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Abstract Introduction: Predicting checkpoint inhibitors treatment outcomes in melanoma is a 
relevant task, due to the unpredictable and potentially fatal toxicity and high costs for society. 
However, accurate biomarkers for treatment outcomes are lacking. Radiomics are a technique to 
quantitatively capture tumour characteristics on readily available computed tomography (CT) 
imaging. The purpose of this study was to investigate the added value of radiomics for predicting 
clinical benefit from checkpoint inhibitors in melanoma in a large, multicenter cohort.
Methods: Patients who received first-line anti-PD1 ± anti-CTLA4 treatment for advanced 
cutaneous melanoma were retrospectively identified from nine participating hospitals. For 
every patient, up to five representative lesions were segmented on baseline CT, and radiomics 
features were extracted. A machine learning pipeline was trained on the radiomics features to 
predict clinical benefit, defined as stable disease for more than 6 months or response per 
RECIST 1.1 criteria. This approach was evaluated using a leave-one-centre-out cross vali
dation and compared to a model based on previously discovered clinical predictors. Lastly, a 
combination model was built on the radiomics and clinical model.
Results: A total of 620 patients were included, of which 59.2% experienced clinical benefit. 
The radiomics model achieved an area under the receiver operator characteristic curve 
(AUROC) of 0.607 [95% CI, 0.562–0.652], lower than that of the clinical model 
(AUROC=0.646 [95% CI, 0.600–0.692]). The combination model yielded no improvement 
over the clinical model in terms of discrimination (AUROC=0.636 [95% CI, 0.592–0.680]) or 
calibration. The output of the radiomics model was significantly correlated with three out of 
five input variables of the clinical model (p  <  0.001).
Discussion: The radiomics model achieved a moderate predictive value of clinical benefit, 
which was statistically significant. However, a radiomics approach was unable to add value to 
a simpler clinical model, most likely due to the overlap in predictive information learned by 
both models. Future research should focus on the application of deep learning, spectral CT- 
derived radiomics, and a multimodal approach for accurately predicting benefit to checkpoint 
inhibitor treatment in advanced melanoma.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Survival of patients with advanced melanoma has im
proved dramatically after the introduction of im
munotherapy. The survival of patients with unresectable 
stage III and stage IV melanoma has historically been 
very poor with a 1-year overall survival of 25% in phase 
II trials up to 2007 [1]. This changed with the in
troduction of anti-cytotoxic t-lymphocyte antigen-4 
(CTLA4) therapy in 2011 [2] and anti-programmed 
death-1 (PD1) therapy in 2014 [3,4]. In patients treated 
with anti-PD1 antibodies, real-world 1-year overall 
survival is now 67%, with 40% of patients achieving 
remissions of several years [5]. For patients treated with 
anti-PD1 plus anti-CTLA4 therapy, 5-year overall sur
vival is reported to be as high as 52% [6].

However, not all patients benefit from checkpoint 
inhibitors. At 6 months after start of anti-PD1 treat
ment, 43% of patients experience progression or death. 
Furthermore, overall survival of patients with progres
sion at 6 months was shown to be only 16% at 30 
months. This is in contrast to a 30-month overall sur
vival of 60%, 79%, and 96% for patients with stable 
disease, partial response, and complete response at 6 
months of follow-up, respectively, in real-world data [5]. 
Similar results were reported in patients treated with 
anti-PD1 plus anti-CTLA4 therapy [7].

Accurate prediction of treatment benefit is an im
portant topic for several reasons. First, treatment with 
checkpoint inhibitors is associated with severe and po
tentially fatal or irreversible toxicity. Severe toxicity 
occurs in 10–15% of patients treated with anti-PD1 
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monotherapy [5,8–10], and in as much as 60% of pa
tients treated with anti-PD1 plus anti-CTLA4 combi
nation therapy [11]. Second, checkpoint inhibition 
therapy is very costly. Depending on country and set
ting, estimates of additional costs per gained quality- 
adjusted life year range from 25,000 to 81,000 United 
States Dollars [12,13]. Lastly, if patients who will not 
benefit are identified before start of treatment, alter
native or experimental therapies can be started without 
delay.

Previously identified predictors for treatment out
comes are not yet sufficient to guide clinical decisions. 
Known clinical predictors of poor outcome include high 
tumour load, presence of liver metastases and sympto
matic brain metastases, increased lactate dehydrogenase 
(LDH), and worse Eastern Cooperative Oncology 
Group (ECOG) performance status [14]. In addition, 
other biomarkers have been explored, such as PD-L1 
expression, tumour mutational burden, and histo
pathology features. Thus far, however, these predictors 
are not strong enough to predict treatment outcomes 
with high certainty [15], or the results remain to be va
lidated in future studies [16].

Radiomics are by now an established modality for 
diagnosis, prognosis, and prediction. Radiomics capture 
information about shape, intensity, and texture of le
sions in imaging and thereby form a reflection of tu
mour characteristics, such as necrosis or vascularisation. 
These extracted features can subsequently be correlated 
to a clinical outcome [17]. This makes radiomics a cheap 
and non-invasive modality to, for example, discern be
nign from malignant lung nodules [18], estimate prog
nosis in non-small cell lung cancer (NSCLC) patients 
[19], and assess mutation status in glioblastoma [20]. 
Regarding prediction of checkpoint inhibitor treatment 
outcomes, promising findings have been published, 
particularly in NSCLC patients [21].

The added value of computed tomography (CT) 
radiomics for predicting clinical benefit of checkpoint 
inhibitors in melanoma remains to be determined in 
large multicenter studies. Three previous smaller studies 
have investigated radiomics for this purpose, with con
flicting findings. The studies by Trebeschi et al. [22] and 
Peisen et al. [23] report a significant discriminative value 
of radiomics for treatment outcomes (area under the 
receiver operator characteristic curve [AUROC]=0.78 
on a dataset of 80 patients, and AUROC=0.64 on a 
dataset of 262 patients, respectively). In contrast, 
Brendlin et al. [24] reported a non-discriminative per
formance, despite using a similar methodology 
(AUROC=0.50 in 140 patients). These differences in 
results highlight the importance of a large dataset to 
determine the value of radiomics. Furthermore, only the 
study by Peisen et al. investigated the added value over a 
simpler clinical model, with varying results across dif
ferent outcomes. Lastly, none of the previous studies 

evaluated their model on data from other centres, al
though variability in scanner protocol may add sig
nificant noise [25]. In this study, we aimed to address 
these limitations and determine the added value of 
radiomics for predicting checkpoint inhibitor outcomes 
in a multicenter study in advanced melanoma.

2. Materials and methods

2.1. Patient selection

Eligible patients were retrospectively identified from 
high-quality registry data [26] from nine participating 
centres in The Netherlands (Amphia Ziekenhuis, Isala 
Zwolle, Leids Universitair Medisch Centrum, Máxima 
MC, Medisch Spectrum Twente, Radboudumc, UMC 
Utrecht, Amsterdam UMC, Zuyderland MC). Patients 
over the age of 18 were included if they received first-line 
treatment with anti-PD1 ± anti-CTLA4 checkpoint in
hibition for irresectable stage IIIC or stage IV cutaneous 
melanoma after 01–01–2016. Exclusion criteria were (i) 
unavailability of baseline contrast-enhanced CT ima
ging (CE-CT), (ii) lack of eligible target lesions, and (iii) 
less than 6 months of follow-up. Clinical characteristics 
were collected for the included patients and compared to 
those of the excluded patients. CT acquisition char
acteristics were extracted for included patients.

2.2. Lesion selection and segmentation

For every patient, one to five lesions were selected on 
baseline CT imaging and segmented. We aimed to make 
this selection of lesions as informative and re
presentative as possible by using the following protocol: 
first, the five largest lesions were selected with a max
imum of two per organ. If more lesions remained after 
segmenting a maximum of two per organ, the largest 
remaining lesions were segmented up to a total of five. 
Lesion selections were made without knowledge of the 
outcome. Lesions were excluded if they were not well- 
demarcated, affected by imaging artifacts or if the 
maximum diameter was less than 5 mm. Segmentations 
were performed in 3D Slicer [27] on the series with the 
lowest slice thickness by authors LSM and IAJD, under 
supervision of board-certified radiologists with 17 and 
18 years of experience (PJ and TL, respectively).

2.3. Feature extraction

Features were extracted from the segmented volumes 
using PyRadiomics [28]. For every volume, 1874 fea
tures were extracted at five different levels of detail, 
resulting in a total of 9370 features. An overview of the 
extracted features is given in the Supplementary 
Methods. Interobserver agreement of segmentations 
and features was calculated using Dice scores and 
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intraclass correlation coefficient (ICC), respectively, 
based on 16 scans segmented by both observers 
(LSM, IAJD).

2.4. Outcome definition

The primary outcome was clinical benefit, defined as the 
best overall response of partial or complete response, or 
stable disease for a minimum of 6 months after start of 
treatment; response was determined by the treating 
physician in line with Response Evaluation Criteria in 
Solid Tumours (RECIST) 1.1 criteria [29]. The sec
ondary outcome was objective response, defined as the 
best overall response of partial or complete response. 
Clinical benefit was used as the primary outcome, as the 
intended use of the model was to identify patients who 
would quickly progress despite treatment and therefore 
not derive any benefit from treatment. Individual lesion 
response was assessed using maximum diameter re
cordings at baseline and at 3, 6 and 9 months, or until 
treatment was changed. Given the possibility of pseudo- 
progression, the last available follow-up was used to 
determine lesion outcomes. If the maximum diameter at 
the last follow-up was less than 120% of the baseline 
diameter, the lesion was labelled as ‘does benefit’, and 
‘does not benefit’ otherwise. In parallel, the lesion was 
labelled as ‘responsive’ if the maximum diameter was 
less than 70% of the baseline diameter at the last follow- 
up, and ‘non-responsive’ otherwise. These lesion-level 

cut-offs were chosen in correspondence with the patient- 
level cut-offs used in RECIST 1.1 [29].

2.5. Evaluated models

Three predictive models were compared: a model based 
on radiomics, a model based on baseline clinical char
acteristics and an ensemble model that combined the 
predictions of these models. The radiomics model con
sisted of a machine learning pipeline that automatically 
selected optimal components and hyperparameters for 
feature selection, dimensionality reduction, and classi
fication (Fig. 1). This pipeline was trained to predict 
outcomes per lesion; these outputs per lesion were then 
aggregated to a patient-level prediction. The clinical 
model used the same machine learning pipeline, which 
was fitted on five clinical variables that were consistently 
shown to be predictive of checkpoint inhibitor treatment 
outcomes in previous literature [5,14,30,31]. These pre
dictors were (i) ECOG performances status, (ii) LDH 
level, presence of (iii) brain and (iv) liver metastases, and 
(v) number of affected organs. All variables were one- 
hot encoded; missing values were encoded as a separate 
label. The ensemble model consisted of a logistic re
gression fitted on the output of the radiomics and clin
ical model. All three models were evaluated using a 
nested cross validation. The inner loop was used for 
optimal model selection and hyperparameter tuning; the 
outer loop was used to evaluate predictive performance                             

Fig. 1. Overview of methodology. 
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on unseen data and was conducted in a leave-one- 
centre-out manner. Further details are supplied in the 
Supplementary Methods.

2.6. Statistical analysis

The discriminative performance of the models was 
evaluated using the AUROC and corresponding 95% 
confidence interval. The cross-validated AUROC and 
confidence interval were calculated using the cvAUC R 
package [32]. Methods for comparing cross-validated 
AUROCs between models are detailed in the 
Supplementary Methods. Subgroup analyses were con
ducted for patients treated with anti-PD1 therapy and 
anti-PD1 plus anti-CTLA4 therapy by evaluating the 
fitted model only on patients from the respective groups. 
The output of the radiomics model for predicting clin
ical benefit was correlated to the input variables of the 
clinical model to determine if the radiomics model 
learned features that were already represented in the 
baseline clinical model.

2.7. Adherence to quality standards

The TRIPOD checklist [33] was completed and is 
available in Supplementary Table 1. The study design 
was reviewed by the Medical Ethics Committee and not 
considered subject to the Medical Research Involving 

Human Subjects Act in compliance with Dutch regula
tions; informed consent was waived.

3. Results

3.1. Patient characteristics

Out of 1191 eligible patients, 620 patients with a total 
of 2352 lesions were included. A flowchart of the se
lection process is shown in Fig. 2. The rate of clinical 
benefit was 59.2% (367 patients); the objective response 
rate was 51.3% (318 patients); Lesion level outcomes 
were available for 75.2% of lesions. Lesion-level out
comes could not be recorded for patients from the 
Radboudumc (327 lesions, 13.9%) due to local reg
ulations. In addition, follow-up imaging was unavail
able due to patient death or clinical progression before 
the first follow-up moment for 185 lesions (7.9%), due 
to the lesion falling outside the field of view in 27 le
sions (1.1%) and due to technical issues in 44 lesions 
(1.9%). Rate of benefit was 79.4% among lesions with 
available labels, whereas response rate was 54.8% 
(Supplementary Table 5). Of all eligible patients, 490 
patients were excluded because of the unavailability of 
contrast-enhanced pretreatment CT. In most of these 
cases, an 18-fluorodeoxyglucose positron emission to
mography (FDG-PET) with low-dose CT was made. 
Characteristics for the included patients are shown in 
Table 1 and compared to those of excluded patients in 

Fig. 2. Flowchart of patient selection. 
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Supplementary Table 2. The subgroups of patient 
treated with anti-PD1 and combination therapy con
sisted of 370 and 250 patients, respectively. 
Supplementary Tables 3 and 4 show patient char
acteristics per centre, and for the subgroups treated 
with monotherapy and combination therapy, respec
tively. CT acquisition characteristics per centre are 
displayed in Supplementary Table 6.

3.2. Interobserver variability

52 lesions in 16 scans were segmented by two observers. 
Segmentations corresponded with a median Dice score 
of 0.88 (IQI 0.82–0.92). For the extracted features, the 
median ICC was 0.97 (IQI 0.92–0.99).

3.3. Treatment outcome prediction

For predicting clinical benefit, the radiomics model 
achieved an AUROC of 0.607 [95% CI, 0.562–0.652], 

the clinical model an AUROC of 0.646 [95% CI, 
0.600–0.692], and the ensemble model an AUROC of 
0.636 [95% CI, 0.592–0.680] (Fig. 3). The difference in 
AUROC between the ensemble and clinical model was 
not statistically significant (Supplementary Figure 1). 
Calibration curves showed adequate calibration of the 
three models with no evidence of poor fit (Hosmer- 
Lemeshow p  >  0.07). The range of predicted prob
abilities was comparable between models (IQI 
0.56–0.65, 0.53–0.67, and 0.52–0.69 for the radiomics, 
clinical and ensemble model, respectively). Results 
were similar for predicting objective response 
(Supplementary Figure 2–3). Predictive performance 
for both outcomes was comparable in subgroups of 
patients treated with monotherapy and combination 
therapy, with a trend of better discrimination in the 
subgroup of patients treated with combination therapy 
(Supplementary Figures 4–7). Details of the selected 
models and hyperparameters per fold are shown in 
Supplementary Table 7.

Table 1 
Characteristics of included patients. 

Missing Overall

n 620
Age, median [Q1, Q3] 0 67.5 [58.0,75.0]
Sex, n (%) Female 0 239 (38.5)

Male 381 (61.5)
Stage, n (%) IIIC 4 25 (4.1)

M1a 49 (8.0)
M1b 94 (15.3)
M1c 296 (48.1)
M1d 152 (24.7)

Eastern Cooperative Oncology Group performance status, 
n (%)

0 26 287 (48.3)
1 247 (41.6)
2–4 60 (10.1)

Primary tumour location, n (%) Acral 10 15 (2.5)
Extremity 167 (27.4)
Head, neck 66 (10.8)
Trunk 247 (40.5)
Unknown 115 (18.9)

Brain metastases, n (%) Absent 45 423 (73.6)
Asymptomatic 76 (13.2)
Symptomatic 76 (13.2)

Liver metastases, n (%) Absent 30 398 (67.5)
Present 192 (32.5)

No. of affected organs, n (%) <3 0 338 (54.5)
>2 282 (45.5)

Lactate dehydrogenase, n (%) Normal 9 381 (62.4)
1–2x upper limit of 
normal

177 (29.0)

>2x upper limit of 
normal

53 (8.7)

Clinical benefit, n (%) No benefit 0 253 (40.8)
Benefit 367 (59.2)

Objective response, n (%) No response 0 302 (48.7)
Response 318 (51.3)

Therapy, n (%) Anti-PD1 0 370 (59.7)
Ipilimumab & 
Nivolumab

250 (40.3)
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3.4. Comparison of radiomics and clinical model

The predicted probability of clinical benefit by the 
radiomics model was significantly lower in patients in 
whom liver metastases were absent (Mann-Whitney U, 
p  <  0.001, Fig. 4A), in patients with higher LDH 
(Kruskal-Wallis p  <  0.001, Fig. 4D) and who had more 
affected organs (Mann-Whitney U p  <  0.001, Fig. 4E). 
The output of radiomics model was not significantly 
different in patients with and without brain metastases), 
and for different categories of ECOG performance 
status (Fig. 4B–C). The output of radiomics and clinical 
models were significantly and positively correlated 
(Spearman’s correlation coefficient = 0.369, p  <  0.001, 
Fig. 4F).

4. Discussion

The present work shows that radiomics are moderately 
predictive of checkpoint inhibitor treatment outcomes 

in patients with advanced melanoma. The results were 
consistent for both clinical benefit and objective re
sponse rate, and are most in line with the findings of the 
earlier study by Peisen et al. A recent work by Dercle 
et al. allows for comparison to a model that also in
corporates radiomics from on-treatment CT scans [34]. 
This model reached an AUROC of 0.92 for predicting 
overall survival at 6 months, indicating that on-treat
ment radiomics are strongly predictive. However, most 
toxicity occurs in the first 3 months, and long-term 
outcomes can already be accurately predicted using on- 
treatment information without the use of radiomics 
[6,35]. Predicting response using the 3-month on-treat
ment scan therefore appears to be of limited clinical 
relevance.

Addition of radiomics to known clinical predictors, 
however, did not yield improvement in predictive value. 
The combination model was not superior to the clinical 
model in either discrimination or calibration. This lack of 
improvement can be explained due to an overlap in the 

Fig. 3. Receiver operator characteristic (ROC) curves and calibration curves for predicting clinical benefit. (A–C) ROC curves for 
predicting durable clinical benefit in patients with melanoma treated with anti-PD1 ± anti-CTLA4 checkpoint inhibition for the radiomics 
model (A), clinical model (B) and combination model (C). Grey curves correspond to results per fold; blue curves are the weighted 
average of the results per fold. The area under the curve (AUC) with corresponding 95% confidence intervals is displayed. (D–F) Locally 
estimated scatterplot smoothing (LOESS) fitted calibration curves for predicting durable clinical benefit in the radiomics model (D), 
clinical model (E), and combination model (F); the shaded area corresponds to ± 1 standard deviation. Histograms of the predictions for 
positive (blue) and negative (orange) samples are provided below the curves, the x-axis displays the predicted values for these histograms. 
P-values of the Hosmer-Lemeshow goodness-of-fit test are shown in the plot titles.
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information learned by the radiomics model, and the 
information that is already represented in clinical vari
ables. As demonstrated, the radiomics model indirectly 
learns to detect the presence of liver metastases and the 
amount of tumour burden, as reflected in LDH and 
number of affected organs. The fact that this information 
is indeed learned as expected is a strong argument for the 
validity of the present work. Furthermore, this indicates 
that such overlap is likely to be present in any radiomics 
model which is investigated for clinical purposes.

Studies on radiomics should assess the added value 
over simpler predictors. Many smaller exploratory stu
dies have been conducted into the predictive value of 
radiomics for checkpoint inhibitor outcomes across 
different malignancies [21]. Their findings are almost 
exclusively positive, but the added value over clinical 
predictors was seldomly assessed. The present work 
demonstrates that clinical predictors can be captured by 
radiomics, and that the added value of radiomics should 
therefore always be investigated, even in exploratory 
studies.

Future works should aim to improve on radiomics 
through deep learning or spectral CT-derived radiomics. 
Deep learning has a significant advantage over hand
crafted radiomics, as this method is not limited by 
predefined features in what information can be cap
tured. Instead, a deep learning approach is given the raw 
data as input and learns informative features on the fly 
[36]. Furthermore, spectral CT-derived radiomics were 
shown to be superior over single energy radiomics for 
predicting response to checkpoint inhibition in patients 
with melanoma by Brendlin et al. [24]. As spectral CT 
scanners become increasingly available, this approach 
may be tested more thoroughly in future research.

Lastly, the multimodal approach should be extended 
with other data sources. Accurately predicting check
point inhibitor treatment outcomes in melanoma re
mains challenging. It is possible that individual 
biomarkers are insufficient to guide clinical decisions. 
An approach that combines different data sources may 
therefore prove to be superior. A possible modalities 
that may be explored for this purpose is histopathology 

Fig. 4. Correspondence between the output of the clinical and radiomics models for predicting clinical benefit. Graphical overview of 
correspondence between the output of the radiomics and clinical models. (A–E) Boxenplots of the output of the radiomics model, 
compared across different values for clinical predictors. (A) The output of the radiomics model is significantly lower in patients with liver 
metastases than in patients without (Mann-Whitney U p  <  0.001). (B) No statistical difference was found in the output of the radiomics 
model between patients without or with asymptomatic or symptomatic brain metastases (Kruskal-Wallis p = 0.074) and Eastern 
Cooperative Oncology Group performance status (Kruskal-Wallis p = 0.201). D) The output of the radiomics model is significantly lower 
in patients with higher levels of lactate dehydrogenase (Kruskal-Wallis p  <  0.001) and with more affected organs (Mann-Whitney U 
p  <  0.001). (F) The outputs of the clinical and radiomics models (predicted probability of response) are positively correlated (Spearman’s 
rank correlation coefficient = 0.369, p  <  0.001).
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imaging [16], which will be investigated in this cohort in 
a future work.

The strengths of this work are the large sample size, 
the multicenter design and extensive hyperparameter 
optimisation. This is the largest work published on 
radiomics for prediction of checkpoint inhibitor treat
ment outcomes in any malignancy [21]. This large size 
adds to the weight of the presented conclusion. Fur
thermore, the dataset in this work includes patients from 
nine different centres. As stability of radiomics features 
across scanner types and protocols is far from certain, 
external validation is essential for determining the 
practical value of a radiomics approach. Lastly, the 
proposed pipeline systematically explores design 
choices, from the extraction of radiomics to the final 
prediction. This approach should maximise potential 
performance by avoiding arbitrary and therefore pos
sibly suboptimal design choices.

A potential limitation is the exclusion of a large 
fraction of patients due to unavailability of CE-CT 
imaging. Comparison of patient characteristics between 
the included and excluded groups showed minor dif
ferences overall, with a trend towards more progressed 
disease in the included patients. Our hypothesis for this 
is that patients with more progressed disease are more 
likely to directly present to medical oncology, instead of 
being referred after having undergone imaging by a 
different specialty where FDG-PET is the preferred 
modality. Although this selection may theoretically have 
influenced the presented results, this risk is arguably 
limited as the characteristics of in- and excluded patients 
are overall very comparable.

Furthermore, patients with stable disease for a 
minimum of 6 months were labelled as having clinical 
benefit. This group could therefore theoretically include 
patients with indolent tumour progression (less than 
120% of original diameters in 6 months), without effect 
from checkpoint inhibition therapy. However, given the 
consistent results across outcomes and small proportion 
of patients for which this may be the case, the impact on 
eventual results is likely limited.

In conclusion, radiomics are predictive of checkpoint 
inhibition treatment outcomes in patients with advanced 
melanoma, but did not improve predictive value over a 
simpler clinical model. A radiomics model can predict both 
clinical benefit and response from checkpoint inhibitor 
therapy with moderate discriminative performance. 
However, the predictive value of this radiomics model 
overlaps with that of a clinical model, which is evident 
from the lack of improvement of a combined model. The 
added value of a radiomics approach therefore appears to 
be limited. Future research should focus on related tech
niques, such as deep learning or radiomics on dual energy 
CT images. In addition, an approach that combines 
radiomics and clinical data with other modalities may 
provide a next step towards accurate prediction of check
point inhibitor treatment outcomes in melanoma.
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