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Abstract—Submodular functions play a key role in the area of
optimization as they allow to model many real-world problems
that face diminishing returns. Evolutionary algorithms have
been shown to obtain strong theoretical performance guaran-
tees for a wide class of submodular problems under various
types of constraints while clearly outperforming standard greedy
approximation algorithms. This paper introduces a setup for
benchmarking algorithms for submodular optimization problems
with the aim to provide researchers with a framework to enhance
and compare the performance of new algorithms for submodular
problems. The focus is on the development of iterative search
algorithms such as evolutionary algorithms with the implemen-
tation provided and integrated into IOHprofiler which allows
for tracking and comparing the progress and performance of
iterative search algorithms. We present a range of submodular
optimization problems that have been integrated into IOHprofiler
and show how the setup can be used for analyzing and comparing
iterative search algorithms in various settings.

Index Terms—Benchmarking evolutionary algorithms, Sub-
modular optimization, Chance constraints

I. INTRODUCTION

Many real-world optimization problems face diminishing
returns and can be modeled in terms of a submodular func-
tion [1]–[3]. Over the last 10 years, it has been shown that
evolutionary algorithms (EAs) using multi-objective formula-
tions provably obtain best possible worst-case performance
guarantees for a wide range of submodular optimization
problems [4], [5]. Furthermore, it has been shown that they
usually also achieve better experimental performance than

approximation algorithms based on greedy approaches for
these problems [6]–[10].

While these results show the usefulness of evolutionary
algorithms for submodular problems, only a very limited num-
ber of algorithms has been explored. The focus of theoretical
studies of the runtime analysis of evolutionary algorithms for
submodular functions is on an evolutionary multi-objective
algorithm known as GSEMO [11], [12] which is used in the
context of Pareto optimization, i.e., the objective function and
constraint function are used in a bi-objective model where the
best feasible solution is returned at the end of the optimization
process. With this paper, we describe the set up of benchmarks
for a competition of iterative search algorithms for submodular
problems. We classify the problems into different problem
categories and provide prominent combinatorial optimization
problems for each category. All problems are integrated into
IOHprofiler which is a tool for comparing and analyzing the
performance of iterative search algorithms.

The IOHprofiler tool is a modular framework for
benchmarking iterative optimization heuristics. IOHexperi-
menter [13] supports the benchmarking pipeline by providing
a common interface for benchmark problems, to which a wide
variety of logging functionality can be attached. The logging
enables the performance data to be recorded using common
data formats, which can be loaded into the IOHanalyzer [14]
tool for interactive visualization and analysis. Since this can
all be done via a GUI on a website, no additional effort is
required to compare results with the provided baselines.

We define different submodular problems that are also
included in the competition on Evolutionary Submodular
Optimisation at the Genetic and Evolutionary Computation979-8-3503-1458-8/23/ $31.00 ©2023 IEEE

20
23

 IE
EE

 C
on

gr
es

s o
n 

Ev
ol

ut
io

na
ry

 C
om

pu
ta

tio
n 

(C
EC

) |
 9

79
-8

-3
50

3-
14

58
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

CE
C5

32
10

.2
02

3.
10

25
41

81

Authorized licensed use limited to: Universiteit Leiden. Downloaded on April 02,2024 at 11:34:16 UTC from IEEE Xplore.  Restrictions apply. 



Conference (GECCO) 2022 and 2023. Let c(x) be the cost of
a solution x and f(x) the value of the (submodular) function
applied to x. Our cost functions are either linear as in the clas-
sical knapsack problem or are given based on tail bounds used
to evaluate chance constraints that are imposed on submodular
functions when dealing with stochastic settings [10], [15], [16].
All settings consider the maximization of a given submodular
function f under a (possible) cost constraint c(x) ≤ B, where
B is a given constraint bound.

Our setup divides the class of submodular problems
into monotone and non-monotone submodular problems. For
monotone submodular optimization problems, the function
value does not decrease when adding extra elements. Here the
constraint imposes the difficulty as all solutions have to meet
the cost required, i.e., c(x) ≤ B is required for any feasible
solution x. The example problems that we integrate are the
maximum coverage problem in graphs [17] and the maximum
influence problem in social networks [18].

For non-monotone submodular optimization problems, it is
not necessary to impose a cost constraint as such problems
are already hard without the constraint. Examples include
the classical maximum cut problem in graphs [19] and the
packing while traveling problem [20] which constitutes the
packing component of the multi-component traveling thief
problem [21]. The maximum cut problem does not come with
an additional constraint as each selection of nodes defines one
partition whereas the second portion is given by the remaining
nodes and the edges crossing the partitions constitute the edges
of the cut. For the packing while traveling problem which is
a submodular and non-linear knapsack problem, we impose a
standard knapsack constraint that limits the sum of the weights
of the selected items.

The paper is structured as follows. In Section II, we describe
the setup of submodular optimization and give an overview of
the IOHprofiler framework. We describe monotone submod-
ular benchmark problems in Section III, and non-monotone
submodular benchmark problems in Section IV. Section V
gives our integration of these problems into IOHprofiler and
showcases some results for comparing algorithms on the
integrated problems. Finally, we finish with some concluding
remarks.

II. PRELIMINARIES

We now describe the setup on submodular optimization and
provide an introduction into IOHprofiler.

A. Submodular Optimization

Many real-world problems can be formulated in terms
of optimizing a submodular function under a given set of
constraints. We consider discrete optimization problems where
the goal is to select a feasible subset of a given set of elements.

Let V = {v1, . . . , vn} be a ground set of n elements. A
function f : 2V → R≥0 is called submodular iff for every
S, T ⊆ V with S ⊆ T and v ̸∈ T

f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T )

holds. A function f is called monotone if f(A) ≤ f(B) for
any A ⊆ B ⊆ V . Throughout this paper, we encode solutions
as binary strings of length n and identify a set X = {vi |
xi = 1} by the elements vi where vi ∈ X ⇔ xi = 1. The set
of feasible solutions is defined in terms of a cost constraint
in this paper. We denote by c(x) the cost of a solution x and
a solution x is feasible iff c(x) ≤ B holds. We denote by
F ⊆ 2V the set of feasible solutions, and define the feasible
search points/solutions as F = {x ∈ {0, 1}n | c(x) ≤ B}.

We consider problems where the goal is to find a feasible
solution x∗ with

x∗ = argmax
x∈F

f(x).

All problems considered in this paper are submodular and
we distinguish between monotone and non-monotone prob-
lems. The function f is dependent on the problem at hand
and we will describe important optimization problems that fit
the submodular formulation in Section III and IV.

B. Types of constraints
Monotone submodular functions without any constraint are

trivial to optimize as selecting all elements from the given set
yields an optimal solution. Problems are usually defined in
terms of an objective function and a given set of constraints
that limit the resources available to achieve high-quality solu-
tions.

We consider different types of deterministic and stochastic
constraints. As deterministic constraints, we consider linear
constraints where we have c(x) =

∑n
i=1 c(vi)xi ≤ B and

c(vi) ≥ 0. This includes the special case of a uniform
constraint, i.e., where c(vi) = 1, 1 ≤ i ≤ n, holds.

We also consider surrogate constraint functions used in
the area of chance constraints [9], [10]. Here the cost c(x)
of a solution x is stochastic and the constraint is given as
Pr(c(x) > B) ≤ α, where α ∈]0, 1/2] is an upper bound
on the probability that the constraint is violated. Evaluating
whether a given solution fulfills a given chance constraint
is computationally expensive in general, and surrogate ap-
proaches based on tail inequalities such as Chebyshev’s in-
equality and Chernoff bounds provide a suitable alternative.

We consider the case where c(v) is chosen uniformly at
random in [a(v) − δ, a(v) + δ] where a(v) is the expected
cost of an element v and δ is a parameter determining the
uncertainty. Let a(x) =

∑n
i=1 a(vi)xi be the expected cost of

solution x and v(x) = |x|1 · δ2/3 be its variance. Based on
tail bounds used to evaluate chance constraints [10], [22], we
consider the following cost functions to make sure that the
chance constraint is met.

We use the cost function

cCheby(x) = a(x) +

√
1− α

α
· v(x)

= a(x) + δ ·
√

1− α

3α
· |x|1

based on Chebyshev’s inequality [23]. The chance constraint
is met if cCheby(x) ≤ B holds.
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We use the cost function

cCher(x) = a(x) + δ ·
√

ln(1/α) · 2|x|1

based on Chernoff bounds [23]. The chance constraint is met
if cCher(x) ≤ B holds. We will investigate the mentioned
type of constraints together with the submodular optimization
problems outlined in Section III and IV.

C. IOHProfiler

IOHprofiler1 is a framework for benchmarking iterative
optimization heuristics. It consists of two main components:
IOHexperimenter, which provides an interface between bench-
mark problems, algorithms, and logging; and IOHanalyzer,
which enables visualization and analysis of the recorded
performance data.

IOHexperimenter2 provides access to a wide variety of
benchmark suites (currently only single-objective, noiseless
problems are included). These problems can contain arbitrary
constraints, which enables us to integrate the submodular
problems directly. While the implementation is done in C++,
a Python interface is available, which contains the complete
set of features available in C++.

The data resulting from running an algorithm using IOH-
experimenter can be directly used with IOHanalyzer, which
can be accessed via a web-based GUI3. With IOHanalyzer,
performance trajectories can be visualized from both a fixed-
budget and fixed-target perspective, as well as on a higher
level of aggregation, e.g., through empirical density functions.
On IOHanalyzer, the data from the baseline algorithms has
been made available for comparison. This data can be accessed
by selecting ‘IOH’ as the repository, and then ‘Submodu-
lar SUITENAME’ as the data source.

III. MONOTONE SUBMODULAR BENCHMARK PROBLEMS

Monotone submodular optimization problems contain some
prominent example problems and have widely been studied
in the literature. For various types of constraints, it has been
shown that greedy algorithms and evolutionary multi-objective
algorithms achieve the best possible worst-case performance
guarantees.

A. Maximum Coverage

The maximum coverage problem is a classical optimization
problem on graphs [17]. Given an undirected weighted graph
G = (V,E, c) with costs c : V → R≥0 on the vertices. We
denote by N(V ′) = {vi | ∃e ∈ E : e ∩ V ′ ̸= ∅ ∧ e ∩ vi ̸= ∅}
the set of all nodes of V ′ and their neighbors in G.

For a given search point x ∈ {0, 1}n where n = |V |, we
have V ′(x) = {vi | xi = 1} and c(x) =

∑
v∈V ′(x) c(v).

1https://iohprofiler.github.io/
2https://github.com/IOHprofiler/IOHexperimenter
3iohanalyzer.liacs.nl. Also available as an R-package directly from CRAN.

1) Deterministic Setting: In the deterministic setting, the
goal is to maximize

f(x) = |N(V ′(x))|

under the constraint that c(x) ≤ B holds.
The fitness of a search point x is given as the 2-dimensional

vector g(x) = (f ′(x), c(x)) where

f ′(x) =

{
f(x) c(x) ≤ B

B − c(x) c(x) > B

This implies that each infeasible solution has a negative fitness
value whereas each feasible solution has a non-negative one.

a) Experimental setting: We integrated different graphs
into IOHprofiler that can be used for experimentation. Note
that the framework is flexible in the sense that users can
add additional graphs if required. Example graphs include
frb-graphs4 with up to 760 nodes which have frequently
been used for covering problems. For costs and budgets for
benchmarking, we use

• uniform: c(v) = 1, ∀v ∈ V , B = 10
• linear-degree: c(v) = 1 + deg(v), B = 500
• quadratic-degree: c(v) = (1 + deg(v))2, B = 40000

where deg(v) denotes the degree of node v.
2) Chance constrained setting: We take the cost of a node

for the given benchmark instance as expected cost and consider
the uncertainty parameterized by δ.

a) Cost function based on Chebyshev’ inequality: The
fitness of a search point x using cCheby is given as the
2-dimensional vector gCheby(x) = (f ′

Cheby(x), cCheby(x))
where

f ′
Cheby(x) =

{
f(x) cCheby(x) ≤ B

B − cCheby(x) cCheby(x) > B

b) Cost function based on Chernoff bounds: The fitness
of a search point x using cCher is given as the 2-dimensional
vector gCher(x) = (f ′

Cher(x), cCher(x)) where

f ′
Cher(x) =

{
f(x) cCher(x) ≤ B

B − cCher(x) cCher(x) > B

c) Experimental setting: We use the graphs and bounds
as for the deterministic case. Special chance constraint param-
eters are as follows.

• uniform: We use a(v) = 1, ∀v ∈ V , and δ ∈ {0.5, 1},
α ∈ {0.1, 0.01, 0.001}.

• linear-degree: We use a(v) = 1 + deg(v), and δ ∈
{20, 40}, α ∈ {0.1, 0.01, 0.001}.

4https://github.com/dynaroars/npbench/tree/master/instances/vertex cover/
benchmarks
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B. Maximum Influence

The maximum influence problem in social networks is an
important submodular optimization problem that has been
widely studied in the literature from various perspectives [18],
[24], [25]. Let a directed graph G(V,E) represent a social
network, where each node is a user and each edge (u, v) ∈ E
has a probability pu,v representing the strength of influence
from user u to v.

A fundamental propagation model is independence cascade.
Starting from a seed set X , it uses a set At to record the nodes
activated at time t, and at time t+1, each inactive neighbor v
of u ∈ At becomes active with probability pu,v . This process
is repeated until no nodes get activated at some time. The
set of nodes activated by propagating from X is denoted as
IC(X), which is a random variable.

The goal is to maximize the expected value of IC(X).
Note that the computation of the expected value is done by
running a simulation of the influence process several times
and averaging its results. In this sense, the computation of the
objective function value is stochastic.

For a given search point x ∈ {0, 1}n where n = |V |, we
have V ′(x) = {vi | xi = 1} and c(x) =

∑
v∈V ′(x) c(v).

1) Deterministic Setting: In the deterministic setting, the
goal is to maximize the expected number of nodes activated
by propagating from V ′(x), i.e.,

f(x) = E[|IC(V ′(x))|]

under the constraint that c(x) ≤ B holds.
The fitness of a search point x is given as the 2-dimensional

vector g(x) = (f ′(x), c(x)) where

f ′(x) =

{
f(x) c(x) ≤ B

B − c(x) c(x) > B

a) Experimental setting: Real-world data sets have been
downloaded from SNAP networks5. After preprocessing, we
get a directed graph with several nodes and edges. We deter-
mine the probability of one edge from vi to vj by weight(vi,vj)

indegree(vj)
.

For estimating the influence spread, i.e., the expected number
of active nodes, we simulate the diffusion process multiple
times independently and use the average as an estimation.

As an example, we consider the data set ego-Facebook. For
costs and budgets, we use the following settings:

• uniform: c(v) = 1, ∀v ∈ V , B = 10, 20, 50, 100.
• linear-degree: c(v) = 1 + outdegree(v), ∀v ∈ V , B =

200, 400, 1000, 2000.

2) Chance constrained setting: We have f(x) =
E[|IC(V ′(x))|] as defined in the deterministic setting. We
take the cost of a node for the given benchmark instance as
expected cost and consider the uncertainty parameterized by
δ.

5http://snap.stanford.edu/data/index.html

a) Cost function based on Chebyshev’ inequality: As
done for the maximum coverage problem, we use the cost
function cCheby based on Chebyshev’s inequality.

The fitness of a search point x using cCheby is given as
the 2-dimensional vector gCheby(x) = (f ′

Cheby(x), cCheby(x))
where

f ′
Cheby(x) =

{
f(x) cCheby(x) ≤ B

B − cCheby(x) cCheby(x) > B

b) Cost function based on Chernoff bounds: As done
for the maximum coverage problem, we use the cost function
cCher based on Chernoff bounds. The chance constraint is met
if cCher(x) ≤ B holds.

The fitness of a search point x using cCher is given as the
2-dimensional vector gCher(x) = (f ′

Cher(x), cCher(x)) where

f ′
Cher(x) =

{
f(x) cCher(x) ≤ B

B − cCher(x) cCher(x) > B

c) Experimental setting: Graphs and bounds as for the
deterministic case are available in IOHprofiler. The special
chance constraint parameters are as follows.

• uniform: Use a(v) = 1, ∀v ∈ V , and δ ∈ {0.5, 1}, α ∈
{0.1, 0.01, 0.001}.

• linear-degree: Use a(v) = 1 + outdegree(v), and δ ∈
{20, 40}, α ∈ {0.1, 0.01, 0.001}.

IV. NON-MONOTONE SUBMODULAR BENCHMARK
PROBLEMS

So far, we considered monotone submodular optimization
problems where the difficulty occurs through the given con-
straint. Optimizing a non-monotone submodular function with-
out any additional constraint is already NP-hard as for example
the well-known maximum cut problem in graphs can be stated
in terms of optimizing a non-monotone submodular function.
The maximum cut problem is also our first benchmark problem
for the category of a non-monotone submodular function, and
we consider this problem in its classical way without any
additional constraint.

A. Maximum Cut

The maximum cut problem [19] is a classical NP-hard
problem and can be defined as follows. Given an undirected
weighted graph G = (V,E,w) with weights w : E → R≥0

on the edges, the goal is to select a set V1 ⊆ V such that the
sum of the weight of edges between V1 and V2 = V \ V1 is
maximal.

For a given search point x ∈ {0, 1}n where n = |V |, we
have V1(x) = {vi | xi = 1} and V2(x) = {vi | xi = 0}. Let
C(x) = {e ∈ E | e ∩ V1(x) ̸= ∅ ∧ e ∩ V2(x) ̸= ∅} be the cut
of a given search point x. The goal is to maximize

f ′(x) =
∑

e∈C(x)

w(e).

Note that every search point in {0, 1}n is feasible and there is
therefore no penalty or second objective for treating potentially
infeasible solutions.
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a) Experimental setting: Different G-Set graphs6 have
been incorporated into IOHprofiler to carry out experimental
investigations.

B. Packing While Traveling

The packing while traveling (PWT) problem [20] is a non-
monotone submodular optimization problem which is obtained
from the traveling thief problem (TTP) [21] when the route is
fixed.

The input is given as n+1 cities with distances di, 1 ≤ i ≤
n, from city i to city i + 1. Each city i, 1 ≤ i ≤ n, contains
a set of items Mi ⊆ M , |Mi| = mi. Each item eij ∈ Mi,
1 ≤ j ≤ mi, has a positive integer profit pij and weight wij .
A fixed route N = (1, 2, ..., n + 1) is traveled by a vehicle
with velocity v ∈ [vmin, vmax]. We denote by xij ∈ {0, 1}
the variable indicating whether or not item eij is chosen in a
solution

x = (x11, x12, ..., x1m1
, x21, ..., xnmn

) ∈ {0, 1}m,

where m =
∑n

i=1 mi. The total benefit of selecting a subset
of items selected by x is given as

PWT (x) = P (x)−R · T (x),

where P (x) is the total profit of the selected items and T (x)
is the total travel time for the vehicle carrying the selected
items. Formally, we have

P (x) =

n∑
i=1

mi∑
j=1

pijxij

and

T (x) =

n∑
i=1

di

vmax − ν
i∑

k=1

mk∑
j=1

wkjxkj

Here, ν = vmax−vmin

B is a constant defined by the input pa-
rameters, where B is the capacity of the vehicle. The problem
is already NP-hard without any additional constraint [20], but
often considered with a typical knapsack constraint given as

c(x) =

n∑
i=1

mi∑
j=1

wijxij ≤ B.

As fitness functions, we use g(x) = (f ′(x), c(x)) with

f ′(x) =

{
PWT (x) c(x) ≤ B

B − c(x)−R · T (vmin) c(x) > B

where T (vmin) =
1

vmin
·

n∑
i=1

di is the travel time at speed vmin.

a) Experimental setting: Instances of the TTP7 have been
incorporated into IOHprofiler and the permutation to be used
for PWT is fixed as N = id = (1, . . . , n). The start for
packing while traveling is at city 1 and ends at city n+1 := 1.

6https://web.stanford.edu/ yyye/yyye/Gset/
7https://cs.adelaide.edu.au/∼optlog/TTP2017Comp/

V. SUBMODULAR PROBLEMS IN IOHPROFILER

The submodular problems presented in this paper have been
implemented in IOHexperimenter. IOHexperimenter defines
constrained optimization problems as Fc = F ◦ C, where
C denotes a set of k constraints of the general form Ci :
Rn → R. The submodular problems are implemented with the
constraints Ci :{0,1}n → R≥0, which penalize the objective
function value as:

fc(x) =

{∑k
i=1 wi(Ci(x))

αi ,
∑k

i=1 Ci(x) > 0

f(x) otherwise

Ci(x) > 0 when there is constraint violation, and wi and αi

are predefined weight and exponent parameters. For each of
the submodular problems, only a single constraint function
is implemented (i.e., k = 1), which is defined according
to the cost functions described in the previous Sections III-
IV. The implementation is available on Github8, and the
problems have been integrated as one of the available suites
in IOHexperimenter.

A. Algorithms
To provide a future baseline for the introduced submodular

problem suite, we compare the following 12 algorithms. Most
of the tested algorithms, except (1 + (λ, λ)) EA>0, random
search, and univariate marginal distribution algorithm, are
mutation-only methods. The applied mutation flips ℓ distinct
bits selected uniformly at random. Note that we force ℓ > 0
while sampling ℓ in practice, following the suggestion in [26].

We briefly introduce the algorithms as below and provide
our implementation in GitHub9.

• (1 + 1) EA>0: The (1 + 1) EA>0 using the standard
bit mutation with a static mutation rate p = 1/n. The
standard bit mutation samples ℓ, the number of distinct
bits to be flipped, from a conditional binomial distribution
Bin>0(n, p).

• (1+1) fast genetic algorithm (fast GA): The (1+1) fast
GA differs from the (1 + 1) EA by sampling ℓ from a
power-law distribution with β = 1.5 [27]. The power-
law distribution is a heavy-tailed distribution, and its
probability of sampling large ℓ > 1 is higher, compared
to the standard bit mutation with p = 1/n.

• (1+ (λ, λ)) EA>0: The (1+λ) EA>0 with self-adaptive
λ proposed in [28]. The algorithm applies the standard
bit mutation and a biased or parameterized uniform
crossover, where the mutation rate and the crossover
probability depend on the value of λ. We implement in
this paper the (1+(10, 10)) EA>0 with an initial λ = 10.

• (1+10) 2rate-EA>0: The (1+10) EA>0 using standard
bit mutation with self-adaptive mutation rates. The self-
adaptive technique is proposed in [29].

• (1 + 10) normEA>0: The (1 + 10) EA>0 using the
normalized bit mutation [30] with self-adaptive r, which
samples ℓ from a normal distribution N(r, r(1− r/n)).

8https://github.com/IOHprofiler/IOHexperimenter/tree/master/include/ioh/
problem/submodular

9https://github.com/IOHprofiler/IOHalgorithm
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• (1 + 10) varEA>0: The algorithm also applied the
normalized bit mutation. However, it controls the variance
of the normal distribution using a factor F c, where c is
the evaluation time since the best-found fitness has been
updated, and we set F = 0.98. Also from [30].

• greedy hill climber (gHC): The (1 + 1) gHC flips one
bit, going through the bit-string from left to right, in each
iteration. It updates the parent when the offspring obtains
fitness at least as good as its parent.

• random search: The random search samples new solu-
tions uniformly at random iteratively.

• randomized local search (RLS): The RLS differs from
the (1 + 1) EA>0 by flipping exactly ℓ = 1 bit in each
iteration.

• simulated annealing (sa-auto): The SA algorithm with
automatic settings based on the problem dimension. For
the start temperature, the probability of accepting a solu-
tion that is 1 worse than the current solution is 0.1, and
this value is 1/

√
n for the end temperature. Discussions

about the SA can be found in [31].
• simulated annealing with iterative restart (sars-auto):

The algorithm applies iterative restarts for the SA. We as-
sign different function evaluation budgets to each restart-
ing round.

• univariate marginal distribution algorithm (UMDA):
UMDA [32] maintains a population of s solutions and
uses the best s/2 solutions to estimate marginal distribu-
tions for each variable. It samples new populations based
on the marginal distributions and updates the distributions
iteratively. We set s = 50 in our experiments.

B. Assessment and Comparison Using IOHprofiler

To ease the assessment of new algorithms on these
submodular problems, we provide performance data from
a set of 12 baseline algorithms directly on IOHanalyzer.
As the postprocessing tool of the IOHprofiler, IOHana-
lyzer [14] provides access to a wide range of interactive
visualization and analysis methods, which can be used di-
rectly from the GUI at iohanalyzer.liacs.nl. Performance
data generated using IOHexperimenter can be loaded and
compared to the available baselines from either a fixed-
budget or fixed-target perspective. We show a subset of
available figures here, but recommend the reader to inter-
actively explore the data by loading it via the IOHana-
lyzer GUI (data repositories Submodular_MaxCoverage
and Submodular_MaxCut). We present in this section
the experimental results, regarding fixed-target results, i.e.,
Expected Running Time (ERT) and aggregated Empirical
Cumulative Distribution Function (ECDF) curve, and fixed-
budget results, i.e., the glicko2 ranking, for the assessments
of the algorithms’ performance, and a heatmap of pairwise
comparisons regarding the best-found function values after a
set of evaluation times. The definitions of ERT and ECDF
can be found in [14], and the glicko2 ranking system makes
use of chess ranking systems to order the performance of
optimization algorithms [33]. We take the maximum coverage
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Figure 1. ERT values of 12 algorithms on a maximum coverage problem
instance. Negative fitness values correspond to infeasible solutions.

and maximum cut functions as example problems to show
the results for a monotone and non-monotone submodular
optimization problem. All results are based on 30 runs per
instance using 100,000 fitness evaluations per run.

1) Results of Maximum Coverage: We plot in Figure 1 the
ERT values of the tested algorithms for an instance of the
maximum coverage function. We can see that the gHC needs
relatively few function evaluations to find a decent feasible
solution, but it fails to find solutions of higher quality. We also
note the clear inability of random search to find any feasible
solutions, while the EA variants all show similar levels of
performance to UMDA. In addition, we plot in Figure 2 the
ERT values regarding the targets that are the 0.02 quantile
of targets found by the best algorithm for multiple maximum
coverage problem instances. We observe that random search,
gHC, RLS, and the (1 + 10) varEA can not find the corre-
sponding targets with the given function evaluation budgets
for all the problem instances, while the other EA variants and
UMDA present relatively promising performance. The former
subset of algorithms emphasizes local search by flipping an
exact number of bits in mutation, while the latter ones favour
global search by considering different numbers of flipping bits.
It is also interesting to notice that the performance of the two
SA algorithms shows biased behavior for different problem
instances.

In addition to this per-function view, we can aggregate the
performance of multiple functions into a single plot to get an
overview of the global behavior of the selected algorithms.
This can be achieved using the aggregated ECDF curve, as is
shown in Figure 3. This figure clearly shows the fast initial
convergence of the gHC, which starkly contrasts with the
slower start of the SA methods. However, gHC converges
to a small ECDF value due to the incapability of obtaining
the function values as good as other algorithms. Similar
performance can be observed for RLS, which presents fast
initial convergence but is outperformed by the EA variants
within the maximal given budget. Overall, the differences
between the EA variants are rather small, and the (1+1) EA>0

obtains the highest area under the curve.
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Figure 2. ERT values of 12 algorithms for the 450-dimensional maximum
coverage problem instances. The targets are selected to be the 0.02 quantile
of the final target (i.e., fitness) found by the best algorithm. Circles indicate
that algorithms can not hit the corresponding target with the given budget.
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Figure 3. Empirical cumulative distribution function of 12 algorithms aggre-
gated over all 450-dimensional maximum coverage problem instances. Targets
are 25 linearly spaced points between the best and worst found fitness values.

For the fixed-budget results, we use the glicko2 ranking
system to aggregate the performance over all maximum cov-
erage problem instances. This is achieved by considering each
function as a game where the final function value reached
determines which algorithm wins the “game”. By sampling
25 games per function for each pair of algorithms, we get an
aggregated ranking as shown in Figure 4. We observe that the
(1+1) EA>0 obtains the highest rank, which shows identical
assessment to our results of ECDF in Figure 3.

2) Results of Maximum Cut: We plot in Figure 5 the ERT
values of the algorithms for an instance of the maximum
cut function. Still, random search is incapable of searching
for promising solutions, compared to the other algorithms.
Meanwhile, UMDA is outperformed by the other algorithms
except for random search. However, gHC presents a fast initial
convergence, and its best found fitness values are close to
the ones obtained by the EA variants. In addition, the sa-auto
obtains the best fitness value for the plotted problem instance.

As shown in Figure 6, random search and UMDA can not
hit the corresponding target with the given budget though
UMDA performs well for the maximum coverage functions.
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Figure 4. Glicko2 ranking of 12 algorithms over all maximum coverage
problem instances, achieved by using final obtained fitness values to determine
winner for 25 pairwise games for each problem instance and each pair of
algorithms.

The (1 + (10, 10)) EA>0 is also outperformed by the other
EA variants and RLS significantly. The sa-auto presents the
best result across all the problem instances, and apparently
the restart strategy is not helpful for solving the maximum
cut instances based on the results of the sars-auto. Note that
the performance of gHC differs across the tested instances,
for example, it ranks the best for the instance “2003” but is
defeated by the other EA variants for the instance “2002”.

For the aggregated performance of multiple instances as
shown in Figure 7, gHC coverges fast at the early stage
of optimization again but it does not fall behind the other
algorithms thereafter as shown in Figure 3. In contrast, the
sa-auto presents slow initial convergence, but it obtains better
solutions than the other algorithms after using more function
evaluations.

Figure 8 plots a heatmap for the pairwise competitions of
the algorithms across all the tested maximum cut problem
instances. The color indicates the fraction of the times that
one algorithm’s (listed along y-axis) final fitness value is better
than the one achieved by another algorithm (listed along x-
axis). Blue indicates better results. We list only the results
of the comparisons with the 6 best algorithms. Following the
ECDF results in Figure 7, we are not surprised to observe
that the sa-auto wins the pairwise-comparison based ranking
based on fixed-budget results. The EA variants and RLS show
similar results and outperform UMDA and random search.

VI. CONCLUSIONS

We have described a setup for benchmarking iterative search
algorithms for submodular optimization problems. Different
benchmark problems have been implemented and provided as
part of IOHprofiler. The setup allows for a detailed comparison
of different approaches to these benchmark problems and
instances. We showcased this for the maximum coverage
problem as a classical example of a monotone submodular
problem and the well-known maximum cut problem as an
example of a non-monotone and unconstrained submodular
problem. The intention is to use the setup provided as part of
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Figure 5. ERT values of 12 algorithms on a maximum cut problem instance.
Negative fitness values correspond to infeasible solutions.
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Figure 6. ERT values of 12 algorithms for the 800-dimensional maximum
cut problem instances. The targets are selected to be the 0.02 quantile of the
final target (i.e., fitness) found by the best algorithm. Circles indicate that
algorithms can not hit the corresponding target with the given budget.
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Figure 7. Empirical cumulative distribution function of 12 algorithms aggre-
gated over all the 800-dimensional maximum cut problem instances. Targets
are 25 linearly spaced points between the best and worst found fitness values.
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Figure 8. Heatmap of the fraction of times an algorithm’s final obtained fitness
value is better than the one achieved by another algorithm. The results are
from comparisons over 5 maximum cut problem instances.

upcoming competitions on submodular optimization at leading
international conferences as well as in teaching activities as
part of courses on heuristic search and evolutionary computa-
tion.

Based on our baseline of 12 algorithms, the algorithms show
different performance across the two problem classes. For
example, random search, gHC, RLS, and the (1+10) varEA>0

are outperformed by the other tested algorithms for the max-
imum coverage problem. However, the (1 + 10) varEA>0

and RLS show promising performance for the maximum cut
problem. Moreover, we also observe performance variance
across the instances of one problem. For example, the ranks of
gHC and RLS regarding the ERT alter a lot for the instances of
the maximum cut problem. Therefore, it would be interesting
for future work to study the performance, e.g., convergence
process, for particular problem instances, which can help us
obtain insights into algorithms’ behavior. Though we have
tested a limited set of algorithms in this paper, the presented
study cases provide us a good baseline for next steps such
as investigating the impact of parameters for the evolutionary
algorithms.
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