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Abstract—Deep Learning (DL) model sizes are increasing at
a rapid pace, as larger models typically offer better statistical
performance. Modern Large Language Models (LLMs) and
image processing models contain billions of trainable param-
eters. Training such massive neural networks incurs significant
memory requirements and financial cost. Hybrid-parallel training
approaches have emerged that combine pipelining with data and
tensor parallelism to facilitate the training of large DL models
on distributed hardware setups. However, existing approaches
to design a hybrid-parallel partitioning and parallelization plan
for DL models focus on achieving high throughput and not on
minimizing memory usage and financial cost.

We introduce CAPTURE, a partitioning and parallelization
approach for hybrid parallelism that minimizes peak memory
usage. CAPTURE combines a profiling-based approach with
statistical modeling to recommend a partitioning and paral-
lelization plan that minimizes the peak memory usage across
all the Graphics Processing Units (GPUs) in the hardware
setup. Our results show a reduction in memory usage of up
to 43.9% compared to partitioners in state-of-the-art hybrid-
parallel training systems. The reduced memory footprint enables
the training of larger DL models on the same hardware resources
and training with larger batch sizes. CAPTURE can also train a
given model on a smaller hardware setup than other approaches,
reducing the financial cost of training massive DL models.

Index Terms—HPC, Deep Learning, Hybrid Parallelism, GPU,
Memory

I. INTRODUCTION

Scaling up Deep Learning (DL) model sizes has proven to
be an effective way to increase a model’s statistical perfor-
mance for many application domains. Deep Neural Networks
(DNNs) for natural language processing (NLP) and image
processing typically show increased accuracy when the model
is scaled up. Training such networks is not only a compute-
intensive task, but also incurs significant memory requirements
and financial cost. Training large DNNs requires an abundance
of hardware resources and state-of-the-art distributed training
techniques such as pipeline parallelism to meet the memory
requirements. However, pipeline parallelism only provides a
partial solution to the performance and memory bottleneck
in large-scale DNN training. As DNN sizes keep increasing,
new hybrid forms of parallelism are being developed that
aim to further increase the trainable model size and training
throughput. To facilitate the training of large DNNs, state-of-
the-art hybrid-parallel training systems aim to (1) increase the
trainable model size by enabling scaling to more hardware

resources and (2) reduce the cost of training large DNNs by
making effective use of the available resources and enabling
training on cheap, preemptible cloud instances.

In this work, we introduce CAPTURE, a new approach to
partition DNN models for hybrid parallelism, focusing specif-
ically on memory usage. CAPTURE is inspired by mCAP [1],
our existing partitioning approach for pipeline-parallel DNN
training that balances peak memory usage between workers.
Similar to mCAP, CAPTURE uses a profiling-based approach
to collect memory statistics about the DL model. Unlike
mCAP, CAPTURE uses those memory statistics and applies
statistical modeling techniques to predict the memory usage
for various hybrid-parallel partitioning plans and is thus not
limited to pipeline parallelism only. Based on the predictions,
it recommends a partitioning and parallelization plan that
minimizes peak memory usage across workers (GPUs).

Hybrid parallelism is a combination of pipelining with
stage-wise data- and/or tensor parallelism. Applying data-
and/or tensor-parallelism within a pipeline stage can help to
balance the memory usage across GPUs, but also has an effect
on the total memory requirement: the memory required to
process a DNN layer using data- or tensor parallelism depends,
amongst others, on the layer’s weight to activation ratio.

CAPTURE determines how to partition a DL model into
pipeline stages and what form (data- and/or tensor) and degree
of parallelism to apply to each pipeline stage. CAPTURE
recommends a partitioning and parallelization plan with a
low and well-balanced peak memory usage across all GPUs.
Minimizing the peak memory usage enables training of larger
DL models or training with a smaller hardware setup. Because
CAPTURE is profiling-based, it can capture the effects of
memory optimizations present in DL and pipeline- or hybrid-
parallel frameworks on memory usage. By combining profiling
with statistical modeling, it can predict the peak memory usage
of any model partitioning and hybrid parallelization plan and
recommend a memory-friendly plan for the target hardware
configuration, but also for smaller or larger hardware setups.

Existing partitioners in hybrid-parallel systems typically
suggest a partitioning and parallelization plan that optimizes
the achieved computational throughput. However, optimizing
the partitioning for throughput can be disadvantageous when
the goal is to maximize trainable model size or minimize
financial cost. CAPTURE finds a partitioning and paralleliza-



tion plan with a low and well-balanced (peak) memory usage,
which enables (1) training of larger DNNs with the same
hardware, or (2) training a given model with fewer resources,
which can reduce the financial cost of training large DNNs.

CAPTURE consists of three stages: a profiling stage that
gathers per-layer memory statistics, a prediction stage that
models/predicts per-GPU peak memory usage for different
pipeline-parallel model partitionings as well as different per-
stage data- and tensor-parallel parallelization strategies, and
a recommendation stage that finds a memory-efficient and
well-balanced partitioning. The recommendation stage uses
predictions of the memory usage for different partitioning
plans made by the predictor. Various optimizations, such as
a knowledge-guided layer grouping approach, limit the time
required in the profiling and prediction stages.

A major advantage of our method is that it is DL-framework
agnostic. We have implemented it for two state-of-the-art
hybrid-parallel training systems with different underlying DL
frameworks and software stacks: Alpa [2] and Varuna [3],
though in this paper we focus on Alpa. We evaluate CAP-
TURE’s effectiveness on a distributed scale.

We demonstrate that our approach reduces the peak mem-
ory usage by up to 43.9% compared to other partitioning
approaches for hybrid parallelism. It can train larger DNNs
on a given hardware setup and it can train a given model on
more than two times smaller hardware setups.

Concretely, the contributions of this paper are:
• We introduce CAPTURE, the first memory-centric par-

titioning and parallelization approach for hybrid paral-
lelism.

• We provide a method based on profiling and statistical
modeling that can predict the memory usage of hybrid-
parallel training plans with per-stage data- or tensor
parallelism for hardware setups of any scale.

• We demonstrate that CAPTURE is DL-framework agnos-
tic and is generically applicable to hybrid-parallel systems
by implementing it for two state-of-the-art hybrid-parallel
systems, Alpa and Varuna.

• We evaluate the effectiveness of CAPTURE for pipeline-
and hybrid-parallel training on a distributed scale.

• We evaluate the impact of using a memory-centric par-
titioning approach over a throughput-oriented partitioner
on computational performance.

The rest of the paper is structured as follows: Section II
provides background information on hybrid-parallel DNN
training, existing systems and partitioning/parallelization ap-
proaches. Section III describes CAPTURE’s design and com-
ponents, Section IV contains our evaluation and Section V
contains conclusions and directions for future work.

II. BACKGROUND AND RELATED WORK

A. DNN training
A DNN is a self-learning model that can be trained by

feeding minibatches of training samples into the model. For
each minibatch, a forward pass is performed that makes a pre-
diction (e.g. a classification) for that input data. The forward

(a) Data parallelism (b) Tensor parallelism

Fig. 1. Different types of parallelism.

pass is followed by a backward pass, which calculates updates
(gradients) for each weight in the neural network that improve
the predictions for the current inputs. After the backward pass
the updates are applied to the weights in the neural network.
During the forward pass, activations are computed, which flow
through the neural network from the first to the last layer.
During the backward pass, gradients flow from the last to the
first layer in the model.

B. Parallel and distributed DNN training

In data-parallel DNN training, the DL model is replicated
on all workers. Each worker trains its model on a different
part of the input data. Thus, each worker processes a separate
batch of input data in each training iteration and updates its
own weights. The weights are periodically exchanged and
synchronized. Figure 1a illustrates this principle.

In tensor- or operator parallelism the operations that con-
stitute the DL model (matrix multiplications) are partitioned
over multiple workers. Multiple workers collectively process
the same input data for the same operator. Conceptually, a
single DNN layer or a group of layers is distributed over
multiple workers, as illustrated in Figure 1b.

In pipeline-parallel training [4]–[7], the DL model is
partitioned over the workers. Each worker trains a group of
DNN layers and the input data is fed into the model in a
pipelined fashion. After the full batch has been processed, a
weight update is applied, after which the next batch of input
data is fed into the pipeline. In this paper, we focus on intra-
batch or synchronous pipelining, in which an input batch is
split into multiple microbatches that are fed into the pipeline.

The pipelining schedule determines the order in which
the forward and backward passes of the microbatches are
executed. The GPipe schedule (Fig. 2a) first processes all
forward passes, followed by all backward passes, and then the
update step. The 1F1B schedule (Fig. 2b) interleaves forward
and backward passes to enable earlier release of memory for
activations. As a result, the 1F1B schedule is more memory
efficient for GPUs at the end of the pipeline, but does not
improve pipeline latency or training throughput.

CAPTURE can be applied to both pipelining schedules, but
motivated by its generic nature, does not explicitly adjust its
memory predictions to the variations caused by early release
of memory in the 1F1B schedule. We study CAPTURE’s
effectiveness in recommending a memory-efficient partitioning
for both pipelining schedules in our evaluation.



(a) GPipe schedule
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Fig. 2. Pipelining schedules.

Hybrid parallelism is the combination of pipeline-, data-
and/or tensor parallelism. Existing frameworks that implement
hybrid parallelism partition a DL model into multiple pipeline
stages. Each pipeline stage can then be processed by multiple
workers using data- or tensor-parallelism, as illustrated in
Figure 3. In this scenario the input data that is partitioned
over the workers consists of the input to the layer (group) that
is parallelized using data- and/or tensor parallelism, i.e. the
input activations and gradients to the layer or layer group.

The partitioning of layers into pipeline stages, together
with the type and degree of parallelism chosen for each
pipeline stage is called the partitioning and parallelization
plan. This plan determines the computational demand per
worker, the amount of communication between the workers
and the memory requirements for each worker within a
stage. For example, processing a pipeline stage in a data-
parallel fashion requires an allreduce operation after the update
step that synchronizes the weights across the workers. When
processing a pipeline stage in a tensor-parallel fashion, two
allreduce operations per forward and backward pass are re-
quired. Each allreduce operation communicates the (output)
activations/gradients generated for the layers in that pipeline
stage. Hence, the partitioning of the model into pipeline stages
combined with the parallelization strategy per stage directly
impacts the latency of the full pipeline, the achieved training
throughput and the overall (peak) memory usage.

Note that simply reducing the batch size is ineffective to
solve the memory bottleneck in hybrid-parallel training, and
often impossible. A sufficiently large batch size is required
to form microbatches for pipelining and for data-parallel
execution of pipeline stages. It is also needed to provide
enough parallelism to achieve reasonable hardware utilization,
because hybrid parallel systems rely on parallel and pipelined
execution of training steps and on overlapping of computation
and communication. Moreover, the batch size influences the
number of activations and gradients generated during training,
but not the size of the model’s parameters. Thus, depending
on the model, lowering the batch size may not sufficiently
reduce memory usage to resolve the bottleneck. Finally, some
models generate so many activations and gradients that they
cannot be trained even with the minimum possible batch size
without running out of memory.

Fig. 3. Example of hybrid parallelism. Figure adapted from [5].

C. Partitioning approaches for hybrid parallelism

A partitioner for hybrid-parallelism recommends a par-
titioning and parallelization plan, which consists of the
following aspects: a mapping of layers to pipeline stages
(the partitioning), the type of parallelism applied to each
stage (data- and/or tensor parallelism) and the number of
workers assigned to each stage (the degree of parallelism).
Existing partitioning approaches for hybrid parallelism focus
on achieving high training throughput. High throughput is
achieved by considering: the latency of computing forward
and backward passes for a pipeline stage, the communication
required between stages and inside stages for data- and/or
tensor parallelism and the available communication bandwidth
between GPUs and nodes. Existing partitioners do not consider
the imbalance in memory usage that may exist when a DL
model is partitioned for achieving high throughput.

D. Hybrid-parallel training systems

Different hybrid-parallel frameworks support different com-
binations of pipeline-, data-, and tensor parallelism. Varuna
supports pipelining combined with data parallelism, but not
tensor parallelism, a design decision motivated by their target
usage scenario. The allreduces in tensor-parallel stages are
communication-intensive, which requires a fast interconnect
between GPUs and compute nodes. However, Varuna targets
training on cheap spot-VMs on cloud resources, where such
high-bandwidth, low-latency interconnects are typically not
available. Varuna also processes each pipeline stage with the
same degree of data parallelism and is limited in the types
of DL models it supports. In this work, we focus on generic
DNN training with all three forms of parallelism.

DeepSpeed [8] and Megatron-LM [9], [10] support hybrid
pipeline-, data- and tensor parallelism and divide the DL model
into pipeline stages based on simple metrics, such as the
number of parameters or layers. Merak [11] is a hybrid-parallel
system that performs throughput-oriented model partitioning.
In all three systems, the degrees of data- and tensor parallelism
are fixed across stages (or the full pipeline is processed in
data-parallel fashion, which results in a similar plan as with
a fixed parallel degree across stages). Neither of the systems
provide an automated approach to generate a full partitioning
and parallelization plan for hybrid parallelism, as we do in this
work. Moreover, Megatron-LM and Merak are specialized for
Transformer models, while we focus on generic DNN training.



Fig. 4. Overview of mCAP. Figure adapted from [1].

Alpa supports the most elaborate form of hybrid parallelism
with pipelining and per-stage data- and/or tensor parallelism,
and can assign a different parallel degree to each stage. It
thus has the largest number of possible partitioning and paral-
lelization plans of all of today’s training systems. Therefore,
we perform our evaluation of CAPTURE with Alpa. All
other (simpler) forms of hybrid parallelism found in today’s
hybrid-parallel systems can be considered a subset of Alpa’s
capabilities, and each of those forms will reduce the number
of possible plans and simplify the decision making process
to determine a suitable plan. Alpa focuses on throughput
when determining a parallelization plan, while we focus on
achieving low peak memory usage.

E. mCAP

CAPTURE is inspired by mCAP. mCAP is our memory-
centric partitioning approach for pipeline-parallel-only train-
ing. It partitions DL models over GPUs to balance peak
memory usage. By balancing the peak memory usage across
the GPUs, it enables the training of larger neural networks.
mCAP consists of 3 stages (see Fig. 4).

mCAP’s profiler performs a number of profiling runs to
collect two metrics for each layer in the DL model: the (peak)
memory usage of the layer when it is the only layer placed
on a GPU, and the additional memory usage caused by the
layer when it is placed on a GPU together with a set of
preceding DNN layers. It is important to record both met-
rics, because memory optimizations implemented in DL and
pipelining frameworks, as well as buffers for communication
and passthrough variables, cause the memory usage to be
significantly different in both scenarios.

The metrics collected in the profiling stage are used by the
predictor, which can predict the memory usage for any given
partitioning. The recommender navigates the search space of
all the possible partitionings for a given DL model over a given
number of GPUs. It supports two search strategies: mCAP-
BF and mCAP-BO. mCAP-BF (brute force) iterates over all
possible partitionings and requests predictions for them. It
keeps track of the prediction with the lowest peak memory
usage across the GPUs and recommends that as the best
partitioning. The mCAP −BO search strategy uses Bayesian
optimization to navigate the search space and find the (near)
optimal partitioning in a fixed number of iterations.

mCAP is limited to pipeline parallelism only and cannot
generate partitioning and parallelization plans for hybrid par-
allelism. CAPTURE supports both pure pipelining and hybrid
parallelism and, unlike mCAP, can recommend a memory-
friendly parallelization plan for any given target batch size.

F. Memory optimizations

Several recent papers propose methods to address memory
limitations during DNN training. STR [12] optimizes the
scheduling of CPU-GPU memory swapping and recomputa-
tion operations to reduce memory usage, but focuses on single
GPU training. Harmony [13] addresses the scheduling and
placement of compute and swapping operations for multi-
GPU training, but focuses on pipeline- or data-parallelism.
Our work is orthogonal to these optimizations, and focuses
on recommending a partitioning and parallelization plan that
minimizes peak memory usage for hybrid parallelism.

III. METHOD

We introduce CAPTURE, a partitioner for hybrid-parallel
DNN training. It partitions the DL model into pipeline stages,
determines the parallelization method (data- or tensor-parallel)
for each stage and assigns a number of workers (GPUs) to each
stage. The recommended partitioning and parallelization plan
minimizes the peak memory usage across GPUs.

CAPTURE is designed to be DL-framework agnostic and
easily applicable to any hybrid-parallel training system. There-
fore, a profiling-based approach and statistical modeling are
favored over analytical modeling. CAPTURE uses profiling
to capture the effects of memory optimizations present in DL-
and hybrid-parallel training frameworks on memory usage. It
then applies statistical modeling to the profiling data to predict
the memory usage for any data- or tensor-parallel pipeline
stage. Fig. 5 shows an overview of CAPTURE. This section
discusses CAPTURE’s design and components.

A. Profiler

CAPTURE’s profiling stage performs a number of short pro-
filing runs with a specifically selected set of partitionings and
parallelization plans for pipeline- and hybrid-parallel training.
Through these runs, two metrics about the memory usage for
each layer in the DNN are collected: Mi (memory isolated)
and Ma (memory added). Mi(l) is the peak memory usage
observed for layer l when that layer is the only one placed on
a GPU. Ma(l) is the increase (or decrease) in memory usage
observed when layer l is added to an existing set of layers on
a GPU. These metrics are based on mCAP, which collects the
same metrics for pipeline parallel-only training.

In CAPTURE, the metrics are collected multiple times,
for three different training scenarios, namely: training with
pipeline parallelism only, training with data- or tensor paral-
lelism and training with different batch sizes. By collecting the
memory statistics for different scenarios, we collect the data
that is later needed in the prediction stage to accurately predict
the memory usage for any partitioning and parallelization plan,
as well as any training batch size.

The profiling runs are performed in the same setup as
the target training job: the same software stack and hyper-
parameters are used, except for the batch size. The profiling
runs perform two training iterations, in which all stages of
the training process are performed (forward pass, backward
pass and update step). Because profiling is performed in the
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Fig. 5. Overview of CAPTURE.

same setup as the target run, the profiling data captures the
effects of memory optimizations in the DL- and hybrid-parallel
frameworks on peak memory usage.

1) The profiling partitionings: We demonstrate how the
set of profiling partitionings for pipeline parallel-only training
is generated for a DNN with L layers on G GPUs, in the
idealized case where L is divisible by G. The aim is to collect
Mi and Ma for each layer in the DNN. To collect Mi for layer
l, we need to perform a profiling run where layer l is the only
one on a GPU. To collect Ma, we need a run with some set
of layers l − n, ..., l − 1 (called neighbors) on a GPU, and a
run with layers {l−n, ..., l} on a GPU. The memory statistics
are then calculated as follows:

Mi(l) = PM(l)

Ma(l) = PM(l − n, l)− PM(l − n, l − 1)

where PM(l, l + n) indicates the profiled peak memory
usage of a GPU with layers l to l + n placed on it. To limit
the number of required profiling runs, Ma(l) is collected once
for each layer, for a single value of n (set of neighbors).

While CAPTURE records the same metrics for the model’s
layers as mCAP for this profiling scenario (pipelining only),
the set of profiling partitionings that CAPTURE generates
to record the statistics is different. The partitionings are
summarized in Description 1, and the partitionings required
for the first L/G layers are described in lines 1-4. These
partitionings allow us to extract Mi for layers 0 to L/G+ 2,
because all of those layers have been placed alone on a GPU at
least once. We can extract Ma for layers 1 to L/G. To extract
Ma also for layer L/G + 1, we add one extra partitioning,
described by line 5. We then fix the number of layers for GPU
0 to L/G and repeat the same procedure for GPU 1 (lines 7-
11, note that the partitioning on line 4 is duplicated on line
7 for clarity reasons), to add the runs for layers L/G + 1 to
L/G ∗ 2 + 1. The procedure repeats until the partitioning on
line 14 is reached. A final partitioning is added to record Ma

for the last layer (line 15).

Using this method of generating the profiling partitionings
for pipeline parallelism, the maximum number of required
profiling partitionings (and runs) is L + 1, where L is the
number of layers in the DNN. We perform these runs with
two different batch sizes (see Section III-A2), which brings
the number of profiling runs to 2 ∗ (L+ 1).

Description 1: The profiling partitionings for pipeline
parallelism. The numbers in a partitioning denote the
number of DNN layers placed on a GPU. eq(k, g)
equally distributes k layers over g GPUs by number.

1 [1, 1,eq(L− 2, G− 2)]
2 [2, 1,eq(L− 3, G− 2)]
3 ...
4 [L

G
, 1, 1,eq(L− (L

G
+ 2), G− 3)]

5 [L
G
+ 1, 1, 1,eq(L− (L

G
+ 2), G− 3)]

6 ...
7 [L

G
, 1, 1,eq(L− (L

G
+ 2), G− 3)]

8 [L
G
, 2, 1,eq(L− (L

G
+ 3), G− 3)]

9 ...
10 [L

G
, L
G
, 1, 1,eq(L− (2 ∗ L

G
+ 2, G− 4))]

11 [L
G
, L
G
+ 1, 1, 1,eq(L− (2 ∗ L

G
+ 3, G− 4))]

12 ...
13 ...
14 [L

G
, ..., L

G
, 1, 1]

15 [L
G
, ..., L

G
− 1, 1, 2]

The set of profiling partitionings in Description 1 are the
runs that collect the memory statistics for pipeline-parallel-
only training. Additional runs are performed to collect
profiling data for data- or tensor-parallel training of pipeline
stages. Four sets of profiling runs are performed for those
scenarios: sets for 2-way and 4-way data-parallelism, as well
as for 2- and 4-way tensor parallelism. In those runs, the
GPUs are grouped together into S sub-meshes of size k,
where k is the degree of data- or tensor parallelism (2 or 4).
The generation of the set of runs is similar to Description 1,
but the L DNN layers are now divided over S sub-meshes
instead of G individual GPUs. Each layer or set of layers is
trained with k-way parallelism.



The profiling runs are only performed with 2- and 4-way
data- and tensor parallelism to limit the time required for
profiling. The predictor applies statistical modeling techniques
to predict the memory usage for stages with parallel degrees
higher than 4 (see Section III-B).

2) Scaling the batch size: The profiling runs cannot be
performed with the same batch size as the target run, because
some of the profiling runs have an imbalanced memory usage
and could go out-of-memory with the full batch size. Thus,
we perform the profiling runs with a smaller batch size.
Because the total memory usage (and hence the collected
memory statistics) grows linearly with the batch size, but with
a different rate for each layer, we perform the profiling runs
with two batch sizes (by default half and quarter of the target
batch size). The predictor uses the statistics collected with
both batch sizes to scale the memory statistics to the target
batch size (see Section III-B). The total number of required
profiling runs for pipeline-parallel stages, 2- and 4- way data-
and tensor-parallel stages, each for 2 batch sizes, is 10∗(L−1).

3) Reducing profiling time: CAPTURE reduces the time
required for profiling in three ways. First, profiling runs are
performed with a reduced batch size, as described previously.
Scaling down the batch size reduces the time required for the
profiling runs. The default batch sizes chosen for profiling can
be decreased further to trade accuracy of the memory predic-
tions for reduced profiling time. Second, instead of performing
data- and tensor-parallel profiling runs with multiple batch
sizes, the memory statistics of parallel stages can be scaled
to the target batch size based on the pipeline-parallel profiling
data. This eliminates the need to profile with two batch sizes
for data- and tensor-parallelism, but could affect the accuracy
of the memory predictions. Finally, CAPTURE includes a
layer merger, which can be used to reduce the number of
profiling runs for the data- and tensor-parallel scenarios.

Layer merger: After performing the profiling pass for
pipeline parallel stages, the layer merger can link (“merge”)
layers together based on their combined memory usage. After
merging, multiple merged layers are treated as a single DNN
layer during the profiling phase for data- and tensor parallelism
and during the prediction phase, reducing the number of
profiling runs. Merging layers will also reduce the number
of predictions made by the predictor.

The merger links layers in a DNN until a user-specified
number of layers (Lm) remain. It merges layers based on
their combined memory usage when processed without data-
or tensor-parallelism. It iteratively chooses the two DNN layers
that result in the lowest M i value for the merged layer.
The metrics (Mi and Ma) for the new layer are calculated
as follows (merging layers l and l + 1):

Mi(l, l + 1) = Mi(l) +Ma(l + 1)

Ma(l) = Ma(l) +Ma(l + 1)

B. Predictor

The predictor uses the profiling data and statistical modeling
to predict the per-GPU peak memory usage for any hybrid-
parallel pipeline stage, hardware setup, and batch size. A
pipeline stage is defined by three components: (1) the group
of DNN layers in the stage, (2) the type of parallelism used to
process the stage and (3) the degree of parallelism (number of
GPUs assigned to the stage). We call a tuple of (layer group,
type of parallelism, parallel degree) a stage config. Note that
a stage with parallelism degree 1 does not use data- or tensor-
parallelism and is referred to as a “pipeline-parallel stage”.

1) Predicting memory usage for pipeline-parallel stages:
The predictor predicts the memory usage for pipeline-parallel
stages as follows:

Mp(l, l + n, 1) = Mi(l) +

l+n∑
k=l+1

Ma(k)

where Mp(l, l+n, 1) is the predicted per-GPU peak memory
usage of a pipeline stage containing layers l to l + n and
parallel degree 1 (no parallelism, so a pipeline-parallel stage).

2) Predicting for the target batch size: Recall that CAP-
TURE collects the memory statistics for two batch sizes, which
are smaller than the target batch size (by default half and
quarter of the target batch size). The predictor scales the
predicted memory usage for a pipeline stage to match the
target batch size. It fits a straight line through the predictions
for the two profiled batch sizes and samples the fitted function
at the target batch size, as depicted in Description 2.

Description 2: Scaling memory usage to the target
batch size. bs prof high and bs prof low denote the
lowest and highest batch size used during profiling,
target batch size denotes the target batch size.

1 x = [bs prof low, bs prof high]
2 y = [Mp(l, l + n, 1, bs prof low),
3 Mp(l, l + n, 1, bs prof high)
4 line = fit staight line(x, y)
5 Mp(l, l + n, 1, target batch size) =
6 sample(line(target batch size))

3) Statistical modeling for hybrid parallelism: The profil-
ing data contains Mi and Ma measurements for each layer for
2 and 4-way data- and tensor parallelism. For 2- and 4-way
parallel stages, we can therefore predict the per-GPU memory
usage for hybrid parallel stages with parallel degrees 2 and 4
in similar fashion as for pipeline-parallel stages, including the
scaling to the target batch size.

For parallel degrees larger than 4, we predict the memory
usage through statistical modeling: during prediction, we fit a
logarithmic function through the predicted memory usage of
a given stage for the two degrees of parallelism used during
profiling and sample the function at the degree of parallelism
that we are predicting the memory usage for.

The shape of the fitted function is motivated by high-level
analytical models of the per-GPU memory usage for data and



tensor parallelism. For data parallelism, the memory usage is
determined by the following components:

Mtotal = Mweights+
Mactivations

nGPUs

+Bufferstage comm+Bufferallreduce+Bufferpassthrough

All the components of the memory usage either scale linearly
with the number of GPUs, or are fixed regardless of the
degree of data parallelism. The passthrough buffers scale
linearly with number of GPUs or are fixed (depending on
the implementation in the hybrid-parallel framework). The
memory for the activations also scales linearly. The other
components use a fixed amount of memory. Given that the
per-GPU memory usage has a component that is fixed in size
and a component that scales linearly (is reduced) when the
degree of parallelism increases, the sum of those components
scales logarithmically with the degree of parallelism. Hence,
we fit a logarithmic function through the collected datapoints.

For tensor parallelism, the various components of the (per-
GPU) memory usage are expected to scale differently than
for data parallelism, but all components also scale linearly
with the number of GPUs, or are fixed. Hence, we also fit
a logarithmic function through the collected datapoints for
tensor parallelism. The analytical model for per-GPU memory
usage of tensor parallel pipeline stages looks like:

Mtotal =
Mweights+Mactivations

nGPUs
+ buffers

C. Recommender

The recommender finds a memory-efficient partitioning and
parallelization plan based on the predicted peak memory
usages of pipeline stages provided by the predictor. The
recommender takes the number of DNN layers (L), the (target)
hardware mesh (number of nodes N and GPUs G) as input.
Given L, it generates the list of L∗(L+1)

2 layer groups that can
form a pipeline stage, which is as described in Description 3.

Description 3: All possible layer groups.
1 [1], [1, 2], [1, 2, 3]...[1, 2, 3, ..., L]
2 [2], [2, 3], ...[2, 3...L]
3 ...
4 [L− 1][L− 1, L]
5 [L]

In the target run, each layer group can be processed on a
submesh (set of GPUs) of size 1 to (maximum) k = G

N , using
either data- or tensor parallelism. Recall that each tuple of
(layer group, type of parallelism, parallel degree) is called
a stage config. The recommender determines the possible
degrees of data- or tensor parallelism and enumerates all
possible stage configs. CAPTURE limits parallelism degrees
for data- and tensor parallelism to powers of 2. Thus, if
k = 2d, a single stage can be processed with 2 ∗ d parallel
configurations, where d = log2(k). The case of 1-way data-
or tensor parallelism is a duplicate, because it corresponds to
pure pipeline parallelism. After correction, the total number

of possible parallel configurations is: 2 ∗ log2(k) − 1. After
generating all possible stage configs, the recommender obtains
the predicted memory usage for each config from the predictor.

The recommender then enumerates all possible placements
of stage configs onto the hardware mesh. While placing layer
groups onto sub-meshes, it ensures that (1) all the layers of the
DNN should be placed and no GPUs should be left unused
and (2) the layer groups should fit on the hardware mesh.
Concretely, this means that (1) the layer groups should cover
all the layers of the DNN, in-order and without duplicates
and (2) the degree of data- or tensor parallelism with which
a group can be processed is limited by the submesh size k
(number of GPUs/node) and by the other layer groups placed
on the same submesh: the sum of the degrees of parallelism
for all groups on a submesh should be equal to k.

For each valid placement of groups onto the hardware (a
plan), the recommender tracks the peak memory usage across
all GPUs in the plan, using the predicted memory usage of
each stage config in the plan. After enumerating all possible
placements, it recommends the partitioning and parallelization
plan with the lowest peak memory usage across all the GPUs.
Algorithm 4 summarizes the algorithm for enumerating all
possible partitioning and parallelization plans.

Algorithm 4: Algorithm for hybrid-parallel placement
of layer groups on the hardware mesh.

1 Function place layer group(mesh, plan, group) is
2 if not enough groups left for remaining GPUs
3 return
4 if all layer groups placed

/* Plan complete. Check mem usage. */
5 if peak mem(plan) < lowest peak mem
6 lowest peak mem = peak mem(plan)
7 else

/* Try to place all possible stage
configs for this group. */

8 foreach parallelism in [DP, TP]
9 foreach degree in range(1, submesh size)

10 /* Check if config fits on submesh.*/
11 if fits(group, parallelism, degree, mesh)

/* Place group. */
12 mesh = update(mesh, group)
13 plan = update(plan, group)

/*Proceed to next group */
14 foreach next group starting with last layer of

current group
15 place layer group(mesh, plan, next group);

If multiple plans are found with the same peak memory
usage across all GPUs, a tie-breaking rule is applied among
the remaining plans: the GPU(s) with the highest predicted
memory usage are excluded from the memory predictions, and
the plan with the lowest memory usage across the remaining
GPUs is chosen as the winner. This procedure is repeated until
a winner is found or no GPUs remain. If no GPUs remain,
the remaining plans are equal and a plan is chosen at random.
This tie-breaking rule increases the chance that the best plan
is elected as the winner if the memory usage of the excluded
GPUs was mispredicted.



Reducing the time needed for recommendation: CAP-
TURE’s recommender applies a number of optimizations
to reduce the time needed for the recommendation phase.
Applying the layer merger reduces the number of layers in the
DNN model and thus the number of possible plans for both
pipelined and hybrid parallelism. Further, the recommender
applies a pruning strategy that reduces the number of possible
plans based on the best recommendation found so far (the one
with the lowest memory usage): if the predicted memory usage
for a given stage config is higher than the peak memory usage
across all GPUs of the best plan found so far, that stage config
is omitted from placement (so not considered in lines 12-13
in Algorithm 4).

IV. EXPERIMENTS

We evaluate CAPTURE for Alpa, the current state-of-the-
art framework that supports all hybrid forms of parallelism
(pipelining with per-stage data and tensor parallelism). We
experiment with the GPipe and the 1F1B schedule, which are
both supported by Alpa. We perform experiments with three
large DL models, GPT-3 [14], GShard Mixture-of-experts [15]
and Wide-ResNet [16]. Table I shows the different model
configurations used in our evaluation. Our hardware setup
consists of 4 compute nodes, each containing 4 NVIDIA A100
GPUs with 40 GB HBM2 memory. The nodes are connected
through 100Gbps InfiniBand interconnects. We use Alpa 0.2.3,
JAX 0.3.22 and CUDA 11.3.

The statistical performance of a model is not dependent on
the chosen partitioning and parallelization plan. Thus, we do
not explicitly evaluate the statistical performance of the models
for the plans chosen by Alpa and CAPTURE. The (profiling)
runs in our experiments last for two training iterations and
we use randomly generated input data, as provided in Alpa’s
benchmarking suite. The dimensions of the input samples
correspond to those typically used in other research. The
contents of the data has very limited influence on our results,
as they only affect optimizations such as compression of
communicated activations. We use randomly generated data,
since it serves as a worst-case scenario for such optimizations
in terms of performance and memory usage.

As CAPTURE is based on mCAP and extends its approach
to hybrid parallelism, it does not fundamentally differ from
mCAP for pipelining only and yields the same result. Hence,
we do not explicitly compare the two systems for pipelining
only. Section IV-A does compare the results for pipelining
only and hybrid parallelism with CAPTURE.

TABLE I. Model configurations used for the evaluation.

Model # Parameters Batch size # micro- # layers
batches

GPT-3 2.6B 1024 64 32
GPT-3 6.7B 1024 32 32
MoE 2.4B 1024 32 16
MoE 7.1B 1024 32 16
Wide-ResNet 1B 768 24 32
Wide-ResNet 2B 768, 1536 24 32

A. End-to-end results / Memory reduction
Fig. 6 compares the peak memory usage of all 16 GPUs

in our hardware setup for 12 parallel training scenarios.
The figure contains results for the 3 different models in 5
different configurations, both pipelining schedules and 2 types
of parallelism (hybrid parallelism and pipelining only).

Alpa’s recommended partitioning for hybrid parallelism (as
used in Fig. 6a to 6f) is obtained by using its autostag-
ing functionality, which automatically clusters model layers
into pipeline stages and recommends a parallelization plan
to optimize throughput. In all of these scenarios Alpa is
given complete freedom in choosing a plan, except for Wide-
ResNet (2B). Since Alpa recommends a plan for that model
configuration that fails to run on our hardware setup, we
restrict the search space for the degrees of per-stage parallelism
(“logical mesh shapes” in Alpa) to match the layout of the real
hardware (“physical mesh shapes”). This setting provides the
best performing and most memory-friendly alternative plan
that successfully runs on our hardware setup.

Alpa’s recommended partitioning for pipelining only (as
used in Fig. 6g to 6l) is obtained by requesting 16 layers
from Alpa’s “autolayering” component, which splits the DL
model in x equally compute intensive layers, where x is a
programmer-defined number. We request 16 such layers and
assign one layer to each pipeline stage/GPU. Note that the
maximum possible value of x depends on the DL model.

Fig. 6a to 6c show the results for hybrid parallelism using
the 1F1B schedule. The observed reduction in peak memory
usage is between 18.36% and 43.92% compared to Alpa. Not
only does CAPTURE recommend a parallelization plan that
has a lower peak memory across the GPUs than Alpa for GPT,
MoE and Wide-ResNet, its plan also has a lower combined
memory footprint. Since CAPTURE does not explicitly adjust
the memory usage predictions for the 1F1B schedule, it under-
predicts the memory usage for Wide-ResNet.

Fig. 6d to 6f show the results for hybrid parallelism using
the GPipe schedule. Compared to Alpa, CAPTURE reduces
the peak memory usage with 5.64% to 21.38% and in most
cases accurately predicts the peak memory usage. As expected,
the observed memory usage is higher than for the 1F1B
schedule for all model configurations.

Fig. 6g to 6i show the results for pipeline parallel-only
training, using the 1F1B schedule. As MoE has only 16
layers (the maximum value of x), only a single partitioning
is possible with pipelining only on 16 GPUs. Reducing or
better balancing the memory usage requires the use of hybrid
parallelism (Fig. 6b and 6e). Also, scaling to more GPUs is not
possible without hybrid parallelism, as there are not enough
model layers to do so. CAPTURE establishes a memory gain
of 19.38% to 25.26% for the other two models, despite some
mispredictions related to the 1F1B schedule.

Fig. 6j to 6l show the results for pipeline parallelism only,
using the GPipe schedule. As for 1F1B, MoE can only be
trained with a single partitioning and shows a large imbalance
in memory usage between the GPUs, motivating the use of
hybrid parallelism. CAPTURE chooses the same partitioning
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(b) MoE (7.1B), 1F1B, hybrid parallelism
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(c) Wide-ResNet (2B, 1536), 1F1B, hybrid parallel
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(d) GPT-3 (2.6B), GPipe, hybrid parallelism
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(e) MoE (7.1B), GPipe, hybrid parallelism
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(f) Wide-ResNet (2B, 768), GPipe, hybrid parallelism
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(g) GPT-3 (6.7B), 1F1B, pipelining only
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(h) MoE (7.1B), 1F1B, pipelining only
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(i) Wide-ResNet (2B, 768), 1F1B, pipelining only
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(j) GPT-3 (2.6B) GPipe, pipelining only
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(k) MoE (2.4B), GPipe, pipelining only

Alpa CAPTURE
(measured)

CAPTURE
(predicted)

0
5

10
15
20
25
30
35
40

M
em

or
y 

us
ag

e 
(G

B)

Peak memory usage: 33.48 vs 29.29 GB
(12.53% gain)

(l) Wide-ResNet (2B, 768), GPipe, pipelining only

Fig. 6. Per-GPU memory usage for Alpa’s and CAPTURE’s parallelization plans for various configurations of GPT-3, MoE and Wide-ResNet. Results are
shown for hybrid parallelism and pipeline parallelism only, as well as for the 1F1B and GPipe pipelining schedules. Each colored bar represents the memory
usage of a single GPU. The dotted lines represent the peak memory usage across the GPUs of Alpa’s (blue) and CAPTURE’s (green) parallelization plan.
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Fig. 7. Prediction error histogram for 500 plans for Wide-ResNet (1B).

as Alpa for GPT-3, leading to no memory gain. CAPTURE
achieves 12.53% memory gain over Alpa for Wide-ResNet and
accurately predicts the memory usage for all models. For all
pipelining-only scenarios, the potential memory gain is lim-
ited, because further memory reduction and better balancing
of the memory between workers requires the parallelization of
layers to multiple GPUs (hybrid parallelism).

B. Prediction accuracy
To evaluate the accuracy of CAPTURE’s peak memory

predictions in more detail, we compare the predicted and real
memory usage of 500 different partitioning and parallelization
plans for Wide-ResNet (1B), using the GPipe schedule and
hybrid parallelism. The plans are randomly sampled from the
set of possible plans that the recommender generates. Plans
that are predicted to run out of memory and pruned options
are excluded from sampling. The memory usage is predicted
for 500 plans, each using 16 GPUs, so the total number of per-
GPU predictions made is 8000. Fig. 7 shows a histogram of
the error for the predictions for individual GPUs and that of the
peak across all GPUs for a single plan (per-plan error). 44.8%
of the per-GPU predictions is within the 2% error margin,
65.5% within 5% and 97.1% within 11%. For the per-plan
predictions that is 45.4%, 69.6% and 97.8%, respectively.

There are relatively more predictions within the 9%-11%
error range for per-plan predictions than for per-GPU pre-
dictions, because the per-plan prediction only considers the
highest memory usage across all the GPUs/pipeline stages. It is
likely that the stage with the highest memory usage consists of
a relatively large number of layers compared to the other stages
in the pipeline. Having more layers in a pipeline increases the
chance of prediction errors, because CAPTURE takes multiple
aspects into account during prediction for each layer, such as
the level of data- or tensor parallelism and scaling of the batch
size and then combines the prediction for a layer with the
predictions for other layers in the same stage.

We identify two possible causes for occasional mispredic-
tions of per-GPU memory usage. In the 1F1B schedule, the
memory usage of a stage config can vary based on the location
of the config in the pipeline, as described in Section II-B.
CAPTURE does not actively adjust its memory predictions to
this behavior, causing occasional over- or under-estimations of
peak memory usage, such as in Fig. 6c. Other mispredictions,
such as for the GPipe schedule in Fig. 6e are caused by the
limited number of values for n (neighbors) used to extract

TABLE II. Time (denoted as hours:minutes:seconds) required by CAPTURE
and Alpa to recommend a partitioning and parallelization plan for hybrid
parallelism. LM stands for layer merger, LM=16 denotes that the layer merger
is applied to reduce the number of layers to 16. * Runtimes are estimated based
on the number of remaining layers and the number of required profiling runs.

CAPTURE Alpa

Model Profiling
(No LM)

Planning
(No LM)

Total
(No LM)

Total
(LM=16*) Total

GPT-3 6.7B 09:20:07 00:31:18 09:51:25 05:24:04 03:53:12
MoE 7.1B 03:57:33 00:05:94 04:04:07 04:04:07 03:07:10
WResNet 2B 07:45:10 00:00:17 08:02:25 04:24:20 03:04:39

Ma for each layer (see Section III-A1). Profiling with multiple
values of n can improve the accuracy of the predictions further,
but requires more profiling runs.
C. Profiling and planning time

Table II shows the time needed by CAPTURE and Alpa
to generate a hybrid partitioning and parallelization plan for
the three largest models in our setup, for the 1F1B schedule.
CAPTURE’s runtime consists of profiling (profiler) and plan-
ning (predictor and recommender). Alpa’s runtime consists of
profiling various computations and communication operations,
profiling various parallel stage configurations and applying its
autostaging functionality. The majority of the runtime is spent
on profiling for both systems.

CAPTUREs planning takes between 17 seconds and 32
minutes (when the layer merger is not applied). The planning
time is kept low by the pruner for MoE and WResNet, but
is less effective for GPT-3 because of the repetitive nature of
its model architecture: many layers exhibit similar memory
usage, reducing the pruner’s effectiveness.

Without applying the layer merger, CAPTURE’s total run-
time is between 4 and 10 hours, while Alpa’s runtime is
between 3 and 4 hours. Applying the layer merger reduces
CAPTUREs runtime and brings it closer to Alpa’s: merging
to 16 layers reduces the number of profiling runs and plans
traversed by the recommender and halves the runtime for MoE
and GPT-3. WResNet’s runtime does not change, as it already
consists of 16 layers without applying the layer merger.

The time needed to recommend a plan is negligible com-
pared to the runtime of the target training run: it takes weeks
to fully train these models on our hardware setup. Hence,
we consider the additional overhead introduced by CAPTURE
compared to Alpa’s throughput-oriented planner negligible.

D. Throughput
Fig. 8 summarizes the reduction in memory usage for all

hybrid parallel scenarios in Fig. 6 and shows the loss in
throughput that results from partitioning and parallelizing for
memory usage. For the configurations using the 1F1B schedule
the throughput loss is between 11.5 and 42.4%, while the
gain in memory usage is between 18.4 and 43.9%. For the
GPipe schedule, the case of MoE (7.1B) stands out, with a
loss in throughput of over 60% and a memory gain of 5.6%. In
contrast, GPT-3 records the lowest loss in throughput for this
schedule with 26.2%, while obtaining 20.3% memory gain.

As demonstrated next, the loss in throughput can be com-
pensated by taking advantage of the gain in memory usage,
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Fig. 8. Memory gain and throughput loss for all hybrid parallel scenarios.

by training on a smaller hardware setup. Alternatively, the
extra memory headroom can be used to train a larger model
or increase the batch size.

E. Smaller hardware setup

Fig. 9 shows the achieved throughput when training Wide-
ResNet (1B) on 6, 8 and 16 GPUs with CAPTURE’s and
Alpa’s parallelization plans for hybrid parallelism, normalized
to Alpa’s throughput on 16 GPUs. Alpa runs out of memory
on 8 GPUs, while CAPTURE is able to train the model.
Moreover, CAPTURE can scale the hardware setup down
further to 6 GPUs without running out of memory. Training
on less GPUs increases hardware utilization and reduces com-
munication overhead, which results in an increase in achieved
throughput.
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Fig. 9. Normalized throughput when scaling the hardware setup for training
Wide-ResNet (1B) with the GPipe schedule and hybrid parallelism.

This experiment demonstrates how CAPTURE can train
a given model in a more cost-effective way. By using the
reduction in memory usage to train on a smaller hardware
setup, less resources are used and all of the loss in through-
put is compensated. In this experiment, CAPTURE trains a
DL model on less than half the hardware resources while
increasing training throughput by 36.3%, making the training
significantly more cost-efficient.

V. CONCLUSION

We introduced CAPTURE, a method to generate memory-
efficient partitioning and parallelization plans for hybrid paral-
lel DNN training. CAPTURE combines profiling and statistical
modeling to make accurate predictions of peak memory usage

and recommends a plan that minimizes peak memory usage
across GPUs. Our method can recommend a memory-efficient
plan for any target batch size and hardware setup size.

By reducing the peak memory usage CAPTURE enables
training of larger models, training on a smaller hardware
setup and training in a more cost-effective way than existing
approaches. CAPTURE provides the user with the flexibility to
choose how to make use of the extra memory headroom, even
when a model does not fully occupy the GPUs’ memories. We
demonstrated that CAPTURE reduces memory usage by up to
43.9% and can train DNNs on more than two times smaller
hardware setups.

We suggest further improvement of memory prediction ac-
curacy for future work, as well as alternative (e.g. throughput-
based) tie-breaking rules for the recommender. Another option
is to generalize our approach to optimize GPU utilization,
energy consumption, throughput, or a combination of these
objectives and memory usage when partitioning DL models.
Finally, CAPTURE can be applied to large-scale inferencing.
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