
IOHexperimenter: benchmarking platform for Iterative
Optimization Heuristics
Nobel, J.P. de; Ye, F.; Vermetten, D.L.; Wang, H.; Doerr, C.; Bäck, T.H.W.

Citation
Nobel, J. P. de, Ye, F., Vermetten, D. L., Wang, H., Doerr, C., & Bäck, T. H. W.
(2024). IOHexperimenter: benchmarking platform for Iterative Optimization
Heuristics. Evolutionary Computation, 1-6. doi:10.1162/evco_a_00342
 
Version: Corrected Publisher’s Version

License: Licensed under Article 25fa Copyright Act/Law
(Amendment Taverne)

Downloaded from: https://hdl.handle.net/1887/3731689
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3731689


IOHexperimenter: Benchmarking Platform
for Iterative Optimization Heuristics

Jacob de Nobel* j.p.de.nobel@liacs.leidenuniv.nl
Furong Ye* f.ye@liacs.leidenuniv.nl
Diederick Vermetten d.l.vermetten@liacs.leidenuniv.nl
Hao Wang h.wang@liacs.leidenuniv.nl
LIACS, Leiden University, the Netherlands

Carola Doerr Carola.Doerr@lip6.fr
Sorbonne Université, CNRS, LIP6, Paris, France

Thomas Bäck t.h.w.baeck@liacs.leidenuniv.nl
LIACS, Leiden University, the Netherlands

https://doi.org/10.1162/evco_a_00342

Abstract
We present IOHexperimenter, the experimentation module of the IOHprofiler project.
IOHexperimenter aims at providing an easy-to-use and customizable toolbox for
benchmarking iterative optimization heuristics such as local search, evolutionary and
genetic algorithms, and Bayesian optimization techniques. IOHexperimenter can be
used as a stand-alone tool or as part of a benchmarking pipeline that uses other mod-
ules of the IOHprofiler environment.

IOHexperimenter provides an efficient interface between optimization problems
and their solvers while allowing for granular logging of the optimization process. Its
logs are fully compatible with existing tools for interactive data analysis, which signif-
icantly speeds up the deployment of a benchmarking pipeline. The main components
of IOHexperimenter are the environment to build customized problem suites and the
various logging options that allow users to steer the granularity of the data records.

Keywords
Iterative optimization heuristics, benchmarking, algorithm comparison.

1 Introduction

In order to compare and to improve upon state-of-the-art optimization algorithms, it is
important to gain insights into their search behavior on a wide range of problems. To do
so systematically, a robust benchmarking setup has to be created that allows for rigorous
testing of algorithms. Numerous benchmark problems have been proposed within the
evolutionary computation community, and these are often implemented many times
over, without an overarching structure or proper maintenance (Li et al., 2013; Liang
et al., 2013; Suganthan et al., 2020). The importance of using overarching frameworks to
facilitate the benchmarking process has been gaining increasing traction within the com-
munity in the last decade when seminal works (Hansen et al., 2010) showed the benefits

*These authors contributed equally to this work.

Manuscript received: 27 September 2021; revised: 18 March 2022, 12 December 2022, 26 May 2023, and 14 June
2023; accepted: 3 July 2023.
© 2023 Massachusetts Institute of Technology Evolutionary Computation xx(x): 1–6

342
D

ow
nloaded from

 http://direct.m
it.edu/evco/article-pdf/doi/10.1162/evco_a_00342/2335957/evco_a_00342.pdf by U

N
IVER

SITEIT LEID
EN

 user on 02 April 2024

https://orcid.org/0000-0003-1169-1962
mailto:j.p.de.nobel@liacs.leidenuniv.nl
https://orcid.org/0000-0002-8707-4189
mailto:f.ye@liacs.leidenuniv.nl
https://orcid.org/0000-0003-3040-7162
mailto:d.l.vermetten@liacs.leidenuniv.nl
https://orcid.org/0000-0002-4933-5181
mailto:h.wang@liacs.leidenuniv.nl
https://orcid.org/0000-0002-4981-3227
mailto:Carola.Doerr@lip6.fr
mailto:t.h.w.baeck@liacs.leidenuniv.nl
https://doi.org/10.1162/evco_a_00342


J. de Nobel et al.

that these kinds of tools can provide. Since then, two of the most popular benchmarking
tools have been COCO (Hansen et al., 2021) and Nevergrad (Rapin and Teytaud, 2018).
While these tools enable users to benchmark their algorithms with relative ease, their
overall design has some drawbacks.

In the case of COCO, the enforced design of a suite-based structure allows for very
robust benchmarking on problems made available by the developers. However, this
simultaneously restricts users to using only that set of available problems and adds a
complexity barrier for benchmarking algorithms on other problems. In addition, the
logging of performance data follows a fixed framework, and extending it, for example,
to keep track of dynamic algorithm parameters is not straightforward. Nevergrad, in
contrast, offers great flexibility with respect to adding new benchmark problems but is
severely limited in terms of the information that is tracked about algorithm performance
and behavior. It essentially stores only the final solution quality after exhausting a user-
defined optimization budget.

With IOHexperimenter, we offer a benchmarking module that emphasizes extend-
ability and customizability, allowing users to easily add new problems while providing
a comprehensive set of built-in defaults. The logging of performance data is flexible and
allows users to customize the content and frequency of the data collected. To improve
ease of use, several out-of-the-box storage structures are made available, one of which
can be used to collect the same type of data as COCO.

IOHexperimenter is a part of the overarching IOHprofiler project (Doerr et al.,
2018), which connects algorithm frameworks, problem suites, interactive data analy-
sis, and performance repositories in an extendable benchmarking pipeline. Within this
pipeline, IOHexperimenter can be considered the interface between algorithms and
problems, allowing consistent collection of performance data and algorithmic data such
as the evolution of control parameters that change during the optimization process. To
perform the benchmarking, three components interact with each other: problems, loggers,
and algorithms. Within IOHexperimenter, an interface is provided to ensure that any of
these components can be modified without impacting the behavior of the others, in the
sense that any changes to their setup will be compatible with the other components of
the benchmarking pipeline.

2 Functionality

At its core, IOHexperimenter provides a standard interface towards expandable bench-
mark problems and several loggers to track the performance and the behavior (internal
parameters and states) of algorithms during the optimization process. The logger is in-
tegrated into a wide range of existing tools for benchmarking, including problem suites
such as PBO (Doerr et al., 2020) and the W-model (Weise et al., 2020) for discrete opti-
mization, COCO’s noiseless real-valued single-objective BBOB problems (Hansen et al.,
2021) for the continuous case, and submodular problems for constraint optimization
(Neumann et al., 2021). On the algorithms side, IOHexperimenter has been connected to
several algorithm frameworks, including ParadisEO (Aziz-Alaoui et al., 2021), a mod-
ular genetic algorithm (Ye et al., 2022), a modular CMA-ES (de Nobel et al., 2021), and
the optimizers in Nevergrad (Rapin and Teytaud, 2018). The output generated by the
included loggers is compatible with the IOHanalyzer module (Wang et al., 2022) for
interactive performance analysis. In Long et al. (2023) and Kostovska et al. (2022), the
flexibility of IOHexperimenter was demonstrated by generating interfaces between two
aforementioned benchmarking tools to execute algorithms from the Nevergrad frame-
work on the BBOB problems from COCO.

2 Evolutionary Computation Volume xx, Number x

342
D

ow
nloaded from

 http://direct.m
it.edu/evco/article-pdf/doi/10.1162/evco_a_00342/2335957/evco_a_00342.pdf by U

N
IVER

SITEIT LEID
EN

 user on 02 April 2024



IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics

Figure 1: Workflow of IOHexperimenter.

Figure 1 shows the way IOHexperimenter can be placed in a typical benchmark-
ing workflow. The key factor here is the flexibility of its design. IOHexperimenter can
be used with any user-provided solvers and problems given a minimal overhead. It
also ensures that the output of experimental results follows conventional standards. Be-
cause of this, the data produced by IOHexperimenter is compatible with postprocessing
frameworks like IOHanalyzer (Wang et al., 2022), enabling an efficient path from algo-
rithm design to performance analysis. In addition to the built-in interfaces to existing
software, IOHexperimenter aims at providing a user-friendly, easily accessible way to
customize the benchmarking setup. IOHexperimenter is built in C++, with an interface
to Python. In this paper, we describe the functionality of the package on a high level,
without going into implementation details.1 In the following, we introduce the typical
usage of IOHexperimenter, as well as how it can be customized to fit different bench-
marking scenarios.

2.1 Problems

2.1.1 Single-Objective Optimization
IOHexperimenter is developed with a focus on single-objective optimization problems,
that is, instances defined as F = Ty ◦ f ◦ Tx , in which f : X → R is a benchmark prob-
lem (e.g., for OneMax X = {0, 1}n and the sphere function X = R

n), and Tx and Ty are
automorphisms supported on X and R, respectively, representing transformations in
the problem’s domain and range (e.g., translations and rotations for X = R

n). To gener-
ate a problem instance, one needs to specify a tuple of a problem f , an instance identifier
i ∈ N>0, and the dimension n of the problem. Any problem instances that reconcile with
this definition of F can easily be integrated into IOHexperimenter using the C++ core
or the Python interface.

The transformation methods are particularly important for robust benchmarking,
as they allow for the creation of multiple problem instances from the same base function.
They also allow the user to check algorithm invariance to transformations in search

1Technical documentation, a getting-started, and several use-cases are available for both C++ and
Python on the IOHexperimenter docs at https://iohprofiler.github.io/IOHexperimenter/.

Evolutionary Computation Volume xx, Number x 3

342
D

ow
nloaded from

 http://direct.m
it.edu/evco/article-pdf/doi/10.1162/evco_a_00342/2335957/evco_a_00342.pdf by U

N
IVER

SITEIT LEID
EN

 user on 02 April 2024

https://iohprofiler.github.io/IOHexperimenter/


J. de Nobel et al.

and objective space. Built-in transformations are available for pseudo-Boolean functions
(Doerr et al., 2018) and for continuous optimization, implementing the transformations
used by Hansen et al. (2021). Problems can be combined in a suite, which allows the user
to easily run solvers on collections of selected problem instances.

2.1.2 Constrained Optimization
Similar to benchmark problems, constraints are defined as free functions that compute
a value on an evaluated solution: C : X → R, that is, non-zero in the case the constraint
is violated. IOHexperimenter supports both hard constraints Ch and soft constraints Cs ,
of which multiple can be added to any given problem. The single-objective constrained
problems are defined by Fc = F ◦ Ch ◦ Cs , which evaluates to ∞ when one of the hard
constraints Ch is violated. Otherwise, Fc = F + ∑k

i=0 wi (Ci
s )αi , where k is the number of

soft constraints. The weight wi and exponent αi of a constraint Ci
s can be used by the

user to customize a penalty for a constraint violation. In this fashion, arbitrary functions
can be added as constraints to the benchmark problems in IOHexperimenter, allowing
the conversion of existing unconstrained problems into constrained problems.

2.2 Data Logging

IOHexperimenter provides loggers to track the performance of algorithms during the
optimization process. These loggers can be tightly coupled with the problems: when
evaluating a solution, the attached loggers will be triggered to store relevant informa-
tion. Information about solution quality is always recorded, while the algorithm’s con-
trol parameters are included only if specified by the user. The events that trigger a data
record are customized by the user, for example, via specifying a frequency at which in-
formation is stored, or by choosing quality thresholds that trigger a data record when
met for the first time.

A default logger makes use of a two-part data format: meta-information such as
function id, instance, and dimension, written to .json files, and the performance data
that gets written to space-separated .dat files. A full specification of this format can be
found in Wang et al. (2022). Additional loggers to store the data in memory or use differ-
ent file structures are available. In addition to the built-in loggers, users can also create
their own custom logging functionalities. For example, a logger storing only the final
calculated performance measure was created for algorithm configuration tasks (Aziz-
Alaoui et al., 2021).

3 Conclusions and Future Work

IOHexperimenter is a tool for benchmarking iterative optimization heuristics. It aims at
making rigorous benchmarking more approachable by providing a structured bench-
marking pipeline that can be adapted to fit a comprehensive range of scenarios. The
combination of a clear output format and common interface across both Python and
C++ makes IOHexperimenter a useful component for reproducible algorithm com-
parison. IOHexperimenter can be slotted into a benchmarking pipeline by generating
output data for the IOHanalyzer module, which provides an interactive analysis of
algorithm performance. New benchmark problems can be easily integrated with
IOHexperimenter, which makes the tool suitable for teaching and hosting competitions.
IOHexperimenter currently supports single-objective, noiseless optimization, with sup-
port for arbitrary constraints. The focus on flexibility makes the extension to other types
of problems, such as noisy, multiobjective, and mixed-integer problems natural next
steps.

4 Evolutionary Computation Volume xx, Number x

342
D

ow
nloaded from

 http://direct.m
it.edu/evco/article-pdf/doi/10.1162/evco_a_00342/2335957/evco_a_00342.pdf by U

N
IVER

SITEIT LEID
EN

 user on 02 April 2024



IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics

3.1 Contributing to IOHexperimenter

The IOHprofiler project welcomes contributions of problems from various domains
with different perspectives. We appreciate feedback and comments through GitHub2

or via iohprofiler@liacs.leidenuniv.nl.

Acknowledgments

We acknowledge financial support through CNRS INS2I project RandSearch and
through ANR T-ERC project VARIATION (ANR-22-ERCS-0003-01).

References

Aziz-Alaoui, A., Doerr, C., and Dréo, J. (2021). Towards large scale automated algorithm design by
integrating modular benchmarking frameworks. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pp. 1365–1374.

de Nobel, J., Vermetten, D., Wang, H., Doerr, C., and Bäck, T. (2021). Tuning as a means of assessing
the benefits of new ideas in interplay with existing algorithmic modules. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), pp. 1375–1384.

Doerr, C., Wang, H., Ye, F., van Rijn, S., and Bäck, T. (2018). IOHprofiler: A benchmarking and
profiling tool for iterative optimization heuristics. CoRR, abs/1810.05281.

Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O. M., and Bäck, T. (2020). Benchmarking dis-
crete optimization heuristics with IOHprofiler. Applied Soft Computing, 88:106027. 10.1016/
j.asoc.2019.106027

Hansen, N., Auger, A., Ros, R., Finck, S., and Pošík, P. (2010). Comparing results of 31 algorithms
from the black-box optimization benchmarking BBOB-2009. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (GECCO), pp. 1689–1696.

Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., and Brockhoff, D. (2021). COCO: A plat-
form for comparing continuous optimizers in a black-box setting. Optimization Methods and
Software, 36(1):114–144. 10.1080/10556788.2020.1808977

Kostovska, A., Jankovic, A., Vermetten, D., de Nobel, J., Wang, H., Eftimov, T., and Doerr, C.
(2022). Per-run algorithm selection with warm-starting using trajectory-based features. In
Proceedings of Parallel Problem Solving from Nature, pp. 46–60. Lecture Notes in Computer
Science, Vol. 13398. 10.1007/978-3-031-14714-2_4

Li, X., Tang, K., Omidvar, M. N., Yang, Z., Qin, K., and China, H. (2013). Benchmark functions for
the CEC 2013 special session and competition on large-scale global optimization. Technical
Report. RMIT University.

Liang, J. J., Qu, B. Y., and Suganthan, P. N. (2013). Problem definitions and evaluation criteria for
the CEC 2014 special session and competition on single objective real-parameter numerical
optimization. Technical Report. Nanyang Technological University, Singapore.

Long, F. X., Vermetten, D., van Stein, B., and Kononova, A. V. (2023). BBOB instance analysis:
Landscape properties and algorithm performance across problem instances. In Proceedings
of the International Conference on the Applications of Evolutionary Computation, pp. 380–395. Lec-
ture Notes in Computer Science, Vol. 13989. 10.1007/978-3-031-30229-9_25

Neumann, A., Neumann, F., and Qian, C. (2021). Evolutionary submodular optimisation. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO), pp. 918–
940.

2https://github.com/IOHprofiler/IOHexperimenter/issues

Evolutionary Computation Volume xx, Number x 5

342
D

ow
nloaded from

 http://direct.m
it.edu/evco/article-pdf/doi/10.1162/evco_a_00342/2335957/evco_a_00342.pdf by U

N
IVER

SITEIT LEID
EN

 user on 02 April 2024

mailto:iohprofiler@liacs.leidenuniv.nl
https://doi.org/10.1016/j.asoc.2019.106027
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1007/978-3-031-14714-2_4
https://doi.org/10.1007/978-3-031-30229-9_25
https://github.com/IOHprofiler/IOHexperimenter/issues


J. de Nobel et al.

Rapin, J., and Teytaud, O. (2018). Nevergrad—A gradient-free optimization platform. Retrieved
from https://GitHub.com/FacebookResearch/Nevergrad

Suganthan, P. N., Ali, M., Liang, J. J., Qu, B. Y., Yue, C. T., and Price, K. (2020). Competi-
tion on single objective bound constrained numerical optimization. Retrieved from https:
//github.com/P-N-Suganthan/2020-Bound-Constrained-Opt-Benchmark.

Wang, H., Vermetten, D., Ye, F., Doerr, C., and Bäck, T. (2022). IOHanalyzer: Detailed performance
analyses for iterative optimization heuristics. ACM Transactions on Evolutionary Learning and
Optimization, 2(1):3:1–29. 10.1145/3510426

Weise, T., Chen, Y., Li, X., and Wu, Z. (2020). Selecting a diverse set of benchmark instances from
a tunable model problem for black-box discrete optimization algorithms. Applied Soft Com-
puting, 92:106269. 10.1016/j.asoc.2020.106269

Ye, F., Doerr, C., Wang, H., and Bäck, T. (2022). Automated configuration of genetic algorithms by
tuning for anytime performance. IEEE Transactions on Evolutionary Computation, 26(6):1526–
1538. 10.1109/TEVC.2022.3159087

6 Evolutionary Computation Volume xx, Number x

342
D

ow
nloaded from

 http://direct.m
it.edu/evco/article-pdf/doi/10.1162/evco_a_00342/2335957/evco_a_00342.pdf by U

N
IVER

SITEIT LEID
EN

 user on 02 April 2024

https://GitHub.com/FacebookResearch/Nevergrad
https://github.com/P-N-Suganthan/2020-Bound-Constrained-Opt-Benchmark
https://doi.org/10.1145/3510426
https://doi.org/10.1016/j.asoc.2020.106269
https://doi.org/10.1109/TEVC.2022.3159087

