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Abstract

We explore the potential of the Gaussian mixture model (GMM), an unsupervised machine-learning method, to
identify coherent physical structures in the interstellar medium. The implementation we present can be used on any
kind of spatially and spectrally resolved data set. We provide a step-by-step guide to use these models on different
sources and data sets. Following the guide, we run the models on NGC 1977, RCW 120, and RCW 49 using the
[C II] 158 μm mapping observations from the SOFIA telescope. We find that the models identified six, four, and
five velocity coherent physical structures in NGC 1977, RCW 120, and RCW 49, respectively, which are validated
by analyzing the observed spectra toward these structures and by comparison to earlier findings. In this work we
demonstrate that GMM is a powerful tool that can better automate the process of spatial and spectral analysis to
interpret mapping observations.

Unified Astronomy Thesaurus concepts: Star forming regions (1565); Gaussian mixture model (1937)

1. Introduction

Massive stars (>8 Me) play one of the most important roles
in regulating the physics and chemistry of the interstellar
medium (ISM). During their lifetime (<5 Myr), massive stars
inject enormous amounts of radiative energy through extreme-
ultraviolet and far-ultraviolet (FUV) photons (Hollenbach &
Tielens 1999), and mechanical energy through stellar winds
(Castor et al. 1975; Weaver et al. 1977; Pabst et al. 2019) into
their surroundings. This causes diffuse and dense gas to form
different structures either by disrupting or compressing
molecular clouds in the vicinity of massive stars (Elmegreen
& Lada 1977; Walborn et al. 2002). These structures can be
spatially and spectrally distinct. Their physical conditions are
among others dependent on morphology, relative location to
the main ionizing source and the star formation history of the
region (Tiwari et al. 2022). Estimations of these physical
conditions quantify the role of stellar feedback in the evolution
of the ISM. However, the identification of coherent physical
structures in the ISM is not straightforward due to its turbulent
nature. Recent observational studies have shown that besides
high-angular-resolution data, a detailed spectral and spatial
analysis is necessary to identify coherent physical structures in
our Galaxy (e.g., Hacar et al. 2013; Henshaw et al. 2019).

Soon balloon missions such as the Astrophysics Strato-
spheric Telescope for High Spectral Resolution Observations at
Submillimeter-wavelengths (ASTHROS; Pineda et al. 2022)

and Galactic/Extragalactic Spectroscopic Terahertz Observa-
tory (GUSTO; Goldsmith et al. 2022) will carry out large-area
surveys of [N II], [C II], and [O I] fine-structure lines throughout
the Galaxy with high spatial and spectral resolutions. Besides
these balloon missions, the Galactic Ecology (Simon et al.
2023) project is an upcoming large-scale survey with the
CCAT observatory which will observe CO and [C I] lines.
Identifying structures which are spatially and spectrally distinct
in these large areas is a big challenge. Manually analyzing
these huge data sets will be time consuming and cost
ineffective. Therefore we emphasize the need of an automated
technique to assist in this process.
To this end, we explore the usability of the Gaussian mixture

model (GMM), an automated technique to identify distinct
physical structures in three Galactic sources: NGC 1977,
RCW 120, and RCW 49. We use the model on [C II] line
observations of these regions. Apart from being one of the
major coolants of the ISM, the 1.9 THz fine-structure line of
ionized carbon, C+ ([C II]), is also among the brightest lines in
photo-dissociation regions (PDRs; Crawford et al. 1985; Stacey
et al. 1991; Bennett et al. 1994). PDRs are exposed to FUV
photons (6 eV < hν < 13.6 eV) where H2 is dissociated to H
and C is ionized to C+. Owing to the lower ionization potential
of C than that of H, [C II] traces the transition from H+ to H and
H2 (Hollenbach & Tielens 1999; Wolfire et al. 2022). Recent
observational studies have proved [C II] to be a powerful
diagnostic in improving our understanding of stellar feedback
and massive star formation. It probes dynamic structures like
expanding shells, photo-radiated surfaces of molecular clouds,
and pillars in the ISM (Pabst et al. 2019, 2020; Luisi et al.
2021; Tiwari et al. 2021; Bonne et al. 2022; Kavak et al. 2022).
Moreover, Schneider et al. (2023) recently reported the role of
[C II] in unveiling the dynamic interactions between cloud
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ensembles in the Cygnus region of our Galaxy. This makes
[C II] a favorable candidate for this study.

In this paper, we provide a step-by-step guide for the
community to be able to use the GMM to assist in identifying
coherent physical structures (expanding shells/bubbles, inter-
acting molecular clouds, etc.) in the ISM. We also discuss the
model results on three Galactic sources and evaluate the
accuracy of the models in identifying different clusters in a
region. We note that throughout this paper, we use the term
“clusters” to refer to groups of similar spectra, as described
below, and not to clusters of stars.

2. GMMs

In principle, machine-learning techniques require learning
through a training set. In contrast, GMMs are a standard
statistical regression procedure that is best calculated through
the maximum likelihood with the Expectation–Maximization
(EM) algorithm (Dempster et al. 1977; McLachlan &
Peel 2000; Bouveyron et al. 2019; Frühwirth-Schnatter et al.
2019). Hence, strictly speaking, GMMs are not a machine-
learning technique. Nevertheless, in the literature, GMMs are
commonly referred to as an unsupervised machine-learning
method (Murphy 2013) and, here, we adhere to that choice by
the community. GMM aims to describe complex high-
dimensional data as a linear combination of a multidimensional
Gaussian distribution (McLachlan & Peel 2000). These models
are well studied and have been improved by, e.g., Smyth &
Wolpert (1999), Blei & Jordan (2004), Bovy et al. (2011), and
Melchior & Goulding (2018). Their various applications
indicate the importance of this tool in astronomy and other
fields (Greenspan et al. 2006; Jones et al. 2019; Riaz et al.
2020; Kabanovic et al. 2022).

Our observed data set consists of N spectra, each of which
give the main beam temperature (TMB) as a function of velocity
(vLSR). We can interpret each spectrum as a single point xi in 
dimensional space where  is the number of velocity channels.
The GMM attempts to find clusters of spectra that have similar
profiles to each other. It does so by assuming the data set is
generated from a limited number (K ) of Gaussian clusters each
with mean μk and covariance, Σk. The mean of each Gaussian
cluster can be interpreted as its average spectrum. By
describing the set of all observed spectra as a weighted linear
combination of a limited number of clusters, the probabilistic
distribution is determined by maximizing the likelihood,
defined as:

å åq a m= S
= =

x xln ln , . 1
i

N

k

K

k i k k
1 1

( ∣ ) ( ∣ ) ( ) 

Here m Sx ,i k k( ∣ ) represents the multidimensional Gaus-
sian distribution and αk is the weight attributed to that cluster
with ∑kαk= 1. The likelihood is computed by summing over
all K Gaussian components for all N spectra individually. The
optimization is performed using the EM algorithm (Dempster
et al. 1977). This method has recently been used by Kabanovic
et al. (2022) to recognize several distinct physical structures in
velocity-resolved observations of Atacama Pathfinder EXperi-
ment telescope’s 12CO data toward RCW 120.

In this work we aim to expand upon earlier research and
implement the more advanced GMMis (Melchior & Gould-
ing 2018). Unlike a traditional GMM this implementation is
capable of dealing with noise by enforcing a minimum
covariance on the clusters, and of automatically determining

an optimal number of clusters by setting the weight of a less
probable cluster to an extremely low (∼10−10) value. These
expansions are achieved through adaptations of the likelihood
function and the optimization algorithm. This behavior of
GMMis can be tuned through a set of hyperparameters. These
are different from model parameters (such as each μk and Σk) in
that they are set a priori and influence the resulting model.
Examples of hyperparameters here are the number of provided
clusters, the minimum covariance regularization, and the
stopping criterion. We discuss the considerations and choices
of the hyperparameters further in Section 5.2.
The complete algorithm and parameter definitions are

described in detail in Melchior & Goulding (2018) and in
their PyGMMis code.9 The method and code used to get the
results presented in this work are publicly available10 at the
digital repository of the University of Maryland.

3. SOFIA Observations

In this work, we use the [C II] 158 μm (1.9 THz)
observations, which were observed using the upGREAT11

(Risacher et al. 2018) heterodyne receiver on board the
Stratospheric Observatory for Infrared Astronomy (SOFIA;
Young et al. 2012). On-the-fly maps toward NGC 1977,
RCW 120, and RCW 49 were observed in 2017 February and
2019 June. RCW 120 and RCW 49 were observed as a part of
the SOFIA Legacy program, FEEDBACK (Schneider et al.
2020). A map size of 15′× 15′ was observed for RCW 120
(Luisi et al. 2021; Kabanovic et al. 2022) and for RCW 49, the
map size was 25 1× 25 1 (Tiwari et al. 2021). For NGC 1977,
we cropped out a 36 2× 32 5 region from a 1.15 square
degree map of the Orion Nebula complex (Pabst et al. 2020)
centered on the NGC 1977 bubble. The native spatial and
spectral resolution of the observations at 1.9 THz were 14 1
and 0.04 km s−1. For more observational details see Schneider
et al. (2020) and Higgins et al. (2021).

4. Sources

We selected three sources with relatively different complex-
ities in terms of ionizing source, morphology, and star
formation activity. Figure 1 shows the velocity-integrated
intensity maps of NGC 1977, RCW 120, and RCW 49. We
introduce the sources below.

4.1. NGC 1977

NGC 1977 is the northern-most shell in the Orion Nebula
Complex within Orion A, which is ∼395 pc away (Großschedl
et al. 2018). A B1V type star, 42 Orionis, is the main ionizing
source in this region (Peterson & Megeath 2008). Pabst et al.
(2020) reported a shell in NGC 1977 of radius ∼1 pc which is
expanding at a speed of ∼1.5 km s−1 and has a mass of ∼700
Me. The thermal pressure of the ionized gas is responsible for
powering the expansion of the shell in NGC 1977. The
expansion timescale is estimated to be 0.4 Myr from the
Spitzer (1968) solution of thermal expansion of an H II region.

9 https://github.com/pmelchior/pygmmis
10 http://hdl.handle.net/1903/30423
11 German Receiver for Astronomy at Terahertz. (up)GREAT is a develop-
ment of the MPI für Radioastronomie and the KOSMA/Universität zu Köln, in
cooperation with the DLR Institut für Optische Sensorsysteme.
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4.2. RCW 120

RCW120 is a southern H II region, mainly ionized by a single
O8V type star, CD −38°11636 (LSS 3959; Georgelin &
Georgelin 1970), and is located at a distance of 1.7 kpc. Two
molecular clouds are associated with RCW120. One is blue-
shifted and bright within a velocity range of −37 to −20 km s−1,
while the other is redshifted and bright within a velocity range
of −20 to 10 km s−1. The near-perfect circular morphology with
a prominent opening to the north of RCW120 as seen in far-
and mid-infrared wavelengths belongs to the redshifted cloud
component (Zavagno et al. 2007; Deharveng et al. 2009;
Luisi et al. 2021; Kabanovic et al. 2022). The stellar winds
of the O-type stars drive the expanding shell with a velocity of
15 km s−1 and a mass of up to 520 Me (Luisi et al. 2021). The
fast expansion speed of the bubble constrains the lifetime of the
region to ∼0.15 Myr. X-ray observations suggest that hot plasma
is venting out to the east and through an opening in the north, such
that 20% of the thermal energy is lost (Luisi et al. 2021).

4.3. RCW 49

RCW 49 is one of the most luminous star-forming regions in
the southern Galaxy and is located at a distance of 4.16 kpc
(Vargas Álvarez et al. 2013; Zeidler et al. 2015; Tiwari et al.
2021). A compact stellar cluster, Westerlund 2 (Wd2),
comprises 37 OB stars and ∼30 early-type OB star candidates
around it. Moreover, a Wolf–Rayet (W-R) binary (WR20a) is
part of the central Wd2 cluster, while another W-R star
(WR20b) and an O5V star are a few arcminutes away from the
cluster center (Ascenso et al. 2007; Tsujimoto et al. 2007;
Rauw et al. 2011; MohrSmith et al. 2015; Zeidler et al. 2015).
The stellar winds of the Wd2 cluster and WR20a have swept up
a shell of radius 6 pc which expands at a speed of ∼13 km s−1

and has a mass of 2.5× 104 Me. Besides the shell, this region
also hosts two large-scale molecular clouds whose collision led
to the formation of the Wd2 cluster (Furukawa et al. 2009),
namely the ridge and the northern and southern clouds (Tiwari
et al. 2021, 2022).

5. Step-by-step Guide to Using GMMs

For a given data cube, the GMM identifies various physical
structures associated with unique spectral profiles depending on

the different input parameters we give. The use of different
combinations of input parameters can lead to significantly
different results. Below, we provide a recipe that users can
follow when applying these models to the data on their sources.
In short, we have a data cube with three dimensions (two

spatial, one spectral). We fit a GMM with K clusters, decided
based on the first breaking point in the ninput versus noutput
diagram. Each spatial pixel is then assigned to one of these
clusters based on its probability of being generated by that
cluster.

5.1. Signal-to-noise Ratio of the Data Cube

It is preferable that the data cube on which the GMM is run
has a signal-to-noise ratio (S/N) 10. This ensures that the
model does not identify noisy pixels as “real” and independent
clusters. The noisy pixels mentioned here do not only
correspond to the observed map edges that are undersampled,
but which are also spread out all over the map. They seem to
have high intensity (or brightness) but are actually artifacts.
The S/N of a cube is determined by:

=
IS

N rms
, 2

avg ( )

where Iavg (in K) is the average intensity of the [C II] emission
in the entire cube area and the rms (in K) of the cube is
calculated in an emission-free velocity window following the
method given in Higgins et al. (2021).
For cases where the S/N of a cube is <10, we suggest the

users to smoothen the cube to a lower spatial resolution. This
can be achieved by gradually increasing the beam size and
pixel size following the Nyquist theorem. The cube can also be
spectrally regrided to a lower velocity resolution up to a limit of
FWHM

3
. Moreover, if it is not feasible to improve the S/N of a

given data set, follow the process described in Section 5.2
point 4.
For NGC 1977, we keep the cube at the spatial resolution of

18″ (following the data reduction technique given in Higgins
et al. 2021) with a velocity resolution of 0.5 km s−1. We find
the Iavg∼ 12 K and an rms= 0.85 K such that the S/N∼ 14.
For RCW 120, we regrided the cube to a 20″ spatial

resolution with a velocity resolution of 0.5 km s−1. We find the
Iavg∼ 5 K and an rms= 0.46 K such that the S/N> 10.

Figure 1. Velocity-integrated (within the ranges given in Table 1) intensity maps of [C II] toward NGC 1977, RCW 120, and RCW 49. The pink colored stars mark
the main ionizing sources in these regions. These plots are made using regrided data cubes for the three sources based on the S/N requirements described in Section 5.

3

The Astrophysical Journal, 958:136 (15pp), 2023 December 1 Tiwari et al.



For RCW 49, we regrided the cube to a 25″ spatial resolution
with a velocity resolution of 1 km s−1. We find the Iavg∼ 3 K
and an rms= 0.29 K such that the S/N∼ 10.

5.2. Hyperparameter Variations

1. Velocity range: the observed [C II] data cubes of
NGC 1977, RCW 120, and RCW 49 have hundreds of
velocity channels, i.e., the observations were taken for
large velocity windows. However the [C II] emission
itself is confined to smaller velocity ranges, i.e., to a
smaller number of velocity channels, e.g., NGC 1977 has
619 channels in total but the [C II] emission is constrained
to 50 channels. Therefore, we constrain the algorithm to
only fit its models on these channels or velocity range.
The velocity ranges for the three sources are given in
Table 1.

2. rms threshold: any velocity channel which has an rms
evaluated over the entire source area lower than this limit
is discarded before we fit the model. We essentially throw
out any channels that contain little information to
decrease the computing time. A too low value can cause
the model to be unable to converge within a reasonable
time, and a too high value might result in real clusters
disappearing. After extensive experimentation we set this
value to 3 × rms for all sources presented in this work.

3. Normalization: using the GMM, we want to identify the
main coherent physical structures in a source. Depending
on the scales of the data, machine-learning techniques
might require normalization of the data set to increase
model performance. We have tested the model using
several normalization techniques, but it is important to
note that the choice of normalization technique can bias
the resulting model. When implementing such a method,
its impact needs to be carefully considered based on both
the data and the desired result. Kabanovic et al. (2022)
opted for min–max normalization, which places a larger
emphasis on the spectral shape over the peak intensities.
We have investigated the results after applying mean
normalization (see Appendix A) but opt for no normal-
ization to limit the amount of bias we introduce.

4. Covariance regularization, ω: this is essentially a spectral
intensity limit. ω describes a minimum Tmb below which
the model is not allowed to explain variances in the data.
This technique is implemented by Melchior & Goulding
(2018) based on the work by Bovy et al. (2011) and
equips the GMM with the power to suppress the effects of
noise. The traditional GMM (used in, e.g., Kabanovic
et al. 2022) does not include ω as an hyperparameter. We
use ω= rms where S/N 10. In cases where the S/

N< 10 for a source and the data quality cannot be
enhanced through various reduction techniques, we
suggest to use ω equal to the standard deviation of the
data points of an rms map of a source.

5. Number of clusters: when running any clustering
algorithm, a number of clusters needs to be provided
a priori. The traditional GMM (Appendix B), as used by,
e.g., Kabanovic et al. (2022), must use all provided
clusters (ninput= noutput), and an information criterion is
required to determine the optimal ninput. Examples
include the Bayesian and Akaike information criterion
(BIC and AIC, respectively; Schwarz 1978) which
penalize the likelihood of a model by the number of
clusters it uses. This is not required in the GMMis
method used here, since an adjustment in the EM
algorithm allows arbitrarily low cluster weights (see
Bovy et al. 2011; Melchior & Goulding 2018, for
mathematical details). This means that noutput� ninput.
Nevertheless, an optimal ninput still needs to be
determined. Too few will lead to loss of information,
while too many can lead to assignments of insignificant
clusters and increasingly long computing times. There-
fore, we propose a new method of determining this
optimal value.

The value noutput generally increases as ninput increases, i.e.,
the models identify more coherent physical structures in a
source. However, this trend breaks for certain ninput and we
define the first occurrence of this as the “first breaking point.”
This can be seen in Figure 2, where noutput versus ninput is
plotted for all three sources. Based on the quantitative increase
in noutput when increasing ninput linearly, we incremented ninput
as a multiple of two for all sources. Quantitatively, a breaking
point occurs at the minimum of the first derivative of noutput
versus ninput i.e., the minimum of Δnoutput/Δninput. Models
were run multiple times for every ninput, and the standard
deviations of the resulting noutput are shown as error bars (in
gray) in Figure 2. For NGC 1977, RCW 120, and RCW 49, the
first breaking point occurs at ninput= 18, 14, and 16 clusters,
respectively.

6. GMM Results

Based on the input parameters (set following the discussion
in Section 5.2 and given in Table 1), the models identify a fixed
number of spectral profiles of [C II] emission for each source.
Every pixel of a data cube has a 0 to 1 probability of being
assigned to one of these spectral profiles. We choose to assign
it to the cluster k where this probability is largest. For any
individual pixel the probabilities over each cluster k äK sum
up to 1.
Using these cluster assignments we created weights

histograms, which show αk for each cluster. This is analogous
to the fraction of data points assigned to cluster k. We also
made domain maps which show the spatial distributions of the
clusters. These results are presented in Figures 3–5. Tables 2–4
list the estimated physical quantities of the identified clusters.
The sizes were determined by counting the number of pixels
per cluster and then converting it to a physical scale (parsecs)
using the distances to NGC 1977, RCW 49, and RCW 120. The
flux ∫Tpeakdv, position, width (dv), and peak temperature (Tpeak)
are derived by fitting Gaussians to the average spectrum of each

Table 1
Input and Output Parameters of the Models

Sources Rms (or ω) Velocity Range ninput noutput noutput_final

NGC 1977 0.85 5 to 16 18 8 6
RCW 120 0.46 −30 to 10 14 5 4
RCW 49 0.29 −30 to 30 16 10 5

Note. The rms is in units of K, the velocity range is in units of km s−1, ninput is
the number of clusters we give in the models as input, noutput is the number of
clusters identified by the models, and noutput_final is noutput excluding noise
artifacts and background emission.
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Figure 2. Number of clusters identified by GMM (noutput) vs. number of clusters given as input (ninput) for NGC 1977, RCW 120, and RCW 49. Models were run 10,
50, and 10 times for each ninput in NGC 1977, RCW 120, and RCW 49, respectively. Their mean noutput is shown with blue, while the standard deviation is displayed
in gray.

Figure 3. GMM results of NGC 1977: weights histogram (top) and domain map (bottom) displaying the identified clusters.

Figure 4. GMM results of RCW 120: weights histogram (top) and domain map (bottom) displaying the identified clusters.

5
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cluster (Figure 6). In cases where more than one velocity
component is seen, multiple Gaussians were fitted.

For NGC 1977 (Figure 3), eight clusters were identified in
total, but we excluded two clusters (black space in the domain
map) as one of these traced striped noise artifacts in the top

right corner of the cube, and the other contained background
emission. The extended shell described by Pabst et al. (2020) is
traced by the purple and green clusters in Figure 3. The
northern and southern halves of the shell are assigned to these
two separate clusters because the models identified a velocity

Figure 5. GMM results of RCW 49: weights histogram (top) and domain map (bottom) displaying the identified clusters.

Table 2
Computed Physical Quantities for the GMM Clusters of NGC 1997

Cluster Size (pc2) Velocity Component Flux (K km s−1) Position (km s−1) Width (km s−1) Tpeak (K)

1 0.44 1 124.00 (0.24) 11.04 (0.00) 3.64 (0.01) 32.05
2 0.02 1 135.85 (0.77) 10.27 (0.01) 4.01 (0.03) 31.81
3 3.08 1 63.72 (0.21) 11.39 (0.01) 3.15 (0.01) 19.01
4 0.01 1 166.37 (0.98) 11.75 (0.01) 3.46 (0.02) 45.13
5 6.40 1 39.68 (0.17) 12.61 (0.01) 2.59 (0.01) 14.40
6 0.74 1 94.00 (0.20) 11.80 (0.01) 3.42 (0.01) 25.81

Note. Columns are, from left to right, the cluster number, size of the cluster, velocity component of the average spectra, velocity-integrated intensity, centroid LSR
velocity, FWHM of the spectra, and peak temperature. The error bars for the flux, position, and width are given in brackets.

Table 3
Computed Physical Quantities for the GMM Clusters of RCW 120

Cluster Size (pc2) Velocity Component Flux (K km s−1) Position (km s−1) Width (km s−1) Tpeak (K)

1 1.07 1 70.57 (0.79) − 7.38 (0.06) 10.72 (0.11) 6.18
2 34.82 (0.54) − 4.17 (0.01) 2.75 (0.03) 11.89

2 0.98 1 29.99 (1.21) −14.87 (0.08) 5.41 (0.24) 5.21
2 122.46 (1.17) − 7.42 (0.03) 6.50 (0.07) 17.53

3 21.13 1 45.65 (0.51) − 7.68 (0.04) 7.10 (0.09) 6.04
4 6.97 1 81.21 (0.74) − 6.92 (0.03) 7.22 (0.08) 10.57

Note. Columns are, from left to right, the cluster number, size of the cluster, velocity component of the average spectra, velocity-integrated intensity, centroid LSR
velocity, FWHM of the spectra, and peak temperature. The error bars for the flux, position, and width are given in brackets.
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gradient throughout the shell which redshifts the northern half
by a few kilometers per second. The shell and its velocity
gradient can be seen in the [C II] velocity channel maps shown
and discussed in Figure 9 and Appendix C, respectively.

The region toward the molecular core, OMC3, and the PDR
created by interaction with the integral-shaped filament (Young
Owl et al. 2002) is mostly outlined by one cluster (blue). The
two emission peaks are each assigned to their own separate
cluster (red and orange), and these clusters have distinctly
different velocity structures. Additionally, through the absence
of clusters, we can clearly see that the bubble is very thin on the
eastern side.

For RCW 120 (Figure 4), five clusters were identified in
total, but we excluded one cluster which only described noise
and was mainly localized at the edge of the map. The circular
structure (green colored cluster) consists of the expanding shell
and the outer ring emission of RCW 120. The ring dynamics
can also be seen in the [C II] velocity channel maps shown
Figure 10. Luisi et al. (2021) reported that the shell is broken
open in the north and in the east. The green cluster in the
domain map has an extension in the northwest corresponding to
this break in the shell. The red-colored cluster mainly traces the
dense, ring-shaped PDR/torus of RCW 120, from which most
of the [C II] emission originates. Within the boundary of this

Figure 6. Average spectra from all clusters shown in the domain maps of NGC 1977 (top), RCW 120 (middle), and RCW 49 (bottom). The color of every cluster
shown here is the same as shown in Figures 3–5. The dotted lines indicate the mean of each GMM cluster (μk in Equation (1)). Channels without dots are those
discarded by the rms threshold. Large differences between the GMM means and the averaged spectra can be an indication of large variance within a single cluster.

Table 4
Computed Physical Quantities for the GMM Clusters of RCW 49

Cluster Size (pc2) Velocity Component Flux (K km s−1) Position (km s−1) Width (km s−1) Tpeak (K)

1 11.76 1 34.48 (4.70) − 9.85 (0.52) 9.33 (1.31) 3.47
2 19.28 (5.50) − 0.70 (0.56) 6.79 (1.58) 2.67
3 14.01 (3.40) 7.35 (0.63) 6.24 (1.25) 2.11
4 84.17 (2.56) 18.73 (0.13) 10.52 (0.44) 7.52

2 121.76 1 19.55 (0.63) − 6.68 (0.02) 7.83 (0.33) 2.35
2 38.70 (0.83) 0.61 (0.07) 7.15 (0.19) 5.08
3 8.85 (0.77) 7.69 (0.15) 4.59 (0.29) 1.81
4 39.58 (0.60) 15.30 (0.12) 11.69 (0.14) 3.18

3 1.33 1 44.32 (1.75) 2.57 (0.06) 5.94 (0.20) 7.01
2 61.03 (3.08) 14.21 (0.81) 29.29 (1.31) 1.96

4 52.11 1 42.56 (1.03) − 6.27 (0.09) 12.92 (0.39) 3.09
2 98.73 (1.09) 6.53 (0.06) 10.72 (0.08) 8.65
3 13.18 (1.13) 19.79 (0.36) 9.30 (0.87) 1.33

5 10.30 1 141.72 (2.95) − 2.30 (0.04) 13.91 (0.38) 9.57
2 128.11 (1.98) 15.32 (0.05) 7.12 (0.14) 16.89

Note. Columns are, from left to right, the cluster number, size of the cluster, velocity component of the average spectra, velocity-integrated intensity, centroid LSR
velocity, FWHM of the spectra, and peak temperature. The error bars for the flux, position, and width are given in brackets.
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red cluster is the expanding shell of RCW 120. In the domain
map (Figure 4), the expanding shell is not clearly separated
since the bulk emission (green cluster) dominates the spectral
shape. However, the expanding shell is somewhat better
separated/localized in Figure 8 using the traditional GMM,
which suggests an additional cluster. We find an opening
toward the east where the PDR is disrupted. This aligns well
with the X-ray emission from RCW 120 (Figure 3 of Luisi et al.
2021). Moreover, Kabanovic et al. (2022) refers to this feature
as a “narrow opening” in the east. Local density enhancements
along the PDR/torus are identified as additional clusters by the
model. Thus, we expect these clusters to have different physical
conditions. This is also validated by the significant differences
in the observed intensities toward the different clusters. The
orange and blue clusters have higher intensities compared to
the other clusters, as seen in the observed average spectrum
within each cluster in the middle panel of Figure 6.

For RCW 49 (Figure 5), 10 clusters were identified in total.
Similar to RCW 120, we excluded five that corresponded to
noise and were mainly localized on the edges of the map.
Observational studies (Furukawa et al. 2009; Tiwari et al.
2021, 2022) identified four different physical structures in
RCW 49. We identify three of these. The domain map (bottom
panel of Figure 5) shows the shell of RCW 49 in orange, which
is broken open in the west (reported in Tiwari et al. 2021). It
also identifies the “ridge,” which corresponds to the purple- and
blue-colored clusters. The “northern and southern clouds”
reported in Figure 7 of Tiwari et al. (2021) are identified as the
red-colored cluster. The “pillar,” which is reported as an
independent structure in Tiwari et al. (2022), is identified as a
part of the southern cloud here (Figure 5). In previous studies
(Tiwari et al. 2021, 2022), the pillar is reported to be most
intense in the velocity range of 5–15 km s−1, which overlaps
with the southern cloud (most intense within the velocity range
of 2–8 km s−1). Morphologically, this pillar can be recognized
as a separate structure, but kinematically, it is part of the
southern cloud. Despite the rather complex nature of RCW 49,
the GMM recognizes all the relevant structures identified in the
in-depth study by Tiwari et al. (2022). These structures in
RCW 49 can also be seen in the [C II] velocity channel maps
shown in Figure 11 and their dynamics are described in
Appendix C. The complexity in the velocity structure of
RCW 49 can be seen in the [C II] spectra, where the entire
emission spans from −30 to 30 km s−1 (bottom panel,
Figure 6) compared to RCW 120 (−20 to 5 km s−1, middle
panel, Figure 6) and NGC 1977 (6–16 km s−1, top panel,
Figure 6). Not only is the velocity range of the emission larger
but the number of different velocity components within this
emission is largest in RCW 49.

7. Evaluating the Models

In the previous sections, we described the steps required to
use the models and reported the model results for three
relatively different sources. The next natural task is to examine
the performance of these models. For this, it is critical to
analyze the observed spectra of these regions. Figure 6 shows
the observed average spectra of all identified clusters in
NGC 1977, RCW 120, and RCW 49 overlaid with dashed
curves corresponding to the mean μk of each cluster in each
velocity channel. Additionally, the dispersion in each cluster-
averaged spectrum is shown in Figures 12 and 13. We find that

the dispersion for every spectral profile is small. For more
details, see Appendix D.
In NGC 1977 the shell is seen in the velocity range 9–

15 km s−1 (Pabst et al. 2020). The spectra belonging to clusters
3, 5, and 6 (Figure 6, top panel) fit well into this range. These
are the green, purple, and brown clusters, respectively, in the
domain map which trace the majority of the limb-brightened
shell. Spectra 1, 2, and 4 belong to the blue, orange, and red
clusters toward OMC3 in the domain map. They are visibly
brighter and show a double-peaked structure which is possibly
caused by [C II] self-absorption (Pabst et al. 2020; and see
Guevara et al. 2020; Kabanovic et al. 2022 for details on
optical depth effects).
In RCW 120, the circular ring (bulk emission of RCW 120)

is localized within the velocity range of −12 to 2 km s−1 and
peaks at −7.5 km s−1 (Kabanovic et al. 2022). The spectra
belonging to clusters 3 and 4 (Figure 6, middle panel) fit this
description. They correspond to the green and red clusters,
respectively, in the domain map of RCW 120 (Figure 4), which
correctly represent the ring. Also, the spectrum belonging to
cluster 1 (blue-colored cluster in the domain map of RCW 120)
is similar to the spectra presented by Kabanovic et al. (2022;
their Figure 5) toward the brightest emission region in [C II].
In RCW 49, the expanding shell broken open to the west lies

within the velocity range of −25 to 0 km s−1 (Tiwari et al.
2021). The average spectrum belonging to cluster 2 (Figure 6,
bottom panel) has its brighter component within this velocity
range. It corresponds to the orange cluster in the domain map of
RCW 49 (Figure 4), which outlines the broken shell’s structure.
The northern and southern clouds of RCW 49 are brightest
within 2–8 km s−1 (Tiwari et al. 2021). This matches with the
red-colored cluster in the domain map of RCW 49 that
corresponds to the average spectrum of cluster 4 in Figure 6,
bottom panel. The ridge of RCW 49 has the brightest [C II]
emission within the velocity window of 16–22 km s−1 (Tiwari
et al. 2021). This matches with the brighter components of the
average spectra belonging to clusters 1 and 5. These correspond
to the blue and purple clusters in the domain map of RCW 49,
which spatially match with the location of the ridge as
described in Tiwari et al. (2021, 2022). Furthermore, the
average spectrum of cluster 5 in purple has another blueshifted
velocity component, which corresponds to the shell of
RCW 49, and this also agrees well with the representative
spectrum of position p3 in Tiwari et al. (2022; and Figure 3
within), where both the ridge and shell components overlap.
It is important to note that the clusters identified by the

GMMs do not have strict boundaries. While most of the pixels
of an observed [C II] map corresponding to a given source are
assigned to a specific cluster with probability >0.9 (1 being the
highest), at the boundaries of the identified clusters the
probabilities can be lower, leading to more spurious assign-
ments. Thus, spatial transition from one cluster to another can
be more gradual than the strict boundaries illustrated by the
domain maps (Figures 3–5). As illustrated in Appendix E, the
importance of such ill-defined assignments can be assessed by
comparing the map of lower-probability pixels in a cluster to
the map of the cluster. For NGC 1977, this comparison clearly
illustrates that pixels with ill-defined cluster status are relegated
to the boundary of the cluster and indicate a somewhat more
gradual transition from one cluster to the next.
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8. Conclusions

The objective of this study was to identify coherent physical
structures in the ISM through an automated technique, which
will assist the astronomical community in analyzing large-scale
observations. We investigated the capabilities of the GMM in
achieving this goal by testing it on three different Galactic
sources.

We ran the GMM on NGC 1977, RCW 120, and RCW 49.
From expressing the need of an S/N> 10 for the input data
cube to choosing the right number of input clusters into the
models, we prepared a step-by-step guide for the users to try
GMM on their data sets. The models identified six, four, and
five clusters (excluding noise and background clusters) in
NGC 1977, RCW 120, and RCW 49, respectively, and these
results were illustrated using weight and domain maps. In
NGC 1977, the models identified the expanding shell as well as
the dense PDR tracing the interaction of this shell with the
OMC3 core and the integral-shaped filament, consistent with
previous work on this source. The domain map also revealed a
break in the shell toward the east. In RCW 120, the models
identified the bulk emission and the shell, which is broken in
the north, and also confirmed another leak in the east, which
was previously identified in X-ray data. In RCW 49, the models
identified the broken shell, the ridge, and the northern and
southern clouds, which agree with previous observational
studies toward this region.

We also validated the models by examining the average
spectrum of each cluster and found that the models assign the
data cube pixels to the “right” cluster with high accuracy.
Successful comparisons between the results of our work and
those in the literature serve to validate the precision of these
models in identifying major physical structures within a given
region. This, in turn, reveals the promise of this powerful and
easy-to-use method for analyzing and interpreting large [C II]
data sets, such as those to be delivered by NASA’s GUSTO
and ASTHROS balloon missions.
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Appendix A
Mean Normalization

We tested the models using several normalization techniques
and found that the mean normalization works better than the

other techniques. For a single spectrum, the mean normal-
ization is described as:

= -T T Tnorm mean K , A1mb mb mb( ) ( )( ) ( )

where Tmb(norm) is the normalized spectral intensity per
channel, Tmb is the observed main beam spectral intensity, and
Tmb(mean) is the mean of the main beam spectral intensities of
all the spectra toward the entire source area. All temperatures
are in K.
We ran the models with mean normalization on RCW 120

and Figure 7 shows the domain map of RCW 120, where two
clusters are identified (excluding the noise). The blue-colored
cluster depicts the broken (from the north and the east) shell of
RCW 120 and the orange-colored cluster comprises relatively
brighter pixels in the region. Normalizing the data set causes a
decrease in the difference in intensities between various pixels.
Thus, a lot of internal structure is lost in the mean normalized
results when compared to the domain map (Figure 4) obtained
without normalizing the data. It is possible to achieve the same
level of internal structure in the normalized data set, however,
one needs to increase the input number of clusters. This will
make the entire process slower when compared to running the
models without using any normalization.

Appendix B
Traditional GMM

To investigate the difference between the “traditional” GMM
and the models presented in this work, we ran the models
described in Kabanovic et al. (2022) on NGC 1977, RCW 120,
and RCW 49. Figure 8, bottom panel, shows the BIC for the
three sources, with the minimum BIC found at ninput= 33, 6,
and 9 for NGC 1977, RCW 120, and RCW 49, respectively.
These values match well with the noutput reported in Table 1 for
RCW 120 and RCW 49.
After excluding a single cluster that corresponds to only

noise, the domain map of RCW 120 (Figure 8) is very similar

Figure 7. Domain map of RCW 120 displaying the identified clusters with the
mean normalization technique. The other hyperparameters were same as those
given in Table 1.
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to the one shown in Figure 4. It shows clear signs of shell
leakage in the northwest and in the east (breaks in the orange
cluster). The models also identify the higher-intensity pixels as
an independent cluster (red). The blue cluster, however,
encompasses pixels with low intensity (surrounding the shell
shown in green).

In RCW 49, apart from the four (red, pink, brown, and dark
blue) clusters that correspond to noise artifacts, the domain map
(in Figure 8) identifies the major physical structures in
RCW 49. Gray cluster corresponds to the broken shell. The
green and orange clusters correspond to the northern and
southern clouds. The light blue cluster corresponds to the ridge
and also the shell in the northeast. However, unlike the results
presented in Section 6, the traditional GMM models are unable
to identify the pillar in RCW 49.

Unlike RCW 120 and RCW 49, the minimum BIC in
NGC 1977 occurs at a significantly high value, leading to a
domain map with 33 clusters. One of the possible reasons for
the traditional models converging at such a large number of
clusters could be the large fluctuations in the spectral profiles
along the shell, which are more pronounced in NGC 1977 than
in the other sources. Additionally, the relatively higher noisy
pixels in the NGC 1977 data cause further artifacts in the
generated domain map. In comparison, the GMMis model
results for NGC 1977 presented in Section 6 deal better with
these variations introduced by velocity gradients or noise. The
GMMis model converges at eight clusters for NGC 1977,

clearly identifying the major physical structures in the source,
and thus emphasizing the potential of GMMis in analyzing
large data sets.

Appendix C
Velocity Channel Maps

Figures 9–11 show the velocity channel maps of [C II]
emission toward NGC 1977, RCW 120, and RCW 49. Similar
maps have been previously presented in Pabst et al. (2022),
Kabanovic et al. (2022), and Tiwari et al. (2021).
The shell of NGC 1977 can be seen in Figure 9. The

southern part of the shell is most intense within 9–12 km s−1,
while the northern part is most intense within 11–13 km s−1.
This velocity gradient is the reason why the northern and
southern parts of the shell are identified as separate clusters by
the models (Figure 3). In RCW 120, the [C II] velocity channel
maps (Figure 10) illustrate the ring dynamics from −12 to
−2 km s−1. The northwestern break in the shell is also
visible in the channel maps. The different structures of RCW 49
can be seen in the velocity channel maps (Figure 11). The
broken expanding shell is most intense from −14 to 0 km s−1.
The northern and southern clouds are most intense from 2–
8 km s−1. The pillar is brightest within 4–12 km s−1, while the
ridge is brightest within 16–22 km s−1. The domain map
of RCW 49 (Figure 5) identifies all these structures as
independent clusters except the pillar, which is part of the
southern cloud.

Figure 8. Using the GMM described in Kabanovic et al. (2022), BIC vs. ninput plot (left panel) and domain map (right panel) for NGC 1977, RCW 120, and RCW 49.
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Figure 9. Velocity channel maps of [C II] emission toward NGC 1977. The beam size is shown in the lower right.

Figure 10. Velocity channel maps of [C II] emission toward RCW 120. The beam size is shown in the lower right.
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Appendix D
Average Spectrum of each Cluster

Figure 12 shows the average spectra of all clusters identified
by GMM for NGC 1977, RCW 120, and RCW 49. It can be
seen that all pixels assigned to a given cluster have similar
spectral profiles. Most of the average spectra have relatively
small dispersion, which means that all the spectra corresp-
onding to that cluster have very similar intensities and line

shapes. The relatively larger dispersion seen in some of the
average spectra is mainly because of the difference in the line
intensities, while the line profiles corresponding to all the
pixels associated with one cluster are similar. To illustrate it,
we show the normalized average spectra of all clusters in
Figure 13 and it can be seen that the dispersion is overall less in
this case. Thus, the models are able to classify spectra based on
their line profiles very well, further validating their accuracy.

Figure 11. Velocity channel maps of [C II] emission toward RCW 49. The beam size is shown in the lower right.
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Figure 12. Average spectra of all GMM-identified clusters for NGC 1977 (left column), RCW 120 (middle column), and RCW 49 (right column). The dashed region
represents the standard deviation, depicting the variation in spectral profiles for all spectra per pixel corresponding to a cluster.
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Figure 13. Normalized average spectra of all GMM-identified clusters for NGC 1977 (left column), RCW 120 (middle column), and RCW 49 (right column). The
dashed region represents the standard deviation, depicting the variation in spectral profiles for all spectra per pixel corresponding to a cluster.
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Appendix E
The Case of Cluster Assignment with Low Probability

Figure 14 highlights the pixels in the NGC 1977 domain map
that have low probabilities (<0.9) of getting assigned to their
respective clusters, as shown in Figure 3. This is an example to
understand the spatial distribution of these pixels. First, we
found that the map contains relatively few of these pixels. Also,
they are more localized to the boundaries of the identified
clusters, implying a more gradual transition from one cluster to
another in contrast to what is seen in the domain maps
themselves.

ORCID iDs

M. Tiwari https://orcid.org/0000-0003-4260-2950
R. Kievit https://orcid.org/0000-0003-2328-4117
L. Bonne https://orcid.org/0000-0002-0915-4853
R. Higgins https://orcid.org/0000-0001-8195-3900
R. Karim https://orcid.org/0000-0001-8844-5618
Ü. Kavak https://orcid.org/0000-0002-7640-4998
M. W. Pound https://orcid.org/0000-0002-7269-342X
N. Schneider https://orcid.org/0000-0003-3485-6678
J. Stutzki https://orcid.org/0000-0001-7658-4397
M. Wolfire https://orcid.org/0000-0003-0030-9510
A. G. G. M. Tielens https://orcid.org/0000-0003-0306-0028

References

Ascenso, J., Alves, J., Beletsky, Y., & Lago, M. T. V. T. 2007, A&A, 466, 137
Bennett, C. L., Fixsen, D. J., Hinshaw, G., et al. 1994, ApJ, 434, 587
Blei, D. M., & Jordan, M. I. 2004, in Proc. Twenty-First Int. Conf. on Machine

Learning, ICML ’04 (New York: ACM), 12
Bonne, L., Schneider, N., García, P., et al. 2022, ApJ, 935, 171

Bouveyron, C., Celeux, G., Murphy, T., & Raftery, A. 2019, Model-based
Clustering and Classification for Data Science: with Applications in R
(Cambridge: Cambridge Univ. Press),

Bovy, J., Hogg, D. W., & Roweis, S. T. 2011, AnApS, 5, 1657
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157
Crawford, M. K., Genzel, R., Townes, C. H., & Watson, D. M. 1985, ApJ,

291, 755
Deharveng, L., Zavagno, A., Schuller, F., et al. 2009, A&A, 496, 177
Dempster, A. P., Laird, N. M., & Rubin, D. B. 1977, J. R. Stat. Soc. Series B

Stat. Methodol., 39, 1
Elmegreen, B. G., & Lada, C. J. 1977, ApJ, 214, 725
Frühwirth-Schnatter, S., Celeux, G., & Robert, C. 2019, Handbook of Mixture

Analysis (Boca Raton, FL: CRC Press) https://books.google.nl/books?
id=u-a1tAEACAAJ

Furukawa, N., Dawson, J. R., Ohama, A., et al. 2009, ApJL, 696, L115
Georgelin, Y. P., & Georgelin, Y. M. 1970, A&AS, 3, 1
Goldsmith, P., Walker, C., Kulesa, C., et al. 2022, AAS Meeting, 54, 333.01
Greenspan, H., Ruf, A., & Goldberger, J. 2006, IEEE Trans. Med. Imaging,

25, 1233
Großschedl, J. E., Alves, J., Meingast, S., et al. 2018, A&A, 619, A106
Guevara, C., Stutzki, J., Ossenkopf-Okada, V., et al. 2020, A&A, 636, A16
Hacar, A., Tafalla, M., Kauffmann, J., & Kovács, A. 2013, A&A, 554, A55
Henshaw, J. D., Ginsburg, A., Haworth, T. J., et al. 2019, MNRAS, 485, 2457
Higgins, R., Kabanovic, S., Pabst, C., et al. 2021, A&A, 652, A77
Hollenbach, D. J., & Tielens, A. G. G. M. 1999, RvMP, 71, 173
Jones, D. C., Holt, H. J., Meijers, A. J. S., & Shuckburgh, E. 2019, JGRC,

124, 390
Kabanovic, S., Schneider, N., Ossenkopf-Okada, V., et al. 2022, A&A,

659, A36
Kavak, Ü., Goicoechea, J. R., Pabst, C. H. M., et al. 2022, A&A,

660, A109
Luisi, M., Anderson, L. D., Schneider, N., et al. 2021, SciA, 7, eabe9511
McLachlan, G. J., & Peel, D. 2000, Finite Mixture Models (New York: Wiley)
Melchior, P., & Goulding, A. D. 2018, A&C, 25, 183
MohrSmith, M., Drew, J. E., Barentsen, G., et al. 2015, MNRAS, 450, 3855
Murphy, K. P. 2013, Machine Learning: A Probabilistic Perspective

(Cambridge, MA: MIT Press)
Pabst, C., Higgins, R., Goicoechea, J. R., et al. 2019, Natur, 565, 618
Pabst, C. H. M., Goicoechea, J. R., Hacar, A., et al. 2022, A&A, 658, A98
Pabst, C. H. M., Goicoechea, J. R., Teyssier, D., et al. 2020, A&A, 639, A2
Peterson, D. E., & Megeath, S. T. 2008, in Handbook of Star Forming Regions,

Vol. 1: The Northern Sky ASP Monograph Publications, ed. B. Reipurth,
Vol. 4 (Cambridge, MA: Harvard Univ. Press), 590

Pineda, J., Siles, J., Groppi, C., et al. 2022, AAS Meeting Abstracts, 54, 314.02
Rauw, G., Sana, H., & Nazé, Y. 2011, A&A, 535, A40
Riaz, F., Rehman, S., Ajmal, M., et al. 2020, IEEE Access, 8, 16846
Risacher, C., Güsten, R., Stutzki, J., et al. 2018, JAI, 7, 1840014
Schneider, N., Bonne, L., Bontemps, S., et al. 2023, NatAs, 7, 546
Schneider, N., Simon, R., Guevara, C., et al. 2020, PASP, 132, 104301
Schwarz, G. 1978, AnSta, 6, 461
Simon, R., Bigiel, F., Graf, U. U., et al. 2023, Physics and Chemistry of Star

Formation: The Dynamical ISM Across Time and Spatial Scales (Köln:
Universitäts und Stadtbibliothekj Köln), 69

Smyth, P., & Wolpert, D. 1999, Mach. Learn., 36, 59
Spitzer, L., Jr. 1968, in Nebulae and Interstellar Matter, ed.

B. M. Middlehurst & L. H. Aller (Chicago, IL: Univ.Chicago Press), 1
Stacey, G. J., Geis, N., Genzel, R., et al. 1991, ApJ, 373, 423
Tiwari, M., Karim, R., Pound, M. W., et al. 2021, ApJ, 914, 117
Tiwari, M., Wolfire, M., Pound, M. W., et al. 2022, AJ, 164, 150
Tsujimoto, M., Feigelson, E. D., Townsley, L. K., et al. 2007, ApJ, 665,

719
Vargas Álvarez, C. A., Kobulnicky, H. A., Bradley, D. R., et al. 2013, AJ,

145, 125
Walborn, N. R., Maíz-Apellániz, J., & Barbá, R. H. 2002, AJ, 124, 1601
Weaver, R., McCray, R., Castor, J., Shapiro, P., & Moore, R. 1977, ApJ,

218, 377
Wolfire, M. G., Vallini, L., & Chevance, M. 2022, ARA&A, 60, 247
Young, E. T., Becklin, E. E., Marcum, P. M., et al. 2012, ApJL, 749, L17
Young Owl, R. C., Meixner, M. M., Fong, D., et al. 2002, ApJ, 578, 885
Zavagno, A., Pomarès, M., Deharveng, L., et al. 2007, A&A, 472, 835
Zeidler, P., Sabbi, E., Nota, A., et al. 2015, AJ, 150, 78

Figure 14. Domain map of NGC 1977 from an identical model to the one
presented in Figure 3, however instead of assigning each pixel to the cluster to
which it has the largest probability of belonging, we only plot points with a
probability between 0.1 and 0.9. The color opacity of each pixel is proportional
to this probability.

15

The Astrophysical Journal, 958:136 (15pp), 2023 December 1 Tiwari et al.

https://orcid.org/0000-0003-4260-2950
https://orcid.org/0000-0003-4260-2950
https://orcid.org/0000-0003-4260-2950
https://orcid.org/0000-0003-4260-2950
https://orcid.org/0000-0003-4260-2950
https://orcid.org/0000-0003-4260-2950
https://orcid.org/0000-0003-4260-2950
https://orcid.org/0000-0003-4260-2950
https://orcid.org/0000-0003-2328-4117
https://orcid.org/0000-0003-2328-4117
https://orcid.org/0000-0003-2328-4117
https://orcid.org/0000-0003-2328-4117
https://orcid.org/0000-0003-2328-4117
https://orcid.org/0000-0003-2328-4117
https://orcid.org/0000-0003-2328-4117
https://orcid.org/0000-0003-2328-4117
https://orcid.org/0000-0002-0915-4853
https://orcid.org/0000-0002-0915-4853
https://orcid.org/0000-0002-0915-4853
https://orcid.org/0000-0002-0915-4853
https://orcid.org/0000-0002-0915-4853
https://orcid.org/0000-0002-0915-4853
https://orcid.org/0000-0002-0915-4853
https://orcid.org/0000-0002-0915-4853
https://orcid.org/0000-0001-8195-3900
https://orcid.org/0000-0001-8195-3900
https://orcid.org/0000-0001-8195-3900
https://orcid.org/0000-0001-8195-3900
https://orcid.org/0000-0001-8195-3900
https://orcid.org/0000-0001-8195-3900
https://orcid.org/0000-0001-8195-3900
https://orcid.org/0000-0001-8195-3900
https://orcid.org/0000-0001-8844-5618
https://orcid.org/0000-0001-8844-5618
https://orcid.org/0000-0001-8844-5618
https://orcid.org/0000-0001-8844-5618
https://orcid.org/0000-0001-8844-5618
https://orcid.org/0000-0001-8844-5618
https://orcid.org/0000-0001-8844-5618
https://orcid.org/0000-0001-8844-5618
https://orcid.org/0000-0002-7640-4998
https://orcid.org/0000-0002-7640-4998
https://orcid.org/0000-0002-7640-4998
https://orcid.org/0000-0002-7640-4998
https://orcid.org/0000-0002-7640-4998
https://orcid.org/0000-0002-7640-4998
https://orcid.org/0000-0002-7640-4998
https://orcid.org/0000-0002-7640-4998
https://orcid.org/0000-0002-7269-342X
https://orcid.org/0000-0002-7269-342X
https://orcid.org/0000-0002-7269-342X
https://orcid.org/0000-0002-7269-342X
https://orcid.org/0000-0002-7269-342X
https://orcid.org/0000-0002-7269-342X
https://orcid.org/0000-0002-7269-342X
https://orcid.org/0000-0002-7269-342X
https://orcid.org/0000-0003-3485-6678
https://orcid.org/0000-0003-3485-6678
https://orcid.org/0000-0003-3485-6678
https://orcid.org/0000-0003-3485-6678
https://orcid.org/0000-0003-3485-6678
https://orcid.org/0000-0003-3485-6678
https://orcid.org/0000-0003-3485-6678
https://orcid.org/0000-0003-3485-6678
https://orcid.org/0000-0001-7658-4397
https://orcid.org/0000-0001-7658-4397
https://orcid.org/0000-0001-7658-4397
https://orcid.org/0000-0001-7658-4397
https://orcid.org/0000-0001-7658-4397
https://orcid.org/0000-0001-7658-4397
https://orcid.org/0000-0001-7658-4397
https://orcid.org/0000-0001-7658-4397
https://orcid.org/0000-0003-0030-9510
https://orcid.org/0000-0003-0030-9510
https://orcid.org/0000-0003-0030-9510
https://orcid.org/0000-0003-0030-9510
https://orcid.org/0000-0003-0030-9510
https://orcid.org/0000-0003-0030-9510
https://orcid.org/0000-0003-0030-9510
https://orcid.org/0000-0003-0030-9510
https://orcid.org/0000-0003-0306-0028
https://orcid.org/0000-0003-0306-0028
https://orcid.org/0000-0003-0306-0028
https://orcid.org/0000-0003-0306-0028
https://orcid.org/0000-0003-0306-0028
https://orcid.org/0000-0003-0306-0028
https://orcid.org/0000-0003-0306-0028
https://orcid.org/0000-0003-0306-0028
https://doi.org/10.1051/0004-6361:20066433
https://ui.adsabs.harvard.edu/abs/2007A&A...466..137A/abstract
https://doi.org/10.1086/174761
https://ui.adsabs.harvard.edu/abs/1994ApJ...434..587B/abstract
https://doi.org/10.3847/1538-4357/ac8052
https://ui.adsabs.harvard.edu/abs/2022ApJ...935..171B/abstract
https://doi.org/10.1214/10-aoas439
https://ui.adsabs.harvard.edu/abs/2011AnApS...5.1657B/abstract
https://doi.org/10.1086/153315
https://ui.adsabs.harvard.edu/abs/1975ApJ...195..157C/abstract
https://doi.org/10.1086/163113
https://ui.adsabs.harvard.edu/abs/1985ApJ...291..755C/abstract
https://ui.adsabs.harvard.edu/abs/1985ApJ...291..755C/abstract
https://doi.org/10.1051/0004-6361/200811337
https://ui.adsabs.harvard.edu/abs/2009A&A...496..177D/abstract
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1086/155302
https://ui.adsabs.harvard.edu/abs/1977ApJ...214..725E/abstract
https://books.google.nl/books?id=u-a1tAEACAAJ
https://books.google.nl/books?id=u-a1tAEACAAJ
https://doi.org/10.1088/0004-637X/696/2/L115
https://ui.adsabs.harvard.edu/abs/2009ApJ...696L.115F/abstract
https://ui.adsabs.harvard.edu/abs/1970A&AS....3....1G/abstract
https://ui.adsabs.harvard.edu/abs/2022AAS...24033301G/abstract
https://doi.org/10.1109/TMI.2006.880668
https://doi.org/10.1051/0004-6361/201833901
https://ui.adsabs.harvard.edu/abs/2018A&A...619A.106G/abstract
https://doi.org/10.1051/0004-6361/201834380
https://ui.adsabs.harvard.edu/abs/2020A&A...636A..16G/abstract
https://doi.org/10.1051/0004-6361/201220090
https://ui.adsabs.harvard.edu/abs/2013A&A...554A..55H/abstract
https://doi.org/10.1093/mnras/stz471
https://ui.adsabs.harvard.edu/abs/2019MNRAS.485.2457H/abstract
https://doi.org/10.1051/0004-6361/202039621
https://ui.adsabs.harvard.edu/abs/2021A&A...652A..77H/abstract
https://doi.org/10.1103/RevModPhys.71.173
https://ui.adsabs.harvard.edu/abs/1999RvMP...71..173H/abstract
https://doi.org/10.1029/2018JC014629
https://ui.adsabs.harvard.edu/abs/2019JGRC..124..390J/abstract
https://ui.adsabs.harvard.edu/abs/2019JGRC..124..390J/abstract
https://doi.org/10.1051/0004-6361/202142575
https://ui.adsabs.harvard.edu/abs/2022A&A...659A..36K/abstract
https://ui.adsabs.harvard.edu/abs/2022A&A...659A..36K/abstract
https://doi.org/10.1051/0004-6361/202141367
https://ui.adsabs.harvard.edu/abs/2022A&A...660A.109K/abstract
https://ui.adsabs.harvard.edu/abs/2022A&A...660A.109K/abstract
https://doi.org/10.1126/sciadv.abe9511
https://ui.adsabs.harvard.edu/abs/2021SciA....7.9511L/abstract
https://doi.org/10.1016/j.ascom.2018.09.013
https://ui.adsabs.harvard.edu/abs/2018A&C....25..183M/abstract
https://doi.org/10.1093/mnras/stv843
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.3855M/abstract
https://doi.org/10.1038/s41586-018-0844-1
https://ui.adsabs.harvard.edu/abs/2019Natur.565..618P/abstract
https://doi.org/10.1051/0004-6361/202140805
https://ui.adsabs.harvard.edu/abs/2022A&A...658A..98P/abstract
https://doi.org/10.1051/0004-6361/202037560
https://ui.adsabs.harvard.edu/abs/2020A&A...639A...2P/abstract
https://ui.adsabs.harvard.edu/abs/2008hsf1.book..590P/abstract
https://doi.org/10.1051/0004-6361/201117000
https://ui.adsabs.harvard.edu/abs/2011A&A...535A..40R/abstract
https://doi.org/10.1109/ACCESS.2020.2967676
https://doi.org/10.1142/S2251171718400147
https://ui.adsabs.harvard.edu/abs/2018JAI.....740014R/abstract
https://doi.org/10.1038/s41550-023-01901-5
https://ui.adsabs.harvard.edu/abs/2023NatAs...7..546S/abstract
https://doi.org/10.1088/1538-3873/aba840
https://ui.adsabs.harvard.edu/abs/2020PASP..132j4301S/abstract
https://doi.org/10.1214/aos/1176344136
https://ui.adsabs.harvard.edu/abs/1978AnSta...6..461S/abstract
https://doi.org/10.1023/A:1007511322260
https://ui.adsabs.harvard.edu/abs/1968nim..book....1S/abstract
https://doi.org/10.1086/170062
https://ui.adsabs.harvard.edu/abs/1991ApJ...373..423S/abstract
https://doi.org/10.3847/1538-4357/abf6ce
https://ui.adsabs.harvard.edu/abs/2021ApJ...914..117T/abstract
https://doi.org/10.3847/1538-3881/ac8a44
https://ui.adsabs.harvard.edu/abs/2022AJ....164..150T/abstract
https://doi.org/10.1086/519681
https://ui.adsabs.harvard.edu/abs/2007ApJ...665..719T/abstract
https://ui.adsabs.harvard.edu/abs/2007ApJ...665..719T/abstract
https://doi.org/10.1088/0004-6256/145/5/125
https://ui.adsabs.harvard.edu/abs/2013AJ....145..125V/abstract
https://ui.adsabs.harvard.edu/abs/2013AJ....145..125V/abstract
https://doi.org/10.1086/341955
https://ui.adsabs.harvard.edu/abs/2002AJ....124.1601W/abstract
https://doi.org/10.1086/155692
https://ui.adsabs.harvard.edu/abs/1977ApJ...218..377W/abstract
https://ui.adsabs.harvard.edu/abs/1977ApJ...218..377W/abstract
https://doi.org/10.1146/annurev-astro-052920-010254
https://ui.adsabs.harvard.edu/abs/2022ARA&A..60..247W/abstract
https://doi.org/10.1088/2041-8205/749/2/L17
https://ui.adsabs.harvard.edu/abs/2012ApJ...749L..17Y/abstract
https://doi.org/10.1086/342647
https://ui.adsabs.harvard.edu/abs/2002ApJ...578..885Y/abstract
https://doi.org/10.1051/0004-6361:20077474
https://ui.adsabs.harvard.edu/abs/2007A&A...472..835Z/abstract
https://doi.org/10.1088/0004-6256/150/3/78
https://ui.adsabs.harvard.edu/abs/2015AJ....150...78Z/abstract

	1. Introduction
	2. GMMs
	3. SOFIA Observations
	4. Sources
	4.1. NGC 1977
	4.2. RCW 120
	4.3. RCW 49

	5. Step-by-step Guide to Using GMMs
	5.1. Signal-to-noise Ratio of the Data Cube
	5.2. Hyperparameter Variations

	6. GMM Results
	7. Evaluating the Models
	8. Conclusions
	Appendix AMean Normalization
	Appendix BTraditional GMM
	Appendix CVelocity Channel Maps
	Appendix DAverage Spectrum of each Cluster
	Appendix EThe Case of Cluster Assignment with Low Probability
	References



