
A mathematical, classical stratification modeling approach to
disentangling the impact of weather on infectious diseases: a case study
using spatio-temporally disaggregated Campylobacter surveillance data
for England and Wales
Lo Iacono, G.; Cook, A.J.C.; Derks, G.L.A.; Fleming, L.E.; French, N.; Gillingham, E.L.; ... ;
Vega Nic

Citation
Lo Iacono, G., Cook, A. J. C., Derks, G. L. A., Fleming, L. E., French, N., Gillingham, E. L., …
Nichols, G. (2024). A mathematical, classical stratification modeling approach to disentangling
the impact of weather on infectious diseases: a case study using spatio-temporally
disaggregated Campylobacter surveillance data for England and Wales. Plos Computational
Biology, 20(1). doi:10.1371/journal.pcbi.1011714
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3731957
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3731957


RESEARCH ARTICLE

A mathematical, classical stratification

modeling approach to disentangling the

impact of weather on infectious diseases: A

case study using spatio-temporally

disaggregated Campylobacter surveillance

data for England and Wales

Giovanni Lo IaconoID
1,2,3,4*, Alasdair J. C. Cook1, Gianne Derks4,5, Lora E. Fleming6,

Nigel French7, Emma L. Gillingham8, Laura C. Gonzalez VilletaID
1, Clare Heaviside9,

Roberto M. La Ragione1,10, Giovanni Leonardi8,11, Christophe E. Sarran12,

Sotiris Vardoulakis13, Francis Senyah14,15, Arnoud H. M. van Vliet1, Gordon Nichols1,6,8,16

1 Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey,

Guildford, United Kingdom, 2 Institute for Sustainability, University of Surrey, Guildford, United Kingdom,

3 People-Centred Artificial Intelligence Institute, University of Surrey, Guilford, United Kingdom, 4 Centre for

Mathematical and Computational Biology, University of Surrey, Guilford, United Kingdom, 5 Mathematical

Institute, Leiden University, Leiden, the Netherlands, 6 European Centre for Environment and Human Health,

University of Exeter Medical School, Truro, Cornwall, United Kingdom, 7 New Zealand Food Safety Science &

Research Centre, Massey University, Palmerston North, New Zealand, 8 UK Health Security Agency, Chilton,

United Kingdom, 9 Institute for Environmental Design and Engineering, University College London, London,

United Kingdom, 10 School of Biosciences, University of Surrey, Guilford, United Kingdom, 11 London School

of Hygiene and Tropical Medicine, London, United Kingdom, 12 Met Office, Exeter, United Kingdom,

13 Healthy Environments And Lives (HEAL) National Research Network, Australian National University,

Canberra, ACT, Australia, 14 UK Health Security Agency, Porton Down, United Kingdom, 15 Médicines Sans

Frontièrs, London, United Kingdom, 16 University of East Anglia, Norwich, United Kingdom

* g.loiacono@surrey.ac.uk

Abstract

Disentangling the impact of the weather on transmission of infectious diseases is crucial for

health protection, preparedness and prevention. Because weather factors are co-incidental

and partly correlated, we have used geography to separate out the impact of individual

weather parameters on other seasonal variables using campylobacteriosis as a case study.

Campylobacter infections are found worldwide and are the most common bacterial food-

borne disease in developed countries, where they exhibit consistent but country specific

seasonality. We developed a novel conditional incidence method, based on classical stratifi-

cation, exploiting the long term, high-resolution, linkage of approximately one-million campy-

lobacteriosis cases over 20 years in England and Wales with local meteorological datasets

from diagnostic laboratory locations. The predicted incidence of campylobacteriosis

increased by 1 case per million people for every 5˚ (Celsius) increase in temperature within

the range of 8˚–15˚. Limited association was observed outside that range. There were

strong associations with day-length. Cases tended to increase with relative humidity in the

region of 75–80%, while the associations with rainfall and wind-speed were weaker.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011714 January 18, 2024 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lo Iacono G, Cook AJC, Derks G, Fleming

LE, French N, Gillingham EL, et al. (2024) A

mathematical, classical stratification modeling

approach to disentangling the impact of weather on

infectious diseases: A case study using spatio-

temporally disaggregated Campylobacter

surveillance data for England and Wales. PLoS

Comput Biol 20(1): e1011714. https://doi.org/

10.1371/journal.pcbi.1011714

Editor: Nic Vega, Emory University Department of

Biology, UNITED STATES

Received: May 10, 2023

Accepted: November 27, 2023

Published: January 18, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011714

Copyright: © 2024 Lo Iacono et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

https://orcid.org/0000-0002-6150-2843
https://orcid.org/0000-0003-4150-9375
https://doi.org/10.1371/journal.pcbi.1011714
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011714&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011714&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011714&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011714&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011714&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011714&domain=pdf&date_stamp=2024-01-18
https://doi.org/10.1371/journal.pcbi.1011714
https://doi.org/10.1371/journal.pcbi.1011714
https://doi.org/10.1371/journal.pcbi.1011714
http://creativecommons.org/licenses/by/4.0/


The approach is able to examine multiple factors and model how complex trends arise,

e.g. the consistent steep increase in campylobacteriosis in England and Wales in May-June

and its spatial variability. This transparent and straightforward approach leads to accurate

predictions without relying on regression models and/or postulating specific parameterisa-

tions. A key output of the analysis is a thoroughly phenomenological description of the inci-

dence of the disease conditional on specific local weather factors. The study can be

crucially important to infer the elusive mechanism of transmission of campylobacteriosis; for

instance, by simulating the conditional incidence for a postulated mechanism and compare

it with the phenomenological patterns as benchmark. The findings challenge the assump-

tion, commonly made in statistical models, that the transformed mean rate of infection for

diseases like campylobacteriosis is a mere additive and combination of the environmental

variables.

Author summary

There is good evidence that weather influences some infectious diseases, driving the sea-

sonal and geographic distribution. This is relevant to gastrointestinal infections, which

cause high morbidity and mortality worldwide. Weather can impact people’s behaviour,

pathogen survival and distribution, animal husbandry, and other environmental variables.

We used campylobacteriosis in England and Wales as a case-study to examine a new

methodology because it has a distinctive seasonality. The approach compares daily data

on affected people by laboratory, the population of the laboratory catchments, and local

weather variables. This allows Campylobacter incidence to be compared across the values

of these variables (e.g. low to high temperature) to provide an estimate of how individual

weather variables, alone or in combination, affect disease incidence. We call this the Com-

parative Conditional Incidence. The results from this analysis are used to build a mathe-

matical model that represents how weather through the year influences the seasonality of

disease. The factors most associated with Campylobacter are day-length, air temperature

and relative humidity. This will influence future research to understand why the environ-

ment influences disease occurrence, and what the burden and pattern of the disease under

different climatic scenarios. The methods may have relevance to other seasonal diseases.

Introduction

Infectious diseases are an important cause of morbidity, mortality, and healthcare and other

economic costs worldwide [1]. Despite an encouraging decline in mortality rates in neonates

and children under-5 globally [2, 3], especially in south and southeast Asia and South Amer-

ica [4], diarrhoeal diseases were the second leading cause of death in children aged 1–59

months in 2015 [2], and accounted for 9.9% (95% Uncertainty Interval [8.3–11.6]) of deaths

in under-5 mortality in 2019 [3]. Diarrhoeal diseases are also a common cause of outpatient

visits and hospital admissions in high income countries [5]. The problem is expected to be

exacerbated by global population growth, the rising resistance to antibiotics [6] and anthro-

pogenic activities which are constantly changing the environment [7]. The environment, and

in particular climate, can affect pathogen abundance, survival, virulence, behavior and host

susceptibility to infection as well as human behavior (and vice-versa) [8]. A recent review
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found that 277 human pathogenic diseases can be aggravated by climate change, these

include 58% of all infectious diseases known to have affected human civilization [9]. Untan-

gling the impact of the environment on infectious diseases is an essential task particularly in

the context of climate change. The impact of hydrological and meteorological factors on

diarrhoeal diseases is now well documented (see [10] and references therein); however, the

exact nature of the associations between meteorological exposures, such as temperature,

rainfall and humidity, and the occurrence of the pathogen (e.g., its prevalence) is not fully

understood. To this end Colston et al. [10] investigated the associations between eight

hydro-meteorological factors and a range of enteropathogen. The study reveals the particular

influence of temperature and soil moisture across the studied pathogens and highlights the

complex and often non-linear associations between the environmental factors and the patho-

gen prevalence.

Thus, fundamental issues, also relevant for public health, are: i) elucidating how influential

environmental factors impact on the disease; ii) exploiting this information to accurately pre-

dict the current and future human health risk from infectious diseases; iii) quantifying the

time-lag, (i.e. the elapsed time during which the specific weather variables contribute to the

occurrence of an infection, and not a temporal gap during which the weather has no-effects)

between relevant changes in different environmental factors and the emergence of the disease

and, iv) gaining a clearer understanding of the transmission dynamics and epidemiology of

diseases. Statistical and mathematical approaches can provide promising predictive tools, but

are subject to many challenges including: limited knowledge of the mechanism of transmis-

sion, collinearity in exposures (i.e. highly correlated predictor variables in statistical models),

and limitations in available infectious disease data and their linkage with environmental vari-

ables [11].

Campylobacter is an important example of a climate-sensitive infectious agent. It is one of

the most common bacterial foodborne pathogens worldwide [12] and one of the four key

global causes of diarrhoeal diseases with rotavirus, typhoid fever and cryptosporidiosis [13].

Moreover, approximately one-third of Guillain-Barré syndrome cases have been attributed to

Campylobacter infection globally [13]. In 2010 alone, campylobacteriosis was responsible for

166 million [95% Uncertainty Interval 92–301 million] diarrhoeal illnesses, resulting in in 37,

600 deaths worldwide (95% Uncertainty Interval 27, 700–55, 100) [12]. Cases in the UK are

known to be underestimated; for every case of campylobacteriosis reported to national surveil-

lance there were 9.3 cases (95% Confidence Interval 6—14.4) in the community [14], and its

total UK societal cost is estimated at over £700 million per annum (see [15] and references

therein). The origins of Campylobacter infection and the routes of transmission are still not

fully understood [16]. For instance, current evidence suggest that Campylobacter in poultry

are responsible for most human campylobacteriosis [15]; still, reported human infections have

remained relatively constant despite reduced levels of Campylobacter in fresh poultry at retail

outlets in the UK [15, 17].

The incidence and prevalence of campylobacteriosis exhibits consistent seasonality, with

peaks in May-June in the UK. Potential explanations for such patterns include: seasonality of

the incidence in the animal reservoirs; changes in exposure due to human behavior, e.g. fre-

quency of barbecues [18]; and seasonality in the abundance of flies which might act as

mechanical vectors of the infection [19]. None of these potential causes have conclusively

explained and/or predicted the steep increase in incidence during the late spring/early summer

[20, 21] observed in England and Wales. Increased temperature has been associated with cam-

pylobacteriosis, but this is still rather inconclusive since the pathogen is unable to multiply out-

side the intestines of warm-blooded animals. There is indication, however, that low

temperatures, and protection from the effects of UV and desiccation, favour the survival of
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Campylobacter [22, 23]. Weather factors (e.g. ambient temperature, humidity, rainfall, etc.) are

expected to be important drivers [20, 21, 24], but their association is often not certain and the

factors are highly-correlated. Furthermore, it is unclear when these factors start to have an

effect on the likelihood of infection, and for how long (time-lag).

The aim of this analysis was twofold:

• to provide an in-depth description and quantification of how the weather affects the inci-

dence of campylobacteriosis;

• to develop and validate a predictive approach generalisable to a range of communicable and

non-communicable diseases and based on their environmental drivers/factors.

This was done by exploiting long term, high-resolution, epidemiological data linked with

local meteorological datasets. The approach estimates the incidence of the disease conditional

on specific environmental variables. It is based on classical stratification and relies on a limited

set of assumptions.

Materials and methods

A description of the method is illustrated in Fig 1.

Fig 1. Illustrative description of the method. Created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1011714.g001

PLOS COMPUTATIONAL BIOLOGY A mathematical approach to disentangling the impact of weather on infectious diseases

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011714 January 18, 2024 4 / 21

http://BioRender.com
https://doi.org/10.1371/journal.pcbi.1011714.g001
https://doi.org/10.1371/journal.pcbi.1011714


Data

We used Campylobacter data collected by UK Health Security Agency (UKHSA, formerly Pub-

lic Health England) through national surveillance in England and Wales between 1 January

1989 and 14 April 2010 (Secondary Generation Surveillance System database). Campylobacter
strains were isolated from stool samples in primary diagnostic laboratories using Campylobac-
ter specific agar, and were identified by methods outlined in UKHSA Standard Operating Pro-

cedures. The reported temporal data were adjusted from day of year using a 7-day rolling

mean, systematic adjustments for the reduced reporting over bank holidays [20] The 994, 791

reported cases were linked to local weather parameters provided by the Met Office statistically

interpolated to the locations of diagnostic laboratories via the MEDMI platform [25, 26].

Weather variables were available for the same period. Known travel-related cases, (based on

the information reported in the form associated with the specimen) were excluded from the

analysis. The linkage was conducted on laboratory address rather than patient residential

address on the basis that the discrepancies between some weather variables (temperature and

rainfall) between the laboratory and the corresponding patient location are known to be small

[20, 27].

Daily variables available for the same time period for England and Wales included: maxi-

mum and minimum air temperature (degree Celsius ˚), rainfall (mm), relative humidity (%)

and mean wind speed (knots). The date when the patient’s specimen was collected was not

available, therefore data were extracted for the date when specimen reached any of the 416

UKHSA diagnostic laboratories in England and Wales (although the data shows that only 213

laboratories were used for diagnostic, see section ‘Regional structure of UK Health Security

Agency, diagnostic laboratories and their catchment areas’ and Fig A in S1 Text, Fig 3 in [27]

and [28]) and for at least any previous 365 days; day-length was calculated from the day of the

year, and the latitude of the laboratories [29].

The weather was linked to the day when the infection most likely occurred. As such, the

Campylobacter specimen dates were adjusted by taking into account a log-normal distributions

of the incubation period (mean: 2–5 days [16], Fig B in S1 Text) and a uniform distribution for

the reporting delay (range: 1–4 days, based on expert opinion) before infections are finally

notified to health authorities [30, 31]. Therefore, for each campylobacteriosis case, we numeri-

cally generated a random realization of the incubation period and of the reporting delay drawn

from the corresponding distributions. The sum of these two random numbers, ndelay, corre-

sponds to a random realization of the overall delay since infection. Each campylobacteriosis

case was then assumed to occur ndelay days before the date when the specimen was received by

the diagnostic laboratories (Fig C in S1 Text). We restricted our analysis to cases when the

infection likely occurred (i.e., the day after removing incubation period and of the reporting

delay) between the 1 January 1990 and 31 December 2009 to ensure complete number of years

and that all postcodes were represented during those years. Distribution and correlations of

weather variables are shown in Figs D and E in S1 Text. Dataset and R codes are available at

https://gitlab.surrey.ac.uk/gl0020/campylobacter-linked-with-original-medmi-data.

Analysis methods. The Comparative Conditional Incidence

Here we assumed that Campylobacter cases in humans are caused by independent, random

exposures to a generic source of infection (e.g. consumption of contaminated food or contact

with contaminated water); while person-to-person transmission is considered negligible. In

addition, we assumed that public health interventions have not had any impact on incidence

and that human behavior was not changing during the study period. The risk is potentially

dependent on a range of factors, but here we focused on the weather variables mentioned
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above. Here and throughout we refer to these factors (i.e. the potential drivers of the disease)

as ‘explanatory variables’ or ‘predictors’.

A common approach to investigating the dependence of disease risk on an explanatory var-

iable in the presence of confounders is by fitting a regression model using a conditional likeli-

hood. Here we adopted the same principle, but we exploited the high spatio-temporal

resolution linkage between epidemiological and weather data to ascertain the observed inci-

dence during a certain period, conditional on the weather factors. As a result the method does

not rely on parameter fitting or assumptions of the functional form of the dependence of the

response on the explanatory variables.

Mathematical analysis for the incidence of campylobacteriosis conditional on weather

factors. To simplify the notation, we will present the method for the specific cases when we

used three explanatory variables, and these were maximum air temperature Tmax, relative

humidity RH and day-length D (day-length is an astronomical factor, but to simplify the lan-

guage, here we include day-length among the weather factors). The formalism can be readily

adapted for rainfall and wind speed too and/or to the situations when we used one, two or four

explanatory variables. The corresponding time series evaluated on discrete time values Δt, 2Δt,
‥(Δt = 1 day), and at the laboratory catchment area x, are represented, respectively by Tmax

t;x ,

RHt,x and Dt,x. The expressions Tmax
t;x

p
, RHt;x

p
and Dt;x

p
indicate that the said time series have

been averaged over the previous time interval [t − pΔt, t] and Tmax
t

p
, RHt

p
and Dt

p
when fur-

ther averaged over all catchments areas.

It is convenient to discretise each explanatory variable into a finite number of intervals of

sizes ΔTmax = 1˚C, ΔRH = 5% and ΔD = 1 hour. Variations within each interval are assumed to

have a negligible effect on the risk of campylobacteriosis.

We are interested in the subset of the time series of campylobacteriosis when the values of

all explanatory variables, except one, are fixed (in practice within a narrow range), thus we use

the notation: OCðTmax
t;x

p
jRHt;x

p
¼ RHi;Dt;x

p
¼ DjÞ to represent the number of observed cases

at time t, in the catchment area x, where the maximum air temperature averaged over the past

p-days, Tmax
t;x

p
, can assume any value, but the remaining variables averaged over the past p-

days, are fixed within the bins iDRH � RHt;x

p
� ðiþ 1ÞDRH and jDD � Dt;x

p
� ðjþ 1ÞDD,

these bins are represented by RHi and Dj. If we focus on other weather variables, the notation

is modified accordingly. We then define the conditional daily incidence (which can be inter-

preted as a probability) Pp
Campyl as:

Pp
CampylðTmaxjRHi;DjÞ ¼

X

t

X

x

OCðTmax
t;x

p
¼ TmaxjRHt;x

p
¼ RHi;Dt;x

p
¼ DjÞ

NðTmax
t;x

p
¼ TmaxjRHt;x

p
¼ RHi;Dt;x

p
¼ DjÞ

ð1Þ

where NðTmax
t;x

p
jRHi;x

p
;Dj;x

p
Þ is the total number of people in the catchment area x at time t

who have been exposed to the weather variables fixed by the same constraints in the definition

of OCðTmax
t;x

p
jRHt;x

p
¼ RHi;Dj;x

p
¼ DjÞ. In other words, this is the ratio of the number of cam-

pylobacteriosis cases given the weather (therefore, this is represented by OC) and the total

number of people exposed to the same weather conditions. Here and throughout, by condi-

tional incidence Pp
Campyl, we refer to the daily average number of cases per million people.

Accordingly, the notation Pp
CampylðTmax jRHi;DjÞ ¼ P14

Campylð20j76; 15Þ ¼ 2 means that we expect

to observe 2 daily campylobacteriosis in any catchment area where the maximum air tempera-

ture, relative humidity and day-length, averaged over the past 14 days, were 20˚ C, 76% and 15

hours respectively.
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The approach presents the following advantages (see also analysis below using Agent Based

Models): i) by plotting the conditional incidence Pp
CampylðTmax jRHi;DjÞ vs the explanatory vari-

able Tmax
t

p, we are able to detect how this is associated with Campylobacter infection stratified

by all other potential explanatory variables; ii) if Tmax
t

p is not a true explanatory variable, the

plots of Pp
CampylðTmax jRHi;DjÞ, for all possible stratifications, should show no significant varia-

tion (apart random effects) with Tmax
t

p
; iii) if a particular variable, e.g. the relative humidity

RHt;x

p
, is a confounder, the plots of Pp

CampylðTmax jRHi;DjÞ are expected to collapse to the same

curve (apart random variations) irrespective of the value of RHi (i = 1, 2‥), otherwise (i.e. if rel-

ative humidity is an effect modifier) the plots of Pp
CampylðTmax

t

p
jRi

p;DjÞ, are expected to result in

a series of independent curves for the different values of RHi (i = 1, 2‥). In presenting the con-

ditional incidences, the range of the underlying data are divided into quantiles, e.g. continuous

intervals with equal number of observations, hence the size of these intervals decreases in

regions when the frequencies of data is high (compare with Fig D in S1 Text).

Reconstruction of campylobacteriosis. In the simplest scenario, the human population

in a defined region is uniformly subjected to random and independent exposures to Campylo-
bacter infections. Accordingly, occurrences of Campylobacter infections in humans are treated

as a Poisson process with rate λ(t, x) depending on time t and location x, here chosen to be the

laboratory catchment (Section A in S1 Text). The expected (reported) number of daily infec-

tions is evaluated as the product:

lðt; xÞ ¼ 106Nt;xP
p
CampylðTmax jRHi;DjÞ ð2Þ

where Nt,x, which is the number of people living at the said location x at time t, is approximated

as the annual average number of residents in the laboratory catchment, (see Fig A in S1 Text);

Pp
Campyl is evaluated at the weather factors recorded at location x at time t, the factor 106 is intro-

duced because Pp
Campyl is defined per million. Thus, for each catchment area x at any time t (tem-

poral resolution 1 day), we ascertain the values of the weather factors Tmax
t;x

p
, RHt;x

p
and Dt;x

p
,

the corresponding conditional incidence Pp
Campyl and the number of residents exposed to the

same weather variables, in practice Nyear,x for each catchment area and year (Fig A in S1 Text).

When we sum over all catchment areas, we obtain the predictions for the expected number

of daily infections in England and Wales. The underlying assumption is that the infection rate

does not explicitly depend on time and location, the space-time dependence occurs only

implicitly via the local weather variables experienced during a certain time preceding the infec-

tion (but see Section H in S1 Text and corresponding discussion). We also assume that all

infections occurring in a particular laboratory catchment are reported to the corresponding

laboratory. This expected number of infections, however, is still affected by reporting bias (as

the estimation of Pp
Campyl was based only on reported cases) although the averaging process over

time and locations is expected to reduce heterogeneities in reporting bias.

It is worth noticing that, because of the environmental stochasticity in the weather vari-

ables, the rate of infection is itself a stochastic term and thus the underlying Poisson process is

strictly a doubly stochastic Poisson process which naturally results in an over-dispersion of the

data (i.e. a variance larger than the mean) [32]. In the special case that the rate of infection is,

or can be approximated by, a gamma-distributed variable, then the process is described by a

negative binomial distribution. In the rest of the analysis, however, we focus only the expected

rate of infections λ(t, x)). The weather variables have been averaged over a fixed, past number

of days (14 days unless otherwise specified). Underlying this choice is the assumption that the

weather factors continuously contribute to the occurrence of an infection for a fixed time-lag
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and that this effect can be captured by their temporal average over the said time-lag. The effect

of other time-lags was also assessed in the Supporting Information (Section I in S1 Text).

Validation with agent based models. To validate the method, we applied the approach to

a synthetic epidemic simulated by an independent Agent Based Model (ABM). The ABM gen-

erates random numbers drawn from a Poisson distribution with the rate given by the product

of the number of residents in a specific catchment area and a conditional incidence arbitrarily

chosen. The time-lag is also arbitrarily chosen (see Section D in S1 Text) and the catchment

area was the area associated with the reference laboratory in Welwyn Garden City in England.

These random numbers represent the number of new disease cases observed per day. We then

apply the method described above assuming no prior knowledge of the conditional incidence

and time-lag. The exercise shows that the method correctly identified i) the shape of the condi-

tional incidence (a triangular one in this example), ii) the number of explanatory variables

(when relative humidity was not an explanatory variable all the profiles for the conditional

incidence collapsed to the same curve as expected) and the time-lag (the reconstruction of the

time-series using the incorrect time-lag led clearly showed discrepancies with the time-series

generated by the ABM). More details are presented in Section D and Figs F and G in S1 Text.

Results

Identifying the more influential weather explanatory factors and how they

impact on the disease

We investigated the impact of multiple combinations of weather factors, either simultaneously

or separately, on the impact on the disease. Our findings suggests that day-length, maximum

air temperature and relative humidity, compared to wind speed and rainfall are the more influ-

ential weather factors. The conditional incidence of campylobacteriosis is associated with max-

imum air temperature (Fig 2A). The conditional incidence tends to be approximately constant

for temperatures below 8˚C, this is followed by a sharp increase of about 1 case per million for

every 5˚C rise in temperature, where temperatures were between 8˚C and 15˚C and no further

rise at temperatures over 15˚C (Fig 2A). The same patterns can be discerned, at least qualita-

tively, in Fig H in S1 Text, when we stratified the conditional incidence by relative humidity,

rainfall, mean wind speed and mean day-length respectively and in Fig 3 when we stratify by

relative humidity and mean day-length simultaneously. The conditional incidence associated

with minimum air temperature exhibit similar qualitative patterns (Fig 2B, see also the analysis

is shown in Fig I in S1 Text, and in Fig J in S1 Text for the difference between maximum and

minimum air temperature. As the predictions did not qualitatively change compared to those

in Fig H in S1 Text, we continued using maximum air temperature for the rest of the analysis).

The conditional incidence also depends on the relative humidity; this is supported by the

observation: i) of a peak around 75–80% in the conditional incidence when this is stratified by

relative humidity alone (Fig 2C), ii) that the various profiles for the incidence conditioned to

relative humidity are, in general, not collapsing on the same curve (Fig 3) and/or iii) the pro-

files for the conditional incidence vs relative humidity are in general not constant (Fig K and

Fig O in S1 Text). The analysis revealed, however, subtle patterns in how the conditional inci-

dence specifically depends on relative humidity. For shorter day-length (< 10 hours) relative

humidity has limited influence on the conditional incidence. This is shown by all profiles over-

lapping in Fig 3A but they differentiate in panels B, C and D in Fig 3, and by the fact that the

slope of the conditional incidence in Fig K (panel A) in S1 Text is relatively lower compared to

the slope of the profiles Fig K (panel C and D) in S1 Text. Similarly, the slope of the profiles for

conditional incidence in Fig O for day-length < 9.8 hours tend to be flatter than those for day-

length> 9.8, although there are exceptions like the situation when the maximum air
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Fig 2. Campylobacteriosis cases per 1, 000, 000 per day vs (A) maximum air temperature, (B) minimum air temperature

(C) relative humidity (D) rainfall (E) mean wind speed and (F) day-length. Data were averaged over the past number of days

represented by the time-lag. The shaded area shows the 95% confidence intervals for the Poisson means using the normal

approximation (i.e. average counts� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaverage counts=sample sizeÞ

p
Þ. Data divided by quantiles.

https://doi.org/10.1371/journal.pcbi.1011714.g002
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temperature is in the range 9–10˚ and the rainfall > 5mm. When we increase the number of

factors used in the stratification, the peak around 75–80% shown in Fig O, becomes less dis-

cernible; however, this feature is preserved, at least in qualitatively, in some situations.

Depending on maximum air temperature, day-length and also rainfall, the conditional inci-

dence tends to increase with relative humidity either monotonically or reaching a peak in the

Fig 3. Campylobacteriosis cases per 1, 000, 000 per day conditioned to maximum air temperature, relative humidity and day-length. As the day-

length depends on the time of the year (as well as latitude), each panel broadly correspond to (A) last week of October—middle of February, (B) middle of

February—first week of April and middle of September- last week of October (C) first week of April—second-half of May and second-half of July—middle

of September (D) second-half of May—second-half of of July 22. Data were averaged over the past 14 days. The shaded area shows the 95% confidence

intervals for the Poisson means using the normal approximation (i.e. average counts� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaverage counts=sample sizeÞ

p
Þ. Data divided by quantiles.

https://doi.org/10.1371/journal.pcbi.1011714.g003
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region of high relative humidity followed by a decrease, although the exact slope of the curve

and location and magnitude of the peak varies (see Figs K and O in S1 Text). Taking this

together, the analysis shows an association of the conditional incidence with relative humidity,

especially for day-length longer than 10 hours. The quantitative patterns of the association

change according to the specific weather factors.

The dependence of the conditional incidence on rainfall is less pronounced compared to

relative humidity (Fig 2D). Furthermore, the profiles of the conditional incidence of Fig L in

S1 Text, tend to be flatter compared to that one for relative humidity, indicating limited influ-

ence of rainfall on campylobacteriosis. Similarly, in Fig M in S1 Text, the profile of the condi-

tional incidence vs mean wind speed shows little variation, implying that mean wind speed has

limited impact on campylobacteriosis. The clear patterns in Fig 2 (panel E) in S1 Text are likely

to arise from correlations in weather factors, since wind speed tends to be lower for longer

day-length and for high maximum temperature (Fig E in S1 Text), which are the conditions

when the conditional incidence tend to be high. In contrast, Fig N in S1 Text, along with panel

F in Fig 2, suggest a strong association of day-length with the conditional incidence of

campylobacteriosis.

The analysis was further refined by investigating the patterns in conditional incidence

according to four different weather factors simultaneously, namely: maximum air tempera-

ture, relative humidity, rainfall and day-length. As shown in Fig O, the conditional incidence

tends to increases with relative humidity with occasional peaks in the profile at larger values of

relative humidity (>
�

75%); this can be seen, for instance, for the situation when the maximum

air temperature is in the range of 3–10˚, and day-length in the range 9.8–13.2 hours. The anal-

ysis also shows the complex nature of the association of rainfall with campylobacteriosis. In

some instances the profiles of the conditional incidence largely overlap for the different levels

of rainfall (e.g. for maximum air temperature > 20˚, and day-length in the range 13.2–15.8

hours, suggesting no association) while in other situations (typically for maximum air

temperature > 17˚ and day-length > 15.8) the different profiles are clearly discernible and

show that the conditional incidence of campylobacteriosis is higher when rainfall is lower.

Furthermore, we estimated the conditional incidence of campylobacteriosis vs maximum

air temperature and relative humidity for two different periods of the year. Namely: the time

of the year between i) the shortest (winter solstice) and the longest (summer solstice) duration

of day-length and between ii) the longest and the shortest duration of day-length. The choice

allows comparisons at different months but ensures that the two parts of the year have the

same distribution of day-length. As shown in Fig P in S1 Text, depending on when campylo-

bacteriosis cases occur (from summer to winter solstice or from winter to summer solstice) the

relationship between the conditional incidence and maximum air temperature and relative

humidity is different. This suggests that additional factors, like time or other environmental

factors that correlate with time, might be associated with campylobacteriosis.

Predicting the patterns of campylobacteriosis

To predict the observed patterns of reported campylobacteriosis, we wanted to identify a mini-

mal set of more influential factors that can be used as inputs in parsimonious models (which

are computationally less expensive and rely less on dataset availability). Based on the heuristic

considerations above, we retained maximum air temperature, relative humidity and day-length

in our subsequent analysis. We can anticipate that this set of factors is sufficient to make accu-

rate predictions of cases and on parsimony ground we did not consider time of the year or any

additional factor correlated with time of the year. It is important noticing however, that the pat-

terns in conditional incidence, according to maximum air temperature and relative humidity,
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differ for different periods of the year (Fig P in S1 Text). Thus including time of the year as

fourth factor is likely to further improve the predictions of campylobacteriosis incidence.

Fig 4 shows the predictions for the corresponding expected daily number of cases reported

of Campylobacter cases compared with the detected cases per catchment area in England and

Fig 4. A) Reconstruction of the time-series of Campylobacter cases in England and Wales. B) Seasonal patterns for daily Campylobacter cases averaged over 19

years. The shaded area represents the 25% and F quantiles. Weather variables are maximum air temperature, relative humidity and day-length. C-D) Scatter plot

and map comparing the reported and predicted daily number of campylobacteriosis per catchment area averaged over the entire 19 years. In D) the red circles

represent the reported cases while the blue squares the predictions. Weather variables averaged over the past 14 days. Map reproduced in R [45] using shapefiles

availalbe at [46].

https://doi.org/10.1371/journal.pcbi.1011714.g004
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Wales (panel A). Panel B shows the corresponding intra-annual variation (seasonality) by

aggregating the data monthly. The uncertainty arises from the spatio-temporal variability in

temperature, relative humidity and day-length across the different catchments areas and times.

The approach also captures the spatial variability as shown in the map and scatter plot in Fig

4C and 4D, which compare the overall reported and predicted daily number of campylobacter-

iosis per catchment area averaged over the entire 19 years analyzed.

Predictions for the variables averaged over different time-lags (from Fig Q to Fig T, in S1

Text) show only a weak sensitivity of the predictions to different time-lags considered here.

The analysis also showed that the inclusion of day-length greatly enhanced the predictions

compared to prediction based on two weather factors alone. To investigate this aspect further,

we simulated the time-series of cases first using only one explanatory variable and then two

explanatory variables. Predictions using day-length and maximum air temperature separately

broadly capture the seasonality in campylobacteriosis, although the model exhibits large dis-

crepancies with the empirical data (Fig U in S1 Text; panels A-B and C-D). Seasonal patterns

in the predictions are still discernible when we used relative humidity, while seasonal variation

in the predictions are negligible when we used wind speed and rainfall only. Using simulta-

neously day-length and an additional weather factor improve the accuracy of the predictions,

especially for the combination day-length and maximum air temperature (Fig V in S1 Text;

panels A-B). Other combinations lead to poor predictions (Fig V in S1 Text). A visual assess-

ment of the predictions of the model combining day-length and maximum air temperature

indicates that the predictions for the intra-annual variability of campylobacteriosis are compa-

rable to that when we use three weather factors (compare panels B in Fig 4 and Fig V in S1

Text); this combination, however, results in poor predictions of the inter-annual variability

(compare panels A in Fig 4 and Fig V in S1 Text). Taken together, the findings suggest that

campylobacteriosis is strongly associated with day-length and maximum air temperature and

these two weather factors are sufficient to predict the seasonality of the disease, while a weaker

association with relative humidity might be the driver of the inter-annual variability. Thus,

even if rainfall alone is a poor predictor, when combined with day-length and maximum air

temperature results in accurate predictions as shown in Fig W in S1 Text.

Impact of individual variables on the seasonality of campylobacteriosis

cases

The impact of a single seasonally-varying, specific weather factor on the patterns of campylo-

bacteriosis cases when the other two variables are kept constant is demonstrated in Fig 5 show-

ing that the specific seasonal patterns observed in England and Wales originate from the

combination of all three variables and the non-linear functional forms of the conditional inci-

dence. For instance, for a relative humidity of 76% and a maximum air temperature of 20˚C
the conditional incidence of campylobacteriosis exhibit a maximum in July and a local mini-

mum in May (dashed line in Fig 5C); in these months the day-length is about 17 and 15 hours

respectively (Fig 5F) for which the conditional incidence exhibits a local maximum and a local

minimum (Fig 5I). These patterns strongly depends on the specific values of the chosen

weather factors, the purpose of the analysis of these hypothetical scenarios is to elucidate how

the specific seasonal patterns observed in England and Wales originate from the combination

of all three variables and the non-linear functional forms of the conditional incidence.

Discussion

Seasonality is a recognized driver of the temporal patterns of campylobacteriosis as shown in

Fig C in the Supporting Information (S1 Text). To understand these seasonal patterns, we
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collected and linked long term high-resolution epidemiological and weather data allowing for

the stratification of the conditional incidence of the disease conditional on specific weather

factors. We then systematically investigated the relationship between the conditional incidence

of campylobacteriosis and a range of variables: air temperatures, relative humidity, rainfall,

Fig 5. Prediction of seasonal patterns for daily Campylobacter cases as done in Fig 4 for the situation when 2 variables are constant (Weather variables

averaged over the past 14 days). A) Constant relative humidity 76% and day-length 15 hours. B) Constant maximum air temperature 20˚C and day-length

15 hours. C) Constant maximum air temperature 20˚C and relative humidity 76%. D-E-F) Patterns for daily 14-days rolling mean for maximum air

temperature, relative humidity and day-length averaged over 19 years. The shaded area represents the 25% and 75% quantiles. G-H-I) Conditional incidence

vs the variable weather factors for the situation corresponding to A) B) and C) respectively.

https://doi.org/10.1371/journal.pcbi.1011714.g005
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wind speed, day-length and different period of the year for different time-lags. We began by

exploring this relationship considering only one weather variable at a time (Fig 2). Despite the

clearly detectable patterns, this analysis could lead to incorrect conclusions due to the correla-

tions among some of the variables or simply the high frequency of specific values (Figs D and

E in S1 Text). Thus we refined our analysis by stratifying the conditional incidence according

to exposure to two (from Fig H to Fig J in Section E in S1 Text), three (Fig 3 and from Fig K to

Fig N in Section F in S1 Text) and four specific weather variables (Fig O in Section G in S1

Text) as well as for different period of the year with the the same distribution of day-length

(from winter to summer solstice and viceversa) (Fig P in Section H in S1 Text).

The findings show that the conditional incidence of campylobacteriosis was associated with

maximum air temperature in a non-linear fashion. For temperatures below 8˚C the condi-

tional incidence exhibits no or limited increase, this is followed by about 1 case per million for

every 5˚C rise in temperature where temperatures were between 8˚C and 15˚C and no further

rise at temperatures over 15˚C. The patterns simultaneously depends on relative humidity and

day-length. The conditional incidence tend to increase with day-length. Cases had marked

higher conditional incidence when the relative humidity was in the region of 75–85% (depend-

ing on which factors is used for the stratification). These findings are in line with the observa-

tion that the survival of Campylobacter in the environment is enhanced by moist conditions

[23]; and also with the findings of Kalupahana et al. [33], who observed a decrease in Campylo-
bacter prevalence in broilers (chickens) at slaughter at high relative humidity (> 80%). Colston

and colleagues [10], however, found limited association between incidence of campylobacter-

iosis and relative humidity. It is important to highlight that their study focused on enteric path-

ogens in stool samples collected from children aged under 5 years in Low- and Middle-

Income Countries, while here we considered all ages in a High-Income country. Another

important difference is that Colston et al.’s study comprised all exposures and covariate vari-

ables including soil moisture and relative humidity. In our work, data on soil moisture were

not available and thus the observed association with relative humidity might be arise from cor-

relation with soil moisture and precipitation [34].

In general, associations with rainfall and wind-speed are weak. The fly hypothesis, i.e., that

campylobacteriosis is mechanically transmitted by flies (musca domestica) [19], appears to

contradict the weak association of conditional incidence with wind-speed since flies activity is

expected to depend on wind speed. It is worth noticing that ambient temperature has a direct

influence on the physical activity and the life span of houseflies and their flight activity

increases with temperature [35]. Further research is needed to test this hypothesis.

The analysis shows that the relevant meteorological variables considered here contribute

to the conditional incidence in a non-monotonic and non-additive fashion. This is an impor-

tant result per se, as many regression methods need to make precise assumptions on the func-

tional relationships between the predictors and the response variable; for instance, assuming

that the rate of infection is a linear combination of the weather variables. The problem could

be avoided by using Machine Learning approaches, such as Random Forest which uses an

algorithm to learn the relationship between the response and its predictors. A further

advancement, boosted regression trees, draws on insights and techniques from both statistics

and Machine Learning [36]. These approaches rely on an algorithm processing the data (e.g.

employing splitting criteria and classifying the predicted class as the most common class in

the node). Here we used a classical stratification technique which is not based on any infer-

ence or decision, and we argue that the resulting conditional incidence can be interpreted as

a gold standard as purely based on a description of the data. Most importantly, compared to

Machine Learning approaches, our method and the findings are readily interpretable by

non-experts.
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Predicting and understanding seasonality and complex trends in the dynamics of infectious

diseases is a crucial goal for public health. Environmental data have a great potential to

improve the predictive power of models and to understand complex patterns in the spread of

diseases. The approach elucidates the seasonal patterns in campylobacteriosis and it is able to

predict complex trends, e.g. the steep increase in campylobacteriosis in England and Wales in

May-June and their spatial variability. It combines information on the conditional incidence

with local information on maximum air temperature, relative humidity and day-length with-

out relying on regression models and/or postulating specific parameterisations.

The observed seasonal incidence of Campylobacter depend on the particular geographic

region under investigation [37], as well as on the particular reporting system employed in

the country. These seasonal patterns arise from the non-linear functional forms of the con-

ditional incidences combined with the weather variables observed in England and Wales.

Thus rather than asking why there is a steep increase in campylobacteriosis in England and

Wales in May-June we should focus on explaining what is the mechanism resulting in the

specific shape of the observed incidence conditional on the weather variable. At the

moment, we cannot establish if this relationship is universal, or typical of only the situation

in England and Wales (implying that it is affected by human behavior, such as higher fre-

quency of barbecues in warmer days, or both). According to a recent survey of campylobac-
ter contamination in fresh, whole UK-produced chilled chickens at retail sale, the

percentage of samples with more than 1000 cfu of campylobacter spp. per gram was signifi-

cantly higher in the period May, June, and July than in the period November to April [38].

This indicates that the seasonal patterns of campylobacteriosis might be related to the bio-

physical process, such as survival of the bacteria in response to the environment or food

chain rather than individual consumer behavior. In future, it would be interesting to apply

the method, using the same conditional incidence for England and Wales, to other geo-

graphic settings for example, European countries and southern hemisphere countries (e.g.

Australia and New Zealand where appropriate datasets are available) and test if the model

predicts the correct shift in the time when Campylobacter incidence peaks [37]; and if the

model captures the different seasonal patterns in New Zealand’s North and South Islands,

with higher amplitude of peaks in Canterbury and less detectable seasonal pattern in Auck-

land [39]. Similarly, after including socio-economic factors such as livestock density, the

model could be used to investigate the difference in the seasonal pattern in urban versus

rural areas (as observed in New Zealand) with peaks during early spring in areas with high

cattle density likely to be ruminant-associated, compared to summer in urban areas likely to

be attributable to poultry [40].

Agent based models have been used to investigate the elusive mechanism of transmission

[41]. Our approach can assist this class of models by comparing, for example, the empirical

conditional incidence found here with a simulated incidence conditional to weather factors,

based on the hypothesized mechanism.

In this work, we considered only a limited number of weather variables. The approach can

be improved by exploring the impact of other variables potentially involved in the causal path-

ways, such as: dew point temperature, soil temperature, UV radiation (rather than day-length),

atmospheric pressure, etc. These data can now be extracted from data collected from meteoro-

logical agencies (e.g. the Met Office [25, 26]) although they might be subjected to some limita-

tions (e.g. temporal and spatial gaps in the data collection and computational resources).

Including a higher number of variables is possible, the practical disadvantage, however, is the

reduction in the sample size for a particular set of conditions, and the associated greater uncer-

tainty. Nevertheless, other environmental and socio-economic variables can be readily incor-

porated in this approach. For instance, the inclusion of land use (e.g. spreading composted or
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creating middens of un-composted poultry litter on land), built up cover, and the spatial distri-

bution of poultry and other livestock, can assist in detecting the impact of urban vs rural fac-

tors in the incidence of the disease.

Limitations

A limitation of this study was the use of laboratory location rather than patients’ address. The

choice, however, presents some advantages: i) the laboratory address database was more com-

plete than the patient residential address since the surveillance system had limited patient post-

code records before 2008, ii) the computational resources needed for data linkage at the

individual patient postcode level can be significant large, iii) the use of laboratory address pre-

vents challenges to comply with ethical and legal requirements of confidentiality. Furthermore,

using the patient’s residential address could introduce further bias as it is estimated that people

spend up to 40% of time at locations other than their residence address (schools, workplace,

transport) [27].

The uncertainty associated with the conditional incidence was quantified by estimating

95% confidence intervals as Wald interval. Other measures could be considered. For instance,

the relative risk conditioned to specific weather factors can be estimated by dichotomizing the

continuous weather factors at an adequate threshold (e.g., 8˚ for maximum air temperature)

and calculating the ratio of the probability of campylobacteriosis for when the weather factor is

above the chosen threshold (the “exposed group”) to the probability of campylobacteriosis for

when the weather factor is below the threshold (the “unexposed group”) [10].

The current analysis cannot distinguish if and how day-length is involved in the causal

pathways; day-length could be a proxy of the effect of radiation on the survival of the bacte-

rium or a proxy for human behavior driven by the seasonal cycle of day-length. In future

research, the data should be stratified simultaneously by day-length and a measure of radia-

tion, e.g. UV, and ascertain the ‘true’ explanatory variable.

An additional limitation of this study is that the data comes from a high-income country,

with specific climatic disease-burden, therefore, it may not be possible to extrapolate these

findings to the low-resource, tropical settings. An important objective for future research it to

asses if the functional form of the conditional incidence depends on specific geographic and

socio-economic settings. This was done for a similar study for salmonellosis [42], which

showed that the approach accurately reproduces the empirical patterns of salmonellosis in The

Netherlands by using the conditional incidence derived from England and Wales data. If the

nature of the conditional incidence is proven to be general, then the method can be readily

applied to investigate how the burden and patterns of diseases will change due to climate and

other environmental changes.

We applied the model to Campylobacter, mainly because of the abundance of data. This

approach, however, can be readily applied to other diseases for which the temporal dynamics,

for instance arising from person-to-person transmission, are negligible or can be incorporated

in the model by using time-varying variables (such as day-length) as proxies. It is worth explor-

ing if the approach can be applied to model non-communicable diseases such as cancer due to

long exposure to factors such as contaminated air.

An extension of the approach is the inclusion of person-to-person transmission, which

would be relevant to infectious gastro-intestinal diseases such as those caused by norovirus,

rotavirus and respiratory diseases such as those caused by influenza A viruses and coronavi-

ruses. This can be done by employing Poisson processes with memory of past events, Hawkes

processes, and by explicitly separating the contributions arising from the environment from

the one from person-to-person [43, 44]. This will be explored in future works.
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Conclusion

We formulated a novel mathematical approach and used a unique dataset which combines a

large high-resolution spatio-temporal epidemiological data for campylobacteriosis from UK

Health Security Agency, locally linked with multiple environmental factors at high geographic

resolution from the Met Office. This leads to a thoroughly description and quantification of

the comparative incidence of campylobacteriosis that is conditional to the local weather fac-

tors. The analysis controls for geography and time by providing an average of daily case inci-

dence in all catchments, and for the entire time period, measured for individual weather

values. The Comparative Conditional Incidence approach also allows simultaneous analysis of

two or three weather parameters.

Campylobacter infection is strongly associated, in a complex and non-linear way, with day-

length and maximum air temperature and, to a lesser extent, with relative humidity. These

three weather factors are sufficient to accurately predict the incidence of the disease. Although

method cannot ascertain if the specific weather factors are involved in the causal pathways, the

the Comparative Conditional Incidence can provide an insight into how weather factors might

affect the mechanism of transmission. This information can be used as benchmark for future

agent-based models aiming to investigate the underlying causes of campylobacteriosis

transmission.

The Comparative Conditional Incidence approach is generalisable to other environmental-

driven communicable and non-communicable diseases and can be applied to investigate how

the seasonal burden of diseases will change under different climatic scenarios.
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