using the cor function from the
stats R package (RDevelopment CoreTeam). To evaluate variability
in sensitivity for stress response activation, benchmark concentration
(BMC) modeling was done using the BMDExpress 2 software ver-
sion 2.2 developed by Sciome LCC and NIEHS/NTP/EPA.43,44
Dose response modeling was done for each gene and sample using
various models (exponential 2 to 5, linear, polynomial 2, Hill, and
power model). The best model was selected using the lowest Akaike
information criterion (AIC) and a goodness-of-fit p-value >0:05.
The Hill model was excluded when the j parameter was lower than
one-third of lowest tested concentration. The BMC was defined as
the concentration at which one standard deviation (SD) of increase in
gene expression was observed. For each reference compound, the
top 50 activated genes across the PHH panel were defined based on
both the BMC and the maximal fold change across concentration
range (maxFC) (Excel Table S2). First, genes were ranked for both
BMC and maxFC followed by calculation of the sum of both ranks.
Based on this sum of both ranks, the top 50 genes were selected. The
median BMC and maxFC were calculated based on these top 50
genes for each PHH. To classify PHHs for their sensitivity, a sensi-
tivity scorewas calculated based on the sumof the ranking of theme-
dian BMCs and maxFC at both time points for the top 50 genes for
each reference compound. Principal component analysis (PCA) was
done using prcomp from the stats R package (R Development Core
Team). Panther classification system version 17.0 (www.pantherdb.
org/) was used for the evaluation of enrichment of GO terms for bio-
logical processes using the top 30 genes affecting PC1 of PCA.45,46
Hierarchical clustering based on Euclidean distance and Wards
methodwas done using theR package pheatmap.47 Significant differ-
ences between PHHs with or without certain disease backgrounds,
from patients with any type of cancer or liver pathologies including

liver cancer,were calculated usingunpairedStudent’s t test represented
as *p<0:1, **p<0:05, and ***p< 0:01.Data analysis and visualiza-
tion was done using R version 4.0.0 (R Development Core Team)
and Rstudio with the following R packages: DESeq2 v1.28.1,42
pheatmap v1.0.12,47 ggplot2 v3.3.3,48 data.table v1.14.0,49 dplyr
v1.0.5,50 reshape2 v1.4.4,51 and stats R v3.4.1. To evaluate differ-
ence in pathway activation between different PHHs, gene set
enrichment analysis (GSEA) in combination with Gene Ontology
(GO) gene sets version 7.152 retrieved from the MSigDB was per-
formed using the maxFC as input in the GSEA software ver-
sion 4.0.3 (derived from joint project of UC San Diego and
Broad Institute).53,54 Visualization of GSEA results was done
using Cytoscape version 3.8.1 software55 in combination with
EnrichmentMap56 andWordCloud.57

Population Statistical Modeling
The BMC-maxFC values distributions were modeled in a Bayesian
hierarchical framework. We were interested a priori by intersubject
variability; therefore, our primary observational unit was the indi-
vidual donor. Genes were considered as exchangeable; independent
and identically distributed.

Examination of the BMC and maxFC values clearly showed
that they were clustered in two (positive vs. negative maxFC val-
ues, always present because genes with null or small maxFC val-
ues would not have been retained) or four groups (combinations
of positive vs. negative maxFC values with low or high BMC
values) (see Figure S15A). Therefore, at the level of the ith sub-
ject, we assumed that the counts nik of genes falling in the kth of
the K (equal to either two or four) predefined clusters followed
by a multinomial distribution:

ni = ðni1, . . . , niKÞ∼Multinomialðpi1, . . . , piKÞ: (1)

At the population level, the subjects’ multinomial probabil-
ities were softmax-transformed, and the corresponding parame-
ters b were assumed to be multivariate-normal-distributed around
a population mean l with covariance matrix X.

pik =
exp bikð ÞPK

j=1 exp bij
� � , (2)

bi1 = 0, (3)

ðbi2, . . . ,biKÞ∼NK − 1ðl,XÞ: (4)

The prior on each element of l was a vague normal distribution:
lk ∼Nð0,5Þ: (5)

The prior on X was a Cauchy-LKJ (Lewandowski-Kurowicka-
Joe) distribution with a Cauchy-distributed diagonal vector of
standard deviations h:

hk ∼Cauchyð0,2:5Þ (6)

and an LJK-distributed prior on the correlation matrix L:

L∼LKJð3Þ: (7)

The Stan statistical software was used to obtain a poste-
rior sample of l, h, and L values by Hamiltonian Monte Carlo
simulations.

Still at the ith subject level, we modeled independently for
each cluster the joint distribution of genes’ BMCs (noted x in the
following) and maxFCs (noted y) values as a bivariate lognormal
distribution. We took the absolute value of negative maxFC val-
ues before log-transformation:
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f logðxiÞ, log ½absðyiÞ�g∼N2½ðtxi,tyiÞ,Di�, (8)

with D defined as

Di =
rxi qi
qi ryi

� �
: (9)

At the population level, we modeled the distributions of sub-
jects’ means txi and tyi, of the standard deviations rxi and ryi,
and of the correlation coefficient qi as normal around their popu-
lation counterparts:

txi ∼Nðtx,raÞ, (10)

tyi ∼Nðty,rbÞ, (11)

rxi ∼Nðrx,rcÞ, (12)

ryi ∼Nðry,rdÞ, (13)

qi ∼Nðq,reÞ: (14)

The standard deviations ra, rb, rc, rd, and re were all
assigned a half normal prior with SD 0.2. The other priors were:

tx ∼Uniformð−5,7Þ, (15)

ty ∼Uniformð−11:5,5Þ, (16)

rx ∼Halfnormalð1Þ, (17)

ry ∼Halfnormalð1Þ, (18)

q∼Uniformð−1,1Þ: (19)

All of the above priors are weakly informative, as suggested
for example by Gelman.58 All model parameters (265 parameters
in total for each chemical exposure) were jointly estimated from
the data with Metropolis-Hastings Markov chain Monte Carlo
simulation, using the GNU MCSim software version 6.1.0.

Predictive Simulations
The above model, after calibration with the data from a panel of 50
PHH donors, can be used as a generative model to simulate virtual
in vitro assays of various sizes. For a given panel size, BMC and
maxFC values expected for any donor can be simulated by Monte
Carlo sampling using the posterior estimates obtained as described
above (with inverse transformations to obtain BMC and maxFC
values in natural space). For model checking, one assay of size 500
was simulated. To assess the effect of panel size on the accuracy
and precision of interdonor variability estimates, we first simulated
1,000 assays on virtual panels of 2,000 PHH donors. For each
assay, we calculated the coefficients of variation (CVs) of BMC
and maxFC values simulated. With 1,000 assays, we obtain a dis-
tribution of large-sample (2,000 donors) CV values, assuming that
the BMC-maxFC values were correctly modeled. Similar assay
simulations were performed for smaller panel sizes (3, 4, 5, 6, 7, 8,
10, 12, 14, 16, 20, 24, 28, 32, 36, 40, and 50 donors), and distribu-
tions of BMC andmaxFCCVswere obtained for each panel size.

Results

Variability in Basal Gene Expression across PHH Panel
Since PHH show dedifferentiation in cell culture, as an initial
step, the variability in dedifferentiation of PHHs derived from

different individuals during culture was evaluated (Figure 1A,B).
For this purpose, we used whole-transcriptome targeted TempO-Seq
analysis of liver tissue and derived cryopreserved PHHs in suspen-
sion directly upon thawing or cultured in 2D for 24 h for eight dif-
ferent individuals. Principal component analysis (PCA) showed the
greatest variability between individuals for PHHs in suspension
(Figure 1A,B). Noticeably, the transcriptome of PHHs cultured in
2D was more like liver tissue compared to PHHs in suspension for
principal component 1, representing 60.9% of the total variance
(Figure 1A). This was supported by Pearson’s correlation analysis
(Figure S3; data in Excel Table S22 and S23). GO enrichment anal-
ysis using Panther software showed that genes mostly affecting
PC1 were involved in metabolic processes (TMEM70, GLYAT) and
response to wounding and inflammatory signaling (FGA, TFPI,
HLA-E) (Excel Table S3). This may imply that PHHs in suspension
that were freshly thawed needed recovery time upon thawing and,
therefore, were temporarily more divergent from liver tissue
regarding the transcriptome. However, when only considering
liver-related genes, both PHHs cultured in 2D or in suspension
were similarly distinct from liver tissue for both principal compo-
nents, although the latter was more variable (Figure 1B). Genes
involved in metabolism, such as CYP3A4, CYP2C8, and UGT2B7
were mostly differently expressed between liver tissue and PHHs,
either cultured in 2D or in suspension.

Next, we evaluated differences in gene expression for a panel
of PHHs derived from 50 individuals cultured for 24 h in 2D for
all genes (Figure 1C), liver-related genes (Figure 1D), or stress
response-related genes (Figure S4). Gene lists can be found in
Excel Table S2. PHHs from some individuals showed altered
expression for genes dominating the variance across the first prin-
cipal component based on all genes, such as DDIT4, a regulator
of mTOR activity induced upon various stress conditions (Figure
1C). In addition, variability in various phase-I enzymes such as
CYP3A4 was observed across the panel of PHHs mostly affecting
the second principal component for liver-related genes (Figure 1D;
Figure S5; data in Excel Table S17 and S18). Also, large variability
was seen in the expression of CCL2, a chemokine involved in the
recruitment of monocytes and basophils, affecting the principal
components for all genes (Figure 1C), but also more specifically
UPR and NF-jB signaling related genes (Figure S4).

Difference in Sensitivity toward Chemical-Induced Cell
Death
To evaluate the interindividual variability in chemical-induced cel-
lular stress responses across the panel of 50 PHH cultures, PHHs
were exposed for 8 or 24 h to broad concentration ranges of specific
stress inducers: diethyl maleate (DEM) for the oxidative stress
response, tunicamycin (TUN) for the UPR, cisplatin (CPT) for the
DNA damage response, and TNFa for inflammatory NF-jB sig-
naling (Figure 1E). Great difference in viability, measured by LDH
leakage, was only observed between PHHs from different individ-
uals following 24 h exposure at the highest concentration of DEM,
where significant induction of cell death was observed for a subset
of PHHswhile other PHHs did not show viability loss at all (Figure
1F). The other compounds did not lead to significant loss of viabil-
ity upon 24 h of exposure, although some PHHs were more sensi-
tive, such as R1232T and S1295T, resulting in a minor LDH
leakage at the highest concentrations.

Interindividual Variability in Chemical-Induced Stress
Response Activation
Next, the effects of 8 or 24 h of chemical exposure (DEM, TUN,
CPT, TNFa) on the PHH transcriptomes were analyzed. To eval-
uate the difference in variability within replicates and between
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different PHHs in general, Pearson’s correlations were calculated
between the gene expression profiles of each replicate vs. the mean
of replicates and between PHHs from each donor vs. the mean of
all donors. This showed lower correlations between different PHHs
than between replicates for all donors (Figure S2B,C; data in Excel
Table S15 and S16). Exposure to the oxidative stress-inducing
compound DEM resulted in clear upregulation of NRF2 target
genes HMOX1 and SRXN1 at concentrations ranging from 330 lM
to 3,300 lM for all PHH donors for both time points compared to
solvent control (Figure 2A; individual replicates are shown in
Figure S6; data in Excel Table S19). Cisplatin-induced DNA dam-
age signaling in the panel of PHHs was most profound at a

concentration of 10 lM upon 24 h of exposure compared to sol-
vent control, where in general the highest upregulation of P53
target genes BTG2 and MDM2 was observed. PHHs showed
variable responses, where some PHH donors showed BTG2 or
MDM2 upregulation already at a cisplatin concentration of
1 lM compared to solvent control, while others required higher
amounts of this compound. Regarding the UPR induced by
TUN, induction of both the adaptive gene HSPA5 and pro-
apoptotic related gene DDIT3 was observed at a concentration
of 0:01 lM or higher compared to solvent control at the 24 h
time point. Some PHHs showed already strong upregulation of
both genes at 0:01 lM of TUN, while other PHHs only showed
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Figure 1. Characterization of the interindividual variability in response to stress-inducing exposures utilizing a large panel of primary human hepatocytes
(PHHs) derived from 50 individuals. (A–D) Left panel: Principle component analysis (PCA) based on gene expression as log2 normalized counts. Right panel:
Top 5 genes mostly determining PC1 or 2 depicted as vectors representing contribution and PC orientation. (A,B) PCA of liver (n=8), PHHs in suspension
(n=7) or grown as 2D (n=8) based on all genes (A) or liver-related genes (B) in a whole-transcriptome panel. (C,D) PCA of panel of 50 PHHs depicted in
different colors based on all genes (C) or liver-related genes (D) of S1500+ gene set of NIEHS41 supplemented with additional stress response relevant genes
(Excel Table S2). (E) Schematic representation of experimental setup. (F) LDH leakage (normalized with medium negative controls) upon exposure to diethyl
maleate (DEM), tunicamycin (TUN), cisplatin (CPT), and TNFa in wide concentration range for 24 h across panel of PHHs. Concentrations shown in µM for
DEM, TUN, and CPT, and ng/mL for TNFa. Data is reported in Excel Table S8. Significant differences were calculated using two-way ANOVA with
Bonferroni’s multiple comparison correction represented as *p<0:001. n=3. Note: 2D, two-dimensional; ANOVA, analysis of variance; LDH, lactate dehy-
drogenase; NIEHS, National Institute of Environmental Health Sciences; TNFa, tumor necrosis factor alpha.
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Figure 2. Interindividual variability in concentration-dependent stress response activation. (A) Hierarchical clustering of log2 fold change in gene expression
of key genes for each evaluated stress response pathway of panel of primary human hepatocytes (PHHs) exposed to reference compounds compared to solvent
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Figure 3. Benchmark concentration distributions across panel of primary human hepatocytes (PHHs) and influence of liver disease status. (A) Distribution of bench-
mark concentrations (BMC) of top 50 stress responsive genes for each compound; diethyl maleate (DEM), tunicamycin (TUN), cisplatin (CPT), and TNF (TNFa) com-
pared to solvent control. Lines represent the different PHHs within panel where the color indicates the sensitivity score (sum of the ranking of the median BMCs and
maxFC of top 50 stress responsive genes at both time points). BMCconcentrations shown in µM forDEM,TUN, andCPT and ng/mL for TNF. (B)Hierarchical cluster-
ing of the sensitivity score for the panel of PHHs for each treatment. The LDH leakage is shown of 3,300 lMDEMat 24 h and the disease status. (C) Boxplots ofmedian
BMC or maximal fold change across concentration range (maxFC) of top 50 stress responsive genes of exposure for each treatment for PHHs with or without liver dis-
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quartile range. Data shown is reported in Excel Table S4–6. Significant differences between PHHs from donors with and without liver pathology were calculated using
unpaired Student’s t test represented as *p<0:1, **p<0:05, ***p<0:01. n=3.Note: LDH, lactate dehydrogenase; TNFa, tumor necrosis factor alpha.
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upregulation at 1 lM or higher, suggesting particularly large differ-
ences in the UPR response of different individuals. Upon TNFa
exposure to study variability in inflammation signaling, NF-jB target
genes ICAM1 and TNFAIP3 were induced in a concentration-
dependent manner compared to solvent control. For most of the
PHHs, induction was observed at 1 ng=mL and higher when exposed
for 24 h. Some PHHs showed induction at the lowest concentration
of 0:1 ng=mL [e.g., PHH donor S1488T with a benchmark concen-
tration (BMC) of 0.02 and 0:3 ng=mL for TNFAIP3 at 8 and 24 h;
Excel Table S4], while other PHHs were less responsive to TNFa
exposure (e.g., PHH donor S1472T with a BMC of 48 and
1:7 ng=mL for TNFAIP3 at 8 and 24 h; Excel Table S4).

Subsequently, we selected the top 50 most strongly responsive
genes at the lowest effective concentration (Excel Table S2) of each
stress response reference compound. The interindividual variability
in the concentration-dependent induction of these top 50 genes for
each stress response was evaluated by PCA (Figure 2B). In general,
for all compounds, a clear concentration-dependent shift was
observed for all PHHs. Most variability was observed between dif-
ferent PHHs for TUN-induced UPR genes and TNFa-induced
NF-jB-related genes, mainly driven by variable expression of cyto-
or chemokines such as IL1B. Since PHHs were plated on different
days in batches of six to nine PHH donors, PCA was done to evalu-
ate difference in response between different plating days among the
PHHs (Figure S7). The concentration-dependent shift observed was
not batch specific, where PHHs from different batches showed a
similar trend.

Interindividual Differences in Points-of-Departure of Stress
Response Activation
To evaluate the interindividual variability in sensitivity to chemical-
induced stress response activation, we defined BMCs at which the
top 50 most strongly responsive genes for each specific compound
showed an increase of 1 standard deviation in gene expression
(Excel Table S4). Upon dose response modeling, we observed large
differences in the gene-specific BMCs between different PHHs
(Figure 3A). In general, most variability was observed at 8 h of ex-
posure, while at 24 h, the response was more stable across the PHH
panel. Large shifts in the BMC distribution could be observed
especially at the 8 h time point, with medians varying 864-,
259-, 13-, and 13-fold for TUN, TNFa, DEM, and CPT, respec-
tively (Table 1; Excel Table S5 and S6; Figure S8). This means
that BMC estimations could shift significantly depending on
which PHHs were used in chemical toxicity testing at early
time points. Variability could also be observed in the distribu-
tion of the maxFC of the top 50 most strongly responsive genes
among the different PHHs, where compound sensitivity corre-
lated positively with levels of upregulation (Figure S9). To

distinguish between intra- and interindividual variability, BMC
and maxFCs were also defined for each individual biological
replicate. Here, variability between biological replicates or
between PHHs from different individuals was compared (Figure
S10; data in Excel Table S20). The average percentage of coef-
ficient of variation within a gene was three to four times higher
between different PHHs (intersubject intra-gene variability,
blue bars) than between replicates (intra-subject-gene variabili-
ty, red bars) depending on the compound and time point.

To further assess differences in PHH sensitivity, sensitivity
scores were determined based on both the median BMC and
maxFC for the top 50 responsive genes for each compound for
both time points (Figure 3B; Figure S8; Excel Table S6). A sub-
set of PHHs (cluster I–II) showed high sensitivity scores for all
stress responses induced by the reference compounds and also
showed higher cell death induction at the highest concentration
of DEM for some of the PHHs within this cluster (Figure 3B). In
addition, a subpanel of PHHs (cluster III) was highly sensitive to-
ward TNFa, while being insensitive toward all other chemical-
induced stress responses. Thus, PHHs could be sensitive to chem-
ical compounds in general but also selectively sensitive for spe-
cific types of stress-inducing chemicals. In addition, a positive
Pearson’s correlation of 0.27 (with p< 0:1) could be observed
between cell death induction as measured by LDH leakage and
the sensitivity scores for DEM, where a subset of PHHs with
high LDH leakage were more sensitive for DEM-mediated stress
response activation (Figure 3B; Figure S11).

Next, we calculated a data-driven toxicodynamic variability
factor (TDVF0:01), which is the ratio between the median popula-
tion point-of-departure (PoD) and the 1% quantile individual
PoD. This TDVF0:01 accounts for underestimation of the variance
within the human population when estimating the PoDs for cellu-
lar stress response activation upon chemical exposures (Table 1).
For DEM-mediated oxidative stress and CPT-induced DNA dam-
age, the commonly used toxicodynamic UF9 of 3.16 would be
enough since data-based TDVF0:01 values were all lower at both
the 8- and 24-h time points. However, for 8-h TUN-induced UPR
activation and TNFa-mediated NF-jB signaling, the defined
TDVF0:01 was higher than the UF of 3.16, namely 6.5 and 26.5,
respectively. At the 24-h time point, TUN-induced UPR had a
TDVF0:01 of 5, which is also higher than the standard UF.

Influence of Pathology on Stress Response Activation
Interindividual variability could be based on liver pathology back-
ground of donors. Therefore, next, the influence of the disease status,
such as cancer or different types of liver pathology, on stress response
activation upon chemical exposure in PHHs was evaluated. In gen-
eral, the presence of cancer in any tissue type (Excel Table S1) did

Table 1.Median benchmark concentrations (BMC) for each primary human hepatocytes (PHH) based on top 50 stress responsive genes for each compound
and time point.

Time
point CMP MedianBMC±SDa (minimum–maximum)

Fold change min-max
median BMC

TDVF0:01
b

(exp data)
TDVF0:01
(model)c

SD TDVF0:01
(model)c

8 h TUN 0:534± 1:320 lM (0.009–7.768) 864.1 6.545 6.317 0.582
DEM 352:486± 243:643 lM (111.726–1,405.220) 12.6 2.517 1.828 0.066
CPT 9:488± 5:867 lM (2.640–35.447) 13.4 2.786 3.241 0.202
TNF 12:447± 13:310 ng=mL (0.157–40.633) 258.8 26.524 5.315 0.423

24 h TUN 0:023± 0:061 lM (0.002–0.447) 223.5 4.950 4.811 0.386
DEM 315:597± 108:883 lM (176.656–623.096) 3.5 1.701 1.624 0.047
CPT 3:083± 1:022 lM (1.471–6.401) 4.4 1.847 2.184 0.090
TNF 0:926± 2:252 ng=mL (0.137–15.263) 111.4 2.516 2.556 0.128

Note: BMC, benchmark concentration; CMP, compound; CPT, cisplatin; DEM, diethyl maleate; exp, experimental; PHH, primary human hepatocytes; SD, standard deviation; TDVF,
toxicodynamic variability factor; TNFa, tumor necrosis factor alpha; TUN, tunicamycin.
aThe mean±SD of the median BMC of the top 50 stress responsive genes across the PHH panel.
bTDVF0:01 is the ratio between the median BMC of the panel and the 1% quantile individual BMC.
cBased on population modeling of 2,000 virtual donors for 1,000 assays.
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not have an obvious influence on the sensitivity of the PHHs toward
chemical-induced stress, since clear clustering of sensitivity scores
of PHHs derived from patients with cancer was not observed
(Figure 3B). In addition, presence of cancer only mildly influ-
enced the distribution of median maxFC and BMC for the top 50
stress responsive genes (Figure S12A,B). In contrast, PHHs from
patients having any type of liver pathology including liver cancer
(Excel Table S1) were in general less sensitive toward chemical-
induced stress with regard to transcriptomic changes, especially
for TUN-induced UPR and TNFa-induced NF-jB signaling
(Figure 3B). When we evaluated the distribution of the median
maxFC, a significant difference could be observed between PHHs
derived from patients with or without liver pathology when exposed
to TUN or TNFa for 24 h (Figure 3C). The same trendwas observed
for DEMandCPT, although this was not significant. Possibly, PHHs
from patients with a certain liver pathology were already at a higher
level of stress leading to lower fold changes upon chemical-induced
stress. Indeed, these PHHs showed in general significant slightly
higher basal expression of the top 50 stress responsive genes com-
pared to PHHs without liver pathology (Figure S12C; Excel Table
S4). Variability in differentiation status did not have an effect on
BMCandmaxFC distribution (Figure S13; data in Excel Table S21).

Variability in Pathway Enrichment upon Chemical
Exposure
To obtain more insight into chemical-induced stress pathway activa-
tion, gene set enrichment analysis of gene ontology terms was per-
formed using themaxFC as input for ranking of the genes. In general,
upon exposure to each reference compound, expected terms were
enriched related to anticipated chemical-induced stress response path-
ways (Figure 4A; Figure S14). For instance, TUN treatment led to the
strong enrichment of ER stress and UPR-related terms, TNFa
resulted in chemotaxis and chemokine-related terms, DEM gave
enrichment of heat shock or ion response-related terms, and CPT
treatment led to enrichment of ion or metabolic-related terms
compared to solvent control. All chemicals led to enrichment for
both sensitive and insensitive PHHs, although some terms were
more specific for either sensitive or insensitive PHHs, e.g., terms
related to response to ions were more enriched for insensitive
PHHs upon DEM exposure (Figure 4A). Clustering of enriched
terms for at least three PHHs showed specific enrichment of
terms related to ribosomal localization or subunits for insensi-
tive PHHs upon TUN or CPT exposure, while terms related to
response to virus or interferon were enriched for specifically
sensitive PHHs upon TNFa treatment (Figure 4B).

Interindividual Variability in Stress Response Activation by
Hepatotoxicants
The interindividual difference in sensitivity toward chemical-
induced oxidative stress response and UPR activation was further
analyzed by screening the three most sensitive and insensitive
PHHs based on the sensitivity score with various hepatotoxicants
known to induce oxidative stress (acetaminophen, propylthiour-
acyl, and nitrofurantoin) or ER stress (ticlopidine, nefazodone,
and diclofenac) (Figure 5). Upon evaluation of differences in cell
death induction, a concentration-dependent increase in LDH leak-
age was observed for all tested hepatotoxicants, except for acet-
aminophen and propylthiouracil (Figure 5A). Both nitrofurantoin
and nefazodone already showed cell death induction at 25×
Cmax or higher. Two out of the three most sensitive PHHs
showed higher cytotoxicity when exposed to nitrofurantoin and
diclofenac than the most insensitive PHHs. For the other hepato-
toxicants, no difference was observed. Next, the expression of the
top 50 responsive genes identified earlier was evaluated for both

the oxidative stress response and UPR, where in particular nitro-
furantoin showed higher induction in sensitive PHHs compared
to two out of the three insensitive PHHs (Figure 5B). Other hepa-
totoxicants did not show clear distinction when only evaluating
these genes. Thereafter, the difference in the distribution of
BMCs and maxFC of all responsive genes was evaluated between
the most sensitive and insensitive PHHs for each tested hepato-
toxicant. The hepatotoxicants propylthiouracyl and acetamino-
phen showed separation between the sensitive and two out of
three insensitive PHHs in BMC and maxFC distribution (Figure
5C; Tables 2 and 3). In contrast, one of the insensitive PHHs had
lower BMCs compared to all sensitive PHHs for these hepatotox-
icants. For all other hepatotoxicants, differences in BMCs and
maxFCs between PHHs were variable.

Influence of PHH Panel Size on Estimated BMC and
maxFC CVs
To check the interindividual variability model for the entire human
population in chemical-induced stress response activation, both
the BMC and maxFC for the top 50 stress responsive genes for
each compound was simulated for 500 virtual PHHs. The distribu-
tion of the simulated BMCs and maxFCs were in concordance
with the experimental data based on the panel of 50 PHHs show-
ing similar distributions (Figure S15 and S16).

Larger-scale predictive simulations (of 1,000 simulated pan-
els of various sizes) were used to obtain distributions of BMC
and maxFC CV values for the top 50 stress responsive genes for
each reference compound (Figure 6A,B). When the PHH panel
size was increased, the CV estimates became increasingly precise
and converge to the estimated large-sample human population
variability. For small PHH panel sizes, which are commonly used
during hepatotoxicity testing, the imprecision was very large,
leading to consistent underestimation of the interindividual var-
iance in stress response activation upon chemical exposure.

Next, the probability of obtaining a CV, which is close to the
estimated large-sample human population CV, was evaluated
when using different PHH panel sizes (Figure 6C,D). Overall,
when using a PHH panel size of 10 or less, the probability to esti-
mate the correct CV of the BMC was very low, namely smaller
than ∼ 0:3, 0.05, 0.15, and 0.2 for DEM, CPT, TUN, and TNFa,
respectively (Figure 6C). When using a PHH panel size of 50, the
maximal probability that could be reached to estimate the correct
CV of the BMC was ∼ 0:45, 0.3, 0.4, and 0.4 for DEM, CPT,
TUN, and TNFa, respectively, still resulting in quite some uncer-
tainty. For estimating the correct CV of the maxFC, a maximal
probability of 0.3 was reached for all compounds when using a
PHH panel size of 50, which was also still quite low (Figure 6D).
Therefore, an additional uncertainty factor might be needed to
cover the uncertainty in estimating the true median population
PoD and all of the variance of stress response activation upon
chemical exposure during hepatotoxicity testing in PHHs.
Indeed, simulation of 2,000 virtual donors for 1,000 assays
resulted in TDVF0:01 values that were up to 2-fold higher than
the standard used UF of 3.16 for TUN, CPT, and TNFa for 8 h
and TUN for 24 h (Table 1).

Discussion
Human tissue-culture-based methods hold great promise for the
prediction of chemical-induced adversities.59–61 Here, we eval-
uated the effects of interindividual differences in sensitivity to
chemical-induced stress in PHHs to determine data-driven toxi-
codynamic UFs for specific types of relevant stress responses
that are critical in chemical-induced toxicity. In our analysis, we
focused on chemicals inducing the UPR, the oxidative stress

Environmental Health Perspectives 037005-9 132(3) March 2024



cytosolic ribosomal 
localization

viral genome 
replication regulation

regulation defense 
interferon virus

retrograde vesicle 
transport golgi

unfolded protein 
folding binding

response reticulum 
stress apoptotic

DEM

TUN

CPT

TNF

mitotic segregation 
microtubule spindle

folding mediated 
protein refolding

rna polymerase ii stress

negative regulation 
viral genome

ribosomal subunit 
ribosome cytosolic

antimicrobial peptide 
humoral immune

regulation defense 
interferon virus

viral negative 
genome replication

A B

0 50 10
0

CPT_GO_ICOSANOID_METABOLIC_PROCESS
CPT_GO_ZINC_ION_HOMEOSTASIS

CPT_GO_CELLULAR_RESPONSE_TO_COPPER_ION
CPT_GO_SODIUM_ION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY

CPT_GO_UNSATURATED_FATTY_ACID_METABOLIC_PROCESS
CPT_GO_FATTY_ACID_DERIVATIVE_METABOLIC_PROCESS

CPT_GO_SKELETAL_MUSCLE_CELL_DIFFERENTIATION
CPT_GO_LONG_CHAIN_FATTY_ACID_METABOLIC_PROCESS

CPT_GO_TERPENOID_METABOLIC_PROCESS
CPT_GO_RESPONSE_TO_COPPER_ION

CPT_GO_ESTROGEN_METABOLIC_PROCESS
CPT_GO_BLOOD_MICROPARTICLE

CPT_GO_OXYGEN_BINDING
CPT_GO_DRUG_CATABOLIC_PROCESS

CPT_GO_ARACHIDONIC_ACID_METABOLIC_PROCESS
CPT_GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_PAIRED_DONORS_...

CPT_GO_MONOOXYGENASE_ACTIVITY
CPT_GO_EXOGENOUS_DRUG_CATABOLIC_PROCESS

CPT_GO_IRON_ION_BINDING
CPT_GO_AROMATASE_ACTIVITY

CPT_GO_EPOXYGENASE_P450_PATHWAY
CPT_GO_TETRAPYRROLE_BINDING

CPT_GO_STEROID_HYDROXYLASE_ACTIVITY
CPT_GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_PAIRED_DONORS_...

DEM_GO_REGULATION_OF_EPIDERMAL_CELL_DIFFERENTIATION
DEM_GO_REGULATION_OF_CHROMOSOME_SEGREGATION

DEM_GO_STEROID_HYDROXYLASE_ACTIVITY
DEM_GO_SPINDLE_POLE

DEM_GO_DNA_PACKAGING_COMPLEX
DEM_GO_NEGATIVE_REGULATION_OF_GROWTH

DEM_GO_CENTRIOLE
DEM_GO_ZINC_ION_HOMEOSTASIS

DEM_GO_MEIOTIC_CELL_CYCLE
DEM_GO_MEIOTIC_CELL_CYCLE_PROCESS

DEM_GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_PAIRED_DONORS_...
DEM_GO_RESPONSE_TO_CADMIUM_ION

DEM_GO_REGULATION_OF_SPINDLE_ORGANIZATION
DEM_GO_RESPONSE_TO_COPPER_ION

DEM_GO_REGULATION_OF_CELLULAR_RESPONSE_TO_HEAT
DEM_GO_CHAPERONE_BINDING

DEM_GO_REGULATION_OF_DNA_TEMPLATED_TRANSCRIPTION_IN_RESPONSE_TO_STRESS
DEM_GO_CELLULAR_RESPONSE_TO_CADMIUM_ION
DEM_GO_CELLULAR_RESPONSE_TO_COPPER_ION

DEM_GO_MEIOSIS_I_CELL_CYCLE_PROCESS
DEM_GO_SPINDLE_ORGANIZATION

DEM_GO_SKELETAL_MUSCLE_CELL_DIFFERENTIATION
DEM_GO_NEGATIVE_REGULATION_OF_DNA_BINDING

DEM_GO_PROTEIN_FOLDING
DEM_GO_SPINDLE_ASSEMBLY

DEM_GO_MITOTIC_SPINDLE_ASSEMBLY
DEM_GO_BLOOD_MICROPARTICLE

DEM_GO_MICROTUBULE_CYTOSKELETON_ORGANIZATION_INVOLVED_IN_MITOSIS
DEM_GO_CELLULAR_RESPONSE_TO_HEAT

DEM_GO_MITOTIC_SPINDLE_ORGANIZATION
DEM_GO_HEAT_SHOCK_PROTEIN_BINDING

DEM_GO_CHAPERONE_MEDIATED_PROTEIN_FOLDING
DEM_GO_PROTEIN_REFOLDING

DEM_GO_UNFOLDED_PROTEIN_BINDING
DEM_GO_DE_NOVO_PROTEIN_FOLDING

DEM_GO_PROTEIN_FOLDING_CHAPERONE

TNF_GO_VIRAL_GENOME_REPLICATION
TNF_GO_RESPONSE_TO_INTERFERON_GAMMA

TNF_GO_RESPONSE_TO_INTERLEUKIN_1
TNF_GO_LEUKOCYTE_CHEMOTAXIS
TNF_GO_MONOCYTE_CHEMOTAXIS

TNF_GO_MYELOID_LEUKOCYTE_MIGRATION
TNF_GO_LYMPHOCYTE_CHEMOTAXIS

TNF_GO_CELL_CHEMOTAXIS
TNF_GO_RESPONSE_TO_CHEMOKINE

TNF_GO_CHEMOKINE_RECEPTOR_BINDING
TNF_GO_CHEMOKINE_ACTIVITY

TNF_GO_GRANULOCYTE_MIGRATION
TNF_GO_NEUTROPHIL_MIGRATION

TUN_GO_CELL_REDOX_HOMEOSTASIS
TUN_GO_REGULATION_OF_SYMBIOSIS_ENCOMPASSING_MUTUALISM_THROUGH_PARASITISM

TUN_GO_UNFOLDED_PROTEIN_BINDING
TUN_GO_REGULATION_OF_ENDOPLASMIC_RETICULUM_STRESS_...

TUN_GO_REGULATION_OF_DEFENSE_RESPONSE_TO_VIRUS
TUN_GO_NEGATIVE_REGULATION_OF_MULTI_ORGANISM_PROCESS

TUN_GO_PIGMENT_GRANULE
TUN_GO_VIRAL_GENOME_REPLICATION

TUN_GO_NEGATIVE_REGULATION_OF_VIRAL_PROCESS
TUN_GO_REGULATION_OF_VIRAL_GENOME_REPLICATION

TUN_GO_REGULATION_OF_RESPONSE_TO_ENDOPLASMIC_RETICULUM_STRESS
TUN_GO_RESPONSE_TO_VIRUS

TUN_GO_REGULATION_OF_VIRAL_LIFE_CYCLE
TUN_GO_NEGATIVE_REGULATION_OF_RESPONSE_TO_ENDOPLASMIC_RETICULUM_STRESS

TUN_GO_NEGATIVE_REGULATION_OF_VIRAL_LIFE_CYCLE
TUN_GO_NEGATIVE_REGULATION_OF_VIRAL_GENOME_REPLICATION

TUN_GO_ENDOPLASMIC_RETICULUM_GOLGI_INTERMEDIATE_COMPARTMENT
TUN_GO_RESPONSE_TO_TOPOLOGICALLY_INCORRECT_PROTEIN

TUN_GO_RESPONSE_TO_ENDOPLASMIC_RETICULUM_STRESS
TUN_GO_RESPONSE_TO_TYPE_I_INTERFERON

TUN_GO_DEFENSE_RESPONSE_TO_VIRUS
TUN_GO_ER_NUCLEUS_SIGNALING_PATHWAY

TUN_GO_IRE1_MEDIATED_UNFOLDED_PROTEIN_RESPONSE
TUN_GO_ERAD_PATHWAY

TUN_GO_CELLULAR_RESPONSE_TO_TOPOLOGICALLY_INCORRECT_PROTEIN
TUN_GO_UBIQUITIN_DEPENDENT_ERAD_PATHWAY

TUN_GO_ENDOPLASMIC_RETICULUM_UNFOLDED_PROTEIN_RESPONSE

NES

G
O

 te
rm

s

C
PT

D
EM

TN
F

TU
N

Sensitivity score

Sensitive

Insensitive

PHH #1

NES

GO term

PHH #2
PHH #3

all sens insens

Figure 4. Variability in gene set enrichment upon chemical-induced stress. Gene set enrichment analysis33 was done using gene ontology terms version 7.1
and the maximal fold change across concentration range (maxFC) compared to solvent control of measured S1500+ gene set of NIEHS41 supplemented with
additional stress response-relevant genes (Excel Table S2) as input for each primary human hepatocytes (PHH) and treatment for 24 h with each reference com-
pound; diethyl maleate (DEM), tunicamycin (TUN), cisplatin (CPT), and TNF (TNFa). (A) Bar plots of normalized enrichment scores (NES) of significantly
enriched gene ontology (GO) terms with a cut-off of adjusted false discovery rate (FDR) of <0:05 for at least 10 different PHHs. NES were stacked for all
PHHs showing significant enrichment for each term. (B) Clusters of significantly enriched GO terms showing specific enrichment in either most sensitive (red
eclipse) or insensitive (blue square) PHHs, or in both (yellow circle) for one of the terms within the cluster using Cytoscape55 and EnrichmentMap.56 PHHs
were classified as most sensitive or insensitive having a sensitivity score lower than the first quartile or higher than the third quartile of the sensitivity scores
for all PHHs, respectively. Sensitivity scores were determined based on both the median BMC and maxFC for the top 50 responsive genes for each compound
for both time points. Within each term, NES for each PHH is depicted in gray to red scale from low to high. Enriched GO terms were clustered and summar-
ized with three to four keywords using WordCloud.57 Edges between nodes were based on similarity between gene sets with a similarity cut-off of 0.375. Data
shown is reported in Excel Table S7 and S10. Note: NIEHS, National Institute of Environmental Health Sciences; TNFa, tumor necrosis factor alpha.
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Figure 5. Difference in sensitivity toward hepatotoxicants within a subpanel of primary human hepatocytes (PHHs). (A) LDH leakage upon treatment with
hepatotoxicants for 24 h in six defined most sensitive or insensitive PHHs. (B) Hierarchical clustering of log2 fold changes compared to solvent control of top
50 stress responsive genes [identified based on diethyl maleate (DEM) for oxidative stress or tunicamycin (TUN) for unfolded protein response treatment
mostly strongly induced at the lowest effective concentration] of PHHs exposed to various hepatotoxicants for 24 h. (C) Distribution of benchmark concentra-
tion (BMC) in µM and maximal fold change across concentration range (maxFC) for all responsive genes of PHHs exposed to various hepatotoxicants for 24
h. Data shown is reported in Excel Table S11 and S12. n=3. Note: ACE, acetaminophen; DIC, diclofenac; LDH, lactate dehydrogenase; NEF, nefazodone;
NIT, nitrofurantoin; PRO, propylthiouracil; TIC, ticlopidine.
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response, the DNA damage response, and cytokine-mediated
NF-jB signaling. The activation of each of these stress responses
is considered a key event leading to the development of chemical-
induced liver injury.62 Moreover, the consequent upregulation of
a specific set of gene transcripts that represents these stress
response pathways can be used to qualify and quantify the mode-
of-action for the evaluation of hepatotoxicity.31,63 Our results
indicated that large differences in the distribution of BMCs were
observed between different PHHs exposed to specific stress
response inducers. This work indicates that the standard UF for
toxicodynamic responses for risk assessment might not be suffi-
cient for toxicity responses that would involve in particular UPR
and NF-jB signaling. Evaluating the suitability of the estimated
data-driven UFs in this study for other hepatotoxic-inducing
chemicals and how this translates to the human liver in vivo is
important. Potentially, additional chemical-specific together with
end point-specific UFs are needed.

Our data indicates the need of accurately determined data-
driven UFs during risk assessment to improve the prediction of
liabilities for chemical-induced liver injury. Our results indicated
that these UFs based on stress response activation in plated cryo-
preserved PHHs could be at least 2-fold higher than the standard
toxicodynamic UF of 3.16. In concordance, Blanchette et al. char-
acterized the human population variance of chemical-induced car-
diotoxicity using human induced pluripotent stem cell (hiPSC)-
derived cardiomyocyte panel together with population modeling
and also showed higher TDVFs than the standard 3.16.20,38
Likewise, Abdo et al. found that some of the 179 screened chemi-
cals led to TDVF values higher than 10 when evaluating cytotoxic-
ity in 1,086 lymphoblastoid cell lines.18 Here, the estimated UFs
were based on the total variability, taking together variability

between different PHHs (inter-) and between biological replicates
(intraindividual variability), the latter being limited. To accurately
define UFs, it is important to characterize the difference between
intra- and interindividual variability. Other additional technical
variabilities that might be of influence on the sensitivity of the
PHHs toward chemical exposure is the isolation procedure and dif-
ference in dedifferentiation rate. Ischemia time during surgery
impacts viability of isolated hepatocytes from liver resections and
may add an additional layer of variability.64 Furthermore, PHHs
were cultured in 2D, known to dedifferentiate fast over time, where
the dedifferentiation rate can vary between different PHHs.
However, since only short-term exposure durations up to 24 h were
evaluated, this culture setupwas found to be sufficient. Besides, we
have selected chemicals that did not need metabolism to induce
toxicity and therefore were not affected due to difference in meta-
bolic capacity. However, most optimally, tominimize these techni-
cal variabilities and retain variability that exists in vivo, cells
directly retrieved from different individuals should be used with
minimal manipulation and handling, which for PHHs obviously is
very challenging.

Potentially, several factors may influence PHH sensitivity to
chemical-induced stress, including differences in health character-
istics of PHH donors. We found that PHHs from patients with any
type of liver disease, including liver cancer, showed less induction
of stress responses upon exposure, especially for TNFa-induced
NF-jB signaling and TUN-induced UPR. These PHHs showed al-
ready higher expression of stress response-related genes in control
conditions, thereby leading to less capacity to further induce pro-
tective stress responses upon chemical exposure. Indeed, there are
strong correlations between liver diseases, such as nonalcoholic
fatty liver disease, nonalcoholic steatohepatitis, and liver cancer;
increased activation of, e.g., the UPR and the inflammatory
response;63,65–67 and increased liver injury susceptibility.68,69

Thus, the liver disease background of PHHs can have a significant
impact on their sensitivity to hepatotoxicants. In this respect, spe-
cial attention should be given to the inflammatory state of the liver
prior to the isolation of PHHs. Large differences were observed in
basal expression of chemokines, such as CCL2, possibly affecting
their sensitivity toward chemical exposure. Indeed, the presence of
inflammation is one of the susceptibility factors for development
of liver injury.70,71 In addition, large variability was also seen in
the expression of inflammatory genes upon chemical exposure
across a panel of PHHs upon PCA. Inflammatory genes such as
IL1B and CCL3 were most differently expressed across the panel
of PHHs upon TUN treatment. Several studies have shown the
relation between UPR activation and inflammatory signaling
through activation of NF-jB and the NLRP3 inflammasome, lead-
ing to induction of IL1B expression.72

In conclusion, we demonstrated that chemical-induced liver
injury-associated stress response activation determined by high-
throughput transcriptomics is highly variable between plated cryo-
preserved PHHs derived from different individuals. This highlights
the need to use toxicodynamic UFs for safety evaluation. We
showed that the currently used standard UF of 3.16 may not be suf-
ficient to capture all gene activation variability for every chemical
or end point measured in PHHs. For activation of the UPR and
NF-jB signaling, the defined TDVF was up to 2-fold higher than
the standard UF. This exemplifies a general need for the definition
of data-driven mechanism-specific UFs to accurately correct for
toxicodynamic variability across the human population to improve
assessment of liabilities for development of liver injury by environ-
mental toxicants or drugs.Whether similar interindividual variabil-
ity is observed in vivo or in other target organ systems as well as
other critical toxicity related pathways requires further systematic
studies.

Table 2.Median benchmark concentration (BMC) for most sensitive and
insensitive primary human hepatocytes (PHHs) based on all responsive
genes for each treatment.

CMP Insensitive PHHs Sensitive PHHs

OX M1469T S1455T S1518T M1394T S1437T S1488T
DEM 1,024.47 580.07 629.48 672.95 1,051.43 375:30 lM
ACE 1,528.25 1,331.12 1,069.92 1,761.77 1,993.41 1,379:58 lM
NIT 20.65 11.60 24.03 29.02 17.37 22:12 lM
PRO 293.33 345.93 193.57 312.23 311.24 235:90 lM
UPR M1469T S1309T S1518T M1394T S1386T S1437T
TUN 0.07 0.21 0.19 0.004 0.19 0:04 lM
DIC 122.25 72.45 68.45 137.28 99.12 137:80 lM
NEF 37.31 18.24 19.01 37.25 25.66 40:28 lM
TIC 103.17 141.57 96.00 229.69 210.65 151:71 lM

Note: ACE, acetaminophen; CMP, compound; DEM, diethyl maleate; DIC, diclofenac;
NEF, nefazodone; NIT, nitrofurantoin; OX, oxidative stress response; PRO, propylth-
iouracyl; TIC, ticlopidine; TUN, tunicamycin; UPR, unfolded protein response.

Table 3.Medianmaximal fold change compared to solvent control across
concentration range (maxFC) for most sensitive and insensitive primary human
hepatocytes (PHHs) based on all responsive genes for each treatment.

CMP Insensitive PHHs Sensitive PHHs

OX M1469T S1455T S1518T M1394T S1437T S1488T
DEM 2.94 2.51 2.25 2.33 3.48 2.53
ACE 3.14 2.95 3.59 2.93 3.61 3.68
NIT 1.92 3.10 3.17 6.31 2.86 3.80
PRO 1.96 1.54 2.16 1.78 2.03 2.22
UPR M1469T S1309T S1518T M1394T S1386T S1437T
TUN 1.84 1.98 1.78 1.73 1.89 1.78
DIC 3.08 2.68 2.88 5.02 2.90 3.70
NEF 3.33 2.13 2.09 2.92 2.61 2.42
TIC 1.97 2.20 2.21 3.63 2.67 2.48

Note: ACE, acetaminophen; CMP, compound; DEM, diethyl maleate; DIC, diclofenac;
NEF, nefazodone; NIT, nitrofurantoin; OX, oxidative stress response; PRO, propylthiour-
acyl; TIC, ticlopidine; TUN, tunicamycin; UPR, unfolded protein response.
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Figure 6. Influence of primary human hepatocyte (PHH) panel size on probability to capture correct variance in stress response activation. (A,B) Forest plots of
simulated distributions (medians ± 5th=95th percentiles) of the estimated coefficients of variation (CVs) of benchmark concentrations (BMC) (A) and maximal fold
changes across concentration range (maxFC) compared to solvent control (B) based on top 50 stress responsive genes for each reference compound [diethyl maleate
(DEM), tunicamycin (TUN), cisplatin (CPT), and TNF (TNFa)] as a function of PHH panel size. As reference, 1,000 assays with a panel of PHHs from 2,000 indi-
viduals was simulated depicted as lines (median: solid ± 5th=95th percentiles: dashed). (C,D) Probability of reporting a correct CV falling between the 5th and 95th
percentile of the reference CVs as a function of PHH panel size for BMC (C) and maxFC (D). Dots resemble Monte Carlo simulation estimates and lines resemble
visually fitted smoothing curves. Data shown is reported in Excel Tables S13 and S14. Note: TNFa, tumor necrosis factor alpha.
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