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1 General Introduction 
 
The landscape of biological psychiatry encompasses a wide spectrum of diverse 

data, ranging from gene transcription to neuroimaging, each offering unique, yet 
interconnected insights into brain functionality (1–6). The study of biomolecular 

brain processes has been persistently limited by the challenge of obtaining direct 
in-vivo measurements (7–9). This task has been further complicated over recent 
years as the emergence of increasingly high-dimensional and multimodal datasets 

has introduced a new layer of complexity (3). The complexity and vastness of this 
data poses a significant challenge for classical statistical approaches due to their 

methodological limitations and the constraints of their underlying assumptions (3). 
In this thesis, we focus on the intersection of data science and biological 

psychiatry, employing novel methodologies to dissect and operationalize high-
dimensional and multimodal data. Following this introduction, the subsequent 

chapters of this thesis collectively aim to deepen our understanding of psychiatric 
disorders related to stress and their symptoms, with a primary focus on depressive 

and anxiety disorders. This thesis approaches these conditions from multiple 
perspectives, bridging genetic, proteomic, and psychological aspects of these 

conditions with an emphasis on the potential for predictive analytics.  
 

Hence, this thesis is primarily focused on two interconnected objectives.  
Objective 1: to enhance our understanding of psychiatric disorders of multilevel 

etiology (i.e. having multiple causes), specifically those related to stress, with a 
concentrated focus on Major Depressive Disorder (MDD) and anxiety disorders. 

Objective 2: to explore data-driven analyses, relying less on specific hypotheses 
and experiments, and more on the analysis of a comprehensive collection of 
relevant data. The unifying goal of these objectives is to uncover new and hitherto 

unexplored patterns that link multiple variables and outcome measurements. 
 

The data-driven method at the heart of this thesis is closely related to predictive 
modeling, a field that is concerned with finding accurate patterns between multiple 
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variables and outcomes. Although this might seem similar to traditional statistical 
analysis, there are key differences. This first chapter will delineate these 

differences, providing a clear picture of how our method diverges from classical 
hypothesis-driven epidemiological approaches, and explaining what is meant by 

'classical epidemiological' in this context. Next, we will explore how data-driven 
narratives could potentially offer a solution to a key issue in biological psychiatry: 

the absence of direct in-vivo brain measurements of high temporal and spatial 
resolution. Finally, we will introduce the specific topics for every subsequent 

chapter of this thesis from a data-driven perspective. The initial sections of each 
following chapter will be devoted to clarifying the unique biological principles and 

intricate details associated with the particular disorder or biobehavioral 
phenomenon that is the central focus of the respective chapter. This approach 

ensures a solid foundation for understanding the subsequent explorations and 
findings. 

 

1.1  Inference versus prediction 
In Leo Breiman's 2001 paper titled "Statistical Modeling: The Two Cultures", he 

delineates two distinct styles of statistical modeling: one that focuses on inference 
and another that emphasizes prediction (10). Breiman argues that, traditionally, 

statistical analysis has favored inference-oriented data models, underpinned by 
assumptions that often guide the construction of these models. This method, 
which Breiman refers to as 'data modeling culture,' mirrors the classical approach 

seen in fields such as epidemiology (referred to as the classical epidemiological 
approach in the paragraph above). For example, a scientist might presume a 

probabilistic model for data, such as assuming that in a population sample, 
individual heights align with a normal distribution given their gender. They would 

also assume the spread, or variance, of these heights to be consistent across both 
genders. This framework is suitable for methods like the T-test, which are built 

upon these probabilistic assumptions and are designed to test specific hypotheses 
– in this case, whether the average heights between males and females are 

significantly different.  
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Inferential statistical models, with their focus on analyzing relationships, patterns, 
and trends within a dataset, are highly effective for drawing inferences about the 

broader population from sample data. These models are built on a foundation of 
specific assumptions, with their principal strength being their capacity for 

inference, rather than prediction. Unlike predictive models, they do not prioritize 
prediction accuracy or effect size for prediction, as their primary objective lies in 

unveiling and understanding the underlying structure of the data and the 
relationships between variables.  

 
The challenge arises when these models, constructed around particular 

assumptions, are applied to unseen or future data: they might not yield highly 
accurate predictions. This discrepancy can occur because the underlying 

assumptions and relationships, which are valid for the initial dataset, might not be 
applicable or transferable to new, unseen data. The reason for this misalignment 

can vary, ranging from differences in data collection conditions and temporal 
changes to discrepancies in the sampled populations. Consequently, the strength 

of inferential models is to comprehend the structure of the sampled data and to 
draw conclusions about the originating population, rather than predicting specific 

outcomes for new observations. 
 
In contrast to the data modeling culture, Breiman introduces the 'algorithmic 

modeling culture.' Here, the primary objective is not to make inferences based on 
underlying assumptions, but to produce accurate predictions. Algorithmic 

modeling rapidly developed since the mid 1980s and has been extensively used in 
the field of speech recognition, image recognition and financial markets (10). In this 

culture, one might use a machine learning algorithm, such as a decision tree or a 
neural network, to predict an individual's height given their gender. These models 

do not necessarily rely on specific probabilistic assumptions but focus on 
improving predictive accuracy. This is evaluated using metrics like Root Mean 

Squared Error (for regression tasks) or Area Under the Receiver Operating 
Characteristic Curve (for classification tasks). Unlike the data modeling culture, 

which uses statistical tests to assess the probability of observing a particular trend 
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in the data (or a more extreme trend) given the null hypothesis (i.e., null-hypothesis 
testing as evaluated by the p-value), the algorithmic modeling culture prioritizes 

the model's ability to accurately predict individual-level outcomes.  This departure 
from stringent assumptions and null-hypothesis testing allows algorithmic models 

to more effectively capture the multifaceted nature of observed data. 
Simultaneously, it warrants the need for robust validation of algorithmic models in 

practice to ensure that accurate predictions are driven by meaningful signals rather 
than spurious noise. This entails thorough testing and validation procedures to 

confirm the reliability and generalizability of the predictive models, safeguarding 
against overfitting, where the model becomes too specific to the training data and 

loses its ability to make accurate predictions on new, unseen data (11–14). 
 

While the classical epidemiological approach (the data modeling culture), can yield 
valuable insights about group trends and associations, it might not always provide 

reliable information at the individual level. This lack of specificity is where predictive 
analytics or the algorithmic modeling culture can supplement traditional methods 

and prove instrumental for enhancing our understanding of disease and refining 
individualized diagnostic and treatment strategies. By focusing on accurate 

predictions for individuals rather than inference about groups, this approach can 
guide personalized decision-making in healthcare, ranging from diagnosing 
diseases to deciding on the most effective treatment options. Consequently, the 

balance between these two statistical cultures could significantly impact the future 
of personalized medicine and individual healthcare outcomes. 

 
Breiman points out that biomedical and psychological research has largely 

continued to uphold a strong preference for data models (10). In recent years, this 
tendency has been challenged by the rapid progress in predictive modeling and 

the subsequent shift towards more data-driven techniques. This shift is driven by 
an increasing recognition of the potential of algorithmic models to deliver more 

accurate and informative insights, particularly for large and complex datasets. This 
confrontation between classic epidemiological data modeling and the burgeoning 

predictive modeling methods is becoming increasingly difficult to ignore, igniting a 
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complex dialogue regarding the balance between simplicity and accuracy, 
interpretability and information validity (15–18). Maintaining the simplicity and 

interpretability of models does not always yield the most accurate predictions. 
Generally, greater accuracy requires more complex prediction methods. A shift 

towards prioritizing predictive accuracy, and subsequently attempting to 
comprehend the models, could provide a new trajectory for biomedical research. 

In line with this, Chapter 4 of this thesis employs the principles of the 'algorithmic 
modeling culture'. Complex machine learning algorithms are applied to maximize 

the accuracy of individual-level Major Depressive Disorder (MDD) remission status 
predictions. Subsequently, the attempt to interpret these predictions unveils a 

multimodal pattern of clinical and biomolecular markers associated with the 
outcome. This applied methodology in Chapter 4 confirms the potential trajectory 

for biomedical research, demonstrating the initial prioritization of predictive 
accuracy, followed by the interpretive analysis of the resulting complex models 

within a data-driven research framework. 

 

1.2  Hypothesis-driven versus data-driven 
In parallel to the distinction between inference and prediction, research often falls 
on a spectrum between two other distinct paradigms: hypothesis-driven and data-

driven research. Hypothesis-driven research, a traditional scientific method, starts 
with a specific theory - for instance, "Drug A reduces symptom B" - and designs 

experiments to test this hypothesis. It emphasizes confirming or refuting a 
previously established theory through structured experimentation. On the other 

end of the spectrum, data-driven research commences with descriptively 
analyzing large datasets without predetermined expectations or theories. 

Researchers employ techniques like machine learning to extract novel insights (19), 
provide the most accurate depiction of the relations between variables (20), or 

generate new hypotheses (21). The emergence of this approach has been fueled 
by the increasingly large and complex datasets available in biomedicine, which 

require novel techniques to understand their multidimensional nature (3). 
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While both approaches might appear diametrically opposed, they are not mutually 
exclusive and instead exist as ends of a spectrum. A researcher's perspective 

along this spectrum may change depending on the requirements and objectives of 
the study. The chapters of this thesis are written with an orientation towards the 

data-driven end of the spectrum. Although data-driven research can revolve 
around validating hypotheses, data-driven research does not experimentally test a 

specific hypothesis about a mechanism. Instead, it can facilitate a critical 
evaluation of hypothesis-driven concepts, answering questions like: does the data 

support the hypothesis, and to what degree? For example, in chapter 2 of this 
thesis, a multimodal, data-driven approach is adapted to evaluate a hypothesis-

driven concept (i.e. does intranasal oxytocin injection lead to altered brain activity 
in humans via binding to oxytocin receptors in those brain areas). Another example 

is chapter 6 of this thesis, that does not directly test a biologically-mechanistic 
hypothesis. Instead, it utilizes a data-first approach to externally validate a 

biologically-designed marker that is hypothesized to contribute to stress coping 
and resilience. 

 
This data-first approach exemplifies a rising trend in biomedical research (22–24). 

As datasets become increasingly large and complex, data-driven approaches are 
required because the amount and complexity of data does not permit for simplistic 
modeling fitted to narrow hypotheses (3). If we consider the premise of systems 

biology - that biology is a fundamentally complex system where studying its parts 
in isolation has limited value - then exploring and embracing data-driven 

approaches might be more fruitful for studying complex, multimodal biological 
systems. Descriptive analysis of high dimensional datasets complements 

experimental testing of hypothesis. Or put differently: the use of data-driven 
methodologies does not invalidate hypothesis-driven research, but rather 

complements it. When wielded correctly, it could unravel new layers of complexity 
and provide a more comprehensive understanding of biological phenomena, 

thereby leading the way to more accurate and personalized treatment options in 
biological psychiatry. 
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1.3 The challenge of in-vivo brain measurement 
One of the most significant, if not the largest, challenge in neuroscience is the lack 

of methodologies to directly measure in-vivo brain activity with both high spatial 
and temporal resolution. Our understanding of the brain is dependent on our ability 

to examine its processes. Currently available tools often inadequately capture the 
holistic complexity and speed at which these processes occur. The microscopic 

world of synapses, neurons, and neurochemical interactions changes on a 
millisecond scale and within minuscule spatial scales, challenging our capacity to 

visualize these events in a living, functioning brain. The rise of data-driven 
methodologies, particularly multimodal approaches (3,25,26), has provided novel 
avenues to circumnavigate some of these traditional constraints. These 

approaches offer a way to include multiple proxies of in-vivo brain activity and 
processes, providing a broader and potentially more nuanced understanding of 

brain function. The central principle behind this multimodal approach is to leverage 
the strengths of various measurement techniques while mitigating their individual 

weaknesses. Each method contributes unique information about brain function 
and structure, and their combination allows us to extract a more comprehensive 

picture of in-vivo brain activity.  
 

Chapter 2 and 3 of this thesis are examples of this approach, where the 
combination of brain functional magnetic resonance imaging (fMRI) data with 

transcriptomics (data on gene expression in the brain) is used to circumvent the 
limitations of direct in-vivo measurement of neurochemical brain processes. fMRI 

offers a measure of brain activity by detecting changes related to blood flow, 
providing an indirect index of neuronal activity. Despite its widespread use, fMRI 

has limitations - chiefly, it provides only a coarse approximation of brain activity 
and is subject to various artifacts. Transcriptomics, on the other hand, profiles the 

complete set of RNA transcripts produced by the genome, shedding light on the 
functional elements of the genome and the molecular basis of brain function. The 
fusion of fMRI and transcriptomics, therefore, can link functional brain activity with 

underlying biomolecular mechanisms, offering a tentative integrated perspective 
of the brain at work. Alternatively, in chapter 4 of this thesis, instead of using any 
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direct brain activity measurement, a range of different data modalities is used in 
combination to find predictive patterns for duration of depression without direct 

brain activity measurement.  
 

In conclusion, while multimodal data approaches do not replace direct in-vivo 
measurements and other techniques, they supplement our understanding of brain 

function by integrating diverse and complementary sources of information. 
However, neuroscience research has yet to fully leverage this multimodal 

approach, potentially due to a tendency to focus on refining specific individual 
methods. Therefore, a broader utilization of this approach may subtly shift our 

perspective and contribute to a more comprehensive understanding of the 
complex mechanisms of the brain. 

 

1.4 Multimodal nature of psychiatry disorders 
Psychiatric disorders, particularly stress-related conditions such as Major 

Depressive Disorder (MDD) and anxiety disorders are intrinsically multimodal in 
nature, because they manifest through a confluence of various factors—

encompassing genetic predispositions, altered brain chemistry and structure, and 
complex interplays of environmental, cognitive, and behavioral elements (27–32)—

all of which interact and influence each other in complex ways. This inherent 
multimodality reflects the broad array of factors implicated in the genesis and 
progression of these disorders, including genetic predispositions (30,33,34), 

environmental stressors (35–37), and neurobiological changes (38,39). 
 

Utilizing multimodal data to study these disorders offers a more comprehensive 
picture of the underlying systems at play, as it allows for the incorporation of either 

more relevant data or inclusion of proxies for (potentially unknown) relevant 
processes. This approach can better account for the multifaceted nature of 

psychiatric disorders and enhance our capacity to predict and understand their 
onset, course, and treatment response. As a typical example, in chapter 4 of this 

thesis, several different types of data are modeled together to find the most 
accurate information about the relationship between these data types and the 
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predicted outcome (i.e. 2-year remission in depression). Subsequently, the most 
predictive pattern is analyzed to explain underlying factors. 

 

1.5 Overview of subsequent chapters from a data-driven viewpoint 
Given the availability of large and multifaceted datasets, and considering the 
multimodal character of psychiatric disorders, the upcoming chapters will 

underscore a data-driven, multimodal strategy. This approach, which aims to 
capture the complex reality of psychiatric disorders, will be exemplified in the 

subsequent chapters. The common thread throughout these chapters is the 
acknowledgment of the multimodal aspects of psychiatric disorders and the 

necessity for expansive, data-centric methodologies to apprehend their 
complexity. Through the consolidation of various data types within these 

methodologies, and by maintaining a data-centric focus, each chapter aims to 
achieve a deeper and more comprehensive understanding and interpretation of 

stress-related psychiatric disorders. 
 

Chapter 2, Oxytocin:  

In this chapter, we leverage a multimodal, data-driven approach to 
reevaluate prior conclusions regarding the biomolecular mechanisms 
underlying putative behavioral effects of intranasal oxytocin in humans. 

 
Chapter 3, Cortisol:  

Here, we employ a multimodal, data-driven strategy that allows for 

connecting in-vivo effects of abolished cortisol pulsatility on brain activation 
responses with transcriptomic and cell-type specific brain architectures. 

 
Chapter 4, Multimodal Machine Learning:  

We introduce a multimodal predictive modeling approach that initially seeks 
the most accurate information about the relationship between predictor 

variables (multimodal data) and predicted outcome (remission status after 
two years in individuals with depressive disorder), subsequently striving to 

understand why this information is accurate. 
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Chapter 5, Resilience:  

Here, we adopt a data-driven approach to assess an emerging 

operationalization of the phenomenon of ‘resilience’ that conceptualizes 
resilience as the discrepancy between expected and observed mental 

health states post-stress exposure in individuals with depression, 
dysthymia, and/or anxiety disorders. We assess the predictive utility of this 

novel conceptualization of resilience by focusing on the strength of the 
association between resilience and expected mental health outcomes. 

 
Chapter 6, Genetic Risk Score Testing:  

This chapter uses a data-driven approach to validate the concept of 

biological vulnerability to stress-related disorders, represented by a novel 
genetic risk score based on glucocorticoid (GC) effect regulation. Rather 

than simply testing a hypothesis, the chapter explores the risk score's utility 
across various phenotypes and biological measures. This allows us to 

assess the generalizability of its applicability in different contexts of stress-
related psychiatric research. 

 
Overall, the multimodal nature of psychiatric disorders necessitates an equally 

diverse and comprehensive methodological approach. By integrating multiple data 
modalities and employing a data-driven methodology, this thesis aspires to 

uncover novel insights into the etiology and potential treatment of these complex 
conditions. 
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