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CHAPTER 2

Towards a User-Friendly Tool for
Automated Sign Annotation

The annotation process of sign language corpora in terms of
glosses, is a highly labor-intensive task, but a condition for a
reliable quantitative analysis. During the annotation process the
researcher typically defines the precise time slot in which a sign
occurs and then enters the appropriate gloss for the sign. This
project aims to develop tools for assisting in annotating signs and
their formal features in videos, regardless of content and quality.
Leveraging advances in deep learning, particularly the OpenPose
framework, we developed three tools to streamline annotation. The
first tool identifies sign sequences and prepares annotation files.
The second detects if signs are one- or two-handed. The third
recognizes various handshapes in video samples. These tools are
adaptable for researchers’ specific needs.’

LChapter based on: Manolis Fragkiadakis, Victoria Nyst, and Peter van der Putten.
“Towards a user-friendly tool for automated sign annotation: identification and
annotation of time slots, number of hands, and handshape”. In: Digital Humanities
Quarterly (DHQ) 15.1 (2021).
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2.1 Introduction

While the majority of the studies in the field of digital humanities
have been mostly text oriented, the evolution in computing power and
technology has resulted in a shift towards multimedia-oriented studies.
Recently, advances in computer vision have started to find practical
applications in study domains outside of computer and data science.
Video is one of the most important time-based media as it has the ability
to carry large amount of digital information in a condensed form, and
hence it serves as a rich medium to capture various forms of cultural
expression. Automated processing and annotation of large numbers of
videos is now becoming feasible due to the evolution of computer vision
and machine learning.

In sign language linguistics, a transition took place from paper-based
materials to large video corpora to facilitate the study of the languages in
question. Sign language corpora are mainly composed of video data. The
primary goal of these video corpora is to study sign language functioning.

The processing of sign languages usually requires a form of textual
representation [46], most notably glosses for annotation. Sign language
glosses are words from a spoken language. Uniquely identifying glosses by
definition refer to a specific sign. Such ID glosses are an essential element
for the quantitative analysis of a sign language corpus [87]. Typically,
sign language linguists add glosses and other annotations to the video
recordings with the use of a software tool (namely ELAN [149]). ELAN
allows researchers to add time-aligned annotations to a video. However,
this task requires a lot of time and can be prone to errors.

New advances in computer vision open up additional ways of
studying videos containing sign language data, extracting formal
representations of linguistic phenomena, and implementing these in
computer applications, such as automatic recognition, generation, and
translation. Using computer vision and machine learning enables quick
and new ways of processing large sets of video data, which in turns makes
it possible to address research questions that were not feasible before.

This study is the first part of a project aiming at the creation of tools
to automatize part of the annotation process of sign language video data.
This chapter presents the methodologies, tools and implementations of
three functionalities: the detection of 1) manual activation 2) the number
of hands involved and 3) the handshape distribution on sign language
corpora.
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Recent developments in sign language recognition illustrate the
advantages of machine and deep learning for tasks related to recognition
and classification [5, 27, 131]. Nevertheless, current approaches are
restricted in various ways, limiting their applicability in current sign
language research. For example, training deep learning networks requires
a vast amount of data as well as adequate computational power. These
networks are usually trained in one sign language and they do not
generalize well in other sign languages.

Additionally, current approaches in sign language automatic
annotation need manual annotation of the hands and body joints for
the training of the recognizer models [8, 46]. Moreover, the application
of color and motion detection algorithms [101], as feature extraction
methods, can be susceptible to errors and possibly skin color bias.
Finally, several hand tracking models only work on a particular type
of recordings, for example, a signer wearing gloves, or recordings made
with Microsoft’s Kinect [131]. As a result, these models are not usable
for the majority of the existing sign language corpora which have been
recorded with standard RGB cameras.

Our methods have been developed and tested on two West African
sign language corpora containing natural conditions with non-Caucasian
signers. While most studies in the sign language recognition field have
mainly concerned signers with light skin tones, little research has been
conducted using darker skin tones. With the emergence of corpora
compiled in African countries under challenging real-world conditions,
and their contribution to the overall sign language community, it is of
utmost importance to test how methods perform in such a domain.
Alleviating biases and increasing diversity should be a top priority of
any computer assisted study.

In this study, a pre-trained deep learning pose estimation library
developed by Cao et al. [27] named OpenPose has been used to extract
body and finger key-points. OpenPose has been trained and evaluated on
two large datasets for multi-person pose estimation. The MPII human
multi-person dataset [10] and the COCO 2016 keypoints challenge
dataset [107] contain images of people of different age groups and
ethnicities in diverse scenarios. As a result, OpenPose does not have
a bias toward skin color. Additionally, its easy-to-use implementation
makes it an ideal framework to be used by linguists with limited coding
experience.

The combination of the aforementioned pose estimation framework
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as well as the machine and deep learning architectures tested in
this study, provides a robust approach towards automatic annotation.
Current models and tools can be used in any sign language or gestural
corpus independently of its quality, length and number of people in the
video. These tools have been developed as python modules that can
run automatically in a video and produce the relevant annotation files
requiring minimal effort from the user. More generally, as large parts
of our cultures nowadays are captured in video, our study serves as a
case example of how intelligent machine learning techniques can serve
digital humanities researchers by extracting semantics from large video
collections.

This chapter is structured as follows: Section 2.2 introduces
the developments on the sign language recognition and automatic
annotation fields. Section 2.3 describes the materials used in this study
and the methodologies developed and applied for each tool separately.
Section 2.4 presents the results for each experimental setup and tool.
Section 2.5 contains the discussion and future work while Section 2.6
presents our conclusions.

2.2 Literature review

In this section we present the studies conducted on the sign language
recognition and automatic annotation field developed with depth sensors
as well as standard RGB cameras. Additionally, we describe the
developments of the human pose estimation field and we introduce the
OpenPose framework that will be used in this study.

2.2.1 Sign Language Recognition and
Automatic Annotation

The primary goal of sign language recognition is to develop methods and
algorithms to accurately identify a series of produced signs and to discern
their meaning. The majority of studies have focused on recognizing those
features and methods that can properly identify a sign out of a given
set of possible signs. However, such methods can only be used on a
particular set of signs and, thus, a specific sign language, which makes it
harder to study the relationships between and evolution of various sign
languages.
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An additional motivation behind Sign Language Recognition (SLR)
is to build automatic sign language to speech or text translation systems
to assist the communication between the deaf and hearing community
[52]. Moreover, SLR plays an important role in developing gesture-based
human—computer interaction systems [92]. Sign language linguists have
used such systems to facilitate the annotation process of sign language
corpora in order to discern the different signs in a video recording and
further study the linguistic phenomena presented.

There are numerous studies dealing with the automated recognition
of sign languages as clearly presented by Cooper et al. [38], in their
review study on the state-of-the-art in sign language recognition.
However, the experiments presented in most of these studies are either
hard to replicate, or they pose limitations as far as their applicability
is concerned. For instance, most of these studies use depth sensors,
most notably MS Kinect, to capture 3D images of the environment [8,
131, 180]. As a result, using the frameworks developed in these studies
requires a machine with similar features as the one used for testing and
most probably will only work for that sign language on which they have
been trained.

Recently, computer vision techniques have been applied to sign
language recognition to overcome the aforementioned limitations.
Roussos et al. [138] created a skin color probabilistic model to detect
and track the hands of a signer on a video, while Cooper et al. [38]
use this model to segment the hands and apply a classifier based on
Markov models. However, systems based on skin color [21, 38, 53, 151]
are prone to errors and have difficulties on tracking the hands and the
signer’s features against cluttered backgrounds and in noisy conditions
in general. Also, they do not work in videos with multiple signers.

2.2.2 Human Pose Estimation

Human pose estimation has been extensively studied due to its
numerous applications in a number of different fields [120]. Due to
low computational complexity during inference, pictorial structures
have been commonly used to model human pose [55, 134, 148].
Recently, studies have focused on improving the appearance models
used in these structures by modeling the individual body parts [48,
49, 85, 140]. Felzenszwalb and Huttenlocher, relying on the pictorial
structure framework, recommended a deformable part-based model [55].
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Additionally, Yang and Ramanan showed that a tree-structured model
using a combination of deformable parts can be used to achieve accurate
pose estimation [175]. Furthermore, Charles et al. showed that human
body joint positions can be predicted using a random forest regressor
based on a co-segmentation process over all video frames [32].

In general, most of the vision-based approaches developed for sign
language recognition tasks utilizing pose estimation, have used the
RWTH-PHOENIX-Weather data set [56] to validate their models.
This data set consists of weather forecast airings from the German
public tv-station PHOENIX along with transcribed gloss annotations.
However, it is a question to what extent such systems tested in this data
set can be replicated with real-life conditions in the corpora. It is often
the case that sign language and gestural corpora, especially the ones
filmed outside of studio conditions, have bad quality, low brightness and
often contain more than one person in the frame. These characteristics
create an additional challenge to the tracking and prediction task.

OpenPose

OpenPose is a real-time, open-source library for academic purposes for
multi-person 2D pose estimation. It can detect body, foot, hand and
facial keypoints [27]. Following a bottom-up approach (from an entire
image as input to full body poses as output), it outperforms similar 2D
body pose estimation libraries.

A major advantage of the library is that it achieves high accuracy
and performance regardless of the number of people in the image. Its
high accuracy is performed by using a non-parametric representation of
2D vector fields. These fields encode the position and orientation of body
parts over the image domain and their degree of association in order to
learn to relate them to each individual.

OpenPose is able to run on different operating systems and multiple
hardware architectures. Additionally, it provides tools for visualization
and output file generation. The output can be multiple json files
containing all the pixel x, y coordinates of the body, hand and face
joints. In this study the DEMO version on a CPU-only mode has been
used to train our models. This choice was made in order to ensure that
reproducibility can be easily achieved without the need for powerful
computers from the linguist’s side.
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2.3 Materials and Methods

This section describes the datasets used in our study as well as
the pre-processing stage using OpenPose to extract the body joints’
pixel coordinates. Furthermore, we introduce the methods applied in
the development of each tool. Special consideration is given on the
handshape recognition module as an additional normalization part has
been developed.

2.3.1 Data

A dataset of 7,805 frames in total (approximately 4 minutes) labeled
as signing or not signing has been compiled for the first part of the
study. The dimensions of the frames were 352 by 288 pixels and were
extracted from the Adamorobe and Berbey Sign Language corpora [124,
125]. These corpora portray an additional challenge as the signers have
been filmed in and around their homes, in natural conditions, outside
of a studio, with strongly varying brightness and background noise.
Furthermore, they may contain signing from one and two people at the
same time. As a result, they can be considered as one of the hardest
corpora to perform classification tasks. It is arguable that if the methods
developed in this study can perform reasonably well on corpora of such
poor conditions, then they can be applied to any sign language corpus
under better settings.

Additional videos from YouTube with higher quality have been
selected for testing purposes too. For the first task of this study, the
original data set was split into a training and testing set of 6,150 and
1,655 frames respectively and the labels were one hot encoded (i.e.
signing as 1 and not-signing as 0).

After a successful training of the first prediction model, the tool
was applied on a different part of the corpora. The predicted signing
sequences were manually labeled as one- or two-handed signs. Together
with randomly selected not-signing sequences (as predicted by the first
tool), they formed a second data set. The size of this data set was slightly
larger than the previous one: 10,120 frames in total.
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2.3.2 Pre-processing

Using OpenPose, the pixel coordinates of the hands, elbows, shoulders
and head were extracted from each frame. In the case of the handshape
recognition module, the fingers joints coordinates were additionally
extracted. We avoided using the finger extraction module of OpenPose
on the first two parts of the study as that would have increased
the computational time significantly. The positions of the rest of the
body joints were disregarded as most of the time they were out of
the frame bounds. Although the quality of the frames was poor, it
created an advantage for the pose estimation framework, reducing the
computational time to a reasonable level.

2.3.3 Tool 1: Manual Activation

The first tool is a temporal segmentation method to predict the begin
and end frames of a sign sequence in a video sample. Thus, it is
important to compare the performance of multiple different machine
learning algorithms consistently. Four classification methods were used,
namely: Support Vector Machines (SVM), Random Forests (RF),
Artificial Neural Networks (ANN), and Extreme Gradient Boosting
(XGBoost). The majority of these algorithms have been extensively used
in machine learning studies as well as in sign language applications
[5]. Performance was measured using the Area Under the Receiver
Operating Characteristics (AUC) to validate each model. The AUC is
a performance measurement specifically designed for binary (i.e., two
class) classification problems. In general, it expresses how well a model is
capable of distinguishing between classes, for example, whether someone
is signing in a video fragment or not. A model that makes random
predictions will have an AUC of 0.5, a perfect model will have an AUC
of 1. AUC stands for ” Area under the Receiver Operating Characteristic
(ROC) Curve,” the curve of True Positive Rate (probability of detection)
versus False Positive Rate (probability of false alarms). It is better than
just accuracy, i.e., the percentage of correct predictions by the model,
because it is not dependent on the relative amount of positives, i.e.,
the percentage of total videos with signs in our case. We searched for
the optimal setting of the various classification method parameters by
exhaustive testing of the possible parameter settings and testing the
performance on a validation set (”grid search,” searching the ”grid” of
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possible parameter values).

2.3.4 Tool 2: Number of Hands

The second tool’s goal is to predict not only if a person is signing or not,
but also to identify the number of hands involved (one- or two-handed).
We hypothesized that this task is more complex than before, thus
we considered it as a time-series problem. By using a sliding window
technique, the original data set was parsed to form new training sets,
where different possible frame intervals (1,2,3,5 and 10) were tested.
Furthermore, similar (to some extend) classification methods with Tool
1 have been used 2.

Moreover, recent studies in the sign language recognition field
suggest that the use of Long-Short-Term-Memory (LSTM) networks can
yield accurate results. LSTM is an artificial recurrent neural network
(RNN) architecture used in the field of deep learning. Unlike standard
feed-forward neural networks (like the one tested in Tool 1) LSTM has
feedback connections. It can not only process single data points, but
also understand patterns in entire sequences of data, by combining its
internal state resulting from previous input with a new input data item.
In our case, instead of predicting whether a specific pose belongs into
a class, we investigate whether a sequence of poses can be used for the
same purpose. In this part of the study an LSTM network with different
layer units as well as sliding window intervals has also been tested and
compared with the above traditional machine learning classifiers.

2.3.5 Tool 3: Handshape

The handshape recognition module was considered a so-called
unsupervised learning problem as no ground truth information regarding
this feature was available prior to the experiment, i.e. in contrast to the
previous two problems we did not know what classes (handshapes) to
detect. Such an unsupervised learning method can be useful in other
newly compiled sign language or gestural corpora where there is no
information regarding the different handshapes presented by the signers
in the video. Additionally, an unsupervised learning method can be
useful in other newly compiled sign language or gestural corpora where

2Linear Regression (LR), Decision Trees (CART), Support Vector Machines
(SVM), Random Forest (RF) and Gradient Boosting (GBM).
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there is no information regarding the different handshapes presented
by the signers in the video. We approached this as a clustering task:
can we find groups of signs that were similar. Two different clustering
methods have been tested: K-means and DBSCAN. The first clustering
method was chosen for its simplicity as well as its fast implementation
on the Python library that was utilized (namely scikit-learn). However,
as the complexity of the data is unknown and it is case sensitive, it was
decided to employ Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) as an alternative option. Given a set of points in some
space, DBSCAN groups together points that are closely packed together,
marking as outliers the ones that lie alone in low-density regions. This
clustering method is one of the most common clustering algorithms.

Determining the optimal number of clusters (i.e. total number of
expected handshapes) is a crucial issue in clustering methods such as
K-means, which requires the user to specify the number of clusters k
to be generated. The definition of clusters is done so that the total
within-cluster sum of square (WSS) is minimized, hence, in this study
the elbow method was utilized to estimate the number of clusters.

Hand Normalization

Since the output of OpenPose contains the raw x, y pixel positions for the
different finger joints, it is important to normalize them before applying
the clustering method. To do so, the angle of the vector between the
elbow and the wrist of the right hand is calculated. Subsequently, the
coordinates of the finger joint positions are rotated to be in parallel on
the horizontal axis and normalized so that their averaged location is at
the origin. Figure 1.1 shows the output of the overall normalization
process. All experiments were conducted using one machine with a
hexa-core processor (Intel Core i7-3930K) and 4GB RAM. The models
are implemented using the Python libraries scikit-learn [130] and Keras
[35] for their fast and easy implementation.

2.4 Results

The results section consists of three parts, the first part (Section 2.4.1)
discusses the results of the analysis regarding the manual activation
prediction. Section 2.4.2 discusses the results regarding the classification
of one- and two-handed signing sequences. Last but not least, Section
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Figure 2.1: Signer’s hand normalization is done based on the angle
between the horizontal axis and the vector of the elbow and wrist
coordinates. The finger joints are rotated according to that angle in
order to be in parallel to the horizontal axis and scaled so that their
average location is at the origin.
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2.4.3 presents the result regarding the handshape distribution using
different clustering methods.

2.4.1 Tool 1: Manual Activation

All classifiers performed adequately well, apart from the Support
Vector Machines (AUC: 0.80) (Table 2.1). Extreme Gradient Boosting
(XGBoost) showed the highest AUC score at 0.92 3. Figure 2.2 presents
the ROC curve after a 10-fold cross-validation. The Artificial Neural
Network was found to perform sufficiently well (AUC: 0.88). By
exploring the importance of each feature on the prediction of the model
we observe that the y and x pixel coordinates of the dominant (i.e. right)
hand are on the top two positions (Table 2.2).

AUROC curves of the 10 folds and their mean curve.

ROC fold 0 (AUC = 1.00)
ROC fold 1 (AUC = 1.00}
ROC fold 2 (AUC = 0.96)
- ROC fold 3 (AUC = 1.00}
< ROC fold 4 (AUC = 1.00)
Vg ROC fold 5 (AUC = 1.00)
- ROC fold 6 (AUC = 0.88)
P ROC fold 7 (AUC = 0.86)
ROC fold 8 (AUC = 0.69)
- ROC fold 8 (AUC = 0.88)
- Gk
# —— Mean ROC (AUC =0.92 = 0.10)
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Figure 2.2: 10-fold cross-validation of Extreme Gradient Boosting
(XGBoost) classifier for the prediction of manual activation.

3eta: 0.23, gamma: 3, lambda: 2, max. delta step: 4, max. depth: 37 and min. child
weight: 4.
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Classifier AUC score
Artificial Neural Network (ANN) 0.88
Random Forest (RF) 0.87
Support Vector Machines (SVM) 0.78
Extreme Gradient Boosting (XGBoost) | 0.92

Table 2.1: AUC scores of all the classifiers tested for manual activation
prediction

Weight | Feature

0.1410 Right wrist y
0.1281 Right wrist x
0.0928 Left wrist y
0.0917 Left wrist x
0.0717 Nose x

0.0658 Left shoulder x
0.0623 Left elbow y
0.0588 Right elbow y
0.0552 Nose y

0.0517 Left shoulder y
0.0482 Left elbow x
0.0482 Right elbow x
0.0482 Right shoulder y
0.0364 Right shoulder x

Table 2.2: Importance of each feature during manual activation as
predicted by the Extreme Gradient Boosting classifier (XGBoost)
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Figure 2.3: Final output of the manual activation tool as seen in ELAN.
Signing sequences have been given a ’signing’ gloss for readability. This
attribute can be easily changed to produce empty glosses.
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Figure 2.4: Bounding boxes are calculated in order to normalize the
body joint coordinates for each signer. After this process the normalized
coordinates are passed to the XGBoost classifier
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The fact that the Artificial Neural Network turned out to be
a less efficient approach than the XGBoost can be accounted to
the small training data set. Typically, Neural Networks require a
lot more training data than traditional machine learning algorithms.
Additionally, designing a network that correctly encodes a domain
specific problem is challenging. In most cases, competent architectures
are only reached when a whole research community is working on
those problems, without short-term time constraints. Fine-tuning such
a network would require time and effort that reach beyond the scope of
this study.

To account for multiple people signing in one frame, an extra module
was added. This module creates bounding boxes around each person
recognized by OpenPose, normalizes the positions of the body joints
and runs the classifier. This process makes it possible to classify sign
occurrences for multiple people irrespective of their positions in a frame
(figure 2.4 4).

Once all the frames have been classified, the ”cleaning up” and
annotation phase starts. A sign occurrence is annotated only if at
least 12 consecutive frames have been classified as ”signing”. That way
we account for the false positive errors. This sets the stage for the
annotation step. Using the PyMpi python library [108] the classifications
are translated into annotations that can be imported directly to ELAN,
a standard audio and video annotation tool [149]. Figure 2.3 shows the
result of the overall outcome.

2.4.2 Tool 2: Number of Hands

The second tool is responsible for not only recognizing whether a person
in a video is signing but also if the sign is one or two-handed. We
have previously hypothesized that this is a more complex task than
the previous binary classification. Results on the accuracy of all the
classifiers suggest that it is not as intricate as initially thought of; the
higher the sliding window interval, the lower the accuracy of the model.
As seen in figure 2.5 of all classifiers tested, Random forest had the
highest accuracy at the sliding window interval of 1 frame at a time.
Similarly to the previous experiment, a frame-to-frame prediction can
produce the highest results.

“https://www.youtube.com/watch?v=NRe-AxZI8Hs&t=1s
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Figure 2.5: Accuracy of different classifiers in various sliding window
intervals in order to predict whether a sequence contains a one- or a
two- handed sign or not signing at all. At a sliding window interval of 1
(a), Random Forest shows the highest accuracy.
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Figure 2.6: Accuracy of Long-Short-Term-Memory networks on the test
set with different sliding window intervals (x) and hidden layer sizes
(8,16,32,64,256).
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Furthermore, the results regarding the Long-Short-Term-Memory
networks (figure 2.6) suggest that the highest accuracy can be achieved
at a sliding window interval of 56 frames and at a hidden layer size
of 8 units. However, such a high window interval contains more than
one sign, as the average length of a sign is approximately 14 frames.
This discrepancy can be caused due to the architectural properties of
the LSTM network. The average length of the signs is too small for the
network to converge. The LSTM units needed more timesteps in order to
prevent over-fitting to the data. This property in addition to the small
dataset used to train the network caused this anomaly.

Although the tool performs well on predicting whether a sign is
one- or two-handed (using a Random Forest classifier) there are cases
were the output is not as expected. In particular, cases where there
is a two-handed symmetrical sign produced, the tool fails to accurately
predict the correct class. It is likely that such signs were under-presented
in our data set, thus resulting in poor classification.

2.4.3 Tool 3: Handshape

In order to understand the distribution of the different handshapes
presented in a video, Principal Component Analysis (PCA) was utilized
on all the normalized finger joint coordinates for all the frames at once
(figure 2.7a). This process allows us to reduce the dimensionality of the
data while retaining as much as possible of the variance in the dataset.
Each multidimensional array of the extracted finger joints positions, for
each frame, has been reduced to a single x,y coordinate. The result
already suggests that there are regions dense enough to be considered
different clusters. The utilized elbow method suggested that at k=5
the highest classification could be achieved (figure 2.7b). On the video
sample used in our study that number seemed to reflect the proper
amount of discerned handshapes. However, as OpenPose captures all
the finger configurations in each frame it is at the linguist’s discretion
to decide on when a handshape is significantly different from another.
Additionally, experiments to optimize the hyperparameters (eta, min
samples and leaf size) for the DBSCAN failed to create an accurate
clustering (figure 2.7c). Subsequently, the module creates annotation
slots for the different handshapes in the video and adds an overlay
containing the number of the predicted cluster on each frame.
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(a) (b) (c)

Figure 2.7: Visualizations produced by the handshape recognition
module. Principal component analysis (a) can be used to reduce the
dimensionality of the finger joints coordinates. Two clustering methods,
namely Kmeans (b) and DBSCAN (c), can be used to detect the different
handshapes presented in a video sample.

Figure 2.8: Different handshapes recognized by the handshape
recognition module using K-means.
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However, special consideration must be given to the overall
handshape recognition module. Although the hand normalization
process prepares the finger joints adequately enough to be used in the
clustering methods, it fails to account for hands perpendicular to the
camera’s point of view. Additionally, handshapes that are similar to
each other but are rotated towards or outwards of the signer’s body will
most probably clustered differently. Some of these limitations can be
solved by manually editing the cluster numbers prior to the annotation
process.

In its current form, this method can already be used to either fully
annotate the handshapes in a video sample or be used in different
samples and treated as weakly annotated data in order to be used in
other handshape classifiers similarly to Koller’s et al. study [97].

2.5 Discussion

In this study we have presented three different tools that can be used
to assist the annotation process of sign language corpora. The first tool
proved to be robust on the task of classification of manual activation
even when the corpora are noisy, of poor quality and most importantly
containing more than one signer. This eliminates the pre-processing
stage that many sign language corpora have to endure where either
dedicated cameras per signer are utilized or manually cropping the
original video. As a result, a more natural filming process can be applied.
One limitation regarding our methodology is that at its current state
is not possible to account for individual sign temporal classification.
Reaching such level would require to fuse additional information into the
training sets which in most cases might be language specific. However,
it is possible to get a per sign prediction when the "number of hands
involved” feature changes.

The most striking observation to emerge from our methodology
is that there is no necessity of having massive training sets for the
classification of low-level features (such as manual activation and number
of hands involved). In contrast to earlier studies using neural networks
for sign language recognition [8, 131, 180], we used a proportionally
smaller dataset. Additionally, this is the first time, to our knowledge,
where corpora outside of studio conditions have been used to train and,
most importantly, test models and tools for sign language automatic



Towards a User-Friendly Tool for Automated Sign Annotation 43

annotation. Furthermore, such findings can be applied in other studies
as well. It is a common misconception that only large datasets can be
used for analysis. Such a trend, although true for deep learning purposes,
can be daunting for digital humanities researchers without in-depth
data science knowledge. In our study, we have shown that even with a
small and noisy dataset of visual materials, researchers can use machine
learning algorithms to effectively extract meaningful information. Our
testing in West African Sign Language corpora showed that such
frameworks can work effectively with different skin color participants,
lifting possible bias imposed by previously developed algorithms.

There are few limitations regarding our methodologies, particularly
with respect to the handshape distribution module. Low quality video
and consequently framerate seem to affect the robustness of OpenPose.
As a result, finger joint prediction can be noisy and of low confidence.
Additionally, we observed that finger joints could not be predicted when
the elbow was not visible in the frame, and thus, losing that information.
In our study we treated all predicted joints equally but it is necessary
for future research to include the prediction confidence interval as an
additional variable. Furthermore, on the current output from OpenPose
it is difficult to extract the palm orientation attribute meaning that
differently rotated handshapes might result in the same cluster. Future
research will concentrate on fixing that issue as well as creating an
additional tool for the annotation of this feature.

In the sign language domain, researchers can use our tools to
recognize the times of interest and basic phonological features on newly
compiled corpora. Additionally, such extracted features can be further
used to measure variation on different sign languages or signers, for
example, to measure the distribution of one- and two-handed signs
or particular handshapes. Moreover, other machine or deep learning
experiments can benefit from our tools by using them to extract only
the meaningful information from the corpora during the data gathering
process, thus reducing possible noise in the datasets. Our tools can also
be used towards automatic gloss suggestion. A future model can search
only the signing sequences predicted by our tool rather than ”scanning”
the whole video corpus, and consequently making it more efficient.

Outside the sign language domain, the results have further
strengthened our confidence that pre-trained frameworks can be used
to help extract meaningful information from audio-visual materials.
In particular, OpenPose can be a useful asset when human activity
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needs to be tracked and recognized in a video without the need of
special hardware setups. Its accurate tracking allows researchers to use
it in videos compiled outside studio conditions. As a result, studies in
the audio-visual domain can benefit from community-created materials
involving natural and unbiased communication. Using our tools, these
study areas can analyze and classify human activity beyond the sign
language discipline in large scale cultural archives or specific domains
such as gestural research, dance or theater and cinema related studies,
to name but a few. For example, video analyses in gestural and media
studies can benefit from such an automatic approach to find relevant
information regarding user-generated data on social media and other
popular platforms.

Finally, due to the cumbersome installation process of OpenPose for
the majority of SL linguists, we have decided to implement part of the
tools in an online collaborative environment on a cloud service provided
by Google (i.e. Google Colab). In this environment a temporary instance
of OpenPose can be installed along with our developed python modules.
In a simple step-based manner, the researcher can upload the relevant
videos and download the automatically generated annotation files. Find
the link to this Colab in the footnote below °. Additionally, we have
a created another environment for re-training purposes °. By doing so,
the researcher can re-train the models on his or her particular data and
ensure the aforementioned accuracy on them.

2.6 Conclusion

To summarise, manually glossing sign language corpora is a cumbersome
and time-consuming task. Current approaches to automatize parts of
this process need special video recording devices (such as Microsoft
Kinect), large amount of data in order to train deep learning
architectures to recognize a set of signs and can be prone to skin-color
bias. In this study we explored the use of a pre-trained pose estimation
framework created by Cao et al. [27] in order to create three tools
and methods to predict sign occurrences, number of hands involved,
and handshapes. The results show that four minutes of annotated data
are adequate enough to train a classifier (namely XGBoost) to predict

Shttps://colab.research.google.com/drive/1HwX02Tk4uHizGTpRg-simMDMD4wPOzmA
Shttps://colab.research.google.com /drive/10H2uxY 7p59GrrDC5z85RugY BEPfQZs 7Y
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whether one or more persons are signing or not as well as the number of
hands used (using Random Forest). Additionally, we examined the use
of K-means and DBSCAN as clustering methods to detect the different
handshapes presented in the video. Because of the low complexity of the
finger joint data extracted from the pose estimation library, K-means
was found to produce accurate results.

The significance of this study lies in the fact that the tools created do
not rely on specialized cameras nor require large amount of information
to be trained. Additionally, they can be easily used by researchers
without developing skills and adjusted to work in any kind of sign
language corpus irrespective of its quality or the number of people in
the video. Finally, they have the potential to be extended and used in
other audio-visual material that involve human activity such as gestural
corpora.





