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A B S T R A C T

Expensive objectives and constraints are key characteristics of real-world multi-objective optimization prob-
lems. In practice, they often occur jointly with inexpensive objectives and constraints. This paper presents
the Inexpensive Objectives and Constraints Self-Adapting Multi-Objective Constraint Optimization algorithm that
uses Radial Basis function Approximations (IOC-SAMO-COBRA) for such problems. This is motivated by the
recently proposed Inexpensive Constraint Surrogate-Assisted Non-dominated Sorting Genetic Algorithm II (IC-
SA-NSGA-II). These algorithms and their counterparts that do not explicitly differentiate between expensive
and inexpensive objectives and constraints are compared on 22 widely used test functions. The IOC-SAMO-
COBRA algorithm finds significantly better (identical/worse) Pareto fronts in at least 78% (6%/16%) of all
test problems compared to IC-SA-NSGA-II measured with both the hypervolume and Inverted Generational
Distance+ performance metric. The empirical cumulative distribution functions confirm this advantage for
both algorithm variants that exploit the inexpensive constraints. In addition, the proposed method is compared
against state-of-the-art practices on a real-world cargo vessel design problem. On this 17-dimensional two-
objective practical problem, the proposed IOC-SAMO-COBRA outperforms SA-NSGA-II as well. From an
algorithmic perspective, the comparison identifies specific strengths of both approaches and indicates how
they should be hybridized to combine their best components.
1. Introduction

Real-world problems are often defined through multiple objectives
and constraints, combined with the fact that objectives or constraints
can be time-consuming (‘‘expensive’’) to evaluate [1–3]. In the contin-
uous domain, a constrained multi-objective problem with 𝑘 objectives
and 𝑚 inequality constraints can be formulated as follows [4]:

minimize: 𝐟 ∶ 𝛺 → R𝑘 , 𝐟 (𝐱) = (𝑓1(𝐱),… , 𝑓𝑘(𝐱))⊤

subject to: 𝑔𝑖(𝐱) ≤ 0 ∀𝑖 ∈ {1,… , 𝑚}

𝐱 ∈ 𝛺 ⊂ R𝑑 .

Equality constraints are not considered, as they can be replaced with
two inequality constraints without resorting to any special equality
constraint handling method. Typical examples of optimization prob-
lems include design optimization problems from industries, such as
automotive [5], aviation [6,7], and maritime engineering [8,9], in
which (commercial licenses of) finite element simulation and compu-
tational fluid dynamic tools are used for computing the performance

∗ Corresponding author at: Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, Leiden, 2333 CA, Netherlands.
E-mail address: r.de.winter@liacs.leidenuniv.nl (R. de Winter).

characteristics of a design. These third-party softwares are computa-
tionally expensive to run, thereby increasing the overall duration of the
optimization process. This leads to a very limited amount of allowed
solution evaluations for the optimization algorithms.

Assuming that, at a maximum, a few hundred simulation runs are
possible (i.e., solution evaluations of objective and constraint func-
tions), the goal becomes to approximate the true Pareto front of feasible
solutions as close as possible with the given limited budget. To decrease
the wall-clock-time, solution evaluations can be run in parallel. Pro-
vided that 𝑝 simulator licenses are available, the total elapsed time can
in theory be reduced by a factor of 𝑝 [10]. Consequently, the research
challenge is to develop a parallel algorithm for multi-objective constrained
optimization that can yield a high-quality set of feasible and Pareto-optimal
solutions by using only a small number of solution evaluations.

Candidate algorithm classes include multi-objective variants of evo-
lutionary algorithms [11] and of Bayesian optimization [12]. In gen-
eral, the former offers naturally built-in parallelism while typically
requiring more function evaluations and the latter is more efficient in
vailable online 16 February 2024
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Table 1
Overview of how the four algorithms deal with the (in)expensiveness of constraints and
objectives. ‘‘Surrogate’’ means a surrogate replaces the objective/constraint, direct
means that the objective/constraint is used without learning a surrogate for it.
Algorithm Expensive Inexpensive Expensive Inexpensive

constraints constraints objectives objectives
SA-NSGA-II surrogate surrogate surrogate surrogate
IC-SA-NSGA-II direct direct surrogate surrogate
SAMO-COBRA surrogate surrogate surrogate surrogate
IOC-SAMO-
COBRA

surrogate direct surrogate direct

terms of function evaluations while typically not allowing for paral-
lelism. Bayesian optimization can also use different acquisition functions
(often also called infill criterion) on the surrogate model for searching a
solution candidate.

However, researchers have extended evolutionary algorithms by
using surrogate models trained on the evaluated search points to allow
for a fast prediction of objective and constraint function values for new
candidate solutions (infill points), making them more efficient while
keeping the benefits of parallelism [13]. A state-of-the-art algorithm
from this class is the Surrogate-assisted Non-dominated Sorting Genetic
Algorithm (SA-NSGA-II) [14], which uses radial basis functions [15]
as surrogate models for all objectives and all constraints. Its most re-
cent Inexpensive Constraint extension (IC-SA-NSGA-II [14]) uses radial
basis function surrogates only for the objectives and assumes that all
constraints are inexpensive to evaluate.

Conversely, Bayesian optimization has been extended with acquisi-
tion functions which can be used to propose multiple Pareto-optimal
solutions per iteration, which opens the door to parallelism. A state-
of-the-art algorithm from this class is the Self-Adaptive Algorithm for
Multi-Objective Constraint Optimization by using Radial Basis Function
Approximations (SAMO-COBRA) [16,17] in combination with the re-
cently introduced multi-point acquisition function [18]. Like SA-NSGA-
II, SAMO-COBRA learns radial basis function approximations for all
objectives and all constraints. In this sense, the original versions of
these two algorithms were designed with the purpose of modeling and
optimizing surrogates of all objectives and constraints. However, there
is a fundamental difference between the working of these two algo-
rithms. While SA-NSGA-II and IC-SA-NSGA-II use a genetic algorithm’s
operators to create new candidate solutions, SAMO-COBRA uses a local
search-based hypervolume maximization approach for creating new
candidate solutions.

While both are addressing the same research challenge stated above,
including the use of radial basis function approximations, a thorough
comparison of the strengths and weaknesses of these algorithms has
not been presented yet. The first contribution of this paper is to fill
his gap, based on an empirical comparison of these algorithms on a
et of well-known multi-objective constrained test functions which are
epresentative of real-world problems.

To facilitate a complete experimental comparison, we also propose,
s the second contribution of this paper, a SAMO-COBRA variant that is
nspired by IC-SA-NSGA-II’s approach to differentiate between inexpen-
ive constraints and expensive objectives, but generalizes this approach.
he proposed Inexpensive Objectives and Constraints-SAMO-COBRA (IOC-
AMO-COBRA) allows the user to identify the expensive objectives
nd constraints, for which IOC-SAMO-COBRA will then use radial
asis function surrogates, while it will use the inexpensive objectives
nd inexpensive constraints directly. A tabular overview of these four
ifferent algorithms and how they deal with expensive and inexpensive
bjectives and constraints is given in Table 1.

As a third contribution, going beyond the use of test problems, SA-
SGA-II and IOC-SAMO-COBRA are also compared on a real-world

wo-objective constraint ship design optimization problem involving
2

17 variables, one expensive (simulation-based) objective, one inexpen-
sive objective, one expensive (simulation-based) constraint, and three
inexpensive constraints.1

The remainder of this paper is organized as follows: First, the
preliminaries are given in Section 2. Section 3 discusses related work,
and Section 4 describes how the use of inexpensive objectives and
constraints is added to the SAMO-COBRA algorithm. Section 5 then
describes the experimental approach. Section 6 presents and discusses
the results of the experiments, and in Section 7 the algorithms are com-
pared on the ship design optimization problem. Conclusions regarding
the performance of the algorithms are presented in Section 8.

2. Preliminaries

In the preliminaries the groundwork is laid for surrogate assisted
multi-objective optimization by giving the definition of a Feasible
Pareto Efficient Solution, introducing the two most used multi-objective
performance metrics, describing well-known design of experiments
strategies, and introducing Radial Basis Functions as surrogates.

2.1. Feasible Pareto efficient solution

In constrained multi-objective optimization the goal is to find solu-
tions that are feasible according to the constraints and simultaneously
Pareto-optimal in the objective space. A mathematical description of a
feasible Pareto-optimal solution is given in Definition 1.

Definition 1 (Feasible Pareto-Optimal Solution [16]). 𝐱 ∈ 𝛺 is called fea-
sible Pareto-optimal with respect to 𝛺 and 𝑔𝑖(𝐱) ≤ 0 ∀𝑖 ∈ {1,… , 𝑚}, if and
nly if there is no solution 𝐱′ for which 𝐯 = 𝑓 (𝐱′) = (𝑓1(𝐱′),… , 𝑓𝑘(𝐱′))⊤

dominates 𝐮 = 𝑓 (𝐱) = (𝑓1(𝐱),… , 𝑓𝑘(𝐱))⊤ where 𝑔𝑖(𝐱) ≤ 0 and 𝑔𝑖(𝐱′) ≤
∀𝑖 ∈ {1,… , 𝑚}.

.2. Multi-objective performance metrics

The two commonly used multi-objective performance metrics con-
idered in this work are the hypervolume (HV), and the Inverted
enerational Distance+ (IGD+) metric. The hypervolume (also known
s the Lebesgue measure) translates the multi-objective problem into a
nary performance score that represents the volume of the region in the
bjective space that is dominated by a given set of solutions [19,20].
t is the most used performance metric in multi-objective optimiza-
ion [21] and it measures and captures the overall convergence and
iversity of the set of solutions that form the Pareto front. The HV is
alculated by determining the volume of the region in the objective
pace between the solutions on the obtained Pareto front and a pre-
efined reference point (also sometimes referred to as the anti-optimal
oint [22]). The HV is a useful measure for comparing the performance
f different optimization algorithms, as well as for comparing differ-
nt solution sets with each other. Solution sets with higher HV are
onsidered better compared to solutions with lower HV. The HV of
hree solutions is visualized in Fig. 1, where the triangles represent the
valuated non-dominated solutions, and the reference point is indicated
y a star. The gray area is the HV of this particular Pareto front.

Another performance metric often used in multi-objective optimiza-
ion is the inverted generational distance+ metric (IGD+) [23]. The IGD+
etric evaluates diversity and convergence as follows:

𝐺𝐷+(𝐴,𝑆) = 1
∣ 𝑆 ∣

( ∣𝑆∣
∑

𝑖=1
(𝑑+𝑖 )

2

)

1
2

(1)

Here 𝑆 is the known Pareto front, 𝐴 is the dominated area by a
Pareto front obtained by an algorithm, and 𝑑+𝑖 is the smallest Euclidean

1 The problem was provided by C-Job Naval Architects, Netherlands.
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Fig. 1. Visual representation of hypervolume metric [19]. Total hypervolume between
the 3 solutions and the reference point is 0.3 × 0.8 + 0.3 × 0.5 + 0.3 × 0.3 = 0.48.

Fig. 2. IGD+ score [23] visualized on a two objective problem. IGD+ is the average
length of the arrows from the well-spread known solutions to the closest point of the
dominated area.

distance from a solution on the known Pareto front 𝑠𝑖 to the dominated
area 𝐴. This way, if the obtained dominated area of the solutions found
by the algorithm is far away from the known Pareto front, the IGD+
value increases. A smaller IGD+ value is therefore preferred over a
larger IGD+ value. The IGD+ metric and the distances of 8 known
solutions are visualized in Fig. 2.

The IGD+ metric can only be used on test instances where the Pareto
front is known. In this work, the Pareto front used for the IGD+ metric
is approximated by combining all obtained feasible Pareto efficient
points of all experiments, then normalizing the objective scores, and
finally selecting a well-spread set of solutions. The true Pareto front
of computationally expensive engineering problems are often impos-
sible to determine, therefore this revised metric is only used on test
problems.

2.3. Design of experiments

Typically, in surrogate-assisted optimization, or black box optimiza-
tion, the algorithm starts with an initial design of experiments (DoE).
In this design of experiments, the first set of solutions is generated and
evaluated. The location where these first solutions are placed in the in-
put space (also sometimes referred to as initial sampling) is dependent
on the DoE strategy. Several possible choices for a DoE exist, including
3

uniform random sampling, full factorial design [24], Latin Hypercube
Sampling [25], Halton sampling [26], and Sobol sampling [27]. Each
of these methods has its own strengths, however, a large empirical
comparison was presented by Bossek et al. [28]. This empirical study
concludes that spending as few evaluations on the DoE as possible is
often beneficial because this leaves more room for evaluations proposed
by the optimization algorithm [28]. This empirical finding is also
shown to work best for most constraint multi-objective problems [17].

A recently proposed new sampling method is the Riesz s-energy
based sampling method [29]. The Riesz s-energy-based sampling method
iteratively improves and proposes an arbitrary number of well-spaced
points in the design space [30]. This method has been modified for
constrained search spaces [14] so that it samples solutions only in
the feasible area of the design space. This however is only practically
applicable if the constraint functions are inexpensive to evaluate.

In industrial settings, the 𝑝 solutions within the initial DoE can
often be evaluated in parallel (depending on the available computa-
tional resources and, if applicable, the number of commercial simulator
licenses available). In this case, it can be advised to choose a DoE
size of ⌈𝐷𝑜𝐸𝑚𝑖𝑛∕𝑝⌉ ⋅ 𝑝, where 𝑝 is the maximum possible number of
simultaneous parallel evaluations and 𝐷𝑜𝐸𝑚𝑖𝑛 the smallest DoE size
required for training the first surrogate models.

2.4. Surrogate models

For the algorithm proposed in this research Radial Basis Functions
(RBFs) and Kriging (also known as Gaussian process regression) are
considered surrogate models. RBF and Kriging surrogates are fun-
damentally very similar, however, RBFs have many advantages: (1)
RBFs require smaller initial sample sizes to fit a surrogate, (2) they
are computationally cheaper (also for larger input spaces), (3) have
fewer assumptions on the underlying data, (4) deliver in many cases
equal or better accuracy, (5) and with a newly developed uncertainty
quantification method RBFs can now also be used in infill criteria that
require this [31,32]. Besides these fundamental arguments, an empir-
ical comparison in earlier work showed faster convergence and better
results for algorithms with RBF surrogates compared to the algorithm
with Kriging surrogates [17]. For these reasons, the algorithm proposed
in this work uses RBFs as surrogate models.

Radial Basis Functions (RBFs) are a type of mathematical function
used for approximating the relationship between input and output
variables [33]. In surrogate-assisted optimization, the input variables
are often the decision variables (𝐱), and the output variables are the
objective (𝐟) or constraint (𝐠) value of the evaluated solutions. The
relationship is learned by fitting a weighted combination of RBFs
𝜑(‖𝐱 − 𝐜‖) [34]. The RBFs used in this work are: 𝜑 = {𝐶𝑢𝑏𝑖𝑐, 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛,
𝑀𝑢𝑙𝑡𝑖𝑞𝑢𝑎𝑑𝑟𝑖𝑐, 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐, 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑀𝑢𝑙𝑡𝑖𝑞𝑢𝑎𝑑𝑟𝑖𝑐, 𝑇ℎ𝑖𝑛𝑃 𝑙𝑎𝑡𝑒𝑆𝑝𝑙𝑖𝑛𝑒}
The optimal weights 𝜽 for the RBFs make sure that all evaluated func-
tion values 𝐟 are exactly interpolated. Finding these optimal weights
is done by inverting 𝜱 ∈ R𝑛×𝑛 where 𝑛 is the number of samples and
𝜱𝑖,𝑗 = 𝜑(‖𝐱𝑖 − 𝐱𝑗‖):

𝜽 = 𝜱−1 × 𝐟 (2)

To enhance the RBF fit, a linear or polynomial tail can be added [35].
Further improvements can be achieved by scaling and standardization
of the input and output space. In some cases, a Plog transformation of
the objective or constraint values can be beneficial [17,34].

Plog(𝑦) =
{

+ ln(1 + 𝑦), if 𝑦 ≥ 0
− ln(1 − 𝑦), if 𝑦 < 0

(3)

3. Related work

There is a growing interest in surrogate-assisted optimization [36,
37], surrogate-assisted constraint optimization [38], surrogate-assisted
optimization in combination with parallelism [10], surrogate-assisted
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multi-objective optimization [39], and problems with heterogeneous
evaluation times [40]. Different approaches have been developed for
solving constrained multi-objective problems. Several algorithms have
been published that can deal with a subset of the above-mentioned
characteristics:

• cK-RVEA is a many-objective reference vector-guided evolution-
ary algorithm that uses Kriging models as surrogates for the ob-
jectives and deals with the constraints by only using the feasible
solutions for surrogate training [41].

• SBMO, a multi-objective algorithm that uses Kriging models as a
surrogate for both the constraints and objectives. Because of the
scalarization of the objectives, it can propose multiple solutions
per iteration [42].

• HSMEA, a many-objective optimization algorithm that uses Krig-
ing, polynomial response surface modeling, and RBFs as surro-
gates for the objectives and constraints [43].

• GP-CMOEA, a multi-objective optimization algorithm that uses
Gaussian process regression for the objectives while it exploits
the inexpensiveness of constraints to find feasible Pareto-optimal
solutions [44].

• EGMOCO, a constraint multi-objective optimization algorithm
that uses Kriging as a surrogate and exploits four different ac-
quisition functions to propose multiple feasible Pareto-optimal
solutions per iteration [7].

• SCCMA, a constraint multi-objective optimization algorithm that
uses decomposition of the problem in combination with co-
evolution and local search on the surrogates to find Pareto-
optimal solutions [45].

• KTS, a kriging-assisted multi-objective evolutionary algorithm
that uses a strategy to switch between unconstrained optimiza-
tion and constraint optimization search modes. Furthermore, it
exploits the correlation between constraints and objectives and a
special selection strategy for samples that are used in training the
Kriging surrogates [46].

However, very little research has been done on surrogate-assisted
lgorithms that can deal with a mix of both expensive and inexpensive
onstraints and objective functions. It is therefore that in this work
e propose a parallel constraint multi-objective optimization algorithm

apable of dealing with mixed expensiveness of objective and constraint
unctions.

In the following subsections, the closely related relevant meth-
ds (SA-NSGA-II, IC-SAMO-COBRA, and SAMO-COBRA with the multi-
oint acquisition function) that are used as reference algorithms are
escribed in more detail.

.1. SA-NSGA-II

A variant of NSGA-II [47], called Surrogate-Assisted NSGA-II (SA-
SGA-II),2 integrates surrogate assistance into the optimization cycle

for the optimization of unconstrained and constrained multi-objective
optimization problems. The surrogates employed in the SA-NSGA-II
algorithm are RBFs with a 𝐶𝑢𝑏𝑖𝑐 kernel and a linear tail. One inde-
pendent RBF surrogate is trained for each objective and constraint.
The algorithm executes the NSGA-II optimization algorithm for 20
generations with a population size of 100 only on the surrogate models
before calling the expensive optimization function. This embedded
surrogate-based optimization loop provides a set of candidate solutions,
from which a subset is selected. Assuming 𝑝 solutions shall be eval-
uated using the expensive simulation in each optimization cycle, the
candidates are first separated into 𝑝 clusters based on their objective
space values before determining the selected solution for each cluster
by performing a roulette wheel selection based on their crowding

2 Available on pysamoo as SSA-NSGA-II [48].
4

distances. After evaluating these 𝑝 solutions on the expensive function,
all surrogate models are updated and the new optimization cycle is
started if the solution evaluation budget is not exhausted yet. SA-NSGA-
II can also optimize constrained optimization problems by using the
parameter-less domination approach [49] used in NSGA-II’s selection
operators.

3.2. IC-SA-NSGA-II

Later, an extension of SA-NSGA-II has been proposed to address
optimization problems where objectives are computationally expensive,
but the constraints are not [14]. For such problems, the optimization
method shall exploit the asymmetry of expensiveness, or in other
words, the fact that one can collect significantly more information
regarding the feasibility of a solution before having to run an expensive
simulation. The novelty of the proposed method is the constrained
sampling for finding feasible designs in the first optimization cycle. The
challenge of finding a feasible yet diverse set of solutions is addressed
by incorporating a Riesz s-energy [29] based sampling method [30]
modified for constrained search spaces. Furthermore, to make IC-SA-
NSGA-II more efficient for the optimization of highly constrained prob-
lems (still with inexpensive constraints), the embedded surrogate-based
optimization loop has been extended by a repair operator applied to
each solution after mating [50]. The repair operator ensures that only
feasible solutions are evaluated (on the surrogates and on the expensive
functions) and has demonstrated to be effective for problems with
complex constraints — commonly occurring in engineering problems
such as electric machine design. Moreover, a proof-of-principle study
investigating the optimization of heterogeneously expensive objective
and constraint functions has been proposed [51].

The pseudo-code of the IC-SA-NSGA-II algorithm can be found
in Algorithm 1. A more extensive explanation of the IC-SA-NSGA-II
algorithm is given in [14].

3.3. SAMO-COBRA with multi-point acquisition function

SAMO-COBRA [16,17] is a Bayesian optimization algorithm specif-
ically designed to solve expensive constraint multi-objective problems
with continuous decision parameters. As an extension of its single ob-
jective predecessor SACOBRA [34], SAMO-COBRA has been developed
to find a Pareto front approximation with as few function evaluations
as possible. It does so by optimizing the HV between a user-defined
reference point and all solutions that form the Pareto front.

SAMO-COBRA starts with an as small as possible [28] initial Halton
sample [26] as a DoE. Every solution in the DoE is evaluated with
all the constraint and objective functions. When the evaluation of the
DoE is finished, the algorithm starts learning from the evaluated solu-
tions. This learning is done by fitting RBFs for the objectives and the
constraints. The RBFs employed in SAMO-COBRA are all RBFs 𝜑 from
ection 2.4 with a polynomial tail. Besides the RBFs kernel options, a
log transformation is applied where this transformation is beneficial.
his results in 6×2 = 12 options to choose from: 𝛷 = {𝐶𝑢𝑏𝑖𝑐, 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛,
𝑢𝑙𝑡𝑖𝑞𝑢𝑎𝑑𝑟𝑖𝑐, 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐, 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑀𝑢𝑙𝑡𝑖𝑞𝑢𝑎𝑑𝑟𝑖𝑐, 𝑇ℎ𝑖𝑛𝑃 𝑙𝑎𝑡𝑒𝑆𝑝𝑙𝑖𝑛𝑒}
Plog, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑}. Choosing the best kernel and transformation is
one based on selecting the kernel and transformation which had
he smallest approximation error in all previous evaluations. After
he optimal RBF strategy is chosen, the algorithm starts to search for
olutions that form the Pareto front with adaptive sampling steps [10].

The acquisition function used to obtain multiple solutions per iter-
tion which satisfy all constraints and which simultaneously optimize
he HV is the multi-point HV improvement acquisition function for con-
trained multi-objective problems [18]. This purely exploitative acqui-
ition function is optimized with the Constraint Optimization BY Linear
pproximations algorithm (COBYLA) [52]. The candidate solutions

hat are predicted to jointly contribute the largest HV are evaluated
ith the expensive objective and constraint functions. After evaluation
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Algorithm 1: IC-SA-NSGA-II. (Adapted from [14].)
Input: Number of decision variables 𝑑, expensive objective functions 𝐟 (𝐱), constraint function(s) 𝐠(𝐱), maximum number of solution
valuations 𝑁𝑚𝑎𝑥, number of initial samples 𝑁𝑖𝑛𝑖𝑡, number of exploration points 𝑁𝑒𝑥𝑝𝑙𝑟, number of exploitation points 𝑁𝑒𝑥𝑝𝑙𝑜𝑖𝑡, number of
enerations for NSGA-II exploitation 𝑁𝑔𝑒𝑛, offspring multiplier 𝑠 for exploration.
utput: Evaluated solutions.
1 Function IC-SA-NSGA-II(𝑑, 𝐟 , 𝐠, 𝑁𝑖𝑛𝑖𝑡, 𝑁𝑚𝑎𝑥, 𝑁𝑒𝑥𝑝𝑙𝑜𝑖𝑡, 𝑁𝑒𝑥𝑝𝑙𝑟, 𝑁𝑔𝑒𝑛, 𝑠):
2 𝐗 ← S-EnergySampling(𝑑,𝑁𝑖𝑛𝑖𝑡 , 𝐠) ⊳ initialize feasible solutions using the constraint functions 𝐠
3 𝐅 ← 𝐟 (𝐗) ⊳ Evaluate objective functions
4 𝐆 ← 𝐠(𝐗) ⊳ Evaluate constraint functions
5 𝑗 ← 𝑁𝑖𝑛𝑖𝑡 ⊳ Initialize expensive evaluation counter
6 while 𝑗 < 𝑁𝑚𝑎𝑥 do
7 𝐒 ← {FitRBF(𝐗, 𝑓 , 𝐶𝑢𝑏𝑖𝑐, 𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑) | ∀ 𝑓 ∈ 𝐟} ⊳ Fit 𝐶𝑢𝑏𝑖𝑐 RBF for all expensive objectives
8

(

Xcand ,Fcand
)

← NSGA-II(𝐒, 𝐠,𝐗,𝐅, 𝑁𝑔𝑒𝑛) ⊳ Run NSGA-II on RBFs and constraints
9

(

Xcand ,Fcand
)

← EliminateDuplicates(X,Xcand) ⊳ Delete duplicates from input candidates
10 𝐶 ← Kmeans(𝑁𝑒𝑥𝑝𝑙𝑜𝑖𝑡 ,Fcand) ⊳ Make 𝑁𝑒𝑥𝑝𝑙𝑜𝑖𝑡 clusters from candidate solutions with Kmeans
11 Xexploit ← RankingSelection(Xcand , 𝐶, Crowding(Fcand)) ⊳ Keep one solution per cluster
12 X′ ,F′ ← Survival(X,F) ⊳ NSGA-II survival for mating pool
13 X(mat) ← Mating(X′ ,F′ , 𝑠 ×𝑁𝑒𝑥𝑝𝑙𝑟) ⊳ Create offspring population using mating
14 Xexplr ← FeasAndMaxDistSelection(X(mat) ,Xcand , 𝑋, 𝐠) ⊳ Keep feasible least crowded solutions
15 𝐱∗1 ,… , 𝐱∗𝑝 ←

[

Xexplr ,Xexploit
]

⊳ Merge exploitation and exploration solutions
16 𝑗 ← 𝑗 +𝑁𝑒𝑥𝑝𝑙𝑜𝑖𝑡 + 𝑠 ×𝑁𝑒𝑥𝑝𝑙𝑟 ⊳ Increase iteration counter to new matrix sizes
17 𝐗 ←

[

𝐗, 𝐱∗1 , … , 𝐱∗𝑝
]

⊳ Add 𝑝 new solution vectors, 𝐗 ∈ R𝑑×𝑗

18 𝐅 ←
[

𝐅, 𝐟 (𝐱∗1 ), … , 𝐟 (𝐱∗𝑝 )
]

⊳ Add vectors of evaluated objectives, 𝐅 ∈ R𝑘×𝑗

19 𝐆 ←
[

𝐆, 𝐠(𝐱∗1 ), … , 𝐠(𝐱∗𝑝 )
]

⊳ Add vectors of evaluated constraints, 𝐆 ∈ R𝑚×𝑗

20 end
21 return (𝐅, 𝐆, 𝐗)
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of the solutions, the RBF approximation error is computed, the best
RBF kernel and transformation method are selected, the RBF surrogates
are updated, and the acquisition function is optimized again. This
process continues until a user-defined maximum number of function
evaluations has been reached.

A more extensive explanation of the SAMO-COBRA algorithm with
the multi-point acquisition function is given in [17,18].

4. Proposed framework

In the original SAMO-COBRA algorithm for every objective and
constraint function, an RBF surrogate is used during the search for
new candidate solutions. In the IOC-SAMO-COBRA extension, one or
more of the RBFs can be replaced with the real inexpensive constraint
or objective function. Instead of finding good solutions on the RBFs,
in IOC-SAMO-COBRA the inexpensive constraints and objectives are
used directly during the search for feasible Pareto efficient solutions
that contribute HV to the Pareto front. The direct use of inexpensive
functions can be beneficial because the real functions do not make
approximation mistakes like RBF surrogates do in unseen regions. This
should, especially in the early iterations, lead to better results compared
to the use of RBFs since in early iterations the RBF approximation error
might still be large. Besides in the early iterations, the inexpensive
constraints can also be exploited when finding the Pareto fronts of op-
timization problems with very few feasible solutions. The pseudocode
of the IOC-SAMO-COBRA algorithm is given in Algorithm 2.

4.1. Hypervolume maximization

HV maximization (line 12 in Algorithm 2) is done by maximizing
the recently proposed multi-point acquisition function [18]. The multi-
point acquisition function computes the joint HV contribution of a set
of 𝑝 solutions. One solution is represented by 𝑑 continuous decision
variables and the RBF surrogates are used to predict the objective and
constraint values. If one or more of the constraints or objectives are
inexpensive to evaluate, then the constraint and objective functions
5

are directly used to compute the corresponding function value. The n
constraints 𝑔𝑖 or RBF predictions thereof are used to quantify the
constraint satisfaction (𝑔𝑖(𝐱) ≤ 0) or violation (𝑔𝑖(𝐱) > 0) value. Each
olution, therefore, has 𝑚 constraint values. The 𝑘 objective function
alues or RBF predictions thereof are used to quantify the quality
f solutions in the objective space, where their HV contribution is
omputed.

To simultaneously maximize the multi-point acquisition function,
.e., the joint HV contribution of 𝑝 solution candidates at an algorithm
teration, we formulate the task as a 𝑝 ⋅ 𝑑-dimensional optimization
roblem. The COBYLA algorithm [52] is then used to find a 𝑝 ⋅ 𝑑-
imensional solution vector 𝐱 that maximizes the HV contribution of
hese 𝑝 solutions simultaneously. In addition, COBYLA is also provided
ith the 𝑝 ⋅𝑚 constraint functions (directly or represented by RBFs) and

he acquisition function which computes the HV contributions for the
⋅𝑘 objectives. The acquisition function also uses the objective functions
irectly when the objectives are inexpensive, and the RBFs otherwise.

COBYLA linearly approximates all the constraints and the HV contri-
ution in a small trust region. In this trust region, COBYLA maximizes
he HV subject to the constraints by maximizing the following function:

(𝐱) = 𝐹 (𝐱) + 𝜇
(

−max(𝑐𝑖(𝐱) ∶ 𝑖 = 1,… , 𝑝 ⋅ 𝑚)
)

+ , 𝐱 ∈ R𝑝⋅𝑑 (4)

ere, 𝐱 is the 𝑝 ⋅ 𝑑-dimensional solution vector, 𝐹 is in our case
he linear approximation of the HV contribution, 𝑐𝑖 is the 𝑖th linear
pproximation from the 𝑝⋅𝑚 constraint functions, the subscript + means
hat the expression in the brackets becomes 0 if none of the constraints
re violated, and 𝜇 is a self-adaptive penalty parameter that makes
ure that the approximation of a new solution �̂� (𝐱∗) with a smaller
onstraint violation and better hypervolume score is preferred over the
tarting solution approximation 𝛹 (𝐱0). After the best solution in the
rust region on the linear approximations is found, it is evaluated on
he trained RBFs for the expensive functions and the real functions for
he inexpensive constraints and objectives. When the objective values
re obtained, the HV contribution of the 𝑝 solutions is computed. When
he linear approximation of COBYLA in the trust region underestimates
he HV approximation, the trust region increases in size, while if
t overestimates, the trust region becomes smaller. This way, when
earing the solutions that have the highest HV contribution, the trust
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Algorithm 2: IOC-SAMO-COBRA.
Input: Number of decision variables 𝑑, objective functions 𝐟 (𝐱), split where required into expensive objective function(s) 𝐟𝑒(𝐱), compu-
ationally inexpensive objective function(s) 𝐟𝑐 (𝐱), constraint function(s) 𝐠(𝐱), split where required into expensive constraint function(s)
𝑒(𝐱), computationally inexpensive constraint function(s) 𝐠𝑐 (𝐱), decision parameters’ lower and upper bounds [𝐥𝐛,𝐮𝐛] ⊂ R𝑑 , reference point
𝐞𝐟 ∈ R𝑘, number of initial samples 𝑁𝑖𝑛𝑖𝑡, maximum evaluation budget 𝑁𝑚𝑎𝑥, RBF strategy domain 𝛷 = {𝐶𝑢𝑏𝑖𝑐, 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, 𝑀𝑢𝑙𝑡𝑖𝑞𝑢𝑎𝑑𝑟𝑖𝑐,
𝑛𝑣𝑒𝑟𝑠𝑒𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐, 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑀𝑢𝑙𝑡𝑖𝑞𝑢𝑎𝑑𝑟𝑖𝑐, 𝑇ℎ𝑖𝑛𝑃 𝑙𝑎𝑡𝑒𝑆𝑝𝑙𝑖𝑛𝑒} × {Plog, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑}, acquisition function HV.
utput: Evaluated solutions.
1 Function IOC-SAMO-COBRA(𝑑, 𝐟 , 𝐠, [𝐥𝐛,𝐮𝐛], 𝐫𝐞𝐟 , 𝑁𝑖𝑛𝑖𝑡, 𝑁𝑚𝑎𝑥, 𝑅𝐵𝐹𝑘𝑒𝑟𝑛𝑒𝑙𝑠 ,HV):
2 𝐗 ← 𝐻𝑎𝑙𝑡𝑜𝑛(𝑁𝑖𝑛𝑖𝑡 , 𝑑, 𝐥𝐛,𝐮𝐛) ⊳ Generate initial design of experiments, 𝐗 ∈ R𝑑×𝑁

3 𝐅 ← 𝐟 (𝐗) ⊳ Evaluate objective functions, 𝐅 ∈ R𝑘×𝑁

4 𝐆 ← 𝐠(𝐗) ⊳ Evaluate constraint functions, 𝐆 ∈ R𝑚×𝑁

5 𝐡 ← {𝐟𝑒 ∪ 𝐠𝑒} ⊳ Union of expensive objective and constraint functions
6 𝜑∗ ← {(𝐶𝑢𝑏𝑖𝑐, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑) | ∀ ℎ ∈ 𝐡} ⊳ initialize best RBF, 𝜑∗ ∈ 𝛷
7 𝐄 ← {0 | ∀ ℎ ∈ {𝐡 ×𝛷}} ⊳ initialize RBF approximation errors for every function for every configuration 𝜑∗ ∈ 𝛷
8 𝑗 ← 𝑁 ⊳ Initialize expensive evaluation counter
9 while 𝑗 < 𝑁𝑚𝑎𝑥 do
10 𝐒𝛷 ← {FitRBF(𝐗, ℎ, 𝛷, 𝐥𝐛,𝐮𝐛) | ∀ ℎ ∈ 𝐡} ⊳ Fit RBF with all 𝛷 strategies for all 𝐡
11 𝐒𝜑∗ ←

{

𝐒𝜑∗ | ∀ ℎ ∈ 𝐡
}

⊳ Select best RBF surrogate 𝜑∗ based on line 6 or 17
12 𝐱∗1 ,… , 𝐱∗𝑝 ← Max(HV, 𝑝, 𝐫𝐞𝐟 , 𝐒𝜑∗ , 𝐟𝑐 , 𝐠𝑐 ) ⊳ Get 𝑝 new solutions based on maximized HV infill criteria
13 𝑗 ← 𝑗 + 𝑝 ⊳ Increase iteration counter to new matrix sizes
14 𝐗 ←

[

𝐗, 𝐱∗1 , … , 𝐱∗𝑝
]

⊳ Add p new solution vectors, 𝐗 ∈ R𝑑×𝑗

15 𝐅 ←
[

𝐅, 𝐟 (𝐱∗1 ), … , 𝐟 (𝐱∗𝑝 )
]

⊳ Add vectors of evaluated objectives, 𝐅 ∈ R𝑘×𝑗

16 𝐆 ←
[

𝐆, 𝐠(𝐱∗1 ), … , 𝐠(𝐱∗𝑝 )
]

⊳ Add vectors of evaluated constraints, 𝐆 ∈ R𝑚×𝑗

17 HV, 𝜑∗ ,𝐄 ←SelectBestStrategy(𝐄, 𝑆𝛷 ,𝐗,𝐅,𝐆) ⊳ Get new HV, new RBF approximation errors 𝐄 and best 𝜑∗ based on 𝐄
18 end
19 return (𝐅, 𝐆, 𝐗)
m
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region becomes smaller and smaller until it falls below an 𝜀 > 0 value
and COBYLA terminates. It should be noted that their overlapping HV
is only counted once when the HV contribution is computed for all 𝑝
olutions. The acquisition function therefore automatically prefers a set
f diverse solutions over a set of solutions close to each other, as the
atter would mostly contribute overlapping HV.

Since COBYLA is a local optimizer, it can get stuck in a local
ptimum [53]. To overcome this problem, 16 instances of COBYLA are

run in parallel starting from 16 random starting points. Start searching
for optimal solutions in multiple locations simultaneously is also a well-
known strategy in the Island model for parallel optimization [54], in
parallel simulated annealing [55], and in ant colony optimization [56].
After all COBYLA instances have converged, all solutions found are
10 000 times randomly combined in groups of size 𝑝. Since there are
(16⋅𝑝⋅𝑑

𝑝

)

such groups, for small values of 𝑝 and 𝑑 less combinations
are sufficient. However, due to the negligible computational effort,
we decided to fix this number to 10 000. The set of 𝑝 solutions which
together contribute the most HV are selected for evaluation on the
expensive objective and constraint functions.

After the parallel evaluation of the solutions on the real functions
(Line 14, 15, 16 of algorithm 2), the RBF approximation errors (𝐄)
are stored for each RBF modeling strategy (Line 17 of algorithm 2),
the RBFs are updated (Line 10 of algorithm 2), the best RBF modeling
strategy is selected based on the historic approximation errors (Line
11 of algorithm 2) and COBYLA is used again to find the next set of
optimal solutions (Line 12 of algorithm 2). This optimization process
continues until the expensive evaluation budget is exhausted (Line 9 of
algorithm 2).

4.2. Acquisition function switching

IOC-SAMO-COBRA maximizes the predicted HV contribution every
iteration, meaning that by default it does not use any uncertainty
quantification of the RBF models for the objectives. Just like the RBF
functions, by default, the inexpensive objectives also do not have
an uncertainty quantification method. Other Bayesian optimization
algorithms, however, often use Kriging or Gaussian process regression
models, which provide an uncertainty quantification method for the
6

s

objectives to encourage exploration [57–59]. Earlier experiments, how-
ever, showed that the use of uncertainty quantification is in many
cases redundant because by maximizing the HV, the algorithm is nat-
urally forced to explore the objective space [17]. If, however, IOC-
SAMO-COBRA gets stuck and does not find any HV improvement for
three consecutive iterations, an uncertainty quantification method for
RBFs [31] is enabled to help with exploration (this is part of line 17
of algorithm 2, but for space reasons not explicitly formulated in the
pseudocode). By enabling the uncertainty quantification method, the
acquisition function changes to an RBF variant of the S-Metric selection
criterion [58]. Note that the inexpensive objectives still do not have
an uncertainty quantification and therefore, only for the objectives
modeled with RBFs the uncertainty is calculated.

5. Experimental setup

The four algorithms (SA-NSGA-II, IC-SA-NSGA-II, SAMO-COBRA,
IOC-SAMO-COBRA) are compared on a diverse set of test functions. The
surrogate-assisted algorithm and the Inexpensive function exploiting
counterparts are compared to confirm our hypothesis that exploiting
inexpensive functions in the optimization process directly is beneficial.
The metrics used to compare the algorithms performance are the HV
and the IGD+ performance metric which are described in more detail
in Section 2.2.

5.1. Test functions

The test functions used to assess the performance of the algorithms
are given in Table 2. In this table, the reference point, the approximated
nadir point, the number of objectives 𝑘, the number of dimensions 𝑑,
the number of constraints 𝑚, and the feasibility ratio (P%) after one

illion random samples are given. The following functions are artifi-
ially created test functions: BNH [60], CEXP [61], SRN [62], TNK [62],
TP1 [61], C3DTLZ4 [63], OSY [60,62], NBP [64], BICOP1 [65], BI-
OP2 [65], TRICOP [65], MW1 [66], MW2 [66], MW3 [66],
W11 [66]. The following functions are real-world-like problems:
wo-bar truss design (TBTD) [67], disk brake design (DBD) [67],
hip parametric design (SPD) [68], car-side impact (CSI) [69], speed
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Table 2
Test function name, reference point used by the SAMO-COBRA algorithm, Nadir point
approximation based on all results, number of objectives 𝑘, number of decision variables
𝑑, number of constraints 𝑚, percentage of feasible solutions 𝑃 (%) after one million
random samples.

Function Reference point Nadir point 𝑘 𝑑 𝑚 𝑃 (%)

BNH (140, 50) (136.00, 50.00) 2 2 2 96.92
CEXP (1, 9) (1.00, 9.00) 2 2 2 57.14
SRN (301, 72) (222.99, 2.62) 2 2 2 16.18
TNK (2, 2) (1.04, 1.04) 2 2 2 5.05
CTP1 (1, 2) (1.00, 1.00) 2 2 2 92.67
C3DTLZ4 (3, 3) (2.00, 2.00) 2 6 2 22.22
OSY (0, 386) (−41.81, 76.00) 2 6 6 2.78
TBTD (0.1, 50000) (0.1, 10000) 2 3 2 19.46
NBP (11150, 12500) (12500, 114.09) 2 2 5 41.34
DBD (5,50) (2.79, 16.86) 2 4 5 28.55
SRD (7000, 1700) (5879.98, 1696.46) 2 7 11 96.92
WB (350, 0.1) (35.31, 0.0145) 2 4 5 35.28
BICOP1 (9, 9) (1.00, 1.00) 2 10 1 100
BICOP2 (70, 70) (1.10, 1.11) 2 10 2 10.55
MW1 (1,7) (1.00, 1.00) 2 8 1 0.007
MW2 (1,7) (1.00, 1.00) 2 6 1 0.55
MW3 (1,7) (1.00, 1.00) 2 6 2 1.32
MW11 (30,30) (2.06, 2.04) 2 6 4 1.38
TRIPCOP (34, −4, 90) (7.67, −11.77, 25.91) 3 2 3 15.85
SPD (16, 19000, −260000) (11.16, 12435.27,

−259148.04)
3 6 9 3.27

CSI (42, 4.5, 13) (42.77, 4.00, 12.52) 3 7 10 18.17
WP (83000, 1350, 2.85, (74573, 1350, 2.85, 5 3 7 92.06

15989825, 25000) 7874925, 25000)

reducer design (SRD) [70], welded beam (WB) [67], water resource
management problem (WP) [69].

The test functions are selected because they are diverse, well known,
and because some mimic industrial problems. The Pareto frontiers of
the functions vary between 2 and 5 dimensions and the shapes can be
lassified as concave, convex, connected, disconnected, or even mixes
f these characteristics. The constraints of the selected test problems
re also diverse since for some problems they are very strict, while for
ther problems (almost) the entire search space is feasible. Next to the
easibility of the problems, on some Pareto frontiers, the constraints are
ctive, while on other problems they are not, or partially active. Next
o the artificially created test functions, we consider it very important
o select a set of real-world-inspired problems to assess how well
he algorithms operate in situations resembling industrial optimization
cenarios.

.2. Experiment algorithm settings

The allowed number of function evaluations for the different al-
orithms is set to 40 ⋅ 𝑑 for all functions experimented with. The
erformances of the algorithms are checked with a different number
f candidate solutions per iteration (In the SA-NSGA-II variants also
eferred to as population sizes) 𝑝 ∈ {1, 2, 3, 4, 5, 6, 10, 20}. To get sta-

tistically significant results on all test functions, each test function is
optimized 10 times per algorithm configuration.

All test functions in Table 2 are inexpensive to evaluate. However,
SA-NSGA-II and SAMO-COBRA are developed to optimize computation-
ally expensive problems. To test this functionality, in the experiments
done with SA-NSGA-II and SAMO-COBRA all constraints and objectives
are considered to be expensive and are therefore modeled with the RBF
surrogates. To test the functionality where inexpensive functions are
directly used instead of a surrogate with IC-SA-NSGA-II and IOC-SAMO-
COBRA, a decision needs to be made concerning the expensiveness of
the objective and constraint functions. To be able to compare IOC-
SAMO-COBRA to IC-SA-NSGA-II as fairly as possible, the assumption
from IC-SA-NSGA-II that the constraints are inexpensive and the objec-
tives are expensive to evaluate is also adopted in the experiments with
IC-SA-NSGA-II and IOC-SAMO-COBRA. A description and implementa-
7

tion of the test functions, the obtained Pareto frontiers for the IGD+ a
performance metric, all raw experiment results, and implementation of
the IOC-SAMO-COBRA algorithm can be found on a dedicated Github
page [71].

6. Results

The results obtained from the four algorithm variants that optimized
the test functions are presented in tables, empirical cumulative dis-
tribution function plots, and empirical attainment function difference
plots. Special attention is given to the problems with a very small
feasibility ratio since these test problems benefit the most from us-
ing the inexpensive constraint functions directly in the optimization
algorithms.

6.1. Performance metrics results

The two performance metrics used to assess and compare the per-
formance of the different algorithms are the IGD+ metric and the HV
metric. Tables 3 and 4, respectively, report the mean and standard
deviation of the HV and the IGD+ performance metric after 40 ⋅ 𝑑
unction evaluations. The HV is computed between the Nadir point and
he obtained Pareto fronts, the IGD+ metric is computed between a
ell-spread Pareto front approximation and the obtained Pareto fronts
y the different algorithms. The performance metrics for the SA-NSGA-
I, IC-SA-NSGA-II, and SAMO-COBRA are statistically compared with

Wilcoxon rank sum test to the results of IOC-SAMO-COBRA at a
% confidence level. A (−) in the tables indicates significantly worse
esults, (≈) indicates indifference between the results, and (+) indicates
ignificantly better results of the given algorithm, compared to IOC-
AMO-COBRA. In the second last row of Tables 3 and 4 a summary
s given of the results of the significance test. Inspection of this sum-
ary shows that IOC-SAMO-COBRA in most cases achieves the best

r statistically indistinguishable results after the number of function
valuations is exhausted for both the HV and IGD+ metric. On 14 out of
22 test problems, IOC-SAMO-COBRA outperforms the other algorithms
if we evaluate their performance based on data for all values of 𝑝 that

ere tested. On 4 out of 22 test problems, SAMO-COBRA achieves a
arger HV compared to IOC-SAMO-COBRA, however, these results are
ften not significant and differences are too small to be captured in the
able with only two numbers after the decimal point. On the remaining
out of 22 test problems, the IC-SA-NSGA-II algorithm performs better

ompared to IOC-SAMO-COBRA, especially on BICOP1 and MW2. The
ean Friedman rank test confirmed (with 𝑝 = 1 ⋅ 10−16) the alternative
ypothesis which states that there is a significant difference in the mean
anks of the algorithms. In the last rows of Tables 3 and 4, respectively,
he mean ranks of the algorithms are reported (a low rank indicates a
etter rank for both performance metrics).

.2. Empirical cumulative distribution function

Tables 3 and 4 do not tell us anything about the convergence rate
r how fast the different algorithms are able to find Pareto efficient
olutions. Empirical Cumulative Distribution Functions (ECDF) (see
.g. [72,73] for a formal definition) visualize the convergence of the
ifferent algorithms. The aggregated results of the HV and IGD+ metric
f the four different algorithm variants are visualized in Figs. 3 and 4 by
eans of their ECDF, based on a fixed-target perspective. The ECDF plot

s based on 40 target values which are linearly distributed between zero
nd the maximum achievable performance score per test function, and
hows the proportion of the target values attained by the algorithms,
epending on the number of function evaluations up to the maximum
umber of 400 (which results from the 10-dimensional BICOP prob-
ems). For each algorithm, the corresponding ECDF curve is aggregated
ver all functions and the number of candidate solutions per iteration.
he four curves illustrate the advantage of the Inexpensive Constrained

pproach, independently of the base algorithm. This finding highlights
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Table 3
Hypervolume score ± standard deviation of HV, Wilcoxon rank sum test with probability value = 0.05 (reference algorithm: IOC-SAMO-COBRA), per test function and candidate
solutions size 𝑝. The highest HV per row is reported in bold, best scoring algorithm per test function is highlighted .

Function 𝑝 SA-NSGA-II IC-SA-NSGA-II SAMO-COBRA IOC-SAMO-COBRA
BNH 1 4.89 ⋅ 103 ± 3.06 ⋅ 101 (−) 4.85 ⋅ 103 ± 3.85 ⋅ 101 (−) 𝟓.𝟎𝟕 ⋅ 𝟏𝟎𝟑 ± 𝟒.𝟏𝟎 ⋅ 𝟏𝟎−𝟐 (≈) 5.07 ⋅ 103 ± 2.44 ⋅ 10−2

2 4.86 ⋅ 103 ± 1.54 ⋅ 101 (−) 4.83 ⋅ 103 ± 3.36 ⋅ 101 (−) 5.07 ⋅ 103 ± 3.47 ⋅ 10−2 (≈) 𝟓.𝟎𝟕 ⋅ 𝟏𝟎𝟑 ± 𝟑.𝟖𝟓 ⋅ 𝟏𝟎−𝟐

3 4.88 ⋅ 103 ± 3.12 ⋅ 101 (−) 4.85 ⋅ 103 ± 3.04 ⋅ 101 (−) 𝟓.𝟎𝟕 ⋅ 𝟏𝟎𝟑 ± 𝟓.𝟒𝟒 ⋅ 𝟏𝟎−𝟐 (≈) 5.07 ⋅ 103 ± 2.86 ⋅ 10−2

4 4.89 ⋅ 103 ± 1.99 ⋅ 101 (−) 4.84 ⋅ 103 ± 2.61 ⋅ 101 (−) 𝟓.𝟎𝟕 ⋅ 𝟏𝟎𝟑 ± 𝟏.𝟓𝟕 ⋅ 𝟏𝟎−𝟏 (+) 5.07 ⋅ 103 ± 9.29 ⋅ 10−2

5 4.86 ⋅ 103 ± 2.52 ⋅ 101 (−) 4.85 ⋅ 103 ± 2.46 ⋅ 101 (−) 5.07 ⋅ 103 ± 1.83 ⋅ 10−1 (≈) 𝟓.𝟎𝟕 ⋅ 𝟏𝟎𝟑 ± 𝟐.𝟐𝟒 ⋅ 𝟏𝟎−𝟏

6 4.88 ⋅ 103 ± 1.37 ⋅ 101 (−) 4.88 ⋅ 103 ± 3.05 ⋅ 101 (−) 5.07 ⋅ 103 ± 1.25 ⋅ 10−1 (≈) 𝟓.𝟎𝟕 ⋅ 𝟏𝟎𝟑 ± 𝟏.𝟗𝟒 ⋅ 𝟏𝟎−𝟏

10 4.87 ⋅ 103 ± 1.92 ⋅ 101 (−) 4.86 ⋅ 103 ± 2.68 ⋅ 101 (−) 𝟓.𝟎𝟕 ⋅ 𝟏𝟎𝟑 ± 𝟐.𝟕𝟏 ⋅ 𝟏𝟎−𝟏 (≈) 5.07 ⋅ 103 ± 1.53 ⋅ 10−1

20 4.90 ⋅ 103 ± 3.03 ⋅ 101 (−) 4.87 ⋅ 103 ± 2.54 ⋅ 101 (−) 𝟓.𝟎𝟔 ⋅ 𝟏𝟎𝟑 ± 𝟒.𝟐𝟓 ⋅ 𝟏𝟎−𝟏 (≈) 5.06 ⋅ 103 ± 3.94 ⋅ 10−1

CEXP 1 3.65 ⋅ 100 ± 2.23 ⋅ 10−2 (−) 3.64 ⋅ 100 ± 6.21 ⋅ 10−2 (−) 3.80 ⋅ 100 ± 4.36 ⋅ 10−4 (−) 𝟑.𝟖𝟎 ⋅ 𝟏𝟎𝟎 ± 𝟖.𝟑𝟕 ⋅ 𝟏𝟎−𝟓

2 3.58 ⋅ 100 ± 4.48 ⋅ 10−2 (−) 3.57 ⋅ 100 ± 5.72 ⋅ 10−2 (−) 3.80 ⋅ 100 ± 1.16 ⋅ 10−3 (−) 𝟑.𝟖𝟎 ⋅ 𝟏𝟎𝟎 ± 𝟑.𝟖𝟗 ⋅ 𝟏𝟎−𝟒

3 3.58 ⋅ 100 ± 3.02 ⋅ 10−2 (−) 3.57 ⋅ 100 ± 3.76 ⋅ 10−2 (−) 3.80 ⋅ 100 ± 1.73 ⋅ 10−4 (≈) 𝟑.𝟖𝟎 ⋅ 𝟏𝟎𝟎 ± 𝟓.𝟔𝟐 ⋅ 𝟏𝟎−𝟓

4 3.57 ⋅ 100 ± 3.56 ⋅ 10−2 (−) 3.56 ⋅ 100 ± 3.62 ⋅ 10−2 (−) 3.80 ⋅ 100 ± 3.68 ⋅ 10−5 (−) 𝟑.𝟖𝟎 ⋅ 𝟏𝟎𝟎 ± 𝟐.𝟔𝟓 ⋅ 𝟏𝟎−𝟒

5 3.58 ⋅ 100 ± 3.18 ⋅ 10−2 (−) 3.56 ⋅ 100 ± 4.78 ⋅ 10−2 (−) 𝟑.𝟖𝟎 ⋅ 𝟏𝟎𝟎 ± 𝟐.𝟑𝟓 ⋅ 𝟏𝟎−𝟒 (≈) 3.80 ⋅ 100 ± 1.09 ⋅ 10−4

6 3.58 ⋅ 100 ± 2.40 ⋅ 10−2 (−) 3.58 ⋅ 100 ± 3.35 ⋅ 10−2 (−) 3.80 ⋅ 100 ± 2.67 ⋅ 10−4 (≈) 𝟑.𝟖𝟎 ⋅ 𝟏𝟎𝟎 ± 𝟏.𝟓𝟒 ⋅ 𝟏𝟎−𝟒

10 3.56 ⋅ 100 ± 4.87 ⋅ 10−2 (−) 3.60 ⋅ 100 ± 2.43 ⋅ 10−2 (−) 3.79 ⋅ 100 ± 6.69 ⋅ 10−4 (≈) 𝟑.𝟕𝟗 ⋅ 𝟏𝟎𝟎 ± 𝟕.𝟓𝟑 ⋅ 𝟏𝟎−𝟒

20 3.55 ⋅ 100 ± 2.89 ⋅ 10−2 (−) 3.59 ⋅ 100 ± 3.41 ⋅ 10−2 (−) 𝟑.𝟕𝟕 ⋅ 𝟏𝟎𝟎 ± 𝟑.𝟒𝟑 ⋅ 𝟏𝟎−𝟑 (≈) 3.77 ⋅ 100 ± 4.06 ⋅ 10−3

SRN 1 2.38 ⋅ 104 ± 1.14 ⋅ 102 (−) 2.40 ⋅ 104 ± 1.53 ⋅ 102 (−) 2.50 ⋅ 104 ± 3.86 ⋅ 100 (≈) 𝟐.𝟓𝟎 ⋅ 𝟏𝟎𝟒 ± 𝟐.𝟐𝟖 ⋅ 𝟏𝟎𝟎
2 2.29 ⋅ 104 ± 2.99 ⋅ 102 (−) 2.34 ⋅ 104 ± 1.97 ⋅ 102 (−) 2.50 ⋅ 104 ± 1.13 ⋅ 101 (−) 𝟐.𝟓𝟎 ⋅ 𝟏𝟎𝟒 ± 𝟑.𝟗𝟔 ⋅ 𝟏𝟎𝟎
3 2.34 ⋅ 104 ± 2.55 ⋅ 102 (−) 2.35 ⋅ 104 ± 2.62 ⋅ 102 (−) 2.50 ⋅ 104 ± 6.39 ⋅ 100 (−) 𝟐.𝟓𝟎 ⋅ 𝟏𝟎𝟒 ± 𝟐.𝟓𝟔 ⋅ 𝟏𝟎𝟎
4 2.30 ⋅ 104 ± 2.84 ⋅ 102 (−) 2.33 ⋅ 104 ± 2.10 ⋅ 102 (−) 𝟐.𝟓𝟎 ⋅ 𝟏𝟎𝟒 ± 𝟐.𝟖𝟎 ⋅ 𝟏𝟎𝟎 (+) 2.50 ⋅ 104 ± 2.14 ⋅ 100

5 2.33 ⋅ 104 ± 2.32 ⋅ 102 (−) 2.35 ⋅ 104 ± 2.89 ⋅ 102 (−) 2.50 ⋅ 104 ± 2.62 ⋅ 100 (≈) 𝟐.𝟓𝟎 ⋅ 𝟏𝟎𝟒 ± 𝟐.𝟕𝟖 ⋅ 𝟏𝟎𝟎
6 2.33 ⋅ 104 ± 1.64 ⋅ 102 (−) 2.36 ⋅ 104 ± 1.43 ⋅ 102 (−) 2.50 ⋅ 104 ± 7.42 ⋅ 100 (≈) 𝟐.𝟓𝟎 ⋅ 𝟏𝟎𝟒 ± 𝟑.𝟗𝟐 ⋅ 𝟏𝟎𝟎
10 2.33 ⋅ 104 ± 2.03 ⋅ 102 (−) 2.37 ⋅ 104 ± 2.46 ⋅ 102 (−) 𝟐.𝟒𝟗 ⋅ 𝟏𝟎𝟒 ± 𝟑.𝟎𝟕 ⋅ 𝟏𝟎𝟏 (≈) 2.49 ⋅ 104 ± 2.99 ⋅ 101

20 2.31 ⋅ 104 ± 3.95 ⋅ 102 (−) 2.37 ⋅ 104 ± 1.39 ⋅ 102 (−) 𝟐.𝟒𝟖 ⋅ 𝟏𝟎𝟒 ± 𝟏.𝟏𝟖 ⋅ 𝟏𝟎𝟏 (≈) 2.48 ⋅ 104 ± 2.05 ⋅ 101

TNK 1 2.05 ⋅ 10−1 ± 1.38 ⋅ 10−2 (−) 2.87 ⋅ 10−1 ± 3.37 ⋅ 10−3 (−) 2.96 ⋅ 10−1 ± 1.65 ⋅ 10−3 (−) 𝟑.𝟎𝟑 ⋅ 𝟏𝟎−𝟏 ± 𝟓.𝟒𝟗 ⋅ 𝟏𝟎−𝟒

2 2.31 ⋅ 10−1 ± 1.75 ⋅ 10−2 (−) 2.75 ⋅ 10−1 ± 5.24 ⋅ 10−3 (−) 2.96 ⋅ 10−1 ± 1.99 ⋅ 10−3 (−) 𝟑.𝟎𝟓 ⋅ 𝟏𝟎−𝟏 ± 𝟒.𝟗𝟒 ⋅ 𝟏𝟎−𝟒

3 2.49 ⋅ 10−1 ± 1.70 ⋅ 10−2 (−) 2.84 ⋅ 10−1 ± 3.80 ⋅ 10−3 (−) 2.95 ⋅ 10−1 ± 3.09 ⋅ 10−3 (−) 𝟑.𝟎𝟔 ⋅ 𝟏𝟎−𝟏 ± 𝟐.𝟒𝟎 ⋅ 𝟏𝟎−𝟒

4 2.47 ⋅ 10−1 ± 1.34 ⋅ 10−2 (−) 2.71 ⋅ 10−1 ± 8.31 ⋅ 10−3 (−) 2.97 ⋅ 10−1 ± 1.80 ⋅ 10−3 (−) 𝟑.𝟎𝟔 ⋅ 𝟏𝟎−𝟏 ± 𝟐.𝟔𝟖 ⋅ 𝟏𝟎−𝟒

5 2.48 ⋅ 10−1 ± 1.13 ⋅ 10−2 (−) 2.77 ⋅ 10−1 ± 7.15 ⋅ 10−3 (−) 2.95 ⋅ 10−1 ± 2.26 ⋅ 10−3 (−) 𝟑.𝟎𝟔 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟑𝟒 ⋅ 𝟏𝟎−𝟒

6 2.48 ⋅ 10−1 ± 1.47 ⋅ 10−2 (−) 2.81 ⋅ 10−1 ± 2.97 ⋅ 10−3 (−) 2.94 ⋅ 10−1 ± 1.25 ⋅ 10−3 (−) 𝟑.𝟎𝟔 ⋅ 𝟏𝟎−𝟏 ± 𝟐.𝟏𝟗 ⋅ 𝟏𝟎−𝟒

10 2.35 ⋅ 10−1 ± 1.21 ⋅ 10−2 (−) 2.73 ⋅ 10−1 ± 5.91 ⋅ 10−3 (−) 2.93 ⋅ 10−1 ± 2.56 ⋅ 10−3 (−) 𝟑.𝟎𝟔 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟒𝟗 ⋅ 𝟏𝟎−𝟒

20 2.16 ⋅ 10−1 ± 1.11 ⋅ 10−2 (−) 2.72 ⋅ 10−1 ± 7.76 ⋅ 10−3 (−) 2.83 ⋅ 10−1 ± 3.23 ⋅ 10−3 (−) 𝟑.𝟎𝟏 ⋅ 𝟏𝟎−𝟏 ± 𝟖.𝟒𝟔 ⋅ 𝟏𝟎−𝟒

CTP1 1 2.86 ⋅ 10−1 ± 4.12 ⋅ 10−3 (−) 2.89 ⋅ 10−1 ± 2.64 ⋅ 10−3 (−) 𝟑.𝟎𝟐 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟐𝟗 ⋅ 𝟏𝟎−𝟒 (≈) 3.02 ⋅ 10−1 ± 2.34 ⋅ 10−4

2 2.76 ⋅ 10−1 ± 2.99 ⋅ 10−3 (−) 2.74 ⋅ 10−1 ± 7.15 ⋅ 10−3 (−) 3.00 ⋅ 10−1 ± 1.63 ⋅ 10−3 (≈) 𝟑.𝟎𝟏 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟒𝟓 ⋅ 𝟏𝟎−𝟑

3 2.78 ⋅ 10−1 ± 5.88 ⋅ 10−3 (−) 2.81 ⋅ 10−1 ± 6.28 ⋅ 10−3 (−) 3.02 ⋅ 10−1 ± 4.18 ⋅ 10−4 (≈) 𝟑.𝟎𝟐 ⋅ 𝟏𝟎−𝟏 ± 𝟖.𝟔𝟖 ⋅ 𝟏𝟎−𝟒

4 2.80 ⋅ 10−1 ± 2.48 ⋅ 10−3 (−) 2.77 ⋅ 10−1 ± 4.06 ⋅ 10−3 (−) 3.02 ⋅ 10−1 ± 4.10 ⋅ 10−4 (≈) 𝟑.𝟎𝟐 ⋅ 𝟏𝟎−𝟏 ± 𝟑.𝟓𝟕 ⋅ 𝟏𝟎−𝟒

5 2.74 ⋅ 10−1 ± 6.52 ⋅ 10−3 (−) 2.76 ⋅ 10−1 ± 4.81 ⋅ 10−3 (−) 3.02 ⋅ 10−1 ± 3.58 ⋅ 10−4 (≈) 𝟑.𝟎𝟐 ⋅ 𝟏𝟎−𝟏 ± 𝟑.𝟓𝟖 ⋅ 𝟏𝟎−𝟒

6 2.78 ⋅ 10−1 ± 4.94 ⋅ 10−3 (−) 2.79 ⋅ 10−1 ± 2.59 ⋅ 10−3 (−) 𝟑.𝟎𝟐 ⋅ 𝟏𝟎−𝟏 ± 𝟑.𝟏𝟒 ⋅ 𝟏𝟎−𝟒 (≈) 3.02 ⋅ 10−1 ± 3.14 ⋅ 10−4

10 2.76 ⋅ 10−1 ± 5.45 ⋅ 10−3 (−) 2.81 ⋅ 10−1 ± 3.46 ⋅ 10−3 (−) 𝟑.𝟎𝟏 ⋅ 𝟏𝟎−𝟏 ± 𝟐.𝟓𝟑 ⋅ 𝟏𝟎−𝟒 (≈) 3.01 ⋅ 10−1 ± 2.82 ⋅ 10−4

20 2.74 ⋅ 10−1 ± 4.44 ⋅ 10−3 (−) 2.81 ⋅ 10−1 ± 4.28 ⋅ 10−3 (−) 2.99 ⋅ 10−1 ± 8.59 ⋅ 10−4 (≈) 𝟐.𝟗𝟗 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟎𝟓 ⋅ 𝟏𝟎−𝟑

C3DTLZ4 1 1.54 ⋅ 100 ± 9.41 ⋅ 10−2 (−) 1.23 ⋅ 100 ± 2.01 ⋅ 10−1 (−) 1.44 ⋅ 100 ± 5.31 ⋅ 10−2 (−) 𝟏.𝟕𝟒 ⋅ 𝟏𝟎𝟎 ± 𝟓.𝟏𝟗 ⋅ 𝟏𝟎−𝟑

2 1.54 ⋅ 100 ± 9.22 ⋅ 10−2 (−) 1.54 ⋅ 100 ± 1.07 ⋅ 10−1 (−) 1.27 ⋅ 100 ± 5.91 ⋅ 10−2 (−) 𝟏.𝟕𝟓 ⋅ 𝟏𝟎𝟎 ± 𝟖.𝟖𝟏 ⋅ 𝟏𝟎−𝟑

3 1.64 ⋅ 100 ± 2.19 ⋅ 10−2 (−) 1.65 ⋅ 100 ± 3.30 ⋅ 10−2 (−) 1.40 ⋅ 100 ± 5.46 ⋅ 10−2 (−) 𝟏.𝟕𝟔 ⋅ 𝟏𝟎𝟎 ± 𝟏.𝟎𝟏 ⋅ 𝟏𝟎−𝟑

4 1.66 ⋅ 100 ± 1.50 ⋅ 10−2 (−) 1.69 ⋅ 100 ± 1.12 ⋅ 10−2 (−) 1.39 ⋅ 100 ± 3.50 ⋅ 10−2 (−) 𝟏.𝟕𝟕 ⋅ 𝟏𝟎𝟎 ± 𝟏.𝟑𝟕 ⋅ 𝟏𝟎−𝟑

5 1.66 ⋅ 100 ± 2.01 ⋅ 10−2 (−) 1.69 ⋅ 100 ± 1.20 ⋅ 10−2 (−) 1.43 ⋅ 100 ± 4.12 ⋅ 10−2 (−) 𝟏.𝟕𝟕 ⋅ 𝟏𝟎𝟎 ± 𝟖.𝟒𝟕 ⋅ 𝟏𝟎−𝟒

6 1.67 ⋅ 100 ± 1.57 ⋅ 10−2 (−) 1.71 ⋅ 100 ± 7.88 ⋅ 10−3 (−) 1.44 ⋅ 100 ± 5.84 ⋅ 10−2 (−) 𝟏.𝟕𝟕 ⋅ 𝟏𝟎𝟎 ± 𝟓.𝟗𝟐 ⋅ 𝟏𝟎−𝟒

10 1.66 ⋅ 100 ± 1.84 ⋅ 10−2 (−) 1.72 ⋅ 100 ± 4.84 ⋅ 10−3 (−) 1.46 ⋅ 100 ± 6.98 ⋅ 10−2 (−) 𝟏.𝟕𝟕 ⋅ 𝟏𝟎𝟎 ± 𝟏.𝟒𝟐 ⋅ 𝟏𝟎−𝟑

20 1.64 ⋅ 100 ± 2.17 ⋅ 10−2 (−) 1.72 ⋅ 100 ± 3.89 ⋅ 10−3 (−) 1.52 ⋅ 100 ± 3.39 ⋅ 10−2 (−) 𝟏.𝟕𝟔 ⋅ 𝟏𝟎𝟎 ± 𝟏.𝟒𝟔 ⋅ 𝟏𝟎−𝟑

OSY 1 9.62 ⋅ 103 ± 1.98 ⋅ 103 (−) 1.13 ⋅ 104 ± 4.75 ⋅ 102 (−) 𝟏.𝟐𝟔 ⋅ 𝟏𝟎𝟒 ± 𝟒.𝟐𝟏 ⋅ 𝟏𝟎𝟎 (≈) 1.26 ⋅ 104 ± 2.78 ⋅ 100

2 1.18 ⋅ 104 ± 3.45 ⋅ 102 (−) 1.18 ⋅ 104 ± 2.70 ⋅ 102 (−) 1.26 ⋅ 104 ± 3.34 ⋅ 100 (−) 𝟏.𝟐𝟔 ⋅ 𝟏𝟎𝟒 ± 𝟑.𝟔𝟔 ⋅ 𝟏𝟎𝟎
3 1.21 ⋅ 104 ± 2.35 ⋅ 102 (−) 1.23 ⋅ 104 ± 6.57 ⋅ 101 (−) 1.26 ⋅ 104 ± 3.02 ⋅ 100 (≈) 𝟏.𝟐𝟔 ⋅ 𝟏𝟎𝟒 ± 𝟐.𝟔𝟑 ⋅ 𝟏𝟎𝟎
4 1.22 ⋅ 104 ± 1.36 ⋅ 102 (−) 1.23 ⋅ 104 ± 8.03 ⋅ 101 (−) 𝟏.𝟐𝟔 ⋅ 𝟏𝟎𝟒 ± 𝟐.𝟕𝟗 ⋅ 𝟏𝟎𝟎 (≈) 1.26 ⋅ 104 ± 5.11 ⋅ 100

5 1.23 ⋅ 104 ± 6.76 ⋅ 101 (−) 1.23 ⋅ 104 ± 7.50 ⋅ 101 (−) 𝟏.𝟐𝟔 ⋅ 𝟏𝟎𝟒 ± 𝟒.𝟓𝟔 ⋅ 𝟏𝟎𝟎 (≈) 1.26 ⋅ 104 ± 3.79 ⋅ 100

6 1.23 ⋅ 104 ± 4.06 ⋅ 101 (−) 1.24 ⋅ 104 ± 4.16 ⋅ 101 (−) 1.26 ⋅ 104 ± 6.01 ⋅ 100 (≈) 𝟏.𝟐𝟔 ⋅ 𝟏𝟎𝟒 ± 𝟔.𝟕𝟔 ⋅ 𝟏𝟎𝟎
10 1.24 ⋅ 104 ± 1.06 ⋅ 102 (−) 1.24 ⋅ 104 ± 5.34 ⋅ 101 (−) 1.24 ⋅ 104 ± 3.24 ⋅ 101 (≈) 𝟏.𝟐𝟒 ⋅ 𝟏𝟎𝟒 ± 𝟐.𝟖𝟕 ⋅ 𝟏𝟎𝟏
20 1.23 ⋅ 104 ± 1.40 ⋅ 102 (+) 𝟏.𝟐𝟑 ⋅ 𝟏𝟎𝟒 ± 𝟏.𝟗𝟐 ⋅ 𝟏𝟎𝟐 (+) 1.13 ⋅ 104 ± 3.43 ⋅ 102 (−) 1.16 ⋅ 104 ± 1.67 ⋅ 102

TBTD 1 3.46 ⋅ 102 ± 9.91 ⋅ 101 (−) 3.92 ⋅ 102 ± 4.59 ⋅ 101 (−) 4.95 ⋅ 102 ± 3.40 ⋅ 100 (≈) 𝟒.𝟗𝟔 ⋅ 𝟏𝟎𝟐 ± 𝟗.𝟓𝟎 ⋅ 𝟏𝟎𝟎
2 4.00 ⋅ 102 ± 3.40 ⋅ 101 (−) 4.37 ⋅ 102 ± 1.41 ⋅ 101 (−) 4.88 ⋅ 102 ± 6.06 ⋅ 100 (≈) 𝟒.𝟖𝟗 ⋅ 𝟏𝟎𝟐 ± 𝟖.𝟕𝟎 ⋅ 𝟏𝟎𝟎
3 4.18 ⋅ 102 ± 1.40 ⋅ 101 (−) 4.44 ⋅ 102 ± 1.56 ⋅ 101 (−) 4.73 ⋅ 102 ± 9.80 ⋅ 100 (−) 𝟒.𝟗𝟎 ⋅ 𝟏𝟎𝟐 ± 𝟔.𝟔𝟒 ⋅ 𝟏𝟎𝟎
4 4.17 ⋅ 102 ± 1.91 ⋅ 101 (−) 4.42 ⋅ 102 ± 2.26 ⋅ 101 (−) 4.70 ⋅ 102 ± 9.65 ⋅ 100 (−) 𝟒.𝟖𝟔 ⋅ 𝟏𝟎𝟐 ± 𝟖.𝟕𝟕 ⋅ 𝟏𝟎𝟎
5 4.16 ⋅ 102 ± 1.47 ⋅ 101 (−) 4.38 ⋅ 102 ± 1.54 ⋅ 101 (−) 4.77 ⋅ 102 ± 7.71 ⋅ 100 (−) 𝟒.𝟖𝟔 ⋅ 𝟏𝟎𝟐 ± 𝟓.𝟕𝟐 ⋅ 𝟏𝟎𝟎
6 4.25 ⋅ 102 ± 1.80 ⋅ 101 (−) 4.43 ⋅ 102 ± 1.44 ⋅ 101 (−) 4.72 ⋅ 102 ± 1.09 ⋅ 101 (≈) 𝟒.𝟕𝟔 ⋅ 𝟏𝟎𝟐 ± 𝟏.𝟎𝟑 ⋅ 𝟏𝟎𝟏
10 4.15 ⋅ 102 ± 2.92 ⋅ 101 (−) 4.46 ⋅ 102 ± 1.34 ⋅ 101 (−) 4.71 ⋅ 102 ± 6.75 ⋅ 100 (≈) 𝟒.𝟕𝟔 ⋅ 𝟏𝟎𝟐 ± 𝟓.𝟎𝟏 ⋅ 𝟏𝟎𝟎
20 4.26 ⋅ 102 ± 1.70 ⋅ 101 (−) 4.50 ⋅ 102 ± 1.19 ⋅ 101 (≈) 𝟒.𝟔𝟖 ⋅ 𝟏𝟎𝟐 ± 𝟒.𝟖𝟒 ⋅ 𝟏𝟎𝟎 (≈) 4.61 ⋅ 102 ± 9.27 ⋅ 100

NBP 1 7.71 ⋅ 105 ± 4.45 ⋅ 103 (−) 7.72 ⋅ 105 ± 8.82 ⋅ 103 (−) 7.98 ⋅ 105 ± 4.53 ⋅ 102 (−) 𝟖.𝟎𝟏 ⋅ 𝟏𝟎𝟓 ± 𝟖.𝟖𝟖 ⋅ 𝟏𝟎𝟎
2 7.62 ⋅ 105 ± 7.06 ⋅ 103 (−) 7.63 ⋅ 105 ± 5.29 ⋅ 103 (−) 7.99 ⋅ 105 ± 8.82 ⋅ 102 (−) 𝟖.𝟎𝟏 ⋅ 𝟏𝟎𝟓 ± 𝟔.𝟕𝟐 ⋅ 𝟏𝟎𝟏
3 7.67 ⋅ 105 ± 6.99 ⋅ 103 (−) 7.69 ⋅ 105 ± 3.09 ⋅ 103 (−) 7.99 ⋅ 105 ± 3.30 ⋅ 102 (−) 𝟖.𝟎𝟏 ⋅ 𝟏𝟎𝟓 ± 𝟏.𝟎𝟑 ⋅ 𝟏𝟎𝟏
4 7.56 ⋅ 105 ± 7.57 ⋅ 103 (−) 7.65 ⋅ 105 ± 7.17 ⋅ 103 (−) 7.98 ⋅ 105 ± 5.00 ⋅ 102 (−) 𝟖.𝟎𝟏 ⋅ 𝟏𝟎𝟓 ± 𝟑.𝟎𝟖 ⋅ 𝟏𝟎𝟏
5 7.63 ⋅ 105 ± 5.21 ⋅ 103 (−) 7.69 ⋅ 105 ± 3.60 ⋅ 103 (−) 7.97 ⋅ 105 ± 8.66 ⋅ 102 (−) 𝟖.𝟎𝟎 ⋅ 𝟏𝟎𝟓 ± 𝟏.𝟑𝟔 ⋅ 𝟏𝟎𝟐
6 7.66 ⋅ 105 ± 4.83 ⋅ 103 (−) 7.68 ⋅ 105 ± 6.03 ⋅ 103 (−) 7.98 ⋅ 105 ± 6.20 ⋅ 102 (−) 𝟖.𝟎𝟎 ⋅ 𝟏𝟎𝟓 ± 𝟏.𝟒𝟖 ⋅ 𝟏𝟎𝟐
10 7.66 ⋅ 105 ± 5.68 ⋅ 103 (−) 7.72 ⋅ 105 ± 3.84 ⋅ 103 (−) 7.96 ⋅ 105 ± 1.01 ⋅ 103 (−) 𝟕.𝟗𝟗 ⋅ 𝟏𝟎𝟓 ± 𝟓.𝟐𝟔 ⋅ 𝟏𝟎𝟐
20 7.61 ⋅ 105 ± 6.10 ⋅ 103 (−) 7.68 ⋅ 105 ± 4.32 ⋅ 103 (−) 7.78 ⋅ 105 ± 6.92 ⋅ 103 (−) 𝟕.𝟗𝟓 ⋅ 𝟏𝟎𝟓 ± 𝟓.𝟖𝟏 ⋅ 𝟏𝟎𝟐

(continued on next page)
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Table 3 (continued).
DBD 1 3.38 ⋅ 101 ± 2.84 ⋅ 10−1 (−) 3.29 ⋅ 101 ± 1.12 ⋅ 100 (−) 𝟑.𝟒𝟔 ⋅ 𝟏𝟎𝟏 ± 𝟐.𝟔𝟔 ⋅ 𝟏𝟎−𝟐 (+) 3.46 ⋅ 101 ± 1.06 ⋅ 10−1

2 3.37 ⋅ 101 ± 2.18 ⋅ 10−1 (−) 3.32 ⋅ 101 ± 3.25 ⋅ 10−1 (−) 𝟑.𝟒𝟔 ⋅ 𝟏𝟎𝟏 ± 𝟐.𝟎𝟎 ⋅ 𝟏𝟎−𝟐 (+) 3.44 ⋅ 101 ± 1.15 ⋅ 10−1

3 3.40 ⋅ 101 ± 1.14 ⋅ 10−1 (−) 3.32 ⋅ 101 ± 4.90 ⋅ 10−1 (−) 3.46 ⋅ 101 ± 2.35 ⋅ 10−2 (−) 𝟑.𝟒𝟕 ⋅ 𝟏𝟎𝟏 ± 𝟐.𝟒𝟔 ⋅ 𝟏𝟎−𝟑

4 3.37 ⋅ 101 ± 2.15 ⋅ 10−1 (−) 3.34 ⋅ 101 ± 2.14 ⋅ 10−1 (−) 3.45 ⋅ 101 ± 1.17 ⋅ 10−1 (−) 𝟑.𝟒𝟕 ⋅ 𝟏𝟎𝟏 ± 𝟒.𝟐𝟐 ⋅ 𝟏𝟎−𝟑

5 3.37 ⋅ 101 ± 3.16 ⋅ 10−1 (−) 3.34 ⋅ 101 ± 2.82 ⋅ 10−1 (−) 3.46 ⋅ 101 ± 8.13 ⋅ 10−2 (≈) 𝟑.𝟒𝟔 ⋅ 𝟏𝟎𝟏 ± 𝟓.𝟔𝟒 ⋅ 𝟏𝟎−𝟑

6 3.39 ⋅ 101 ± 9.60 ⋅ 10−2 (−) 3.31 ⋅ 101 ± 6.13 ⋅ 10−1 (−) 𝟑.𝟒𝟔 ⋅ 𝟏𝟎𝟏 ± 𝟓.𝟖𝟎 ⋅ 𝟏𝟎−𝟐 (≈) 3.46 ⋅ 101 ± 5.86 ⋅ 10−2

10 3.38 ⋅ 101 ± 1.96 ⋅ 10−1 (−) 3.34 ⋅ 101 ± 3.22 ⋅ 10−1 (−) 3.45 ⋅ 101 ± 4.46 ⋅ 10−2 (≈) 𝟑.𝟒𝟔 ⋅ 𝟏𝟎𝟏 ± 𝟏.𝟔𝟐 ⋅ 𝟏𝟎−𝟐

20 3.37 ⋅ 101 ± 2.51 ⋅ 10−1 (−) 3.31 ⋅ 101 ± 3.73 ⋅ 10−1 (−) 𝟑.𝟒𝟓 ⋅ 𝟏𝟎𝟏 ± 𝟏.𝟕𝟐 ⋅ 𝟏𝟎−𝟐 (+) 3.44 ⋅ 101 ± 2.75 ⋅ 10−2

SRD 1 3.04 ⋅ 106 ± 1.91 ⋅ 104 (≈) 2.96 ⋅ 106 ± 5.49 ⋅ 104 (−) 𝟑.𝟎𝟕 ⋅ 𝟏𝟎𝟔 ± 𝟓.𝟗𝟏 ⋅ 𝟏𝟎𝟐 (+) 3.06 ⋅ 106 ± 6.25 ⋅ 103

2 3.06 ⋅ 106 ± 8.30 ⋅ 103 (≈) 3.06 ⋅ 106 ± 4.81 ⋅ 103 (−) 𝟑.𝟎𝟔 ⋅ 𝟏𝟎𝟔 ± 𝟕.𝟖𝟑 ⋅ 𝟏𝟎𝟐 (≈) 3.06 ⋅ 106 ± 1.02 ⋅ 103

3 3.06 ⋅ 106 ± 2.73 ⋅ 103 (+) 𝟑.𝟎𝟕 ⋅ 𝟏𝟎𝟔 ± 𝟏.𝟒𝟓 ⋅ 𝟏𝟎𝟑 (+) 3.06 ⋅ 106 ± 8.53 ⋅ 102 (−) 3.06 ⋅ 106 ± 7.05 ⋅ 102

4 3.06 ⋅ 106 ± 9.27 ⋅ 102 (+) 𝟑.𝟎𝟔 ⋅ 𝟏𝟎𝟔 ± 𝟗.𝟖𝟎 ⋅ 𝟏𝟎𝟐 (+) 3.06 ⋅ 106 ± 1.90 ⋅ 103 (−) 3.06 ⋅ 106 ± 8.32 ⋅ 102

5 3.06 ⋅ 106 ± 9.63 ⋅ 102 (+) 𝟑.𝟎𝟕 ⋅ 𝟏𝟎𝟔 ± 𝟓.𝟎𝟒 ⋅ 𝟏𝟎𝟐 (+) 3.06 ⋅ 106 ± 2.08 ⋅ 103 (−) 3.06 ⋅ 106 ± 6.44 ⋅ 102

6 3.06 ⋅ 106 ± 1.18 ⋅ 103 (+) 𝟑.𝟎𝟕 ⋅ 𝟏𝟎𝟔 ± 𝟔.𝟎𝟐 ⋅ 𝟏𝟎𝟐 (+) 3.06 ⋅ 106 ± 1.90 ⋅ 103 (−) 3.06 ⋅ 106 ± 7.64 ⋅ 102

10 3.06 ⋅ 106 ± 8.15 ⋅ 102 (+) 𝟑.𝟎𝟕 ⋅ 𝟏𝟎𝟔 ± 𝟓.𝟒𝟑 ⋅ 𝟏𝟎𝟐 (+) 3.05 ⋅ 106 ± 1.71 ⋅ 103 (−) 3.06 ⋅ 106 ± 1.25 ⋅ 103

20 3.06 ⋅ 106 ± 9.27 ⋅ 102 (+) 𝟑.𝟎𝟔 ⋅ 𝟏𝟎𝟔 ± 𝟕.𝟓𝟒 ⋅ 𝟏𝟎𝟐 (+) 3.04 ⋅ 106 ± 2.83 ⋅ 103 (−) 3.05 ⋅ 106 ± 1.61 ⋅ 103

WB 1 2.46 ⋅ 10−1 ± 5.47 ⋅ 10−2 (−) 𝟒.𝟏𝟗 ⋅ 𝟏𝟎−𝟏 ± 𝟐.𝟏𝟏 ⋅ 𝟏𝟎−𝟐 (+) 3.77 ⋅ 10−1 ± 1.01 ⋅ 10−2 (−) 4.15 ⋅ 10−1 ± 1.43 ⋅ 10−3

2 3.46 ⋅ 10−1 ± 4.48 ⋅ 10−2 (−) 𝟒.𝟐𝟎 ⋅ 𝟏𝟎−𝟏 ± 𝟑.𝟎𝟐 ⋅ 𝟏𝟎−𝟑 (≈) 3.87 ⋅ 10−1 ± 1.70 ⋅ 10−2 (−) 4.15 ⋅ 10−1 ± 8.41 ⋅ 10−3

3 3.73 ⋅ 10−1 ± 3.96 ⋅ 10−2 (−) 𝟒.𝟐𝟑 ⋅ 𝟏𝟎−𝟏 ± 𝟑.𝟕𝟑 ⋅ 𝟏𝟎−𝟑 (+) 4.06 ⋅ 10−1 ± 1.32 ⋅ 10−2 (≈) 4.14 ⋅ 10−1 ± 5.39 ⋅ 10−3

4 3.96 ⋅ 10−1 ± 1.95 ⋅ 10−2 (−) 𝟒.𝟐𝟑 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟖𝟔 ⋅ 𝟏𝟎−𝟑 (+) 3.86 ⋅ 10−1 ± 1.39 ⋅ 10−2 (−) 4.11 ⋅ 10−1 ± 7.66 ⋅ 10−3

5 3.72 ⋅ 10−1 ± 6.19 ⋅ 10−2 (−) 𝟒.𝟐𝟐 ⋅ 𝟏𝟎−𝟏 ± 𝟐.𝟓𝟓 ⋅ 𝟏𝟎−𝟑 (+) 3.84 ⋅ 10−1 ± 2.23 ⋅ 10−2 (−) 4.14 ⋅ 10−1 ± 1.11 ⋅ 10−2

6 3.83 ⋅ 10−1 ± 3.70 ⋅ 10−2 (≈) 𝟒.𝟐𝟒 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟖𝟒 ⋅ 𝟏𝟎−𝟑 (+) 3.79 ⋅ 10−1 ± 1.73 ⋅ 10−2 (−) 4.02 ⋅ 10−1 ± 1.64 ⋅ 10−2

10 3.92 ⋅ 10−1 ± 9.35 ⋅ 10−3 (≈) 𝟒.𝟐𝟓 ⋅ 𝟏𝟎−𝟏 ± 𝟐.𝟔𝟒 ⋅ 𝟏𝟎−𝟑 (+) 3.76 ⋅ 10−1 ± 1.69 ⋅ 10−2 (−) 3.96 ⋅ 10−1 ± 5.10 ⋅ 10−3

20 3.67 ⋅ 10−1 ± 7.21 ⋅ 10−2 (≈) 𝟒.𝟐𝟒 ⋅ 𝟏𝟎−𝟏 ± 𝟐.𝟑𝟎 ⋅ 𝟏𝟎−𝟑 (+) 3.72 ⋅ 10−1 ± 1.20 ⋅ 10−2 (≈) 3.78 ⋅ 10−1 ± 1.24 ⋅ 10−2

BICOP1 1 6.38 ⋅ 10−2 ± 9.98 ⋅ 10−2 (≈) 9.60 ⋅ 10−2 ± 1.05 ⋅ 10−1 (≈) 𝟏.𝟐𝟑 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟔𝟐 ⋅ 𝟏𝟎−𝟏 (≈) 7.91 ⋅ 10−2 ± 1.16 ⋅ 10−1

2 5.98 ⋅ 10−1 ± 1.92 ⋅ 10−2 (+) 𝟔.𝟎𝟕 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟑𝟒 ⋅ 𝟏𝟎−𝟐 (+) 3.17 ⋅ 10−1 ± 2.60 ⋅ 10−1 (≈) 4.16 ⋅ 10−1 ± 2.11 ⋅ 10−1

3 6.29 ⋅ 10−1 ± 1.03 ⋅ 10−2 (≈) 𝟔.𝟑𝟔 ⋅ 𝟏𝟎−𝟏 ± 𝟒.𝟖𝟒 ⋅ 𝟏𝟎−𝟑 (≈) 5.06 ⋅ 10−1 ± 2.54 ⋅ 10−1 (≈) 5.79 ⋅ 10−1 ± 8.34 ⋅ 10−2

4 6.41 ⋅ 10−1 ± 6.41 ⋅ 10−3 (≈) 𝟔.𝟒𝟑 ⋅ 𝟏𝟎−𝟏 ± 𝟔.𝟎𝟗 ⋅ 𝟏𝟎−𝟑 (≈) 6.34 ⋅ 10−1 ± 1.06 ⋅ 10−2 (≈) 6.09 ⋅ 10−1 ± 7.65 ⋅ 10−2

5 6.49 ⋅ 10−1 ± 4.38 ⋅ 10−3 (+) 𝟔.𝟓𝟎 ⋅ 𝟏𝟎−𝟏 ± 𝟓.𝟕𝟖 ⋅ 𝟏𝟎−𝟑 (+) 6.25 ⋅ 10−1 ± 1.39 ⋅ 10−2 (≈) 6.20 ⋅ 10−1 ± 1.31 ⋅ 10−2

6 6.53 ⋅ 10−1 ± 4.50 ⋅ 10−3 (+) 𝟔.𝟓𝟑 ⋅ 𝟏𝟎−𝟏 ± 𝟑.𝟒𝟔 ⋅ 𝟏𝟎−𝟑 (+) 5.89 ⋅ 10−1 ± 1.88 ⋅ 10−2 (≈) 5.99 ⋅ 10−1 ± 1.37 ⋅ 10−2

10 𝟔.𝟔𝟎 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟎𝟖 ⋅ 𝟏𝟎−𝟑 (+) 6.59 ⋅ 10−1 ± 1.88 ⋅ 10−3 (+) 4.91 ⋅ 10−1 ± 4.87 ⋅ 10−2 (≈) 5.08 ⋅ 10−1 ± 3.28 ⋅ 10−2

20 6.60 ⋅ 10−1 ± 8.35 ⋅ 10−4 (+) 𝟔.𝟔𝟎 ⋅ 𝟏𝟎−𝟏 ± 𝟕.𝟕𝟕 ⋅ 𝟏𝟎−𝟒 (+) 2.98 ⋅ 10−1 ± 9.13 ⋅ 10−2 (≈) 2.68 ⋅ 10−1 ± 7.79 ⋅ 10−2

BICOP2 1 1.04 ⋅ 10−1 ± 2.31 ⋅ 10−2 (−) 1.17 ⋅ 10−1 ± 2.88 ⋅ 10−2 (−) 2.16 ⋅ 10−1 ± 4.01 ⋅ 10−2 (−) 𝟐.𝟖𝟐 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟕𝟗 ⋅ 𝟏𝟎−𝟐

2 1.06 ⋅ 10−1 ± 3.53 ⋅ 10−2 (−) 1.76 ⋅ 10−1 ± 3.44 ⋅ 10−2 (−) 2.15 ⋅ 10−1 ± 4.28 ⋅ 10−2 (−) 𝟑.𝟏𝟏 ⋅ 𝟏𝟎−𝟏 ± 𝟑.𝟎𝟑 ⋅ 𝟏𝟎−𝟐

3 1.22 ⋅ 10−1 ± 3.01 ⋅ 10−2 (−) 1.53 ⋅ 10−1 ± 4.97 ⋅ 10−2 (−) 2.23 ⋅ 10−1 ± 4.93 ⋅ 10−2 (−) 𝟑.𝟎𝟏 ⋅ 𝟏𝟎−𝟏 ± 𝟓.𝟐𝟓 ⋅ 𝟏𝟎−𝟐

4 1.21 ⋅ 10−1 ± 3.67 ⋅ 10−2 (−) 1.67 ⋅ 10−1 ± 5.22 ⋅ 10−2 (≈) 2.34 ⋅ 10−1 ± 5.56 ⋅ 10−2 (≈) 𝟐.𝟓𝟎 ⋅ 𝟏𝟎−𝟏 ± 𝟕.𝟑𝟕 ⋅ 𝟏𝟎−𝟐

5 1.27 ⋅ 10−1 ± 4.19 ⋅ 10−2 (−) 1.77 ⋅ 10−1 ± 4.21 ⋅ 10−2 (≈) 𝟐.𝟓𝟑 ⋅ 𝟏𝟎−𝟏 ± 𝟑.𝟏𝟓 ⋅ 𝟏𝟎−𝟐 (≈) 2.24 ⋅ 10−1 ± 6.76 ⋅ 10−2

6 1.26 ⋅ 10−1 ± 3.79 ⋅ 10−2 (−) 1.55 ⋅ 10−1 ± 4.65 ⋅ 10−2 (≈) 𝟐.𝟔𝟓 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟔𝟖 ⋅ 𝟏𝟎−𝟐 (≈) 2.13 ⋅ 10−1 ± 6.50 ⋅ 10−2

10 1.53 ⋅ 10−1 ± 3.98 ⋅ 10−2 (−) 1.45 ⋅ 10−1 ± 3.91 ⋅ 10−2 (−) 2.38 ⋅ 10−1 ± 2.77 ⋅ 10−2 (≈) 𝟐.𝟒𝟒 ⋅ 𝟏𝟎−𝟏 ± 𝟒.𝟒𝟕 ⋅ 𝟏𝟎−𝟐

20 1.54 ⋅ 10−1 ± 4.41 ⋅ 10−2 (−) 1.50 ⋅ 10−1 ± 4.22 ⋅ 10−2 (−) 2.25 ⋅ 10−1 ± 2.07 ⋅ 10−2 (−) 𝟐.𝟕𝟐 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟔𝟎 ⋅ 𝟏𝟎−𝟐

MW1 1 0.00 ⋅ 100 ± 0.00 ⋅ 100 (−) 2.73 ⋅ 10−1 ± 4.54 ⋅ 10−2 (−) 1.66 ⋅ 10−2 ± 3.27 ⋅ 10−2 (−) 𝟑.𝟗𝟗 ⋅ 𝟏𝟎−𝟏 ± 𝟓.𝟖𝟓 ⋅ 𝟏𝟎−𝟓

2 2.40 ⋅ 10−1 ± 6.35 ⋅ 10−2 (−) 3.37 ⋅ 10−1 ± 5.49 ⋅ 10−3 (−) 1.92 ⋅ 10−1 ± 1.13 ⋅ 10−1 (−) 𝟑.𝟗𝟖 ⋅ 𝟏𝟎−𝟏 ± 𝟖.𝟎𝟐 ⋅ 𝟏𝟎−𝟓

3 2.82 ⋅ 10−1 ± 4.11 ⋅ 10−2 (−) 3.40 ⋅ 10−1 ± 1.00 ⋅ 10−2 (−) 3.10 ⋅ 10−1 ± 7.11 ⋅ 10−2 (−) 𝟑.𝟗𝟖 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟓𝟓 ⋅ 𝟏𝟎−𝟒

4 3.24 ⋅ 10−1 ± 3.86 ⋅ 10−2 (−) 3.51 ⋅ 10−1 ± 1.15 ⋅ 10−2 (−) 2.20 ⋅ 10−1 ± 1.61 ⋅ 10−1 (−) 𝟑.𝟗𝟖 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟓𝟔 ⋅ 𝟏𝟎−𝟒

5 3.49 ⋅ 10−1 ± 1.34 ⋅ 10−2 (−) 3.66 ⋅ 10−1 ± 6.28 ⋅ 10−3 (−) 2.09 ⋅ 10−1 ± 1.73 ⋅ 10−1 (−) 𝟑.𝟗𝟖 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟕𝟎 ⋅ 𝟏𝟎−𝟒

6 3.56 ⋅ 10−1 ± 1.61 ⋅ 10−2 (−) 3.80 ⋅ 10−1 ± 5.43 ⋅ 10−3 (−) 2.55 ⋅ 10−1 ± 1.25 ⋅ 10−1 (−) 𝟑.𝟗𝟖 ⋅ 𝟏𝟎−𝟏 ± 𝟓.𝟑𝟒 ⋅ 𝟏𝟎−𝟒

10 3.56 ⋅ 10−1 ± 2.92 ⋅ 10−2 (−) 3.90 ⋅ 10−1 ± 1.81 ⋅ 10−3 (−) 1.63 ⋅ 10−1 ± 1.23 ⋅ 10−1 (−) 𝟑.𝟗𝟕 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟏𝟎 ⋅ 𝟏𝟎−𝟑

20 3.72 ⋅ 10−1 ± 1.15 ⋅ 10−2 (≈) 𝟑.𝟗𝟑 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟏𝟔 ⋅ 𝟏𝟎−𝟑 (+) 2.09 ⋅ 10−1 ± 1.15 ⋅ 10−1 (≈) 2.73 ⋅ 10−1 ± 1.46 ⋅ 10−1

MW2 1 2.86 ⋅ 10−2 ± 5.73 ⋅ 10−2 (−) 𝟒.𝟐𝟒 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟓𝟏 ⋅ 𝟏𝟎−𝟐 (+) 1.60 ⋅ 10−1 ± 6.38 ⋅ 10−2 (−) 3.85 ⋅ 10−1 ± 2.32 ⋅ 10−2

2 2.63 ⋅ 10−1 ± 6.16 ⋅ 10−2 (−) 𝟒.𝟑𝟑 ⋅ 𝟏𝟎−𝟏 ± 𝟔.𝟐𝟓 ⋅ 𝟏𝟎−𝟑 (≈) 1.82 ⋅ 10−1 ± 1.22 ⋅ 10−1 (−) 4.19 ⋅ 10−1 ± 2.06 ⋅ 10−2

3 2.93 ⋅ 10−1 ± 8.71 ⋅ 10−2 (−) 𝟒.𝟒𝟏 ⋅ 𝟏𝟎−𝟏 ± 𝟖.𝟔𝟎 ⋅ 𝟏𝟎−𝟑 (≈) 1.98 ⋅ 10−1 ± 1.12 ⋅ 10−1 (−) 4.00 ⋅ 10−1 ± 6.68 ⋅ 10−2

4 3.42 ⋅ 10−1 ± 8.05 ⋅ 10−2 (≈) 𝟒.𝟒𝟎 ⋅ 𝟏𝟎−𝟏 ± 𝟖.𝟗𝟕 ⋅ 𝟏𝟎−𝟑 (+) 1.66 ⋅ 10−1 ± 1.03 ⋅ 10−1 (−) 3.47 ⋅ 10−1 ± 7.45 ⋅ 10−2

5 3.38 ⋅ 10−1 ± 7.90 ⋅ 10−2 (−) 𝟒.𝟒𝟐 ⋅ 𝟏𝟎−𝟏 ± 𝟖.𝟕𝟐 ⋅ 𝟏𝟎−𝟑 (+) 1.35 ⋅ 10−1 ± 7.24 ⋅ 10−2 (−) 3.96 ⋅ 10−1 ± 5.05 ⋅ 10−2

6 3.40 ⋅ 10−1 ± 7.84 ⋅ 10−2 (−) 𝟒.𝟒𝟐 ⋅ 𝟏𝟎−𝟏 ± 𝟕.𝟗𝟓 ⋅ 𝟏𝟎−𝟑 (+) 1.43 ⋅ 10−1 ± 9.95 ⋅ 10−2 (−) 4.11 ⋅ 10−1 ± 2.91 ⋅ 10−2

10 3.20 ⋅ 10−1 ± 1.07 ⋅ 10−1 (≈) 𝟒.𝟒𝟓 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟎𝟖 ⋅ 𝟏𝟎−𝟐 (+) 1.04 ⋅ 10−1 ± 8.28 ⋅ 10−2 (−) 3.78 ⋅ 10−1 ± 3.47 ⋅ 10−2

20 3.33 ⋅ 10−1 ± 9.66 ⋅ 10−2 (≈) 𝟒.𝟒𝟗 ⋅ 𝟏𝟎−𝟏 ± 𝟗.𝟗𝟗 ⋅ 𝟏𝟎−𝟑 (+) 1.31 ⋅ 10−1 ± 1.09 ⋅ 10−1 (−) 3.10 ⋅ 10−1 ± 4.45 ⋅ 10−2

MW3 1 1.04 ⋅ 10−1 ± 1.48 ⋅ 10−1 (−) 4.10 ⋅ 10−1 ± 9.41 ⋅ 10−3 (−) 3.72 ⋅ 10−1 ± 2.46 ⋅ 10−2 (−) 𝟒.𝟓𝟎 ⋅ 𝟏𝟎−𝟏 ± 𝟗.𝟖𝟎 ⋅ 𝟏𝟎−𝟒

2 4.06 ⋅ 10−1 ± 1.30 ⋅ 10−2 (−) 4.22 ⋅ 10−1 ± 3.38 ⋅ 10−3 (−) 4.07 ⋅ 10−1 ± 8.56 ⋅ 10−3 (−) 𝟒.𝟓𝟏 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟕𝟎 ⋅ 𝟏𝟎−𝟑

3 4.22 ⋅ 10−1 ± 6.32 ⋅ 10−3 (−) 4.29 ⋅ 10−1 ± 3.08 ⋅ 10−3 (−) 4.29 ⋅ 10−1 ± 1.08 ⋅ 10−2 (−) 𝟒.𝟓𝟐 ⋅ 𝟏𝟎−𝟏 ± 𝟒.𝟗𝟐 ⋅ 𝟏𝟎−𝟒

4 4.22 ⋅ 10−1 ± 2.48 ⋅ 10−3 (−) 4.32 ⋅ 10−1 ± 3.15 ⋅ 10−3 (−) 4.43 ⋅ 10−1 ± 5.59 ⋅ 10−3 (−) 𝟒.𝟓𝟐 ⋅ 𝟏𝟎−𝟏 ± 𝟐.𝟑𝟐 ⋅ 𝟏𝟎−𝟒

5 4.26 ⋅ 10−1 ± 4.97 ⋅ 10−3 (−) 4.36 ⋅ 10−1 ± 2.39 ⋅ 10−3 (−) 4.43 ⋅ 10−1 ± 3.76 ⋅ 10−3 (−) 𝟒.𝟓𝟏 ⋅ 𝟏𝟎−𝟏 ± 𝟏.𝟎𝟏 ⋅ 𝟏𝟎−𝟑

6 4.25 ⋅ 10−1 ± 2.38 ⋅ 10−3 (−) 4.37 ⋅ 10−1 ± 3.88 ⋅ 10−3 (−) 4.42 ⋅ 10−1 ± 3.55 ⋅ 10−3 (−) 𝟒.𝟓𝟎 ⋅ 𝟏𝟎−𝟏 ± 𝟕.𝟒𝟓 ⋅ 𝟏𝟎−𝟒

10 4.29 ⋅ 10−1 ± 3.28 ⋅ 10−3 (−) 4.41 ⋅ 10−1 ± 1.21 ⋅ 10−3 (−) 4.36 ⋅ 10−1 ± 1.97 ⋅ 10−3 (−) 𝟒.𝟒𝟖 ⋅ 𝟏𝟎−𝟏 ± 𝟔.𝟒𝟔 ⋅ 𝟏𝟎−𝟒

20 4.28 ⋅ 10−1 ± 4.92 ⋅ 10−3 (−) 4.40 ⋅ 10−1 ± 1.41 ⋅ 10−3 (−) 4.29 ⋅ 10−1 ± 2.55 ⋅ 10−3 (−) 𝟒.𝟒𝟒 ⋅ 𝟏𝟎−𝟏 ± 𝟕.𝟎𝟔 ⋅ 𝟏𝟎−𝟒

MW11 1 6.65 ⋅ 10−1 ± 2.63 ⋅ 10−1 (−) 𝟏.𝟑𝟔 ⋅ 𝟏𝟎𝟎 ± 𝟒.𝟒𝟏 ⋅ 𝟏𝟎−𝟐 (+) 9.80 ⋅ 10−1 ± 3.80 ⋅ 10−1 (≈) 1.10 ⋅ 100 ± 1.99 ⋅ 10−1

2 1.17 ⋅ 100 ± 1.75 ⋅ 10−1 (≈) 𝟏.𝟒𝟐 ⋅ 𝟏𝟎𝟎 ± 𝟐.𝟒𝟑 ⋅ 𝟏𝟎−𝟐 (+) 9.82 ⋅ 10−1 ± 1.74 ⋅ 10−1 (−) 1.17 ⋅ 100 ± 1.55 ⋅ 10−1

3 1.09 ⋅ 100 ± 2.30 ⋅ 10−1 (−) 1.44 ⋅ 100 ± 1.83 ⋅ 10−2 (−) 9.92 ⋅ 10−1 ± 1.97 ⋅ 10−1 (−) 𝟏.𝟒𝟗 ⋅ 𝟏𝟎𝟎 ± 𝟒.𝟐𝟑 ⋅ 𝟏𝟎−𝟐

4 1.03 ⋅ 100 ± 2.44 ⋅ 10−1 (−) 1.46 ⋅ 100 ± 1.81 ⋅ 10−2 (−) 9.99 ⋅ 10−1 ± 1.23 ⋅ 10−1 (−) 𝟏.𝟓𝟏 ⋅ 𝟏𝟎𝟎 ± 𝟏.𝟒𝟎 ⋅ 𝟏𝟎−𝟐

5 1.04 ⋅ 100 ± 2.41 ⋅ 10−1 (−) 1.46 ⋅ 100 ± 9.42 ⋅ 10−3 (−) 1.06 ⋅ 100 ± 1.80 ⋅ 10−1 (−) 𝟏.𝟓𝟐 ⋅ 𝟏𝟎𝟎 ± 𝟖.𝟎𝟕 ⋅ 𝟏𝟎−𝟑

6 9.08 ⋅ 10−1 ± 1.57 ⋅ 10−1 (−) 1.48 ⋅ 100 ± 8.50 ⋅ 10−3 (−) 9.75 ⋅ 10−1 ± 2.81 ⋅ 10−1 (−) 𝟏.𝟓𝟐 ⋅ 𝟏𝟎𝟎 ± 𝟏.𝟐𝟔 ⋅ 𝟏𝟎−𝟐

10 9.52 ⋅ 10−1 ± 2.21 ⋅ 10−1 (−) 1.49 ⋅ 100 ± 8.09 ⋅ 10−3 (−) 8.27 ⋅ 10−1 ± 1.73 ⋅ 10−1 (−) 𝟏.𝟓𝟐 ⋅ 𝟏𝟎𝟎 ± 𝟓.𝟔𝟎 ⋅ 𝟏𝟎−𝟑

20 8.02 ⋅ 10−1 ± 1.80 ⋅ 10−1 (−) 1.49 ⋅ 100 ± 1.53 ⋅ 10−2 (−) 8.78 ⋅ 10−1 ± 5.96 ⋅ 10−2 (−) 𝟏.𝟓𝟎 ⋅ 𝟏𝟎𝟎 ± 𝟔.𝟖𝟔 ⋅ 𝟏𝟎−𝟑

(continued on next page)
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Table 3 (continued).
TRICOP 1 4.47 ⋅ 101 ± 2.03 ⋅ 100 (−) 4.57 ⋅ 101 ± 1.19 ⋅ 100 (−) 𝟒.𝟗𝟕 ⋅ 𝟏𝟎𝟏 ± 𝟔.𝟑𝟎 ⋅ 𝟏𝟎−𝟑 (≈) 4.97 ⋅ 101 ± 3.81 ⋅ 10−2

2 4.19 ⋅ 101 ± 1.56 ⋅ 100 (−) 4.55 ⋅ 101 ± 7.37 ⋅ 10−1 (−) 4.96 ⋅ 101 ± 2.76 ⋅ 10−2 (≈) 𝟒.𝟗𝟕 ⋅ 𝟏𝟎𝟏 ± 𝟑.𝟗𝟑 ⋅ 𝟏𝟎−𝟐

3 4.31 ⋅ 101 ± 1.75 ⋅ 100 (−) 4.63 ⋅ 101 ± 5.46 ⋅ 10−1 (−) 𝟒.𝟗𝟕 ⋅ 𝟏𝟎𝟏 ± 𝟏.𝟗𝟑 ⋅ 𝟏𝟎−𝟐 (+) 4.96 ⋅ 101 ± 3.41 ⋅ 10−2

4 4.31 ⋅ 101 ± 1.50 ⋅ 100 (−) 4.63 ⋅ 101 ± 6.92 ⋅ 10−1 (−) 𝟒.𝟗𝟔 ⋅ 𝟏𝟎𝟏 ± 𝟒.𝟑𝟎 ⋅ 𝟏𝟎−𝟐 (≈) 4.96 ⋅ 101 ± 3.22 ⋅ 10−2

5 4.26 ⋅ 101 ± 1.45 ⋅ 100 (−) 4.66 ⋅ 101 ± 3.57 ⋅ 10−1 (−) 𝟒.𝟗𝟕 ⋅ 𝟏𝟎𝟏 ± 𝟐.𝟒𝟔 ⋅ 𝟏𝟎−𝟐 (≈) 4.97 ⋅ 101 ± 2.45 ⋅ 10−2

6 4.36 ⋅ 101 ± 1.48 ⋅ 100 (−) 4.63 ⋅ 101 ± 5.04 ⋅ 10−1 (−) 𝟒.𝟗𝟕 ⋅ 𝟏𝟎𝟏 ± 𝟑.𝟑𝟒 ⋅ 𝟏𝟎−𝟐 (≈) 4.97 ⋅ 101 ± 5.05 ⋅ 10−2

10 4.40 ⋅ 101 ± 1.43 ⋅ 100 (−) 4.71 ⋅ 101 ± 3.92 ⋅ 10−1 (−) 𝟒.𝟗𝟕 ⋅ 𝟏𝟎𝟏 ± 𝟑.𝟎𝟎 ⋅ 𝟏𝟎−𝟐 (≈) 4.97 ⋅ 101 ± 1.95 ⋅ 10−2

20 4.55 ⋅ 101 ± 8.60 ⋅ 10−1 (−) 4.76 ⋅ 101 ± 3.49 ⋅ 10−1 (−) 4.95 ⋅ 101 ± 4.39 ⋅ 10−2 (≈) 𝟒.𝟗𝟓 ⋅ 𝟏𝟎𝟏 ± 𝟐.𝟕𝟕 ⋅ 𝟏𝟎−𝟐

SPD 1 5.04 ⋅ 109 ± 8.11 ⋅ 107 (−) 4.95 ⋅ 109 ± 1.07 ⋅ 108 (−) 5.87 ⋅ 109 ± 1.68 ⋅ 107 (−) 𝟔.𝟎𝟏 ⋅ 𝟏𝟎𝟗 ± 𝟏.𝟗𝟓 ⋅ 𝟏𝟎𝟔
2 4.88 ⋅ 109 ± 1.58 ⋅ 108 (−) 5.05 ⋅ 109 ± 6.73 ⋅ 107 (−) 5.91 ⋅ 109 ± 2.36 ⋅ 107 (−) 𝟔.𝟎𝟐 ⋅ 𝟏𝟎𝟗 ± 𝟑.𝟎𝟔 ⋅ 𝟏𝟎𝟔
3 5.02 ⋅ 109 ± 7.48 ⋅ 107 (−) 5.08 ⋅ 109 ± 8.10 ⋅ 107 (−) 5.93 ⋅ 109 ± 9.35 ⋅ 106 (−) 𝟔.𝟎𝟏 ⋅ 𝟏𝟎𝟗 ± 𝟐.𝟒𝟕 ⋅ 𝟏𝟎𝟔
4 4.97 ⋅ 109 ± 1.19 ⋅ 108 (−) 5.02 ⋅ 109 ± 7.63 ⋅ 107 (−) 5.93 ⋅ 109 ± 6.67 ⋅ 106 (−) 𝟔.𝟎𝟏 ⋅ 𝟏𝟎𝟗 ± 𝟑.𝟕𝟏 ⋅ 𝟏𝟎𝟔
5 5.06 ⋅ 109 ± 8.50 ⋅ 107 (−) 5.03 ⋅ 109 ± 1.44 ⋅ 108 (−) 5.91 ⋅ 109 ± 1.68 ⋅ 107 (−) 𝟔.𝟎𝟏 ⋅ 𝟏𝟎𝟗 ± 𝟑.𝟐𝟎 ⋅ 𝟏𝟎𝟔
6 5.07 ⋅ 109 ± 5.48 ⋅ 107 (−) 5.05 ⋅ 109 ± 5.88 ⋅ 107 (−) 5.91 ⋅ 109 ± 1.17 ⋅ 107 (−) 𝟔.𝟎𝟎 ⋅ 𝟏𝟎𝟗 ± 𝟓.𝟕𝟓 ⋅ 𝟏𝟎𝟔
10 5.08 ⋅ 109 ± 6.05 ⋅ 107 (−) 5.06 ⋅ 109 ± 9.73 ⋅ 107 (−) 5.86 ⋅ 109 ± 2.25 ⋅ 107 (−) 𝟓.𝟗𝟗 ⋅ 𝟏𝟎𝟗 ± 𝟑.𝟖𝟓 ⋅ 𝟏𝟎𝟔
20 5.08 ⋅ 109 ± 1.15 ⋅ 108 (−) 5.04 ⋅ 109 ± 8.77 ⋅ 107 (−) 5.80 ⋅ 109 ± 2.77 ⋅ 107 (−) 𝟓.𝟗𝟑 ⋅ 𝟏𝟎𝟗 ± 𝟏.𝟎𝟐 ⋅ 𝟏𝟎𝟕

CSI 1 7.31 ⋅ 100 ± 9.10 ⋅ 10−2 (−) 6.06 ⋅ 100 ± 3.59 ⋅ 10−1 (−) 8.33 ⋅ 100 ± 6.84 ⋅ 10−2 (≈) 𝟖.𝟑𝟓 ⋅ 𝟏𝟎𝟎 ± 𝟗.𝟑𝟒 ⋅ 𝟏𝟎−𝟐

2 7.11 ⋅ 100 ± 1.34 ⋅ 10−1 (−) 7.04 ⋅ 100 ± 7.90 ⋅ 10−2 (−) 8.45 ⋅ 100 ± 1.70 ⋅ 10−2 (≈) 𝟖.𝟒𝟔 ⋅ 𝟏𝟎𝟎 ± 𝟐.𝟏𝟔 ⋅ 𝟏𝟎−𝟐

3 7.20 ⋅ 100 ± 1.01 ⋅ 10−1 (−) 7.12 ⋅ 100 ± 1.45 ⋅ 10−1 (−) 8.47 ⋅ 100 ± 1.32 ⋅ 10−2 (−) 𝟖.𝟒𝟗 ⋅ 𝟏𝟎𝟎 ± 𝟓.𝟒𝟒 ⋅ 𝟏𝟎−𝟑

4 7.13 ⋅ 100 ± 6.49 ⋅ 10−2 (−) 7.14 ⋅ 100 ± 7.68 ⋅ 10−2 (−) 8.46 ⋅ 100 ± 1.36 ⋅ 10−2 (−) 𝟖.𝟒𝟖 ⋅ 𝟏𝟎𝟎 ± 𝟗.𝟖𝟓 ⋅ 𝟏𝟎−𝟑

5 7.09 ⋅ 100 ± 6.13 ⋅ 10−2 (−) 7.10 ⋅ 100 ± 1.75 ⋅ 10−1 (−) 8.46 ⋅ 100 ± 1.11 ⋅ 10−2 (−) 𝟖.𝟒𝟖 ⋅ 𝟏𝟎𝟎 ± 𝟕.𝟎𝟓 ⋅ 𝟏𝟎−𝟑

6 7.14 ⋅ 100 ± 1.04 ⋅ 10−1 (−) 7.17 ⋅ 100 ± 9.63 ⋅ 10−2 (−) 8.45 ⋅ 100 ± 1.00 ⋅ 10−2 (≈) 𝟖.𝟒𝟔 ⋅ 𝟏𝟎𝟎 ± 𝟏.𝟐𝟏 ⋅ 𝟏𝟎−𝟐

10 7.21 ⋅ 100 ± 1.05 ⋅ 10−1 (−) 7.19 ⋅ 100 ± 6.00 ⋅ 10−2 (−) 8.33 ⋅ 100 ± 1.89 ⋅ 10−2 (−) 𝟖.𝟑𝟓 ⋅ 𝟏𝟎𝟎 ± 𝟏.𝟐𝟖 ⋅ 𝟏𝟎−𝟐

20 7.10 ⋅ 100 ± 1.68 ⋅ 10−1 (−) 7.22 ⋅ 100 ± 1.10 ⋅ 10−1 (−) 𝟕.𝟗𝟎 ⋅ 𝟏𝟎𝟎 ± 𝟖.𝟎𝟒 ⋅ 𝟏𝟎−𝟐 (≈) 7.86 ⋅ 100 ± 4.02 ⋅ 10−2

WP 1 1.03 ⋅ 1018 ± 3.31 ⋅ 1017 (−) 1.00 ⋅ 1018 ± 2.70 ⋅ 1017 (−) 3.42 ⋅ 1018 ± 8.57 ⋅ 1015 (≈) 𝟑.𝟒𝟐 ⋅ 𝟏𝟎𝟏𝟖 ± 𝟕.𝟏𝟐 ⋅ 𝟏𝟎𝟏𝟓
2 1.47 ⋅ 1018 ± 2.17 ⋅ 1017 (−) 1.36 ⋅ 1018 ± 4.05 ⋅ 1017 (−) 𝟑.𝟒𝟒 ⋅ 𝟏𝟎𝟏𝟖 ± 𝟏.𝟔𝟐 ⋅ 𝟏𝟎𝟏𝟓 (+) 3.42 ⋅ 1018 ± 5.17 ⋅ 1015

3 1.61 ⋅ 1018 ± 2.10 ⋅ 1017 (−) 1.47 ⋅ 1018 ± 2.37 ⋅ 1017 (−) 3.42 ⋅ 1018 ± 1.04 ⋅ 1016 (≈) 𝟑.𝟒𝟐 ⋅ 𝟏𝟎𝟏𝟖 ± 𝟖.𝟗𝟎 ⋅ 𝟏𝟎𝟏𝟓
4 1.70 ⋅ 1018 ± 1.89 ⋅ 1017 (−) 1.53 ⋅ 1018 ± 2.55 ⋅ 1017 (−) 𝟑.𝟒𝟐 ⋅ 𝟏𝟎𝟏𝟖 ± 𝟕.𝟗𝟗 ⋅ 𝟏𝟎𝟏𝟓 (≈) 3.42 ⋅ 1018 ± 5.15 ⋅ 1015

5 1.69 ⋅ 1018 ± 2.27 ⋅ 1017 (−) 1.57 ⋅ 1018 ± 3.08 ⋅ 1017 (−) 𝟑.𝟒𝟐 ⋅ 𝟏𝟎𝟏𝟖 ± 𝟔.𝟎𝟑 ⋅ 𝟏𝟎𝟏𝟓 (+) 3.41 ⋅ 1018 ± 1.46 ⋅ 1016

6 1.86 ⋅ 1018 ± 1.69 ⋅ 1017 (−) 1.58 ⋅ 1018 ± 3.50 ⋅ 1017 (−) 𝟑.𝟒𝟐 ⋅ 𝟏𝟎𝟏𝟖 ± 𝟓.𝟔𝟗 ⋅ 𝟏𝟎𝟏𝟓 (+) 3.40 ⋅ 1018 ± 1.47 ⋅ 1016

10 1.97 ⋅ 1018 ± 2.78 ⋅ 1017 (−) 1.70 ⋅ 1018 ± 2.86 ⋅ 1017 (−) 3.37 ⋅ 1018 ± 1.51 ⋅ 1016 (−) 𝟑.𝟒𝟎 ⋅ 𝟏𝟎𝟏𝟖 ± 𝟔.𝟏𝟒 ⋅ 𝟏𝟎𝟏𝟓
20 1.90 ⋅ 1018 ± 2.51 ⋅ 1017 (−) 1.79 ⋅ 1018 ± 2.84 ⋅ 1017 (−) 𝟑.𝟑𝟕 ⋅ 𝟏𝟎𝟏𝟖 ± 𝟕.𝟎𝟏 ⋅ 𝟏𝟎𝟏𝟓 (≈) 3.37 ⋅ 1018 ± 1.09 ⋅ 1016

Wilcoxon test summary 151−, 13 ≈, 12+ 138−, 10 ≈, 28+ 95−, 71 ≈, 10+ Reference algorithm (total 176
comparisons)

Mean Friedman rank 3.35 2.79 2.30 1.56
Fig. 3. Empirical Cumulative Distribution Functions of hypervolume performance metric for SA-NSGA-II, IC-SA-NSGA-II, SAMO-COBRA and IC-SAMO-COBRA. All experiments with
different numbers of candidate solutions per iteration and on different test functions are aggregated.
the importance of using as accurate as possible models (by IOC-SAMO-
COBRA’s approach to evaluate and compare all RBF configurations
in the configuration space 𝛷) and shows the relevance of using the
onstraint and objective functions directly if they are computationally
nexpensive and available.
10
6.3. Visual comparison

The Pareto fronts obtained by the IC-SA-NSGA-II, and the IOC-
SAMO-COBRA algorithm can be visually compared with the Empirical
Attainment Difference Functions [74]. In Fig. 5 the EAF difference
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Table 4
IGD+ score ± standard deviation of IGD+, Wilcoxon rank sum test with probability value = 0.05 (reference algorithm: IOC-SAMO-COBRA), per test function and candidate solutions
size 𝑝. The lowest IGD+ per row is reported in bold, best scoring algorithm per test function is highlighted .

Function p SA-NSGA-II IC-SA-NSGA-II SAMO-COBRA IOC-SAMO-COBRA
BNH 1 1.77 ⋅ 10−2 ± 2.89 ⋅ 10−3 (−) 2.15 ⋅ 10−2 ± 3.60 ⋅ 10−3 (−) 2.06 ⋅ 10−3 ± 1.44 ⋅ 10−5 (≈) 𝟐.𝟎𝟔 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟎𝟖 ⋅ 𝟏𝟎−𝟓

2 1.95 ⋅ 10−2 ± 1.39 ⋅ 10−3 (−) 2.21 ⋅ 10−2 ± 2.89 ⋅ 10−3 (−) 𝟐.𝟏𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟏𝟒 ⋅ 𝟏𝟎−𝟓 (≈) 2.12 ⋅ 10−3 ± 1.52 ⋅ 10−5

3 1.81 ⋅ 10−2 ± 2.50 ⋅ 10−3 (−) 2.03 ⋅ 10−2 ± 2.92 ⋅ 10−3 (−) 2.13 ⋅ 10−3 ± 3.93 ⋅ 10−5 (≈) 𝟐.𝟏𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟖𝟑 ⋅ 𝟏𝟎−𝟓

4 1.75 ⋅ 10−2 ± 1.61 ⋅ 10−3 (−) 2.11 ⋅ 10−2 ± 1.95 ⋅ 10−3 (−) 𝟐.𝟏𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟒.𝟏𝟖 ⋅ 𝟏𝟎−𝟓 (≈) 2.15 ⋅ 10−3 ± 4.39 ⋅ 10−5

5 1.94 ⋅ 10−2 ± 2.28 ⋅ 10−3 (−) 2.05 ⋅ 10−2 ± 2.19 ⋅ 10−3 (−) 2.14 ⋅ 10−3 ± 2.59 ⋅ 10−5 (≈) 𝟐.𝟏𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟏𝟑 ⋅ 𝟏𝟎−𝟓

6 1.84 ⋅ 10−2 ± 1.03 ⋅ 10−3 (−) 1.79 ⋅ 10−2 ± 2.52 ⋅ 10−3 (−) 2.09 ⋅ 10−3 ± 5.02 ⋅ 10−5 (≈) 𝟐.𝟎𝟗 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟖𝟔 ⋅ 𝟏𝟎−𝟓

10 1.85 ⋅ 10−2 ± 1.72 ⋅ 10−3 (−) 1.97 ⋅ 10−2 ± 2.28 ⋅ 10−3 (−) 𝟐.𝟒𝟎 ⋅ 𝟏𝟎−𝟑 ± 𝟓.𝟕𝟕 ⋅ 𝟏𝟎−𝟓 (≈) 2.42 ⋅ 10−3 ± 5.79 ⋅ 10−5

20 1.67 ⋅ 10−2 ± 2.40 ⋅ 10−3 (−) 1.89 ⋅ 10−2 ± 2.32 ⋅ 10−3 (−) 𝟑.𝟎𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟓.𝟓𝟖 ⋅ 𝟏𝟎−𝟓 (≈) 3.06 ⋅ 10−3 ± 6.72 ⋅ 10−5

CEXP 1 1.79 ⋅ 10−2 ± 2.35 ⋅ 10−3 (−) 1.83 ⋅ 10−2 ± 6.60 ⋅ 10−3 (−) 2.54 ⋅ 10−3 ± 4.97 ⋅ 10−5 (−) 𝟐.𝟏𝟕 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟏𝟕 ⋅ 𝟏𝟎−𝟓

2 2.50 ⋅ 10−2 ± 4.41 ⋅ 10−3 (−) 2.60 ⋅ 10−2 ± 6.07 ⋅ 10−3 (−) 2.43 ⋅ 10−3 ± 1.16 ⋅ 10−4 (−) 𝟐.𝟑𝟓 ⋅ 𝟏𝟎−𝟑 ± 𝟒.𝟖𝟒 ⋅ 𝟏𝟎−𝟓

3 2.50 ⋅ 10−2 ± 3.26 ⋅ 10−3 (−) 2.66 ⋅ 10−2 ± 3.94 ⋅ 10−3 (−) 2.17 ⋅ 10−3 ± 5.72 ⋅ 10−5 (≈) 𝟐.𝟏𝟓 ⋅ 𝟏𝟎−𝟑 ± 𝟖.𝟕𝟔 ⋅ 𝟏𝟎−𝟔

4 2.57 ⋅ 10−2 ± 3.90 ⋅ 10−3 (−) 2.69 ⋅ 10−2 ± 3.73 ⋅ 10−3 (−) 𝟐.𝟑𝟔 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟒𝟗 ⋅ 𝟏𝟎−𝟓 (≈) 2.38 ⋅ 10−3 ± 4.91 ⋅ 10−5

5 2.51 ⋅ 10−2 ± 3.15 ⋅ 10−3 (−) 2.73 ⋅ 10−2 ± 5.23 ⋅ 10−3 (−) 𝟐.𝟒𝟓 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟐𝟗 ⋅ 𝟏𝟎−𝟓 (≈) 2.46 ⋅ 10−3 ± 3.09 ⋅ 10−5

6 2.52 ⋅ 10−2 ± 2.47 ⋅ 10−3 (−) 2.46 ⋅ 10−2 ± 3.33 ⋅ 10−3 (−) 2.34 ⋅ 10−3 ± 5.45 ⋅ 10−5 (≈) 𝟐.𝟑𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟒.𝟑𝟗 ⋅ 𝟏𝟎−𝟓

10 2.67 ⋅ 10−2 ± 5.05 ⋅ 10−3 (−) 2.31 ⋅ 10−2 ± 2.66 ⋅ 10−3 (−) 2.88 ⋅ 10−3 ± 8.27 ⋅ 10−5 (≈) 𝟐.𝟖𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟔.𝟕𝟐 ⋅ 𝟏𝟎−𝟓

20 2.81 ⋅ 10−2 ± 3.01 ⋅ 10−3 (−) 2.39 ⋅ 10−2 ± 3.53 ⋅ 10−3 (−) 5.00 ⋅ 10−3 ± 3.61 ⋅ 10−4 (≈) 𝟒.𝟗𝟗 ⋅ 𝟏𝟎−𝟑 ± 𝟒.𝟒𝟑 ⋅ 𝟏𝟎−𝟒

SRN 1 1.89 ⋅ 10−2 ± 1.70 ⋅ 10−3 (−) 1.54 ⋅ 10−2 ± 1.73 ⋅ 10−3 (−) 3.47 ⋅ 10−3 ± 4.37 ⋅ 10−5 (−) 𝟑.𝟑𝟗 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟑𝟗 ⋅ 𝟏𝟎−𝟓

2 3.06 ⋅ 10−2 ± 6.16 ⋅ 10−3 (−) 2.23 ⋅ 10−2 ± 4.60 ⋅ 10−3 (−) 3.66 ⋅ 10−3 ± 1.52 ⋅ 10−4 (−) 𝟑.𝟑𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟓.𝟔𝟐 ⋅ 𝟏𝟎−𝟓

3 2.09 ⋅ 10−2 ± 2.54 ⋅ 10−3 (−) 2.02 ⋅ 10−2 ± 2.50 ⋅ 10−3 (−) 3.56 ⋅ 10−3 ± 5.90 ⋅ 10−5 (−) 𝟑.𝟑𝟏 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟐𝟑 ⋅ 𝟏𝟎−𝟓

4 2.45 ⋅ 10−2 ± 3.00 ⋅ 10−3 (−) 2.25 ⋅ 10−2 ± 2.36 ⋅ 10−3 (−) 𝟑.𝟖𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟓.𝟎𝟗 ⋅ 𝟏𝟎−𝟓 (+) 4.02 ⋅ 10−3 ± 3.30 ⋅ 10−5

5 2.24 ⋅ 10−2 ± 2.40 ⋅ 10−3 (−) 1.98 ⋅ 10−2 ± 3.02 ⋅ 10−3 (−) 3.25 ⋅ 10−3 ± 3.31 ⋅ 10−5 (≈) 𝟑.𝟐𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟒.𝟓𝟕 ⋅ 𝟏𝟎−𝟓

6 2.17 ⋅ 10−2 ± 1.66 ⋅ 10−3 (−) 1.89 ⋅ 10−2 ± 1.60 ⋅ 10−3 (−) 3.25 ⋅ 10−3 ± 9.15 ⋅ 10−5 (≈) 𝟑.𝟐𝟎 ⋅ 𝟏𝟎−𝟑 ± 𝟕.𝟖𝟒 ⋅ 𝟏𝟎−𝟓

10 2.20 ⋅ 10−2 ± 2.10 ⋅ 10−3 (−) 1.82 ⋅ 10−2 ± 2.36 ⋅ 10−3 (−) 𝟒.𝟗𝟕 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟑𝟑 ⋅ 𝟏𝟎−𝟒 (≈) 5.01 ⋅ 10−3 ± 2.88 ⋅ 10−4

20 2.37 ⋅ 10−2 ± 4.11 ⋅ 10−3 (−) 1.75 ⋅ 10−2 ± 1.39 ⋅ 10−3 (−) 𝟓.𝟓𝟖 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟔𝟑 ⋅ 𝟏𝟎−𝟒 (≈) 5.68 ⋅ 10−3 ± 2.12 ⋅ 10−4

TNK 1 1.01 ⋅ 10−1 ± 2.12 ⋅ 10−2 (−) 1.42 ⋅ 10−2 ± 2.16 ⋅ 10−3 (−) 9.36 ⋅ 10−3 ± 1.10 ⋅ 10−3 (−) 𝟑.𝟖𝟏 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟏𝟓 ⋅ 𝟏𝟎−𝟒

2 6.63 ⋅ 10−2 ± 2.19 ⋅ 10−2 (−) 2.13 ⋅ 10−2 ± 3.89 ⋅ 10−3 (−) 9.14 ⋅ 10−3 ± 1.52 ⋅ 10−3 (−) 𝟐.𝟔𝟖 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟔𝟒 ⋅ 𝟏𝟎−𝟒

3 4.75 ⋅ 10−2 ± 1.65 ⋅ 10−2 (−) 1.97 ⋅ 10−2 ± 4.01 ⋅ 10−3 (−) 1.03 ⋅ 10−2 ± 2.01 ⋅ 10−3 (−) 𝟐.𝟑𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟐𝟒 ⋅ 𝟏𝟎−𝟒

4 4.29 ⋅ 10−2 ± 8.54 ⋅ 10−3 (−) 2.12 ⋅ 10−2 ± 3.24 ⋅ 10−3 (−) 8.88 ⋅ 10−3 ± 1.46 ⋅ 10−3 (−) 𝟐.𝟐𝟔 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟔𝟒 ⋅ 𝟏𝟎−𝟒

5 3.56 ⋅ 10−2 ± 6.84 ⋅ 10−3 (−) 1.99 ⋅ 10−2 ± 4.01 ⋅ 10−3 (−) 1.04 ⋅ 10−2 ± 1.77 ⋅ 10−3 (−) 𝟐.𝟑𝟏 ⋅ 𝟏𝟎−𝟑 ± 𝟕.𝟔𝟑 ⋅ 𝟏𝟎−𝟓

6 3.27 ⋅ 10−2 ± 7.32 ⋅ 10−3 (−) 1.72 ⋅ 10−2 ± 2.30 ⋅ 10−3 (−) 1.14 ⋅ 10−2 ± 1.07 ⋅ 10−3 (−) 𝟐.𝟑𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟐𝟖 ⋅ 𝟏𝟎−𝟒

10 3.84 ⋅ 10−2 ± 5.80 ⋅ 10−3 (−) 2.14 ⋅ 10−2 ± 3.90 ⋅ 10−3 (−) 1.11 ⋅ 10−2 ± 1.54 ⋅ 10−3 (−) 𝟐.𝟖𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟏𝟗 ⋅ 𝟏𝟎−𝟒

20 4.53 ⋅ 10−2 ± 6.25 ⋅ 10−3 (−) 2.08 ⋅ 10−2 ± 3.36 ⋅ 10−3 (−) 1.85 ⋅ 10−2 ± 1.75 ⋅ 10−3 (−) 𝟓.𝟗𝟕 ⋅ 𝟏𝟎−𝟑 ± 𝟓.𝟓𝟔 ⋅ 𝟏𝟎−𝟒

CTP1 1 2.29 ⋅ 10−2 ± 4.86 ⋅ 10−3 (−) 1.87 ⋅ 10−2 ± 2.91 ⋅ 10−3 (−) 𝟒.𝟑𝟗 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟓𝟔 ⋅ 𝟏𝟎−𝟒 (≈) 4.48 ⋅ 10−3 ± 2.87 ⋅ 10−4

2 3.43 ⋅ 10−2 ± 3.52 ⋅ 10−3 (−) 3.62 ⋅ 10−2 ± 8.82 ⋅ 10−3 (−) 6.82 ⋅ 10−3 ± 1.72 ⋅ 10−3 (≈) 𝟔.𝟑𝟖 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟒𝟏 ⋅ 𝟏𝟎−𝟑

3 3.13 ⋅ 10−2 ± 6.48 ⋅ 10−3 (−) 2.75 ⋅ 10−2 ± 6.81 ⋅ 10−3 (−) 𝟒.𝟗𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟒.𝟑𝟗 ⋅ 𝟏𝟎−𝟒 (≈) 5.00 ⋅ 10−3 ± 8.95 ⋅ 10−4

4 2.91 ⋅ 10−2 ± 2.52 ⋅ 10−3 (−) 3.26 ⋅ 10−2 ± 4.12 ⋅ 10−3 (−) 5.12 ⋅ 10−3 ± 4.82 ⋅ 10−4 (≈) 𝟓.𝟎𝟔 ⋅ 𝟏𝟎−𝟑 ± 𝟒.𝟓𝟏 ⋅ 𝟏𝟎−𝟒

5 3.56 ⋅ 10−2 ± 6.89 ⋅ 10−3 (−) 3.38 ⋅ 10−2 ± 5.08 ⋅ 10−3 (−) 𝟓.𝟐𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟒.𝟖𝟕 ⋅ 𝟏𝟎−𝟒 (≈) 5.24 ⋅ 10−3 ± 4.87 ⋅ 10−4

6 3.17 ⋅ 10−2 ± 5.38 ⋅ 10−3 (−) 2.98 ⋅ 10−2 ± 2.93 ⋅ 10−3 (−) 𝟒.𝟔𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟗𝟗 ⋅ 𝟏𝟎−𝟒 (≈) 4.64 ⋅ 10−3 ± 2.99 ⋅ 10−4

10 3.43 ⋅ 10−2 ± 6.21 ⋅ 10−3 (−) 2.85 ⋅ 10−2 ± 3.84 ⋅ 10−3 (−) 𝟓.𝟓𝟗 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟏𝟑 ⋅ 𝟏𝟎−𝟒 (≈) 5.71 ⋅ 10−3 ± 3.34 ⋅ 10−4

20 3.47 ⋅ 10−2 ± 4.60 ⋅ 10−3 (−) 2.91 ⋅ 10−2 ± 5.41 ⋅ 10−3 (−) 8.78 ⋅ 10−3 ± 1.04 ⋅ 10−3 (≈) 𝟖.𝟐𝟔 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟐𝟔 ⋅ 𝟏𝟎−𝟑

C3DTLZ4 1 3.69 ⋅ 10−2 ± 1.18 ⋅ 10−2 (−) 7.80 ⋅ 10−2 ± 3.13 ⋅ 10−2 (−) 4.38 ⋅ 10−2 ± 6.68 ⋅ 10−3 (−) 𝟓.𝟕𝟏 ⋅ 𝟏𝟎−𝟑 ± 𝟔.𝟑𝟒 ⋅ 𝟏𝟎−𝟒

2 4.23 ⋅ 10−2 ± 1.83 ⋅ 10−2 (−) 3.22 ⋅ 10−2 ± 1.46 ⋅ 10−2 (−) 6.59 ⋅ 10−2 ± 7.44 ⋅ 10−3 (−) 𝟒.𝟔𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟎𝟖 ⋅ 𝟏𝟎−𝟑

3 2.12 ⋅ 10−2 ± 3.48 ⋅ 10−3 (−) 1.77 ⋅ 10−2 ± 4.18 ⋅ 10−3 (−) 4.79 ⋅ 10−2 ± 6.48 ⋅ 10−3 (−) 𝟐.𝟒𝟖 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟒𝟓 ⋅ 𝟏𝟎−𝟒

4 1.98 ⋅ 10−2 ± 1.49 ⋅ 10−3 (−) 1.33 ⋅ 10−2 ± 1.59 ⋅ 10−3 (−) 5.18 ⋅ 10−2 ± 4.42 ⋅ 10−3 (−) 𝟐.𝟒𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟔𝟒 ⋅ 𝟏𝟎−𝟒

5 1.86 ⋅ 10−2 ± 1.81 ⋅ 10−3 (−) 1.20 ⋅ 10−2 ± 1.58 ⋅ 10−3 (−) 4.75 ⋅ 10−2 ± 5.26 ⋅ 10−3 (−) 𝟐.𝟐𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟑𝟏 ⋅ 𝟏𝟎−𝟒

6 1.68 ⋅ 10−2 ± 1.94 ⋅ 10−3 (−) 1.00 ⋅ 10−2 ± 1.02 ⋅ 10−3 (−) 4.51 ⋅ 10−2 ± 8.05 ⋅ 10−3 (−) 𝟐.𝟏𝟓 ⋅ 𝟏𝟎−𝟑 ± 𝟕.𝟏𝟖 ⋅ 𝟏𝟎−𝟓

10 1.66 ⋅ 10−2 ± 2.44 ⋅ 10−3 (−) 8.14 ⋅ 10−3 ± 7.08 ⋅ 10−4 (−) 5.22 ⋅ 10−2 ± 1.80 ⋅ 10−2 (−) 𝟐.𝟑𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟔𝟕 ⋅ 𝟏𝟎−𝟒

20 1.91 ⋅ 10−2 ± 2.98 ⋅ 10−3 (−) 8.04 ⋅ 10−3 ± 5.96 ⋅ 10−4 (−) 6.22 ⋅ 10−2 ± 1.54 ⋅ 10−2 (−) 𝟐.𝟕𝟏 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟔𝟔 ⋅ 𝟏𝟎−𝟒

OSY 1 1.08 ⋅ 10−1 ± 7.19 ⋅ 10−2 (−) 4.87 ⋅ 10−2 ± 1.38 ⋅ 10−2 (−) 𝟗.𝟕𝟖 ⋅ 𝟏𝟎−𝟒 ± 𝟏.𝟐𝟑 ⋅ 𝟏𝟎−𝟒 (+) 1.07 ⋅ 10−3 ± 4.00 ⋅ 10−5

2 3.11 ⋅ 10−2 ± 1.13 ⋅ 10−2 (−) 3.23 ⋅ 10−2 ± 9.08 ⋅ 10−3 (−) 9.60 ⋅ 10−4 ± 4.80 ⋅ 10−5 (−) 𝟖.𝟑𝟓 ⋅ 𝟏𝟎−𝟒 ± 𝟖.𝟑𝟎 ⋅ 𝟏𝟎−𝟓

3 2.05 ⋅ 10−2 ± 6.24 ⋅ 10−3 (−) 1.61 ⋅ 10−2 ± 3.05 ⋅ 10−3 (−) 9.91 ⋅ 10−4 ± 6.88 ⋅ 10−5 (−) 𝟗.𝟑𝟖 ⋅ 𝟏𝟎−𝟒 ± 𝟒.𝟕𝟎 ⋅ 𝟏𝟎−𝟓

4 1.69 ⋅ 10−2 ± 4.00 ⋅ 10−3 (−) 1.54 ⋅ 10−2 ± 4.47 ⋅ 10−3 (−) 𝟏.𝟐𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟕.𝟕𝟒 ⋅ 𝟏𝟎−𝟓 (≈) 1.26 ⋅ 10−3 ± 1.30 ⋅ 10−4

5 1.35 ⋅ 10−2 ± 3.60 ⋅ 10−3 (−) 1.23 ⋅ 10−2 ± 2.71 ⋅ 10−3 (−) 1.54 ⋅ 10−3 ± 8.39 ⋅ 10−5 (≈) 𝟏.𝟓𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟎𝟐 ⋅ 𝟏𝟎−𝟒

6 1.21 ⋅ 10−2 ± 2.18 ⋅ 10−3 (−) 1.17 ⋅ 10−2 ± 2.25 ⋅ 10−3 (−) 2.14 ⋅ 10−3 ± 1.76 ⋅ 10−4 (≈) 𝟐.𝟎𝟏 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟔𝟏 ⋅ 𝟏𝟎−𝟒

10 1.14 ⋅ 10−2 ± 3.75 ⋅ 10−3 (−) 1.20 ⋅ 10−2 ± 3.15 ⋅ 10−3 (−) 7.60 ⋅ 10−3 ± 1.10 ⋅ 10−3 (≈) 𝟕.𝟐𝟔 ⋅ 𝟏𝟎−𝟑 ± 𝟖.𝟔𝟏 ⋅ 𝟏𝟎−𝟒

20 𝟏.𝟑𝟏 ⋅ 𝟏𝟎−𝟐 ± 𝟕.𝟓𝟔 ⋅ 𝟏𝟎−𝟑 (+) 1.31 ⋅ 10−2 ± 5.45 ⋅ 10−3 (+) 4.22 ⋅ 10−2 ± 1.06 ⋅ 10−2 (≈) 3.67 ⋅ 10−2 ± 5.01 ⋅ 10−3

TBTD 1 4.43 ⋅ 10−2 ± 3.30 ⋅ 10−2 (−) 2.20 ⋅ 10−2 ± 8.82 ⋅ 10−3 (−) 6.43 ⋅ 10−3 ± 9.72 ⋅ 10−4 (−) 𝟒.𝟐𝟕 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟒𝟏 ⋅ 𝟏𝟎−𝟑

2 2.87 ⋅ 10−2 ± 6.48 ⋅ 10−3 (−) 1.46 ⋅ 10−2 ± 5.57 ⋅ 10−3 (−) 1.10 ⋅ 10−2 ± 2.68 ⋅ 10−3 (−) 𝟓.𝟗𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟎𝟖 ⋅ 𝟏𝟎−𝟑

3 2.17 ⋅ 10−2 ± 3.41 ⋅ 10−3 (−) 1.40 ⋅ 10−2 ± 4.45 ⋅ 10−3 (−) 1.37 ⋅ 10−2 ± 5.00 ⋅ 10−3 (−) 𝟓.𝟐𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟐𝟐 ⋅ 𝟏𝟎−𝟑

4 1.56 ⋅ 10−2 ± 3.89 ⋅ 10−3 (−) 1.14 ⋅ 10−2 ± 2.67 ⋅ 10−3 (−) 1.46 ⋅ 10−2 ± 3.13 ⋅ 10−3 (−) 𝟔.𝟒𝟕 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟐𝟗 ⋅ 𝟏𝟎−𝟑

5 1.72 ⋅ 10−2 ± 3.94 ⋅ 10−3 (−) 1.20 ⋅ 10−2 ± 2.80 ⋅ 10−3 (−) 1.19 ⋅ 10−2 ± 2.65 ⋅ 10−3 (−) 𝟔.𝟔𝟎 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟏𝟐 ⋅ 𝟏𝟎−𝟑

6 1.38 ⋅ 10−2 ± 4.03 ⋅ 10−3 (−) 1.12 ⋅ 10−2 ± 2.78 ⋅ 10−3 (≈) 1.53 ⋅ 10−2 ± 4.81 ⋅ 10−3 (−) 𝟖.𝟖𝟓 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟔𝟐 ⋅ 𝟏𝟎−𝟑

10 1.20 ⋅ 10−2 ± 3.09 ⋅ 10−3 (≈) 1.07 ⋅ 10−2 ± 3.27 ⋅ 10−3 (≈) 1.56 ⋅ 10−2 ± 6.24 ⋅ 10−3 (−) 𝟏.𝟎𝟐 ⋅ 𝟏𝟎−𝟐 ± 𝟏.𝟓𝟑 ⋅ 𝟏𝟎−𝟑

20 1.14 ⋅ 10−2 ± 1.54 ⋅ 10−3 (≈) 𝟗.𝟖𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟎𝟎 ⋅ 𝟏𝟎−𝟑 (+) 1.55 ⋅ 10−2 ± 3.37 ⋅ 10−3 (≈) 1.36 ⋅ 10−2 ± 3.73 ⋅ 10−3

NBP 1 1.83 ⋅ 10−2 ± 2.50 ⋅ 10−3 (−) 1.82 ⋅ 10−2 ± 4.90 ⋅ 10−3 (−) 3.76 ⋅ 10−3 ± 1.78 ⋅ 10−4 (−) 𝟐.𝟑𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟗𝟒 ⋅ 𝟏𝟎−𝟓

2 2.32 ⋅ 10−2 ± 4.35 ⋅ 10−3 (−) 2.27 ⋅ 10−2 ± 2.88 ⋅ 10−3 (−) 3.64 ⋅ 10−3 ± 4.00 ⋅ 10−4 (−) 𝟐.𝟑𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟓.𝟔𝟒 ⋅ 𝟏𝟎−𝟓

3 2.00 ⋅ 10−2 ± 3.63 ⋅ 10−3 (−) 1.91 ⋅ 10−2 ± 1.80 ⋅ 10−3 (−) 3.64 ⋅ 10−3 ± 1.72 ⋅ 10−4 (−) 𝟐.𝟒𝟔 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟒𝟔 ⋅ 𝟏𝟎−𝟓

4 2.60 ⋅ 10−2 ± 4.15 ⋅ 10−3 (−) 2.13 ⋅ 10−2 ± 3.90 ⋅ 10−3 (−) 3.87 ⋅ 10−3 ± 2.37 ⋅ 10−4 (−) 𝟐.𝟒𝟓 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟖𝟕 ⋅ 𝟏𝟎−𝟓

5 2.23 ⋅ 10−2 ± 2.68 ⋅ 10−3 (−) 1.88 ⋅ 10−2 ± 2.01 ⋅ 10−3 (−) 4.41 ⋅ 10−3 ± 4.01 ⋅ 10−4 (−) 𝟐.𝟖𝟖 ⋅ 𝟏𝟎−𝟑 ± 𝟗.𝟔𝟒 ⋅ 𝟏𝟎−𝟓

6 2.09 ⋅ 10−2 ± 2.49 ⋅ 10−3 (−) 1.98 ⋅ 10−2 ± 3.48 ⋅ 10−3 (−) 4.03 ⋅ 10−3 ± 3.02 ⋅ 10−4 (−) 𝟑.𝟎𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟕.𝟑𝟕 ⋅ 𝟏𝟎−𝟓

10 2.11 ⋅ 10−2 ± 2.92 ⋅ 10−3 (−) 1.77 ⋅ 10−2 ± 2.28 ⋅ 10−3 (−) 5.38 ⋅ 10−3 ± 4.40 ⋅ 10−4 (−) 𝟑.𝟓𝟖 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟎𝟒 ⋅ 𝟏𝟎−𝟒

20 2.29 ⋅ 10−2 ± 3.26 ⋅ 10−3 (−) 1.94 ⋅ 10−2 ± 2.35 ⋅ 10−3 (−) 1.44 ⋅ 10−2 ± 3.86 ⋅ 10−3 (−) 𝟔.𝟎𝟗 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟏𝟗 ⋅ 𝟏𝟎−𝟒

(continued on next page)
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Table 4 (continued).
DBD 1 1.17 ⋅ 10−2 ± 3.63 ⋅ 10−3 (−) 2.43 ⋅ 10−2 ± 1.51 ⋅ 10−2 (−) 𝟏.𝟑𝟓 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟑𝟔 ⋅ 𝟏𝟎−𝟒 (+) 2.26 ⋅ 10−3 ± 1.40 ⋅ 10−3

2 1.41 ⋅ 10−2 ± 2.84 ⋅ 10−3 (−) 2.06 ⋅ 10−2 ± 4.21 ⋅ 10−3 (−) 𝟏.𝟐𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟒𝟗 ⋅ 𝟏𝟎−𝟒 (+) 4.29 ⋅ 10−3 ± 1.55 ⋅ 10−3

3 1.01 ⋅ 10−2 ± 1.49 ⋅ 10−3 (−) 2.01 ⋅ 10−2 ± 6.65 ⋅ 10−3 (−) 1.32 ⋅ 10−3 ± 3.12 ⋅ 10−4 (−) 𝟗.𝟔𝟎 ⋅ 𝟏𝟎−𝟒 ± 𝟓.𝟔𝟒 ⋅ 𝟏𝟎−𝟓

4 1.39 ⋅ 10−2 ± 2.75 ⋅ 10−3 (−) 1.69 ⋅ 10−2 ± 2.64 ⋅ 10−3 (−) 2.89 ⋅ 10−3 ± 1.54 ⋅ 10−3 (−) 𝟏.𝟏𝟖 ⋅ 𝟏𝟎−𝟑 ± 𝟒.𝟕𝟎 ⋅ 𝟏𝟎−𝟓

5 1.42 ⋅ 10−2 ± 4.50 ⋅ 10−3 (−) 1.75 ⋅ 10−2 ± 3.70 ⋅ 10−3 (−) 1.84 ⋅ 10−3 ± 1.04 ⋅ 10−3 (≈) 𝟏.𝟑𝟏 ⋅ 𝟏𝟎−𝟑 ± 𝟖.𝟒𝟓 ⋅ 𝟏𝟎−𝟓

6 1.07 ⋅ 10−2 ± 1.31 ⋅ 10−3 (−) 2.10 ⋅ 10−2 ± 8.34 ⋅ 10−3 (−) 𝟐.𝟎𝟖 ⋅ 𝟏𝟎−𝟑 ± 𝟕.𝟒𝟔 ⋅ 𝟏𝟎−𝟒 (≈) 2.21 ⋅ 10−3 ± 7.33 ⋅ 10−4

10 1.22 ⋅ 10−2 ± 2.49 ⋅ 10−3 (−) 1.72 ⋅ 10−2 ± 4.16 ⋅ 10−3 (−) 2.62 ⋅ 10−3 ± 5.78 ⋅ 10−4 (≈) 𝟐.𝟑𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟐𝟓 ⋅ 𝟏𝟎−𝟒

20 1.30 ⋅ 10−2 ± 3.30 ⋅ 10−3 (−) 2.06 ⋅ 10−2 ± 5.11 ⋅ 10−3 (−) 𝟑.𝟕𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟐𝟗 ⋅ 𝟏𝟎−𝟒 (+) 4.09 ⋅ 10−3 ± 3.45 ⋅ 10−4

SRD 1 4.42 ⋅ 10−3 ± 3.15 ⋅ 10−3 (≈) 1.86 ⋅ 10−2 ± 9.63 ⋅ 10−3 (−) 𝟔.𝟓𝟏 ⋅ 𝟏𝟎−𝟒 ± 𝟗.𝟕𝟎 ⋅ 𝟏𝟎−𝟓 (+) 2.45 ⋅ 10−3 ± 9.97 ⋅ 10−4

2 2.26 ⋅ 10−3 ± 1.37 ⋅ 10−3 (≈) 2.09 ⋅ 10−3 ± 7.84 ⋅ 10−4 (−) 𝟏.𝟐𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟑𝟏 ⋅ 𝟏𝟎−𝟒 (+) 1.40 ⋅ 10−3 ± 1.77 ⋅ 10−4

3 1.22 ⋅ 10−3 ± 4.50 ⋅ 10−4 (≈) 𝟏.𝟎𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟑𝟓 ⋅ 𝟏𝟎−𝟒 (+) 1.91 ⋅ 10−3 ± 1.38 ⋅ 10−4 (−) 1.50 ⋅ 10−3 ± 1.16 ⋅ 10−4

4 1.15 ⋅ 10−3 ± 1.29 ⋅ 10−4 (+) 𝟏.𝟎𝟗 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟔𝟒 ⋅ 𝟏𝟎−𝟒 (+) 2.11 ⋅ 10−3 ± 3.10 ⋅ 10−4 (−) 1.58 ⋅ 10−3 ± 1.41 ⋅ 10−4

5 1.09 ⋅ 10−3 ± 1.41 ⋅ 10−4 (+) 𝟗.𝟎𝟓 ⋅ 𝟏𝟎−𝟒 ± 𝟖.𝟒𝟑 ⋅ 𝟏𝟎−𝟓 (+) 2.20 ⋅ 10−3 ± 3.38 ⋅ 10−4 (−) 1.56 ⋅ 10−3 ± 9.89 ⋅ 10−5

6 1.13 ⋅ 10−3 ± 1.61 ⋅ 10−4 (+) 𝟗.𝟒𝟓 ⋅ 𝟏𝟎−𝟒 ± 𝟏.𝟏𝟗 ⋅ 𝟏𝟎−𝟒 (+) 2.27 ⋅ 10−3 ± 3.09 ⋅ 10−4 (−) 1.70 ⋅ 10−3 ± 1.29 ⋅ 10−4

10 1.19 ⋅ 10−3 ± 1.44 ⋅ 10−4 (+) 𝟗.𝟎𝟔 ⋅ 𝟏𝟎−𝟒 ± 𝟗.𝟕𝟐 ⋅ 𝟏𝟎−𝟓 (+) 2.95 ⋅ 10−3 ± 2.89 ⋅ 10−4 (−) 2.26 ⋅ 10−3 ± 2.06 ⋅ 10−4

20 1.25 ⋅ 10−3 ± 1.61 ⋅ 10−4 (+) 𝟏.𝟎𝟗 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟐𝟒 ⋅ 𝟏𝟎−𝟒 (+) 4.92 ⋅ 10−3 ± 4.88 ⋅ 10−4 (−) 3.20 ⋅ 10−3 ± 3.17 ⋅ 10−4

WB 1 2.57 ⋅ 10−1 ± 8.72 ⋅ 10−2 (−) 𝟐.𝟏𝟎 ⋅ 𝟏𝟎−𝟐 ± 𝟐.𝟖𝟗 ⋅ 𝟏𝟎−𝟐 (+) 7.51 ⋅ 10−2 ± 1.35 ⋅ 10−2 (−) 2.63 ⋅ 10−2 ± 2.92 ⋅ 10−3

2 1.10 ⋅ 10−1 ± 6.20 ⋅ 10−2 (−) 𝟏.𝟗𝟗 ⋅ 𝟏𝟎−𝟐 ± 𝟒.𝟎𝟕 ⋅ 𝟏𝟎−𝟑 (≈) 6.06 ⋅ 10−2 ± 2.23 ⋅ 10−2 (−) 2.65 ⋅ 10−2 ± 1.23 ⋅ 10−2

3 7.69 ⋅ 10−2 ± 5.10 ⋅ 10−2 (−) 𝟏.𝟒𝟕 ⋅ 𝟏𝟎−𝟐 ± 𝟒.𝟕𝟒 ⋅ 𝟏𝟎−𝟑 (+) 3.65 ⋅ 10−2 ± 1.71 ⋅ 10−2 (≈) 2.68 ⋅ 10−2 ± 7.70 ⋅ 10−3

4 4.66 ⋅ 10−2 ± 2.34 ⋅ 10−2 (≈) 𝟏.𝟒𝟖 ⋅ 𝟏𝟎−𝟐 ± 𝟐.𝟑𝟓 ⋅ 𝟏𝟎−𝟑 (+) 6.29 ⋅ 10−2 ± 2.13 ⋅ 10−2 (−) 2.92 ⋅ 10−2 ± 1.05 ⋅ 10−2

5 8.12 ⋅ 10−2 ± 8.78 ⋅ 10−2 (−) 𝟏.𝟓𝟗 ⋅ 𝟏𝟎−𝟐 ± 𝟑.𝟓𝟏 ⋅ 𝟏𝟎−𝟑 (+) 6.44 ⋅ 10−2 ± 3.21 ⋅ 10−2 (−) 2.74 ⋅ 10−2 ± 1.57 ⋅ 10−2

6 6.67 ⋅ 10−2 ± 4.83 ⋅ 10−2 (≈) 𝟏.𝟒𝟏 ⋅ 𝟏𝟎−𝟐 ± 𝟐.𝟓𝟏 ⋅ 𝟏𝟎−𝟑 (+) 7.32 ⋅ 10−2 ± 2.59 ⋅ 10−2 (−) 4.19 ⋅ 10−2 ± 2.31 ⋅ 10−2

10 5.06 ⋅ 10−2 ± 1.16 ⋅ 10−2 (≈) 𝟏.𝟑𝟑 ⋅ 𝟏𝟎−𝟐 ± 𝟑.𝟗𝟒 ⋅ 𝟏𝟎−𝟑 (+) 7.73 ⋅ 10−2 ± 2.58 ⋅ 10−2 (−) 4.89 ⋅ 10−2 ± 8.56 ⋅ 10−3

20 8.73 ⋅ 10−2 ± 1.03 ⋅ 10−1 (≈) 𝟏.𝟑𝟖 ⋅ 𝟏𝟎−𝟐 ± 𝟐.𝟕𝟎 ⋅ 𝟏𝟎−𝟑 (+) 7.29 ⋅ 10−2 ± 1.18 ⋅ 10−2 (≈) 6.47 ⋅ 10−2 ± 1.55 ⋅ 10−2

BICOP1 1 6.41 ⋅ 10−1 ± 2.12 ⋅ 10−1 (−) 6.35 ⋅ 10−1 ± 3.17 ⋅ 10−1 (−) 𝟐.𝟖𝟗 ⋅ 𝟏𝟎−𝟏 ± 𝟗.𝟐𝟏 ⋅ 𝟏𝟎−𝟐 (≈) 3.48 ⋅ 10−1 ± 7.81 ⋅ 10−2

2 3.58 ⋅ 10−2 ± 1.03 ⋅ 10−2 (+) 𝟑.𝟏𝟎 ⋅ 𝟏𝟎−𝟐 ± 𝟔.𝟗𝟖 ⋅ 𝟏𝟎−𝟑 (+) 2.45 ⋅ 10−1 ± 2.17 ⋅ 10−1 (≈) 1.23 ⋅ 10−1 ± 1.04 ⋅ 10−1

3 1.88 ⋅ 10−2 ± 5.26 ⋅ 10−3 (≈) 𝟏.𝟓𝟔 ⋅ 𝟏𝟎−𝟐 ± 𝟐.𝟓𝟔 ⋅ 𝟏𝟎−𝟑 (≈) 8.36 ⋅ 10−2 ± 1.34 ⋅ 10−1 (≈) 4.29 ⋅ 10−2 ± 4.04 ⋅ 10−2

4 1.26 ⋅ 10−2 ± 3.18 ⋅ 10−3 (≈) 𝟏.𝟏𝟓 ⋅ 𝟏𝟎−𝟐 ± 𝟐.𝟗𝟗 ⋅ 𝟏𝟎−𝟑 (+) 1.67 ⋅ 10−2 ± 5.16 ⋅ 10−3 (≈) 2.87 ⋅ 10−2 ± 3.66 ⋅ 10−2

5 8.76 ⋅ 10−3 ± 2.13 ⋅ 10−3 (+) 𝟖.𝟒𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟖𝟑 ⋅ 𝟏𝟎−𝟑 (+) 2.13 ⋅ 10−2 ± 6.69 ⋅ 10−3 (≈) 2.44 ⋅ 10−2 ± 7.39 ⋅ 10−3

6 6.67 ⋅ 10−3 ± 2.16 ⋅ 10−3 (+) 𝟔.𝟔𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟔𝟔 ⋅ 𝟏𝟎−𝟑 (+) 4.21 ⋅ 10−2 ± 1.06 ⋅ 10−2 (≈) 3.69 ⋅ 10−2 ± 8.02 ⋅ 10−3

10 𝟑.𝟑𝟖 ⋅ 𝟏𝟎−𝟑 ± 𝟓.𝟓𝟒 ⋅ 𝟏𝟎−𝟒 (+) 3.78 ⋅ 10−3 ± 9.19 ⋅ 10−4 (+) 1.03 ⋅ 10−1 ± 3.26 ⋅ 10−2 (≈) 9.08 ⋅ 10−2 ± 1.96 ⋅ 10−2

20 3.41 ⋅ 10−3 ± 4.23 ⋅ 10−4 (+) 𝟑.𝟑𝟔 ⋅ 𝟏𝟎−𝟑 ± 𝟒.𝟏𝟒 ⋅ 𝟏𝟎−𝟒 (+) 2.42 ⋅ 10−1 ± 6.91 ⋅ 10−2 (≈) 2.70 ⋅ 10−1 ± 5.84 ⋅ 10−2

BICOP2 1 1.83 ⋅ 10−1 ± 1.21 ⋅ 10−2 (−) 1.59 ⋅ 10−1 ± 2.57 ⋅ 10−2 (−) 7.70 ⋅ 10−2 ± 2.97 ⋅ 10−2 (−) 𝟐.𝟗𝟑 ⋅ 𝟏𝟎−𝟐 ± 𝟗.𝟑𝟎 ⋅ 𝟏𝟎−𝟑

2 1.73 ⋅ 10−1 ± 3.16 ⋅ 10−2 (−) 1.07 ⋅ 10−1 ± 2.61 ⋅ 10−2 (−) 7.41 ⋅ 10−2 ± 3.19 ⋅ 10−2 (−) 𝟏.𝟔𝟎 ⋅ 𝟏𝟎−𝟐 ± 𝟏.𝟕𝟕 ⋅ 𝟏𝟎−𝟐

3 1.58 ⋅ 10−1 ± 2.53 ⋅ 10−2 (−) 1.28 ⋅ 10−1 ± 4.18 ⋅ 10−2 (−) 7.19 ⋅ 10−2 ± 3.52 ⋅ 10−2 (−) 𝟐.𝟑𝟏 ⋅ 𝟏𝟎−𝟐 ± 𝟑.𝟐𝟓 ⋅ 𝟏𝟎−𝟐

4 1.63 ⋅ 10−1 ± 2.98 ⋅ 10−2 (−) 1.17 ⋅ 10−1 ± 4.08 ⋅ 10−2 (−) 7.00 ⋅ 10−2 ± 4.01 ⋅ 10−2 (≈) 𝟓.𝟔𝟏 ⋅ 𝟏𝟎−𝟐 ± 𝟒.𝟕𝟏 ⋅ 𝟏𝟎−𝟐

5 1.61 ⋅ 10−1 ± 2.69 ⋅ 10−2 (−) 1.08 ⋅ 10−1 ± 3.34 ⋅ 10−2 (≈) 𝟒.𝟕𝟖 ⋅ 𝟏𝟎−𝟐 ± 𝟏.𝟐𝟏 ⋅ 𝟏𝟎−𝟐 (≈) 7.25 ⋅ 10−2 ± 4.46 ⋅ 10−2

6 1.59 ⋅ 10−1 ± 2.69 ⋅ 10−2 (−) 1.26 ⋅ 10−1 ± 3.67 ⋅ 10−2 (−) 𝟒.𝟒𝟔 ⋅ 𝟏𝟎−𝟐 ± 𝟖.𝟐𝟓 ⋅ 𝟏𝟎−𝟑 (≈) 7.96 ⋅ 10−2 ± 4.29 ⋅ 10−2

10 1.30 ⋅ 10−1 ± 3.10 ⋅ 10−2 (−) 1.35 ⋅ 10−1 ± 3.17 ⋅ 10−2 (−) 5.90 ⋅ 10−2 ± 1.55 ⋅ 10−2 (≈) 𝟓.𝟔𝟖 ⋅ 𝟏𝟎−𝟐 ± 𝟐.𝟗𝟐 ⋅ 𝟏𝟎−𝟐

20 1.35 ⋅ 10−1 ± 3.16 ⋅ 10−2 (−) 1.29 ⋅ 10−1 ± 3.42 ⋅ 10−2 (−) 7.75 ⋅ 10−2 ± 1.54 ⋅ 10−2 (−) 𝟑.𝟕𝟔 ⋅ 𝟏𝟎−𝟐 ± 𝟏.𝟎𝟎 ⋅ 𝟏𝟎−𝟐

MW1 1 1.00 ⋅ 10+0 ± 0.00 ⋅ 10+0 (−) 1.05 ⋅ 10−1 ± 3.91 ⋅ 10−2 (−) 7.18 ⋅ 10−1 ± 3.04 ⋅ 10−1 (−) 𝟔.𝟎𝟗 ⋅ 𝟏𝟎−𝟒 ± 𝟕.𝟔𝟐 ⋅ 𝟏𝟎−𝟓

2 1.46 ⋅ 10−1 ± 7.65 ⋅ 10−2 (−) 4.35 ⋅ 10−2 ± 3.54 ⋅ 10−3 (−) 2.11 ⋅ 10−1 ± 1.19 ⋅ 10−1 (−) 𝟔.𝟒𝟎 ⋅ 𝟏𝟎−𝟒 ± 𝟏.𝟎𝟐 ⋅ 𝟏𝟎−𝟒

3 9.49 ⋅ 10−2 ± 4.32 ⋅ 10−2 (−) 4.30 ⋅ 10−2 ± 7.40 ⋅ 10−3 (−) 8.58 ⋅ 10−2 ± 7.18 ⋅ 10−2 (−) 𝟕.𝟓𝟕 ⋅ 𝟏𝟎−𝟒 ± 𝟏.𝟗𝟗 ⋅ 𝟏𝟎−𝟒

4 5.70 ⋅ 10−2 ± 3.73 ⋅ 10−2 (−) 3.46 ⋅ 10−2 ± 7.84 ⋅ 10−3 (−) 2.32 ⋅ 10−1 ± 2.49 ⋅ 10−1 (−) 𝟗.𝟖𝟕 ⋅ 𝟏𝟎−𝟒 ± 𝟏.𝟓𝟓 ⋅ 𝟏𝟎−𝟒

5 3.47 ⋅ 10−2 ± 1.34 ⋅ 10−2 (−) 2.42 ⋅ 10−2 ± 4.97 ⋅ 10−3 (−) 2.38 ⋅ 10−1 ± 2.47 ⋅ 10−1 (−) 𝟏.𝟎𝟕 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟓𝟒 ⋅ 𝟏𝟎−𝟒

6 2.97 ⋅ 10−2 ± 1.20 ⋅ 10−2 (−) 1.47 ⋅ 10−2 ± 2.61 ⋅ 10−3 (−) 1.45 ⋅ 10−1 ± 1.31 ⋅ 10−1 (−) 𝟏.𝟒𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟓𝟒 ⋅ 𝟏𝟎−𝟒

10 3.23 ⋅ 10−2 ± 2.70 ⋅ 10−2 (−) 9.65 ⋅ 10−3 ± 1.91 ⋅ 10−3 (−) 2.63 ⋅ 10−1 ± 1.70 ⋅ 10−1 (−) 𝟐.𝟑𝟏 ⋅ 𝟏𝟎−𝟑 ± 𝟖.𝟖𝟎 ⋅ 𝟏𝟎−𝟒

20 1.74 ⋅ 10−2 ± 1.23 ⋅ 10−2 (≈) 𝟖.𝟎𝟔 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟏𝟒 ⋅ 𝟏𝟎−𝟑 (≈) 1.91 ⋅ 10−1 ± 1.24 ⋅ 10−1 (≈) 1.81 ⋅ 10−1 ± 2.22 ⋅ 10−1

MW2 1 7.92 ⋅ 10−1 ± 2.55 ⋅ 10−1 (−) 𝟑.𝟖𝟒 ⋅ 𝟏𝟎−𝟐 ± 𝟗.𝟑𝟎 ⋅ 𝟏𝟎−𝟑 (+) 3.14 ⋅ 10−1 ± 9.67 ⋅ 10−2 (−) 6.63 ⋅ 10−2 ± 1.40 ⋅ 10−2

2 1.87 ⋅ 10−1 ± 7.99 ⋅ 10−2 (−) 𝟑.𝟎𝟑 ⋅ 𝟏𝟎−𝟐 ± 𝟑.𝟔𝟐 ⋅ 𝟏𝟎−𝟑 (+) 3.06 ⋅ 10−1 ± 1.95 ⋅ 10−1 (−) 4.20 ⋅ 10−2 ± 1.15 ⋅ 10−2

3 1.39 ⋅ 10−1 ± 7.28 ⋅ 10−2 (−) 𝟐.𝟔𝟑 ⋅ 𝟏𝟎−𝟐 ± 𝟓.𝟒𝟗 ⋅ 𝟏𝟎−𝟑 (+) 2.74 ⋅ 10−1 ± 1.28 ⋅ 10−1 (−) 5.89 ⋅ 10−2 ± 4.97 ⋅ 10−2

4 9.77 ⋅ 10−2 ± 6.52 ⋅ 10−2 (≈) 𝟐.𝟓𝟗 ⋅ 𝟏𝟎−𝟐 ± 𝟓.𝟓𝟏 ⋅ 𝟏𝟎−𝟑 (+) 3.02 ⋅ 10−1 ± 1.31 ⋅ 10−1 (−) 1.00 ⋅ 10−1 ± 5.85 ⋅ 10−2

5 1.12 ⋅ 10−1 ± 7.36 ⋅ 10−2 (≈) 𝟐.𝟒𝟓 ⋅ 𝟏𝟎−𝟐 ± 𝟓.𝟏𝟒 ⋅ 𝟏𝟎−𝟑 (+) 3.25 ⋅ 10−1 ± 1.44 ⋅ 10−1 (−) 6.08 ⋅ 10−2 ± 3.79 ⋅ 10−2

6 1.08 ⋅ 10−1 ± 7.13 ⋅ 10−2 (−) 𝟐.𝟒𝟖 ⋅ 𝟏𝟎−𝟐 ± 𝟓.𝟓𝟐 ⋅ 𝟏𝟎−𝟑 (+) 3.52 ⋅ 10−1 ± 1.57 ⋅ 10−1 (−) 5.54 ⋅ 10−2 ± 3.19 ⋅ 10−2

10 1.21 ⋅ 10−1 ± 8.27 ⋅ 10−2 (≈) 𝟐.𝟑𝟒 ⋅ 𝟏𝟎−𝟐 ± 𝟔.𝟖𝟒 ⋅ 𝟏𝟎−𝟑 (+) 4.05 ⋅ 10−1 ± 1.08 ⋅ 10−1 (−) 7.55 ⋅ 10−2 ± 2.99 ⋅ 10−2

20 1.21 ⋅ 10−1 ± 7.84 ⋅ 10−2 (≈) 𝟐.𝟏𝟓 ⋅ 𝟏𝟎−𝟐 ± 𝟓.𝟗𝟖 ⋅ 𝟏𝟎−𝟑 (+) 3.82 ⋅ 10−1 ± 1.54 ⋅ 10−1 (−) 1.04 ⋅ 10−1 ± 3.26 ⋅ 10−2

MW3 1 6.07 ⋅ 10−1 ± 3.85 ⋅ 10−1 (−) 2.33 ⋅ 10−2 ± 4.57 ⋅ 10−3 (−) 4.14 ⋅ 10−2 ± 1.26 ⋅ 10−2 (−) 𝟐.𝟓𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟓.𝟏𝟏 ⋅ 𝟏𝟎−𝟒

2 2.70 ⋅ 10−2 ± 8.21 ⋅ 10−3 (−) 1.70 ⋅ 10−2 ± 1.75 ⋅ 10−3 (−) 2.40 ⋅ 10−2 ± 4.48 ⋅ 10−3 (−) 𝟏.𝟕𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟖.𝟑𝟔 ⋅ 𝟏𝟎−𝟒

3 1.78 ⋅ 10−2 ± 3.25 ⋅ 10−3 (−) 1.32 ⋅ 10−2 ± 1.40 ⋅ 10−3 (−) 1.32 ⋅ 10−2 ± 5.51 ⋅ 10−3 (−) 𝟏.𝟑𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟐𝟗 ⋅ 𝟏𝟎−𝟒

4 1.73 ⋅ 10−2 ± 1.18 ⋅ 10−3 (−) 1.12 ⋅ 10−2 ± 1.58 ⋅ 10−3 (−) 6.28 ⋅ 10−3 ± 2.94 ⋅ 10−3 (−) 𝟏.𝟒𝟎 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟏𝟐 ⋅ 𝟏𝟎−𝟒

5 1.55 ⋅ 10−2 ± 2.82 ⋅ 10−3 (−) 9.62 ⋅ 10−3 ± 1.17 ⋅ 10−3 (−) 6.39 ⋅ 10−3 ± 1.92 ⋅ 10−3 (−) 𝟏.𝟗𝟑 ⋅ 𝟏𝟎−𝟑 ± 𝟒.𝟓𝟑 ⋅ 𝟏𝟎−𝟒

6 1.67 ⋅ 10−2 ± 1.46 ⋅ 10−3 (−) 8.82 ⋅ 10−3 ± 1.96 ⋅ 10−3 (−) 7.27 ⋅ 10−3 ± 2.02 ⋅ 10−3 (−) 𝟏.𝟗𝟕 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟐𝟑 ⋅ 𝟏𝟎−𝟒

10 1.38 ⋅ 10−2 ± 1.98 ⋅ 10−3 (−) 7.04 ⋅ 10−3 ± 5.85 ⋅ 10−4 (−) 1.03 ⋅ 10−2 ± 1.12 ⋅ 10−3 (−) 𝟐.𝟗𝟏 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟏𝟎 ⋅ 𝟏𝟎−𝟒

20 1.41 ⋅ 10−2 ± 2.59 ⋅ 10−3 (−) 7.15 ⋅ 10−3 ± 5.79 ⋅ 10−4 (−) 1.43 ⋅ 10−2 ± 1.63 ⋅ 10−3 (−) 𝟓.𝟏𝟗 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟔𝟓 ⋅ 𝟏𝟎−𝟒

MW11 1 3.79 ⋅ 10−1 ± 2.23 ⋅ 10−1 (−) 𝟑.𝟓𝟎 ⋅ 𝟏𝟎−𝟐 ± 𝟖.𝟑𝟖 ⋅ 𝟏𝟎−𝟑 (+) 1.75 ⋅ 10−1 ± 2.77 ⋅ 10−1 (≈) 7.91 ⋅ 10−2 ± 3.33 ⋅ 10−2

2 1.02 ⋅ 10−1 ± 9.49 ⋅ 10−2 (≈) 𝟐.𝟏𝟓 ⋅ 𝟏𝟎−𝟐 ± 𝟒.𝟐𝟕 ⋅ 𝟏𝟎−𝟑 (+) 1.65 ⋅ 10−1 ± 1.00 ⋅ 10−1 (−) 6.79 ⋅ 10−2 ± 2.65 ⋅ 10−2

3 1.59 ⋅ 10−1 ± 1.21 ⋅ 10−1 (−) 1.88 ⋅ 10−2 ± 3.75 ⋅ 10−3 (−) 1.30 ⋅ 10−1 ± 7.44 ⋅ 10−2 (−) 𝟔.𝟗𝟔 ⋅ 𝟏𝟎−𝟑 ± 𝟒.𝟗𝟓 ⋅ 𝟏𝟎−𝟑

4 1.99 ⋅ 10−1 ± 1.33 ⋅ 10−1 (−) 1.50 ⋅ 10−2 ± 2.65 ⋅ 10−3 (−) 1.44 ⋅ 10−1 ± 8.01 ⋅ 10−2 (−) 𝟒.𝟕𝟖 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟑𝟏 ⋅ 𝟏𝟎−𝟑

5 1.93 ⋅ 10−1 ± 1.31 ⋅ 10−1 (−) 1.49 ⋅ 10−2 ± 2.39 ⋅ 10−3 (−) 1.33 ⋅ 10−1 ± 8.63 ⋅ 10−2 (−) 𝟒.𝟑𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟔.𝟓𝟏 ⋅ 𝟏𝟎−𝟒

6 2.62 ⋅ 10−1 ± 9.96 ⋅ 10−2 (−) 1.26 ⋅ 10−2 ± 2.12 ⋅ 10−3 (−) 1.53 ⋅ 10−1 ± 1.09 ⋅ 10−1 (−) 𝟒.𝟐𝟗 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟏𝟒 ⋅ 𝟏𝟎−𝟑

10 2.31 ⋅ 10−1 ± 1.23 ⋅ 10−1 (−) 9.83 ⋅ 10−3 ± 1.40 ⋅ 10−3 (−) 2.50 ⋅ 10−1 ± 8.82 ⋅ 10−2 (−) 𝟒.𝟏𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟎𝟎 ⋅ 𝟏𝟎−𝟑

20 3.02 ⋅ 10−1 ± 8.69 ⋅ 10−2 (−) 9.72 ⋅ 10−3 ± 1.20 ⋅ 10−3 (−) 2.28 ⋅ 10−1 ± 1.66 ⋅ 10−2 (−) 𝟖.𝟎𝟕 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟑𝟏 ⋅ 𝟏𝟎−𝟑

(continued on next page)
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Table 4 (continued).
TRICOP 1 6.21 ⋅ 10−2 ± 2.49 ⋅ 10−2 (−) 4.96 ⋅ 10−2 ± 1.36 ⋅ 10−2 (−) 1.04 ⋅ 10−2 ± 5.92 ⋅ 10−5 (≈) 𝟏.𝟎𝟑 ⋅ 𝟏𝟎−𝟐 ± 𝟓.𝟏𝟒 ⋅ 𝟏𝟎−𝟒

2 9.52 ⋅ 10−2 ± 1.90 ⋅ 10−2 (−) 4.90 ⋅ 10−2 ± 9.31 ⋅ 10−3 (−) 1.08 ⋅ 10−2 ± 2.23 ⋅ 10−4 (≈) 𝟏.𝟎𝟓 ⋅ 𝟏𝟎−𝟐 ± 𝟓.𝟓𝟐 ⋅ 𝟏𝟎−𝟒

3 8.17 ⋅ 10−2 ± 2.51 ⋅ 10−2 (−) 3.97 ⋅ 10−2 ± 5.04 ⋅ 10−3 (−) 𝟗.𝟖𝟖 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟒𝟏 ⋅ 𝟏𝟎−𝟒 (+) 1.06 ⋅ 10−2 ± 4.73 ⋅ 10−4

4 7.72 ⋅ 10−2 ± 2.22 ⋅ 10−2 (−) 4.02 ⋅ 10−2 ± 6.24 ⋅ 10−3 (−) 𝟏.𝟎𝟐 ⋅ 𝟏𝟎−𝟐 ± 𝟑.𝟖𝟓 ⋅ 𝟏𝟎−𝟒 (+) 1.07 ⋅ 10−2 ± 4.01 ⋅ 10−4

5 8.22 ⋅ 10−2 ± 1.90 ⋅ 10−2 (−) 3.68 ⋅ 10−2 ± 2.98 ⋅ 10−3 (−) 𝟗.𝟕𝟓 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟑𝟒 ⋅ 𝟏𝟎−𝟒 (≈) 9.99 ⋅ 10−3 ± 4.32 ⋅ 10−4

6 7.11 ⋅ 10−2 ± 2.22 ⋅ 10−2 (−) 3.76 ⋅ 10−2 ± 4.30 ⋅ 10−3 (−) 𝟏.𝟎𝟐 ⋅ 𝟏𝟎−𝟐 ± 𝟒.𝟎𝟒 ⋅ 𝟏𝟎−𝟒 (≈) 1.03 ⋅ 10−2 ± 6.96 ⋅ 10−4

10 6.58 ⋅ 10−2 ± 2.09 ⋅ 10−2 (−) 3.18 ⋅ 10−2 ± 4.24 ⋅ 10−3 (−) 𝟗.𝟖𝟕 ⋅ 𝟏𝟎−𝟑 ± 𝟑.𝟓𝟑 ⋅ 𝟏𝟎−𝟒 (≈) 9.98 ⋅ 10−3 ± 3.69 ⋅ 10−4

20 4.62 ⋅ 10−2 ± 1.10 ⋅ 10−2 (−) 2.63 ⋅ 10−2 ± 3.19 ⋅ 10−3 (−) 1.21 ⋅ 10−2 ± 6.52 ⋅ 10−4 (≈) 𝟏.𝟐𝟎 ⋅ 𝟏𝟎−𝟐 ± 𝟓.𝟎𝟐 ⋅ 𝟏𝟎−𝟒

SPD 1 5.95 ⋅ 10−2 ± 3.31 ⋅ 10−3 (−) 6.46 ⋅ 10−2 ± 5.16 ⋅ 10−3 (−) 1.55 ⋅ 10−2 ± 9.35 ⋅ 10−4 (−) 𝟖.𝟕𝟖 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟔𝟖 ⋅ 𝟏𝟎−𝟒

2 6.75 ⋅ 10−2 ± 9.27 ⋅ 10−3 (−) 5.78 ⋅ 10−2 ± 3.81 ⋅ 10−3 (−) 1.33 ⋅ 10−2 ± 1.15 ⋅ 10−3 (−) 𝟖.𝟔𝟐 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟎𝟎 ⋅ 𝟏𝟎−𝟒

3 6.02 ⋅ 10−2 ± 4.04 ⋅ 10−3 (−) 5.73 ⋅ 10−2 ± 5.38 ⋅ 10−3 (−) 1.22 ⋅ 10−2 ± 4.52 ⋅ 10−4 (−) 𝟖.𝟔𝟏 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟓𝟓 ⋅ 𝟏𝟎−𝟒

4 6.37 ⋅ 10−2 ± 5.26 ⋅ 10−3 (−) 6.03 ⋅ 10−2 ± 4.45 ⋅ 10−3 (−) 1.21 ⋅ 10−2 ± 3.87 ⋅ 10−4 (−) 𝟖.𝟖𝟒 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟕𝟖 ⋅ 𝟏𝟎−𝟒

5 5.96 ⋅ 10−2 ± 5.43 ⋅ 10−3 (−) 5.95 ⋅ 10−2 ± 7.26 ⋅ 10−3 (−) 1.29 ⋅ 10−2 ± 5.93 ⋅ 10−4 (−) 𝟖.𝟕𝟕 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟓𝟒 ⋅ 𝟏𝟎−𝟒

6 5.78 ⋅ 10−2 ± 2.68 ⋅ 10−3 (−) 5.87 ⋅ 10−2 ± 3.80 ⋅ 10−3 (−) 1.28 ⋅ 10−2 ± 5.15 ⋅ 10−4 (−) 𝟗.𝟏𝟗 ⋅ 𝟏𝟎−𝟑 ± 𝟏.𝟗𝟏 ⋅ 𝟏𝟎−𝟒

10 5.90 ⋅ 10−2 ± 3.95 ⋅ 10−3 (−) 5.93 ⋅ 10−2 ± 5.02 ⋅ 10−3 (−) 1.51 ⋅ 10−2 ± 8.73 ⋅ 10−4 (−) 𝟗.𝟔𝟖 ⋅ 𝟏𝟎−𝟑 ± 𝟐.𝟏𝟗 ⋅ 𝟏𝟎−𝟒

20 5.89 ⋅ 10−2 ± 6.15 ⋅ 10−3 (−) 6.10 ⋅ 10−2 ± 4.56 ⋅ 10−3 (−) 1.84 ⋅ 10−2 ± 1.02 ⋅ 10−3 (−) 𝟏.𝟑𝟎 ⋅ 𝟏𝟎−𝟐 ± 𝟑.𝟑𝟒 ⋅ 𝟏𝟎−𝟒

CSI 1 6.04 ⋅ 10−2 ± 3.48 ⋅ 10−3 (−) 1.10 ⋅ 10−1 ± 1.53 ⋅ 10−2 (−) 1.91 ⋅ 10−2 ± 2.07 ⋅ 10−3 (≈) 𝟏.𝟖𝟐 ⋅ 𝟏𝟎−𝟐 ± 𝟐.𝟔𝟗 ⋅ 𝟏𝟎−𝟑

2 6.82 ⋅ 10−2 ± 5.25 ⋅ 10−3 (−) 7.00 ⋅ 10−2 ± 3.47 ⋅ 10−3 (−) 1.60 ⋅ 10−2 ± 5.08 ⋅ 10−4 (−) 𝟏.𝟓𝟓 ⋅ 𝟏𝟎−𝟐 ± 𝟒.𝟗𝟓 ⋅ 𝟏𝟎−𝟒

3 6.37 ⋅ 10−2 ± 4.53 ⋅ 10−3 (−) 6.82 ⋅ 10−2 ± 6.44 ⋅ 10−3 (−) 1.54 ⋅ 10−2 ± 5.45 ⋅ 10−4 (−) 𝟏.𝟒𝟖 ⋅ 𝟏𝟎−𝟐 ± 𝟐.𝟒𝟓 ⋅ 𝟏𝟎−𝟒

4 6.78 ⋅ 10−2 ± 3.57 ⋅ 10−3 (−) 6.84 ⋅ 10−2 ± 3.28 ⋅ 10−3 (−) 1.61 ⋅ 10−2 ± 4.98 ⋅ 10−4 (−) 𝟏.𝟓𝟒 ⋅ 𝟏𝟎−𝟐 ± 𝟑.𝟏𝟏 ⋅ 𝟏𝟎−𝟒

5 6.93 ⋅ 10−2 ± 3.22 ⋅ 10−3 (−) 6.81 ⋅ 10−2 ± 7.55 ⋅ 10−3 (−) 1.60 ⋅ 10−2 ± 4.18 ⋅ 10−4 (−) 𝟏.𝟓𝟓 ⋅ 𝟏𝟎−𝟐 ± 𝟑.𝟒𝟏 ⋅ 𝟏𝟎−𝟒

6 6.75 ⋅ 10−2 ± 3.50 ⋅ 10−3 (−) 6.59 ⋅ 10−2 ± 4.40 ⋅ 10−3 (−) 1.64 ⋅ 10−2 ± 3.98 ⋅ 10−4 (≈) 𝟏.𝟔𝟏 ⋅ 𝟏𝟎−𝟐 ± 𝟓.𝟏𝟖 ⋅ 𝟏𝟎−𝟒

10 6.45 ⋅ 10−2 ± 5.78 ⋅ 10−3 (−) 6.60 ⋅ 10−2 ± 2.35 ⋅ 10−3 (−) 2.03 ⋅ 10−2 ± 7.23 ⋅ 10−4 (≈) 𝟐.𝟎𝟎 ⋅ 𝟏𝟎−𝟐 ± 𝟓.𝟐𝟐 ⋅ 𝟏𝟎−𝟒

20 7.03 ⋅ 10−2 ± 7.85 ⋅ 10−3 (−) 6.45 ⋅ 10−2 ± 5.63 ⋅ 10−3 (−) 𝟑.𝟕𝟖 ⋅ 𝟏𝟎−𝟐 ± 𝟑.𝟔𝟖 ⋅ 𝟏𝟎−𝟑 (≈) 3.94 ⋅ 10−2 ± 1.83 ⋅ 10−3

WP 1 2.77 ⋅ 10−1 ± 6.16 ⋅ 10−2 (−) 2.82 ⋅ 10−1 ± 4.32 ⋅ 10−2 (−) 𝟐.𝟗𝟐 ⋅ 𝟏𝟎−𝟐 ± 𝟗.𝟔𝟔 ⋅ 𝟏𝟎−𝟒 (≈) 2.96 ⋅ 10−2 ± 1.52 ⋅ 10−3

2 2.11 ⋅ 10−1 ± 2.80 ⋅ 10−2 (−) 2.19 ⋅ 10−1 ± 5.69 ⋅ 10−2 (−) 𝟐.𝟖𝟓 ⋅ 𝟏𝟎−𝟐 ± 𝟒.𝟔𝟐 ⋅ 𝟏𝟎−𝟒 (+) 3.00 ⋅ 10−2 ± 9.23 ⋅ 10−4

3 1.92 ⋅ 10−1 ± 2.40 ⋅ 10−2 (−) 2.02 ⋅ 10−1 ± 3.50 ⋅ 10−2 (−) 𝟑.𝟎𝟑 ⋅ 𝟏𝟎−𝟐 ± 𝟗.𝟔𝟕 ⋅ 𝟏𝟎−𝟒 (≈) 3.07 ⋅ 10−2 ± 1.21 ⋅ 10−3

4 1.79 ⋅ 10−1 ± 2.15 ⋅ 10−2 (−) 1.99 ⋅ 10−1 ± 2.96 ⋅ 10−2 (−) 2.97 ⋅ 10−2 ± 1.43 ⋅ 10−3 (≈) 𝟐.𝟗𝟒 ⋅ 𝟏𝟎−𝟐 ± 𝟗.𝟓𝟔 ⋅ 𝟏𝟎−𝟒

5 1.82 ⋅ 10−1 ± 2.65 ⋅ 10−2 (−) 1.93 ⋅ 10−1 ± 3.50 ⋅ 10−2 (−) 𝟐.𝟗𝟕 ⋅ 𝟏𝟎−𝟐 ± 𝟕.𝟎𝟖 ⋅ 𝟏𝟎−𝟒 (≈) 3.08 ⋅ 10−2 ± 1.36 ⋅ 10−3

6 1.61 ⋅ 10−1 ± 1.77 ⋅ 10−2 (−) 1.94 ⋅ 10−1 ± 4.62 ⋅ 10−2 (−) 𝟐.𝟗𝟓 ⋅ 𝟏𝟎−𝟐 ± 𝟒.𝟕𝟓 ⋅ 𝟏𝟎−𝟒 (+) 3.15 ⋅ 10−2 ± 1.15 ⋅ 10−3

10 1.50 ⋅ 10−1 ± 3.08 ⋅ 10−2 (−) 1.76 ⋅ 10−1 ± 3.03 ⋅ 10−2 (−) 3.45 ⋅ 10−2 ± 1.80 ⋅ 10−3 (−) 𝟑.𝟎𝟗 ⋅ 𝟏𝟎−𝟐 ± 𝟏.𝟏𝟒 ⋅ 𝟏𝟎−𝟑

20 1.57 ⋅ 10−1 ± 2.86 ⋅ 10−2 (−) 1.70 ⋅ 10−1 ± 3.11 ⋅ 10−2 (−) 3.38 ⋅ 10−2 ± 9.03 ⋅ 10−4 (≈) 𝟑.𝟑𝟓 ⋅ 𝟏𝟎−𝟐 ± 𝟏.𝟎𝟏 ⋅ 𝟏𝟎−𝟑

Wilcoxon test
summary

148 − 17 ≈ 11+ 139 − 6 ≈ 31+ 99 − 66 ≈ 11+ Reference algorithm (176 com-
parisons)

Mean Friedman
rank

3.33 2.77 2.33 1.56
Fig. 4. Empirical Cumulative Distribution Functions of IGD+ performance metric for SA-NSGA-II, IC-SA-NSGA-II, SAMO-COBRA and IC-SAMO-COBRA. All experiments with different
numbers of candidate solutions per iteration and on different test functions are aggregated.
plot on the TBTD test function is given as an example, with all re-
sults per algorithm aggregated. The dark areas mark where the two
algorithms obtained different results. As can be seen, the IOC-SAMO-
COBRA algorithm manages to find the minimum values of objective 2
on the Pareto frontier, while IC-SA-NSGA-II found smaller values for
objective 1. The EAF plots of other two objective test functions can be
found in Appendix.
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6.4. Discussion

Tables 3 and 4 show that IOC-SAMO-COBRA performs better in
most cases compared to the other algorithms. The ECDF plot (Fig. 3)
also shows that the algorithm on average also finds good solutions
faster since it is able to reach a higher portion of the run target pairs.
The EAF different plots from Appendix also show in most cases that
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Fig. 5. Visualization of the Empirical Attainment Function differences between IC-SA-NSGA-II and the IOC-SAMO-COBRA algorithm on the TBTD problem. The solid, dashed and
solid lines from left to right represent the best, median and worst found Pareto frontier of both algorithms combined. The gray level in the plots encodes the probability that the
corresponding algorithm outperforms the other algorithm in that region. In objective 1, IC-SA-NSGA-II finds smaller values while in objective 2, IOC-SAMO-COBRA finds smaller
values.
Fig. 6. Longitudinal section and top view of cargo vessel design optimized for damage stability (survivability) and cargo hold capacity (both to be maximized). The pink
compartments (1) annotates the cargo hold, the red compartments (2) are fuel tanks, the green compartments (3) are water ballast tanks, the orange compartments (4) are the
technical spaces, and the blue compartments (5) are part of the crew accommodation.
IOC-SAMO-COBRA finds solutions closer to the Pareto frontier com-
pared to IC-SA-NSGA-II algorithm. However, two things become ap-
parent when all results are analyzed in more detail. (1) IC-SA-NSGA-II
significantly outperforms the IOC-SAMO-COBRA algorithm on the BI-
COP1 and MW2 test problems. BICOP1 and MW2 do not have any
active constraints on the Pareto front and the difference between
the performances of the algorithms becomes even larger when the
number of candidate solutions per iteration increases. This indicates
that IC-SA-NSGA-II has more difficulty finding feasible solutions on the
Pareto fronts with active constraints and IOC-SAMO-COBRA is directed
too much towards the constraint boundaries and has more difficulty
finding the Pareto front if the Pareto front is unconstrained. (2) For
test problems with a very low feasibility ratio (MW1, MW2, MW3,
and MW11) the IC-SA-NSGA-II and IOC-SAMO-COBRA significantly
outperform their original counterparts where the constraint functions
are not directly used in the algorithm. In a few algorithm runs on
the MW test functions not a single feasible solution was found. This
indicates that the more strict the constraints are, the more beneficial
it is to directly use the constraints instead of attempting to learn them
with surrogates.
14
7. Cargo vessel design application

As a real-world application example, the mid-ship section of a
single-hold general cargo vessel design3 as presented in Fig. 6 is op-
timized for two conflicting objectives: stability (↑ max) after potential
damage (survivability), and cargo hold capacity (↑ max). Besides the
conflicting objectives, the problem has three volumetric constraints and
one regulatory constraint:

• Volumetric: The two fuel tanks should be of sufficient size so that
enough fuel can be stored and the technical space should be large
enough to host the equipment.

• Regulatory: The attained damage stability index (survivability)
score should be larger compared to the required damage stability
index.

The objectives and constraints depend on 17 geometric parameters,
which influence the longitudinal and transversal positioning of the

3 Figure courtesy of C-Job Naval Architects, Hoofddorp, Netherlands.
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bulkheads and the heights of openings. The bulkheads split the different
compartments and tanks together with the height of decks and openings
in the vicinity of the cargo hold. The evaluation of the damage stability
(survivability) objective and the corresponding comparison between
the required damage stability constraint is computationally expensive.
Evaluation of the damage stability index requires a run of the com-
mercial maritime simulator Delftship pro.4 The volumetric objective
nd the three volumetric constraints are inexpensive to evaluate and
an be computed much faster compared to fitting and interpolating an
BF surrogate. The inexpensive constraints and objective are therefore
irectly used in the IOC-SAMO-COBRA algorithm while for the expen-
ive objective and constraint, RBF surrogates are updated and selected
very iteration. More details about the ship design problem are given
n [75,76].

On this real-world problem, we perform the following three exper-
ments:

1. IOC-SAMO-COBRA with number of candidate solutions per iter-
ation 𝑝 = 1 and 300 function evaluations.

2. IOC-SAMO-COBRA with number of candidate solutions per iter-
ation 𝑝 = 3 and 501 function evaluations.

3. SA-NSGA-II with number of candidate solutions per iteration
𝑝 = 3 and 501 function evaluations.

he experiments with 𝑝 = 3 aim at investigating the potential benefit of
arallelism in terms of wall-clock time provided that the corresponding
umber of simulator licenses is available. The IGD+ metric cannot be
omputed for this design problem since the Pareto front is unknown,
herefore the HV metric is used to compare the performance of SA-
SGA-II and IOC-SAMO-COBRA. IC-SA-NSGA-II is not experimented
ith since one of the constraints is expensive to evaluate, and IC-
A-NSGA-II does not have a build in option to use RBFs for that
onstraint.

.1. Results on cargo vessel design

For the expensive objective (damage stability), requiring a Delftship
ro simulator run, the median evaluation time was 248 seconds. In
xperiment 1 (IOC-SAMO-COBRA, 𝑝 = 1, 300 evaluations), a HV of 9115
ith respect to the reference point (0, 0) was obtained. In experiment 2

IOC-SAMO-COBRA, 𝑝 = 3, 501 evaluations), the same HV was obtained
n the 129th iteration (after 385 function evaluations), saving a total
all-clock time of 682 minutes compared to experiment 1.

A comparison of the Pareto fronts resulting from experiments 2 and
(i.e., a direct comparison between IOC-SAMO-COBRA and SA-NSGA-

I) is shown in Fig. 7, where cargo hold capacity (↑ max) is shown on
he 𝑦-axis and the attained damage stability index (↑ max) on the 𝑥-axis.
he Pareto front obtained by the SA-NSGA-II algorithm is dominated by
he obtained Pareto front obtained by IOC-SAMO-COBRA, and the latter
lgorithm also finds more extreme solutions (especially for damage
tability).

Fig. 8 illustrates the convergence of the algorithms by showing
he HV (measured between the Pareto fronts obtained by the two
lgorithms and the approximated Nadir point) over the number of
unction evaluations. The difference in the two Pareto fronts (Fig. 7)
s also clearly visible in this illustration. The different behavior in the
irst few evaluations can be explained by the difference in the initial
ampling strategies (Latin Hypercube Sampling [25] for SA-NSGA-II
s. Halton Sampling [26] for IOC-SAMO-COBRA).

4 Version 14.20.343; see Delftship: Visual hull modeling and stability
nalysis. https://www.delftship.net/.
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Fig. 7. Comparison of Pareto fronts obtained by IOC-SAMO-COBRA and SA-NSGA-II
(𝑝 = 3, each) on the ship design problem. 𝑥-axis: Survivability index; 𝑦-axis: Cargo hold
(both ↑ max).

Fig. 8. Comparison of the hypervolume maximization progress between IOC-SAMO-
COBRA and SA-NSGA-II (𝑝 = 3, each) on the ship design problem. 𝑥-axis: Number of
unction evaluations; 𝑦-axis: Hypervolume.

.2. Analysis of the findings for cargo vessel design

The IOC-SAMO-COBRA results were further analyzed by naval ar-
hitects to understand and interpret them in the light of vessel design
xpertise, resulting in the following observations:

• For every point on the Pareto front, the parameter that defines
the tanktop height has converged to the minimum value. The
algorithm learned that extra height in the double bottom of the
vessel does not improve the damage stability index. The compart-
ments above the tanktop benefited from this in terms of their
size. Interestingly, this finding could be confirmed since it is also
prescribed in the International Convention for the Safety of Life
at Sea (SOLAS chapter II-1 part B-2 regulation 9) [77].

• The algorithm also found that a large space between the hull and
cargo hold is beneficial for the damage stability criterion. This
result can be explained well by the fact that a small distance
between the hull and cargo hold makes it less likely for the design
to survive in case of damage (flooding of the cargo hold will
always lead to the loss of a single cargo hold vessel).

https://www.delftship.net/
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8. Conclusions and future work

In this paper, the multi-objective algorithm SAMO-COBRA (de-
signed for expensive objective functions and constraints) has been
extended so that it can deal with both expensive and inexpensive
objectives and constraints. The resulting new IOC-SAMO-COBRA algo-
rithm has been compared to a state-of-the-art surrogate-assisted genetic
algorithm, IC-SA-NSGA-II. By testing on a diverse set of test functions,
it has been shown that exploiting the inexpensiveness of constraint
functions is beneficial since this will, in the majority of cases, lead to
better Pareto front approximations. Besides comparing the algorithm on
test functions, both IOC-SAMO-COBRA and SA-NSGA-II have also been
applied to a real-world ship design damage stability optimization prob-
lem. Due to the combination of build-in parallelism with the multi-point
acquisition function and the exploitation of the inexpensive constraints
and objectives, IOC-SAMO-COBRA is able to save a significant amount
of wall-clock-time. Moreover, IOC-SAMO-COBRA converges fast and is
able to find well-spread solutions along the Pareto front. According to
domain experts, the solutions found by the algorithm are sensible when
the goal is to optimize damage stability and cargo hold volume.

Measured in terms of HV and IGD+, IOC-SAMO-COBRA outperforms
IC-SA-NSGA-II in 78% of the test cases and on the real-world vessel
design optimization problem. The key algorithmic components we have
considered to be responsible for this advantage include (i) computing 12

BF configurations for each expensive objective/constraint and picking
he best as a surrogate model for the respective objective/constraint
nd (ii) using COBYLA repeatedly to simultaneously find 𝑝 solution

candidates that maximize their joint HV contribution. For two test
functions (BICOP1 and MW2) that do not have any active constraints on
the Pareto front, IC-SA-NSGA-II has outperformed IOC-SAMO-COBRA.
Further research is required to improve the IOC-SAMO-COBRA algo-
rithm to be able to quickly find Pareto fronts not subject to active
constraints. These results also indicate that further research efforts
should be put into combining the strengths of IOC-SAMO-COBRA and
IC-SA-NSGA-II and go beyond their current capabilities, for example as
follows:

• Investigate an extension of IOC-SAMO-COBRA by incorporating
the crowding distance mechanism of IC-SA-NSGA-II, to improve
IOC-SAMO-COBRA for those problems where it currently is not
competitive with IC-SA-NSGA-II.

• Investigate how the local search strategy of IOC-SAMO-COBRA,
COBYLA, can be used in IC-SA-NSGA-II to speed up the conver-
gence of the genetic algorithm.

A final open issue is handling mixed-integer decision parameters,
as the extension to such design spaces is crucial for many real-world
applications. For extending the IC-SA-NSGA-II with this functionality,
the surrogate modeling strategy needs to be adjusted since the NSGA-
II algorithm back-end optimizer can already deal with mixed-integer
parameter spaces. For extending IOC-SAMO-COBRA accordingly, there
is a need to replace COBYLA, which is designed purely for continuous
parameter spaces, with an evolutionary algorithm for handling the
mixed-integer parameter space.
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ppendix. Empirical attainment difference functions

See Figs. A.9–A.26.

Fig. A.9. EAF difference plot BIOCP1.

Fig. A.10. EAF difference plot BIOCP2.

Fig. A.11. EAF difference plot BNH.
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Fig. A.12. EAF difference plot C3DTLZ4.

Fig. A.13. EAF difference plot CEXP.

Fig. A.14. EAF difference plot CTP1.

Fig. A.15. EAF difference plot DBD.
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Fig. A.16. EAF difference plot MW1.

Fig. A.17. EAF difference plot MW2.

Fig. A.18. EAF difference plot MW3.

Fig. A.19. EAF difference plot MW11.
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Fig. A.20. EAF difference plot NBP.

Fig. A.21. EAF difference plot OSY.

Fig. A.22. EAF difference plot SRD.

Fig. A.23. EAF difference plot SRN.
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Fig. A.24. EAF difference plot TBTD.

Fig. A.25. EAF difference plot TNK.

Fig. A.26. EAF difference plot WB.
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