
Per-run algorithm selection with warm-starting using trajectory-based
features
Kostovska, A.; Jankovic, A.; Vermetten, D.L.; Nobel, J.P. de; Wang, H.; Eftimov, T.; ... ; Tušar,
T.

Citation
Kostovska, A., Jankovic, A., Vermetten, D. L., Nobel, J. P. de, Wang, H., Eftimov, T., & Doerr,
C. (2022). Per-run algorithm selection with warm-starting using trajectory-based features.
Lecture Notes In Computer Science, 46--60. doi:10.1007/978-3-031-14714-2_4

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3731673

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3731673

Per-run Algorithm Selection with Warm-starting
using Trajectory-based Features

Ana Kostovska1,2, Anja Jankovic3, Diederick Vermetten4, Jacob de Nobel4,
Hao Wang4, Tome Eftimov1, Carola Doerr3

1 Jožef Stefan Institute, Ljubljana, Slovenia
2 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

3 LIP6, Sorbonne Université, CNRS, Paris, France
4 LIACS, Leiden University, Leiden, The Netherlands

Abstract. Per-instance algorithm selection seeks to recommend, for a
given problem instance and a given performance criterion, one or several
suitable algorithms that are expected to perform well for the particular
setting. The selection is classically done offline, using openly available
information about the problem instance or features that are extracted
from the instance during a dedicated feature extraction step. This ig-
nores valuable information that the algorithms accumulate during the
optimization process.
In this work, we propose an alternative, online algorithm selection scheme
which we coin as “per-run” algorithm selection. In our approach, we start
the optimization with a default algorithm, and, after a certain number of
iterations, extract instance features from the observed trajectory of this
initial optimizer to determine whether to switch to another optimizer.
We test this approach using the CMA-ES as the default solver, and a
portfolio of six different optimizers as potential algorithms to switch to.
In contrast to other recent work on online per-run algorithm selection, we
warm-start the second optimizer using information accumulated during
the first optimization phase. We show that our approach outperforms
static per-instance algorithm selection. We also compare two different
feature extraction principles, based on exploratory landscape analysis
and time series analysis of the internal state variables of the CMA-ES,
respectively. We show that a combination of both feature sets provides
the most accurate recommendations for our test cases, taken from the
BBOB function suite from the COCO platform and the YABBOB suite
from the Nevergrad platform.

Keywords: Algorithm Selection · Black-Box Optimization · Exploratory Land-
scape Analysis · Evolutionary Computation

1 Introduction

It is widely known that optimization problems are present in many areas of
science and technology. A particular subset of these problems are the black-box

ar
X

iv
:2

20
4.

09
48

3v
2

 [
cs

.N
E

]
 7

 S
ep

 2
02

2

2 A. Kostovska, A. Jankovic, D. Vermetten, et al.

problems, for which a wide range of optimization algorithms has been developed.
However, it is not always clear which algorithm is the most suitable one for a
particular problem. Selecting which algorithm to use comes with its own cost and
challenges, so the choice of an appropriate algorithm poses a meta-optimization
problem that has itself become an increasingly important area of study.
Moreover, a user needs to be able to select different algorithms for different
instances of the same problem, which is a scenario that very well reflects real-
world conditions. This per-instance algorithm selection most often relies on
being able to compute a set of features which capture the relevant properties
of the problem instance at hand. A popular approach is the landscape-aware
algorithm selection, where the problem features’ definition stems from the field
of exploratory landscape analysis (ELA) [25]. In this approach, an initial set of
points is sampled and evaluated on the problem instance to identify its global
properties. However, this induces a significant overhead cost to the algorithm
selection procedure, since the initial sample of points used to extract knowledge
from the problem instance is usually not directly used by the chosen algorithm
in the subsequent optimization process.
Previous research into landscape-aware algorithm selection suggests that, as op-
posed to creating a separate set of samples to compute ELA features in a ded-
icated preprocessing step, one could use the samples observed by some initial
optimization algorithm. This way, the algorithm selection changes from being a
purely offline procedure into being one which considers whether or not to switch
between different algorithms during the search procedure. This is an important
step towards dynamic (online) algorithm selection, in which the selector is able
to track and adapt the choice of the algorithm throughout the optimization pro-
cess in an intelligent manner.
In this paper, we coin the term per-run algorithm selection to refer to the
case where we make use of information gained by running an initial optimiza-
tion algorithm (A1) during a single run to determine which algorithm should be
selected for the remainder of the search. This second algorithm (A2) can then
be warm-started, i.e., initialized appropriately using the knowledge of the first
one. The pipeline of the approach is shown in Fig. 1.
Following promising results from [15], in this work we apply our trajectory-based
algorithm selection approach to a broader set of algorithms and problems. To
extract relevant information about the problem instances, we rely on ELA fea-
tures computed using samples and evaluations observed by the initial algorithm’s
search trajectory, i.e., local landscape features. Intuitively, we consider the prob-
lem instance as perceived from the algorithm’s viewpoint.
In addition, we make use of an alternative aspect that seems to capture critical
information during the search procedure – the algorithm’s internal state, quan-
tified through a set of state variables at every iteration of the initial algorithm.
To this end, we choose to track their evolution during the search by computing
their corresponding time-series features.
Using the aforementioned values to characterize problem instances, we build
algorithm selection models based on the prediction of the fixed-budget perfor-

Per-run Algorithm Selection with Warm-starting 3

mance of the second solver on those instances, for different budgets of function
evaluations. We train and test our algorithm selectors on the well-known BBOB
problem collection of the COCO platform [11], and extend the testing on the
YABBOB collection of the Nevergrad platform [28]. We show that our approach
leads to promising results with respect to the selection accuracy and we also
point out interesting observations about the particularities of the approach.
State of the Art. Given an optimization problem, a specific instance of that
problem which needs to be solved, and a set of algorithms which can be used to
solve it, the so-called per-instance algorithm selection problem arises. How does
one determine which of those algorithms can be expected to perform best on that
particular instance? In other words, one is not interested in having an algorithm
recommendation for a whole problem class (such as TSP or SAT in the discrete
domain), but for a specific instance of some problem. A large body of work exists
in this line of research [2, 5, 13, 21, 23, 36]. All of these deal predominantly with
offline AS. An effort towards online AS has been recently proposed [24], where
the switching rules between algorithms were defined based on non-convex ra-
tio features extracted during the optimization process. However, this particular
study is not based on using supervised machine learning techniques to define the
switching rule, which is the key difference presented in our approach.
Paper Outline. In Section 2, we introduce the problem collections and the
algorithm portfolio, and give details about the raw data generation for our ex-
periments. The full experimental pipeline is more closely presented in Section 3.
We discuss the main results on two benchmark collections in Sections 4 and 5,
respectively. Finally, Section 6 gives several possible avenues for future work.
Data and Code Availability. Our source code, raw data, intermediate arte-
facts and analysis scripts have been made available on our Zenodo repository [17].
In this paper, we highlight only selected results for reasons of space.

2 Data Collection

Problem Instance Portfolio. To implement and verify our proposed approach,
we make use of a set of black-box, single-objective, noiseless problems. The data
set is the BBOB suite from the COCO platform [11], which is a very common
benchmark set within numerical optimization community. This suite consists of
a total of 24 functions, and each of these functions can be changed by applying
pre-defined transformations to both its domain and objective space, resulting in
a set of different instances of each of these problems that share the same global
characteristics [10].
Another considered benchmark set is the YABBOB suite from the Nevergrad
platform [28], that contains 21 black-box functions, out of which we keep 17 for
this paper. By definition, YABBOB problems do not allow for generating differ-
ent instances.
Algorithm Portfolio. As our algorithm portfolio, we consider the one used
in [18,32]. This gives us a set of 5 black-box optimization algorithms: MLSL [19,
31], BFGS [3,8,9,33], PSO [20], DE [34] and CMA-ES [12]. Since for the CMA-ES

4 A. Kostovska, A. Jankovic, D. Vermetten, et al.

Problem
Instances

Algorithm
Portfolio

Landscape
Features

Feature
Computation

Algorithm
Execution

Algorithm
Performance

Per-run
trajectory-

based
feature

extraction

Performance
Regression

Per-run
Algorithm
Selection

Fig. 1: Per-run algorithm selection pipeline. The overhead cost of computing
ELA features per problem instance is circumvented via collecting information
about the instance during the default optimization algorithm run.

we consider two versions from the modular CMA-ES framework [29] (elitist and
non-elitist), this gives us a total portfolio of 6 algorithm variants. The implemen-
tation of the algorithms used can be found in more detail in our repository [17].
Warm-starting. To ensure we can switch from our initial algorithm (A1) to
any of the others (A2), we make use of a basic warm-starting approach specific
to each algorithm. For the two versions of modular CMA-ES, we do not need to
explicitly warm-start, since we can just continue the run with the same inter-
nal parameters and turn on elitist selection if required. The detailed warm-start
mechanisms are discussed in [18], and the implementations are available in our
repository [17].
Performance Data. For our experiments, we consider a number of data col-
lection settings, based on the combinations of dimensionality of the problem,
where we use both 5- and 10-dimensional versions of the benchmark functions,
and budget for A1, where we use 30 ·D budget for the initial algorithm. This is
then repeated for all functions of both the BBOB and the YABBOB suite. For
BBOB, we collect 100 runs on each of the first 10 instances, resulting in 1 000
runs per function. For YABBOB (only used for testing), we collect 50 runs on
each function (due to no instances in Nevergrad).
In Figure 2, we show the performance of the six algorithms in our portfolio in
the 5-dimensional case. Since the A1 budget is 30 ·D = 150, the initial part of
the search is the same for all algorithms until this point. In the figure, we can see
that, for some functions, clear differences in performance between the algorithm
appear very quickly, while for other functions the difference only becomes ap-
parent after some more evaluations are used. This difference leads us to perform
our experiments with three budgets for the A2 algorithm, namely 20 ·D, 70 ·D
and 170 ·D.
To highlight the differences between the algorithms for each of these scenarios,
we can show in what fraction of runs each algorithm performs best. This is visu-
alized in Figure 3. Here we can see that while some algorithms are clearly more
impactful than others, the differences between them are still significant. This in-

Per-run Algorithm Selection with Warm-starting 5

dicates that there would be a significant difference between a virtual best solver
which selects the best algorithm for each run and a single best solver which uses
only one algorithm for every run.

1e−12

1e−8

1e−4

1

1e−4

0.01

1

100

1

100

1e+4

0.01

1

100

2

5
1
2

5
10

2

5

0 500 1000

1
2

5

10
2

5

1e−10

1e−5

1

1e+5

1e−3

1

1e+3

1e+6

1e−6

1e−3

1

1e+3

1e+6

1e−6

1e−4

0.01

1

100

1
2
5

10
2
5

100
2

0 500 1000

1
2

5
10

2

5
100

10
2

5
100

2

5
1e+3

0.1

1

10

100

1e+3

1e−3

1

1e+3

1e+6

10
2

5
100

2

5

1
2

5
10

2

5

0 500 1000

5

1
2

5

10
2

10
2

5
100

2

5
1e+3

1

100

1e+4

1

1e+3

1e+6

1e+9

1
2

5
10

2

5
100

1

100

1e+4

0 500 1000

2

3
4
5
6
7
89

100

BFGS DE MLSL Non-elitist PSO Same

Function Evaluations Function Evaluations Function Evaluations Function Evaluations

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

F1F1F1 F2F2F2 F3F3F3 F4F4F4

F5F5F5 F6F6F6 F7F7F7 F8F8F8

F9F9F9 F10F10F10 F11F11F11 F12F12F12

F13F13F13 F14F14F14 F15F15F15 F16F16F16

F17F17F17 F18F18F18 F19F19F19 F20F20F20

F21F21F21 F22F22F22 F23F23F23 F24F24F24

Fig. 2: Mean best-so-far function value (precision to global optimum) for each
of the six algorithms in the portfolio. For computational reasons, each line is
calculated based on a subset of 10 runs on each of the 10 instances used, for a total
of 100 runs. Note that the first 150 evaluations for each algorithm are identical,
since this is the budget used for A1. Figure generated using IOHanalyzer [35].

3 Experimental Setup

Adaptive Exploratory Landscape Analysis. As previously discussed, the
per-run trajectory-based algorithm selection method consists of extracting ELA
features from the search trajectory samples during a single run of the initial

6 A. Kostovska, A. Jankovic, D. Vermetten, et al.

5D_RT250 5D_RT500 5D_RT1000 10D_RT500 10D_RT1000 10D_RT2000
Scenario

BFGS
DE

MLSL
Non-elitist

PSO
Same

0.29 0.37 0.38 0.21 0.35 0.40
0.10 0.07 0.13 0.04 0.02 0.03
0.09 0.18 0.16 0.05 0.14 0.14
0.35 0.32 0.33 0.36 0.36 0.39
0.10 0.10 0.19 0.06 0.09 0.21
0.49 0.28 0.20 0.49 0.27 0.18

0.0
0.1
0.2
0.3
0.4
0.5

Fig. 3: Matrix showing for each scenario (with respect to the dimensionality and
A2 budget) in what proportion of runs each algorithm reaches the best function
value. Note that these value per scenario can add to more than 1 because of ties.

solver. A vector of numerical ELA feature values is assigned to each run on the
problem instance, and can be then used to train a predictive model that maps
it to different algorithms’ performances on the said run. To this end, we use the
ELA computation library named flacco [22].
Among over 300 different features (grouped in feature sets) available in flacco,
we only consider features that do not require additional function evaluations for
their computation, also referred to as cheap features [1]. They are computed us-
ing the fixed initial sample, while expensive features, in contrast, need additional
sampling during the run, an overhead that makes them more inaccessible for
practical use. For the purpose of this work, as suggested in preliminary stud-
ies [15, 18], we use 38 cheap features most commonly used in the literature,
namely those from y-Distribution, Levelset, Meta-Model, Dispersion, Informa-
tion Content and Nearest-Better Clustering feature sets.
We perform this per-run feature extraction using the initial A1 = 30 ·D budget
of samples and their evaluations per each run of each of the first 10 instances of
each of the 24 BBOB problems, as well as 17 YABBOB problems (that have no
instances) in dimensions 5 and 10.
Time-Series Features. In addition to ELA features computed during the opti-
mization process, we consider an alternative – time-series features of the internal
states of the CMA-ES algorithm. Since the internal variables of an algorithm are
adapted during the optimization, they could potentially contain useful informa-
tion about the current state of the optimization. Specifically, we consider the
following internal variables: the step size σ, the eigenvalues of covariance ma-
trix ~v, the evolution path ~pcand its conjugate ~pσ, the Mahalanobis distances
from each search point to the center of the sampling distribution ~γ, and the
log-likelihood of the sampling model L

(
~m, σ2,C

)
. We consider these dynamic

strategy parameters of the CMA-ES as a multivariate real-valued time series,
for which at every iteration of the algorithm, we compute one data point of the
time series as follows: ∀t ∈ [L]:
~ψt :=

(
σ,L(~m, σ2,C), ||~v||, ||~pσ||, ||~pc||, ||~γ||, ave(~v), ave(~pσ), ave(~pc), ave(~γ)

)>
,

where L represents the number of iterations these data points were sampled,
which equals the A1 budget divided by the population size of the CMA-ES. In

Per-run Algorithm Selection with Warm-starting 7

order to store information invariant to the problem dimension, we compute the
component-wise average ave(·) and norm ||~x|| =

√
~x>~v of each vector variable.

Given a set of m feature functions {φi}mi=1 from tsfresh (where φi : RL → R),
we apply each feature function over each variable in the collected time series.
Examples of such feature functions are autocorrelation, energy and continuous
wavelet transform coefficients. In this paper, we take this entire time series (of
length L) as the feature window. We employ all 74 feature functions from the ts-
fresh library [4], to compute a total of 9 444 time-series features per run. After
the feature generation, we perform a feature selection method using a Random
Forests classifier trained to predict the function ID, for computing the feature
importance. We then select only the features whose importance is larger than
2 × 10−3. This selection procedure yields 129 features, among which features
computed on the Mahalanobis distance and the step-size σ are dominant. More
details on this approach can be found in [26].
Regression Models. To predict the algorithm performance after the A2 bud-
get, we use as performance metric the target precision reached by the algorithm
in the fixed-budget context (i.e., after some fixed number of function evalu-
ations). We create a mapping between the input feature data, which can be
one of the following: (1) the trajectory-based representation with 38 ELA fea-
tures per run (ELA-based AS), (2) the trajectory-based representation with 129
time-series (TS) features per run (TS-based AS), or (3) a combination of both
(ELA+TS-based AS), and the target precision of different algorithm runs. We
then train supervised machine learning (ML) regression models that are able to
predict target precision for different algorithms on each of the trajectories in-
volved in the training data. Following some strong insights from [14] and subse-
quent studies, we aim at predicting the logarithm (log10) of the target precision,
in order to capture the order of magnitude of the distance from the optimum.
In our case, since we are dealing with an algorithm portfolio, we have trained
a separate single target regression (STR) model for each algorithm involved in
our portfolio. We opt for using a random forest (RF) regression, as previous
studies have shown that it provides promising results for automated algorithm
performance prediction [16]. To this end, we use the RF implementation from
the Python package scikit-learn [27].
Evaluation Scenarios. To find the best RF hyperparameters and to evaluate
the performance of the algorithm selectors, we have investigated two evaluation
scenarios:
(1) Leave-instance out validation: in this scenario, 70% of the instances
from each of the 24 BBOB problems are randomly selected for training and 30%
are selected for testing. Put differently, all 100 runs for the selected instance
will either appear in the training or the test set. We thus end up with 16 800
trajectories used for training and 7 200 trajectories for testing.
(2) Leave-run out validation: in this scenario, 70% of the runs from each
BBOB problem instance are randomly selected for training and 30% are se-
lected for testing. Again, we end up with 16 800 trajectories used for training
and 7 200 trajectories for testing.

8 A. Kostovska, A. Jankovic, D. Vermetten, et al.

Table 1: RF hyperparameter names and their corresponding values considered
in the grid search.

Hyperparameter Search space

n estimators [100, 300]
max features [auto, sqrt, log2]
max depth [3, 5, 15,None]

min samples split [2, 5, 10]

We repeat each evaluation scenario five independent times, in order to analyze
the robustness of the results. Each time, the training data set was used to find
the best RF hyperparameters, while the test set was used only for evaluation of
the algorithm selector.
Hyperparameter Tuning for the Regression Models. The best hyperpa-
rameters are selected for each RF model via grid search for a combination of an
algorithm and a fixed A2 budget. The training set for finding the best RF hy-
perparameters for each combination of algorithm and budget is the same. Four
different RF hyperparameters are selected for tuning: (1) n estimators: the num-
ber of trees in the random forest; (2) max features: the number of features used
for making the best split; (3) max depth: the maximum depth of the trees, and
(4) min samples split : the minimum number of samples required for splitting an
internal node in the tree. The search spaces of the hyperparameters for each RF
model utilized in our study are presented in Table 1.
Per-run Algorithm Selection. In real-world dynamic AS applications, we
rely on the information obtained within the current run of the initial solver on
a particular problem instance to make our decision to switch to a better suited
algorithm. A randomized component of black-box algorithms comes into play
here, as one algorithm’s performance can vastly differ from one run to another
on the very same problem instance.
We estimate the quality of our algorithm selectors by comparing them to stan-
dard baselines, the virtual best solver (VBS) and the single best solver (SBS).
As we make a clear distinction between per-run and per-instance perspective, in
order to compare we need to suitably aggregate the results. Our baseline is the
per-run VBS, which is the selector that always chooses the real best algorithm
for a particular run on a certain problem (i.e., function) instance. We then define
V BSiid and V BSfid as virtual best solvers on instance and problem levels, i.e.,
selectors that always pick the real best algorithm for a certain instance (across
all runs) or a certain problem (across all instances). Last, we define the SBS as
the algorithm that is most often the best one across all runs.
For each of these methods, we can define their performance relative to the per-
run VBS by considering their performance ratio, which is defined on each run
as taking the function value achieved by the VBS and dividing it by the value
reach by the considered selector. As such, the performance ratio for the per-run
VBS is 1 by definition, and in [0, 1] for each other algorithm selector.

Per-run Algorithm Selection with Warm-starting 9

5D_RT250 5D_RT500 5D_RT1000 10D_RT500 10D_RT1000 10D_RT2000
Scenario

VBS_iid
VBS_fid

SBS
AS_ELA

AS_TS
AS_BothPe

rfo
rm

an
ce

 R
at

io 0.90 0.85 0.81 0.94 0.89 0.88
0.88 0.83 0.78 0.92 0.87 0.87
0.75 0.57 0.50 0.79 0.60 0.55
0.88 0.82 0.78 0.91 0.87 0.86
0.71 0.61 0.53 0.77 0.68 0.63
0.88 0.82 0.78 0.92 0.87 0.85

0.0
0.2
0.4
0.6
0.8
1.0

Fig. 4: Heatmap showing for each scenario the average performance ratio relative
to the per-run virtual best solver of different versions of VBS, SBS and algorithm
selectors (based on the per-instance folds). Scenario names show the problem
dimensionality and the total used budget.

To measure the performance ratio for the algorithm selectors themselves, we cal-
culate this performance ratio on every run in the test-set of each of the 5 folds,
and average these values. We point out here that the performance of different
AS models are not statistically compared, since the obtained performance values
from the folds are not independent [6].

4 Evaluation Results: COCO

For our first set of experiments, we train our algorithm selectors on BBOB func-
tions using the evaluation method described in Section 3. Since we consider 2
dimensionalities of problems and 3 different A2 budgets, we have a total of 6
scenarios for each of the 3 algorithm selectors (ELA-, TS-, and ELA+TS-based).
In Figure 4, we show the performance ratios of these selectors, as well as the
performance ratios of the previously described VBS and SBS baselines. Note
that for this figure, we make use of the per-instance folds, but results are almost
identical for the per-run case.
Based on Figure 4, we can see that the ELA-based algorithm selector performs
almost as well as the per-function VBS, which itself shows only minor perfor-
mance differences to the per-instance VBS. We also notice that as the total
evaluation budget increases, the performance of every selector deteriorates. This
seems to indicate that as the total budget becomes larger, there are more cases
where runs on the same instance have different optimal switches.
To study the performance of the algorithm selectors in more detail, we can
consider the performance ratios for each function separately, as is visualized in
Figure 5. From this figure, we can see that for the functions where there is a
clearly optimal A2, all algorithm selectors are able to achieve near-optimal per-
formance. However, for the cases where the optimal A2 is more variable, the
discrepancy between the ELA and TS-based algorithm selectors increases.

10 A. Kostovska, A. Jankovic, D. Vermetten, et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

BFGS
DE

MLSL
Non-elitist

PSO
Same

AS_ELA
AS_TS

AS_Both

M
et

ho
d

1.00 0.90 0.35 0.37 0.99 0.09 0.40 0.71 0.78 1.00 1.00 0.27 1.00 1.00 0.40 0.21 0.18 0.20 0.49 0.74 0.39 0.35 0.37 0.54

0.00 0.00 0.44 0.45 0.68 0.01 0.57 0.18 0.18 0.00 0.00 0.00 0.00 0.00 0.46 0.30 0.29 0.28 0.52 0.61 0.43 0.36 0.46 0.60

1.00 0.12 0.73 0.81 0.68 0.01 0.45 0.23 0.19 0.00 0.00 0.06 0.00 0.00 0.46 0.37 0.24 0.25 0.54 0.80 0.55 0.44 0.52 0.60

0.61 0.00 0.82 0.73 0.91 0.42 0.68 0.53 0.45 0.01 0.00 0.61 0.00 0.00 0.94 0.78 0.78 0.82 0.82 0.75 0.51 0.44 0.88 0.89

0.00 0.00 0.43 0.46 0.69 0.01 0.65 0.19 0.18 0.00 0.00 0.00 0.00 0.00 0.49 0.37 0.31 0.31 0.65 0.63 0.54 0.48 0.45 0.67

0.99 0.00 0.69 0.64 0.99 0.81 0.60 0.53 0.45 0.00 0.00 0.78 0.00 0.00 0.74 0.52 0.57 0.63 0.62 0.73 0.50 0.37 0.45 0.70

0.99 0.89 0.80 0.76 0.99 0.82 0.62 0.72 0.75 1.00 1.00 0.75 1.00 1.00 0.92 0.79 0.76 0.79 0.81 0.74 0.54 0.42 0.90 0.89

0.98 0.82 0.38 0.42 0.99 0.30 0.43 0.71 0.69 0.99 0.99 0.40 0.97 0.96 0.46 0.25 0.27 0.42 0.55 0.80 0.46 0.32 0.37 0.63

1.00 0.88 0.79 0.74 0.99 0.82 0.64 0.72 0.75 1.00 1.00 0.75 1.00 1.00 0.91 0.82 0.77 0.81 0.80 0.77 0.53 0.46 0.86 0.85
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5: Heatmap showing for each 5-dimensional BBOB function the mean per-
formance ratio at 500 total evaluations relative to the per-run virtual best solver,
as well as the average performance ratio of each of the 3 algorithm selectors.

5 Evaluation Results: Nevergrad

We now study how a model trained on BBOB problem trajectories can be used
to predict the performances on trajectories not included in the training. We do
so by considering the YABBOB suite from the Nevergrad platform. While there
is some overlap between these two problem collections, introducing another suf-
ficiently different validation/test suite allows us to verify the stability of our
algorithm selection models. We recall that for the performance data of the same
algorithm portfolio on YABBOB functions, we have target precisions for 850
runs, 50 runs per 17 problems, in all considered A2 budgets.
Training on COCO, testing on Nevergrad. This experiment has resulted
in somewhat poorer performance of the algorithm selection models on an in-
herently different batch of problems. The comparison of the similarity between
BBOB and YABBOB problems presented below nicely shows how the YABBOB
problems are structurally more similar to one another than to the BBOB ones.
To investigate performance flaws of our approach when testing on Nevergrad,
we compare, for each YABBOB problem, how often a particular algorithm is
selected by the algorithm selection model trained on the BBOB data with how
often that algorithm was actually the best one. This comparison is exhibited in
Figure 6. We observe that MLSL in particular is not selected often enough in the
case of a large A2 budget, as well as a somewhat strong preference of the selec-
tor towards BFGS. An explanation for these results may be the (dis)similarities
between the benchmarks. Only for some YABBOB functions in the second half
of the set we might have similarities in the trajectories already seen from the
second half of the BBOB data, but this is anecdotal as the overall tendency is
that there are few parallels between BBOB and YABBOB.
Analyzing the complementarity between the COCO and Nevergrad
suites. We illustrate the intra-similarity among the YABBOB test trajectories
from the Nevergrad suite, which are not part of the training data set. This is
shown via correlation between the YABBOB trajectories (test data) and the
BBOB trajectories (training data). For this purpose, we first find the subspace

Per-run Algorithm Selection with Warm-starting 11

25 26 27 28 29 30 32 34 35 37 38 39 40 41 42 43 44
Function ID

BFGS
DE

MLSL
Non-elitist

PSO
Same
BFGS

DE
MLSL

Non-elitist
PSO

Same

M
et

ho
d

1.00 0.00 0.92 1.00 0.98 0.04 0.08 0.02 0.68 0.04 0.02 0.90 0.82 1.00 0.82 0.84 0.76

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.74 0.02 0.00 0.00 0.58 0.36 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24

0.00 0.10 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.16 0.06 0.00 0.02 0.26 0.18 0.68 0.08 0.96 0.98 0.10 0.18 0.00 0.18 0.16 0.00

0.04 0.00 0.20 0.60 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10 1.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.00

0.10 1.00 0.20 0.02 1.00 0.72 0.80 1.00 0.16 1.00 1.00 1.00 1.00 0.10 1.00 1.00 0.00

0.64 0.00 0.66 0.20 0.00 0.14 0.10 0.86 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.14

0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.00

0.24 0.00 0.76 0.18 0.00 0.14 0.10 1.00 0.56 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.86

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6: Heatmap showing for each 5-dimensional YABBOB/Nevergrad function
the fraction of times each algorithm was optimal to switch to when considering a
total budget of 500 evaluations (bottom) and how often each of these algorithm
was selected by the algorithm selector trained on BBOB/COCO (top). Note that
the columns of the bottom part can sum to more than 1 in case of ties.

that is covered by the training trajectories, where we then project the test tra-
jectories. To find the subspace that is covered by training data, we apply singular
value decomposition (SVD), following an approach presented in [7]. For the train-
ing and test data, we summarize the trajectories on a problem level using the
median values for each ELA feature by using all trajectory instances that belong
to the same problem. Next, we map the BBOB trajectories to a linear vector
space they cover (found by the SVD decomposition), where the trajectories are
represented in different uncorrelated dimensions of the data. We then project
each of the YABBOB trajectories to the linear subspace that is covered by the
24 BBOB problems, which allows us to find their correlation.
The Pearson correlation values between the trajectories obtained for 5D and 10D
problem instances are showcased in Figure 7. We opt for the Pearson correlation
coefficient since the trajectories are projected in a linear subspace. The trajec-
tories from 1 to 24 correspond to the BBOB suite, and the trajectories starting
from 25 to 44 correspond to the YABBOB suite. It is important to recall here
that the YABBOB problems F31, F33, F36 and F45 were omitted from further
analysis due to missing values. This figure shows that the BBOB trajectories are
not correlated (the white square portion of the lower left part of the heatmap),
which confirms high diversity in the training trajectory portfolio. However, there
are lower positive and negative correlations between BBOB and YABBOB tra-
jectories, which indicate that the properties of the YABBOB trajectories are not
captured in the training data. This might be a possible explanation for the poor
performance for the algorithm selection models which is trained on the BBOB
trajectories, but only tested on the YABBOB trajectories.

12 A. Kostovska, A. Jankovic, D. Vermetten, et al.

0

10

20

30

40

0 10 20 30 40

-1.0

-0.5

0.0

0.5

1.0
Corr

(a) 5D

0

10

20

30

40

0 10 20 30 40

-1.0

-0.5

0.0

0.5

1.0
Corr

(b) 10D

Fig. 7: Pearson correlation between BBOB (lower left portion, mostly white) and
YABBOB trajectories for 5D and 10D.

6 Conclusions and Future Work

We have shown the feasibility of building an algorithm selector based on a very
limited amount of samples from an initial optimization algorithm. Results within
the BBOB benchmark suite show performance comparable to the per-function
virtual best solver when using a selector based on ELA features. While these
results did not directly transfer to other benchmark suites, this seems largely
caused by the relatively low similarity between the collections.
Since this work is based on warm-starting the algorithms using the information
of the initial search trajectory, further improvement in warm-starting would be
highly beneficial to the overall performance of this feature-based selection mech-
anism. In addition, identifying exactly what features contribute to the decisions
being made can show us what properties might be important to the performance
of the switching algorithm, which in turn can support the development of better
warm-starting mechanisms.
While the time-series based approach did not perform as well as the one based
on ELA, it still poses an interesting avenue for future research. In particular,
it would be worthwhile to consider the combined model in more detail, and
aim to identify the level of complementarity between landscape and algorithm
state features, which would help gain insight into the complex interplay between
problems and algorithms.

Acknowledgments. The authors acknowledge financial support by the Slovenian
Research Agency (research core grants No. P2-0103 and P2-0098, project grant No.
N2-0239, and young researcher grant No. PR-09773 to AK), by the EC (grant No.
952215 - TAILOR), by the Paris Ile-de-France region (DIM RFSI project AlgoSelect),
and by the CNRS INS2I institute (the RandSearch project).

Per-run Algorithm Selection with Warm-starting 13

References

1. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Per instance algorithm con-
figuration of CMA-ES with limited budget. In: Proc. of Genetic and Evolution-
ary Computation (GECCO’17). pp. 681–688. ACM (2017). https://doi.org/10.
1145/3071178.3071343, https://doi.org/10.1145/3071178.3071343

2. Bischl, B., Mersmann, O., Trautmann, H., Preuss, M.: Algorithm selection based on
exploratory landscape analysis and cost-sensitive learning. In: Proc. of Genetic and
Evolutionary Computation Conference, GECCO’12. pp. 313–320. ACM (2012).
https://doi.org/10.1145/2330163.2330209

3. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms.
In: J. Inst. Math. Appl. 6. pp. 76—-90 (1970)

4. Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W.: tsfresh package for time-
series feature engineering, https://tsfresh.readthedocs.io/en/latest/text/

list_of_features.html

5. Cosson, R., Derbel, B., Liefooghe, A., Aguirre, H.E., Tanaka, K., Zhang, Q.:
Decomposition-based multi-objective landscape features and automated algorithm
selection. In: Proc. of Evolutionary Computation in Combinatorial Optimization
(EvoCOP’21). LNCS, vol. 12692, pp. 34–50. Springer (2021). https://doi.org/
10.1007/978-3-030-72904-2_3

6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Jour-
nal of Machine learning research 7, 1–30 (2006)

7. Eftimov, T., Popovski, G., Renau, Q., Korošec, P., Doerr, C.: Linear matrix factor-
ization embeddings for single-objective optimization landscapes. In: Proc. of IEEE
Symposium Series on Computational Intelligence (SSCI’20). pp. 775–782. IEEE
(2020). https://doi.org/10.1109/SSCI47803.2020.9308180

8. Fletcher, R.: A new approach to variable metric algorithms. In: Comp. J. 13. pp.
317—-322 (1970)

9. Goldfarb, D.F.: A family of variable-metric methods derived by variational means.
In: Math. Comp. 24. pp. 23—-26 (1970)

10. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-Parameter Black-Box Optimization
Benchmarking: Experimental Setup. RR-7215, INRIA (2010)

11. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a
platform for comparing continuous optimizers in a black-box setting. Optimization
Methods and Software 36, 1–31 (2020). https://doi.org/10.1080/10556788.

2020.1808977

12. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (Jun 2001). https://doi.org/10.1162/
106365601750190398, https://doi.org/10.1162/106365601750190398

13. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning -
Methods, Systems, Challenges. The Springer Series on Challenges in Machine
Learning, Springer (2019). https://doi.org/10.1007/978-3-030-05318-5

14. Jankovic, A., Doerr, C.: Landscape-aware fixed-budget performance regression
and algorithm selection for modular CMA-ES variants. In: Proc. of Genetic and
Evolutionary Computation Conference (GECCO’20). pp. 841–849. ACM (2020).
https://doi.org/10.1145/3377930.3390183

15. Jankovic, A., Eftimov, T., Doerr, C.: Towards feature-based performance regres-
sion using trajectory data. In: Proc. of Applications of Evolutionary Compu-
tation (EvoApplications’21). LNCS, vol. 12694, pp. 601–617. Springer (2021).
https://doi.org/10.1007/978-3-030-72699-7_38

https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1145/2330163.2330209
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://doi.org/10.1007/978-3-030-72904-2_3
https://doi.org/10.1007/978-3-030-72904-2_3
https://doi.org/10.1109/SSCI47803.2020.9308180
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1145/3377930.3390183
https://doi.org/10.1007/978-3-030-72699-7_38

14 A. Kostovska, A. Jankovic, D. Vermetten, et al.

16. Jankovic, A., Popovski, G., Eftimov, T., Doerr, C.: The impact of hyper-parameter
tuning for landscape-aware performance regression and algorithm selection. In:
Proc. of Genetic and Evolutionary Computation Conference (GECCO’21). pp.
687–696. ACM (2021). https://doi.org/10.1145/3449639.3459406

17. Jankovic, A., Kostovska, A., Vermetten, D., de Nobel, J., Wang, H., Eftimov,
T., Doerr, C.: Per-Run Algorithm Selection with Warm-starting using Trajectory-
based Features – Data (Apr 2022). https://doi.org/10.5281/zenodo.6458266

18. Jankovic, A., Vermetten, D., Kostovska, A., de Nobel, J., Eftimov, T., Doerr,
C.: Trajectory-based algorithm selection with warm-starting (2022). https://doi.
org/10.48550/arxiv.2204.06397

19. Kan, A., Timmer, G.: Stochastic global optimization methods part II: Multi level
methods. Mathematical Programming 39, 57–78 (09 1987). https://doi.org/10.
1007/BF02592071

20. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of ICNN’95 -
International Conference on Neural Networks. vol. 4, pp. 1942–1948 (1995). https:
//doi.org/10.1109/ICNN.1995.488968

21. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: Survey and perspectives. Evolutionary Computation 27(1), 3–45 (2019).
https://doi.org/10.1162/evco_a_00242

22. Kerschke, P., Trautmann, H.: The R-package FLACCO for exploratory landscape
analysis with applications to multi-objective optimization problems. In: CEC. pp.
5262–5269. IEEE (2016), https://doi.org/10.1109/CEC.2016.7748359

23. Lindauer, M., Hoos, H.H., Hutter, F., Schaub, T.: Autofolio: An automatically
configured algorithm selector. Journal of Artificial Intelligence Research 53, 745–
778 (2015). https://doi.org/10.1613/jair.4726

24. Meidani, K., Mirjalili, S., Farimani, A.B.: Online metaheuristic algorithm selection.
Expert Systems with Applications p. 117058 (2022)

25. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory Landscape Analysis. In: Proc. of Genetic and Evolutionary Compu-
tation Conference (GECCO’21). pp. 829–836. ACM (2011). https://doi.org/10.
1145/2001576.2001690

26. Nobel, J., Wang, H., Bäck, T.: Explorative data analysis of time series based al-
gorithm features of CMA-ES variants. pp. 510–518 (06 2021). https://doi.org/
10.1145/3449639.3459399

27. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in Python. JMLR 12, 2825–2830 (2011)

28. Rapin, J., Teytaud, O.: Nevergrad - A gradient-free optimization platform. https:
//GitHub.com/FacebookResearch/Nevergrad (2018)

29. van Rijn, S.: Modular CMA-ES framework from [30], v0.3.0. https://github.com/
sjvrijn/ModEA. Available also as PyPi package at https://pypi.org/project/

ModEA/0.3.0/ (2018)
30. van Rijn, S., Wang, H., van Leeuwen, M., Bäck, T.: Evolving the structure of Evolu-

tion Strategies. In: Proc. of IEEE Symposium Series on Computational Intelligence
(SSCI’16). pp. 1–8. IEEE (2016). https://doi.org/10.1109/SSCI.2016.7850138

31. Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods.
part 1: Clustering methods. Math. Program. 39(1), 27–56 (1987)

32. Schröder, D., Vermetten, D., Wang, H., Doerr, C., Bäck, T.: Chaining of numerical
black-box algorithms: Warm-starting and switching points (2022). https://doi.
org/10.48550/arxiv.2204.06539

https://doi.org/10.1145/3449639.3459406
https://doi.org/10.5281/zenodo.6458266
https://doi.org/10.48550/arxiv.2204.06397
https://doi.org/10.48550/arxiv.2204.06397
https://doi.org/10.1007/BF02592071
https://doi.org/10.1007/BF02592071
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1109/CEC.2016.7748359
https://doi.org/10.1613/jair.4726
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1145/3449639.3459399
https://doi.org/10.1145/3449639.3459399
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://github.com/sjvrijn/ModEA
https://github.com/sjvrijn/ModEA
https://pypi.org/project/ModEA/0.3.0/
https://pypi.org/project/ModEA/0.3.0/
https://doi.org/10.1109/SSCI.2016.7850138
https://doi.org/10.48550/arxiv.2204.06539
https://doi.org/10.48550/arxiv.2204.06539

Per-run Algorithm Selection with Warm-starting 15

33. Shanno, D.: Conditioning of quasi-newton methods for function minimization. In:
Math. Comp. 24. pp. 647—-656 (1970)

34. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization 11(4),
341–359 (1997). https://doi.org/10.1023/A:1008202821328

35. Wang, H., Vermetten, D., Ye, F., Doerr, C., Bäck, T.: Iohanalyzer: Detailed per-
formance analysis for iterative optimization heuristic. ACM Trans. Evol. Learn.
Optim. (2022). https://doi.org/10.1145/3510426, https://doi.org/10.1145/
3510426, to appear. IOHanalyzer is available at CRAN, on GitHub, and as web-
based GUI, see https://iohprofiler.github.io/IOHanalyzer/ for links

36. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Evaluating component solver
contributions to portfolio-based algorithm selectors. In: Proc. of Theory and
Applications of Satisfiability Testing (SAT’12). Lecture Notes in Computer
Science, vol. 7317, pp. 228–241. Springer (2012). https://doi.org/10.1007/

978-3-642-31612-8_18, https://doi.org/10.1007/978-3-642-31612-8_18

https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1145/3510426
https://doi.org/10.1145/3510426
https://doi.org/10.1145/3510426
https://iohprofiler.github.io/IOHanalyzer/
https://doi.org/10.1007/978-3-642-31612-8_18
https://doi.org/10.1007/978-3-642-31612-8_18
https://doi.org/10.1007/978-3-642-31612-8_18

	Per-run Algorithm Selection with Warm-starting using Trajectory-based Features

