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Abstract
Logistic regression is one of themost commonly used approaches to develop clin-
ical risk prediction models. Developers of such models often rely on approaches
that aim to minimize the risk of overfitting and improve predictive performance
of the logistic model, such as through likelihood penalization and variance
decomposition techniques. We present an extensive simulation study that com-
pares the out-of-sample predictive performance of risk predictionmodels derived
using the elastic net, with Lasso and ridge as special cases, and variance decom-
position techniques, namely, incomplete principal component regression and
incomplete partial least squares regression. We varied the expected events per
variable, event fraction, number of candidate predictors, presence of noise pre-
dictors, and the presence of sparse predictors in a full-factorial design. Predictive
performance was compared onmeasures of discrimination, calibration, and pre-
diction error. Simulation metamodels were derived to explain the performance
differences within model derivation approaches. Our results indicate that, on
average, prediction models developed using penalization and variance decom-
position approaches outperform models developed using ordinary maximum
likelihood estimation, with penalization approaches being consistently supe-
rior over the variance decomposition approaches. Differences in performance
were most pronounced on the calibration of the model. Performance differ-
ences regarding prediction error and concordance statistic outcomes were often
small between approaches. The use of likelihood penalization and variance
decomposition techniques methods was illustrated in the context of peripheral
arterial disease.
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1 INTRODUCTION

Binary logistic regression modeling remains one of the most common approaches for the development of clinical risk
prediction models (Bouwmeester et al., 2012; Moons et al., 2015; Wynants et al., 2020). These prediction models are fre-
quently used in clinical practice to estimate probabilities (risks) regarding current presence or future occurrence of health
conditions in individual patients and, thereby, play an important role in modern medicine. Healthcare professionals as
well as patients rely on such risk information to gain insight and make informed treatment decisions.
It is well known that standardmaximum-likelihood-based logistic regression,which guarantees an asymptotically unbi-

ased estimation and by definition provides a model with the highest likelihood in the data at hand, is often not optimal
for making future predictions, especially when derivation data are small, the predictors are large in number, sparse, noisy,
or highly correlated (Van Smeden et al., 2019). In clinical prediction modeling contexts, sample sizes are often relatively
small and typically low dimensional (𝑛 >> 𝑝), often come with a relatively low number of events relative to the number
of predictors considered for inclusion in the model (events per variable, EPV) (Bouwmeester et al., 2012). In such set-
tings, overfitting of themaximum-likelihood-based predictionmodels is to be expected and data reduction approaches are
applied to reduce overfitting of the maximum-likelihood-based prediction models and improve out-of-sample predictive
performance (Harrell, 2015).
Data reduction can, for example, be achieved by regression shrinkage. Of special interest are penalized likelihoodmeth-

ods that incorporate the regression shrinkage within the estimation, such as through the elastic net (Zou & Hastie, 2005).
An alternative approach for data reduction is to use variance decomposition methods (Harrell et al., 1984). These work
by restructuring the data and deriving the model on a subset of variance components while ignoring components that
account for the least amount of predictor variance. Although shrinkage approaches are gaining popularity for the devel-
opment of clinical risk predictionmodels (Collins et al., 2015; Pavlou et al., 2016; Puhr et al., 2017; Van Smeden et al., 2019),
data reduction via variance decomposition has so far been more widely applied in high-dimensional prediction contexts
(𝑝 > 𝑛) (Harrell, 2015; Hastie et al., 2009).
Studies of the utility of variance decomposition approaches for the derivation of clinical risk prediction models in low-

dimensional contexts as well as a comparison to alternatives in the form of shrinkage-based approaches are currently
lacking. The present study attempts to fill this gap by simulation-based comparisons of risk prediction models based on
binary logistic regression and incorporating either shrinkage or variance decomposition in their derivation. To compare
the predictive performance under certain properties of the derivation data, we systematically varied the expected EPV,
number of candidate predictors, event fraction, sparsity of predictors, and the presence of noise predictors using a full-
factorial simulation design. Shrinkage was based on elastic net regression with its special cases: least absolute shrinkage
and selection operator regression (LASSO) (Tibshirani, 1996) and ridge regression (Hoerl &Kennard, 1970; Le Cessie & van
Houwelingen, 1992). Incomplete principal component regression and incomplete partial least squares regression (Frank&
Friedman, 1993) were the variance-decomposition-based methods we studied. Variations in predictive performance were
modeled using simulation metamodels.
The present study is conducted as a neutral comparison study (Boulesteix et al., 2018); that is, it aims at providing

evidence-based guidance for the choice of data analytical approaches by comparing statistical methods in a neutral way.
None of the authors have developed any of the methods under investigation nor do they have any other vested interest
depending on the performance of any given method. To fulfill this aim, the methods section elaborates on justification
regarding the choices of simulation scenarios as well as the reasoning that informed analysis/comparison choices of
model performance. In an attempt to minimize selective reporting, the results section and Supporting Information con-
tain an extensive number of tables and figures. Furthermore, the availability of the simulation code allows the interested
reader to more closely inspect model performance for specific constellations of simulation factors and models. The dis-
cussion session draws extra attention to limitations of the present study that have to be kept in mind when weighting the
evidence.
This article is structured as follows. In Section 2, we present a short introduction to the above-mentioned shrinkage-

basedmethods and variance-decomposition-based approaches for data reduction. Section 3 describes the simulation setup
and data-generating mechanism as well as details regarding modeling implementation and the derivation of metamodels
with results presented in Section 4. In Section 5, we provide an illustration of the different approaches by emulating
the derivation of a risk prediction model for peripheral arterial disease from the literature (Zhang et al., 2016). Section 6
discusses the findings.
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2 MODELS AND ESTIMATION

We assume a logistic regression model for estimating the risk of an event in individual 𝑖 (𝑖 = 1, … ,𝑁), denoted by
𝑦𝑖 = 1 in case of an event and 𝑦𝑖 = 0 in case of a nonevent. The logistic regression model is parameterized via regres-
sion coefficients vector 𝜷 = 𝛽1,⋯, 𝛽𝑝 and intercept (a scalar) 𝛽0 such that the risk of an event can be expressed as
Pr(𝑦𝑖 = 1|𝛽0, 𝜷, X⋆𝑖 ) = 𝜋𝑖 = 1∕(1 + exp{−𝛽0 + 𝜷X⋆

𝑖
}), where 𝐗𝑖 denotes the vector of predictor values for individual 𝑖 and

𝐗∈ ℝ𝑁×𝑝 thematrix representing all𝑁 observations.With𝐗⋆
𝑖
, we denote a subset comprising𝑝⋆ ≤ 𝑝 of the observed pre-

dictors or a transformation of the same, for example, the 𝑝⋆ first principle components. Regressors are generally assumed
to be centered. Default maximum-likelihood-based logistic regression proceeds bymaximizing the log-likelihood function

𝓁(𝜷) =

𝑁∑
𝑖=1

𝑦𝑖 log 𝜋𝑖 + (1 − 𝑦𝑖) log(1 − 𝜋𝑖).

The following section describes two classes of data-reduction approaches applicable in the derivation of binary-logistic-
regression-based clinical risk prediction models. (We use log throughout the article to refer to the natural logarithm.)

2.1 Likelihood penalization

Likelihood penalization techniques are gaining popularity for the derivation of binary-logistic-based risk prediction mod-
els to improve out-of-sample predictive performance (Pavlou et al., 2016). The elastic net is one of such approaches to
likelihood penalization, which proceeds by maximizing

𝓁𝜆1,𝜆2(𝜷) = 𝓁(𝜷) − 𝜆2‖𝜷‖22 − 𝜆1‖𝜷‖1 = 𝓁(𝜷) − 𝛼‖𝜷‖22 − (1 − 𝛼)‖𝜷‖22,
with 𝛼 = 𝜆2∕(𝜆2 + 𝜆1) (Zou & Hastie, 2005). The optimal value for the tuning parameters 𝜆2 and 𝜆1 can be approximated
using K-fold cross-validation (CV) optimized for a particular predictive performance criterion. In this article, we apply
10-fold CV using deviance as the performance criterion, that is, finding values for the tuning parameters that minimize
the deviance at CV.
The popular ridge regression model, also known as L2 regularization, can be seen as a special case of the elastic

net (Hoerl & Kennard, 1970; Le Cessie & Van Houwelingen, 1992) where 𝛼 = 0. The penalized log-likelihood function
simplifies to

𝓁𝜆2(𝜷) = 𝓁(𝜷) − 𝜆2‖𝜷‖22.
The LASSOmodel (Tibshirani, 1996), also known as L1 regularization, is a special case of the elastic net where 𝛼 = 1. The
penalized log-likelihood function is

𝓁𝜆1(𝜷) = 𝓁(𝜷) − 𝜆1‖𝜷‖1.
Ridge, LASSO, and elastic net maximize a penalized likelihood which constrains the size of the sum of the absolute

values of the coefficients (LASSO), the sum of squared values (ridge), or a combination (elastic net). Since LASSO and
elastic net can shrink coefficients to obtain a value of zero thereby perform variable selection, unlike the squared values
penalty of ridge regression which does not lead to shrunken coefficients being absolutely zero.
Besides the standard LASSO, we also consider the relaxed LASSO (Meinshausen, 2007), in which the LASSO is applied

once to obtain candidate predictor subsets and a second time to obtain optimal cross-validated solutions on all candidate
subsets,

max
(𝛽0,𝜷)∈ℝ

𝜆+1
𝓁𝜆,𝜙(𝜷) = 𝓁(𝜷) − 𝜙𝜆‖𝜷‖1 with𝜆 = {1 ≤ 𝑘 ≤ 𝑝⋆|𝛽𝜆1

𝑘
≠ 0}.

In terms of predictor selection for predictionmodeling, the relaxed-LASSOhas shown to be promising in high-dimensional
settings (Hastie et al., 2017) and is worth investigating further.

 15214036, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200108 by U
niversity O

f L
eiden, W

iley O
nline L

ibrary on [05/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 17 LOHMANN et al.

TABLE 1 Overview of simulation factors (7 × 5 × 5 × 3 × 2 = 1050 scenarios).

Simulation factor Factor levels Implementation details
Expected events per variable 3, 5, 10, 15, 20, 50, 100
Expected event fraction 1/32, 1/16, 1/8, 1/4, 1/2
Number of candidate predictors 4, 8, 16, 32, 64
Fraction of noise predictors 0, 1/4, 1/2 Regression coefficient set to zero
Presence of sparse predictors Yes, No 1/4 of predictors sparse
Pairwise predictor correlations Sampled Sampled from Beta (1, 3) distribution
Predictor effects Sampled Sampled from N(0,1) divided by the

standard deviation of resulting linear predictor

2.2 Variance decomposition

Variance decomposition approaches extract uncorrelated components that are linear combinations of the 𝑝 (if only the
predictor data are used) or 𝑝 + 1 (if also the outcome is used) columns of the dataset. Each component maximizes the
(remaining) amount of variance in the predictor and/or outcome data. Applications in prediction modeling often rely on
incomplete component analyses,where a subset ofmost variance explaining components is chosen (dimension reduction).
The selected 𝑝⋆ components are then used as predictor variables in a penalized or unpenalized logistic regression model.
Principal component analysis (PCA) restructures only the predictor data. The 𝑘th principal component 𝐭𝑘 is given by

𝐭𝑘 = 𝐗𝐰𝑘 with 𝑘 = 1,… , 𝑝,

where𝐰𝑘 is the 𝑘-th eigenvector of 𝐗𝑇𝐗.
Partial least squares (PLS) maximize the explained variance in the predictor space and the relationship to the outcome.

Unlike PCA, PLS can be viewed as a supervised variance decomposition approach (Frank & Friedman, 1993). The (ℎ +
1)-th partial least squares component is given by

𝐭ℎ+1 =
1

𝑝∑
𝑗=1

𝑎2
ℎ+1,𝑗

𝑝∑
𝑗=1

𝐚ℎ+1,𝑗�̃�ℎ𝑗 with ℎ = 1,… , 𝑝 − 1,

where �̃�ℎ𝑗 denotes the residuals obtained by ordinary least squares (OLS) linear regression of 𝐗𝑗 on the previously found
ℎ components. 𝑎ℎ+1,𝑗 represents the regression coefficients of �̃�ℎ𝑗 in the binary logistic regression of 𝐲 on 𝐭1 … , 𝐭ℎ and �̃�ℎ𝑗
(Meyer et al., 2010).
There are various approaches to select 𝑝⋆ components for incomplete PCA and incomplete PLS, such as by the 90%

explained variance rule (Cook, 2007). PCA and PLS can both be performedwith the intention of dimensionality reduction,
they both do not contribute directly to amore sparse solution in terms of a reduced number of predictors in the finalmodel.

3 METHODS

This simulation study was set up to evaluate and compare penalization, variance decomposition, and combinations of
them in the context of developing clinical prediction models. Our primary interest was in the relative performance of
different modeling strategies, and how they varied with characteristics of the data. The data generation is described in
Section 3.1, and the modeling strategies are detailed in Section 3.2. Predictive performance measures are described in
Section 3.3 and simulation metamodels in Section 3.3.2. Detection and handling of estimation errors are discussed in
Section 3.4.

3.1 Data simulation design

We conducted a full-factorial simulation study examining five design factors (Table 1). These five factors were the expected
EPV, ranging from 3 to 100, expected events fraction (Pr(𝑦 = 1)), ranging from 3% to 50%, number of candidate predictors
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(𝑝), ranging from 4 to 64, and the fraction of noise predictors from 0% to 50%. In total 𝑛𝑠𝑖𝑚 = 1050 unique constella-
tions of simulation factors were investigated. Each of these scenarios was implemented 𝑛𝑖𝑡𝑒𝑟 = 20 times with a unique
seed obtained by a hash function combining scenario ID and iteration ID. One iteration of a single scenario included the
following steps:

1. Generation of one dataset for derivation and one independently generated validation dataset of size 𝑛𝑣𝑎𝑙 = 20 × 𝑝 ×
1

𝑒𝑣𝑒𝑛𝑡 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛
(Table 1). The derivation and validation data were generated under the same data-generating mechanism,

described in more detail in Section A of the Supporting Information.
2. Various risk prediction models were developed using likelihood penalization, variance decomposition, and com-

binations, as outlined in Section 3.2. Model development was carried out on the derivation set generated in step
(1).

3. Application of the prediction models derived in step (2) on the validation data generated in step (1). The out-of-sample
performance of each model was obtained with the predictive performance measures detailed in Section 3.3.

Predictor data were simulated by sampling from a multivariate standard normal distribution with a given variance-
covariance matrix, 𝚺 = var(𝐗). For each simulation iteration, the pairwise predictor correlations 𝜎𝑖,𝑗 were sampled from
a 𝐵𝑒𝑡𝑎(1, 3) distribution. Regression coefficients for the data-generating model were sampled from a standard normal dis-
tribution for each simulation iteration andwere scaled by the variance of the linear predictor to ensure realistic area under
curve (AUC) (ranging from0.303 to 0.982). The intercept was numerically approximated to correspond to the desired event
fraction. Outcome data were simulated by draws from a Bernoulli distribution with success probability corresponding to
the linear predictor imposing a logit link.

3.2 Prediction models

We studied several of the risk prediction modeling strategies, described in Section 2, also applied in combination. As a
reference, binary logistic regression based on maximum likelihood estimation (MLE) was also implemented using the
glm() function in R.
Elastic net regression was implemented using the cv.glmnet() R-function from the glmnet R-package (version 2.0-

16) (Simon et al., 2011). The hyperparameter 𝛼 was chosen by 10-fold CV from the following set 𝛼 ∈ {0, 0.125, 0.25, 0.5,
0.625, 0.75, 0.875, 1}. The tuning parameter 𝜆 was obtained by minimizing the deviance in 10-fold CV with a grid of 100
possible 𝜆 values ranging from the smallest value necessary to shrink all coefficients to zero down to 10−3 (see Supporting
Information B for exceptions).
Ridge and LASSO models were obtained as the corresponding 𝛼 = 0 and 𝛼 = 1 elastic net solutions, respectively.

Relaxed LASSO models were derived by obtaining predictor subsets (supports) across all 𝛼’s from the original LASSO
solution. Ordinary LASSO regression models were then fit on each of these subsets individually by application of the
cv.glmnet() R-function. All cv.glmnet()-based models were estimated with a random foldid parameter to ensure
identical folds across approaches based on the same data.
PCAwas implemented with the pcrcomp() R-function. Incomplete principal component regression was carried out by

using principal component (sub)sets as predictors in MLE, ridge, and LASSO logistic regression models. Four commonly
applied subsets selection procedures were incorporated: (1) all principal components corresponding to eigenvalues above
one, (2) the principal components necessary to explain at least 90% of predictor variance, (3) the principal components
corresponding to the lowest akaike information criterion (AIC) in the MLE model, and (4) the principal components
corresponding to minimal deviance obtained by 10-fold CV.
PLS was implemented with the plsRglm() function from the plsRglm package (version 1.2.5) (Meyer et al., 2010),

and the cv.glmnet() function was applied on the component scores. Further models were fit using a lower number
of components obtained by the (sparseStop=TRUE) (Bastien et al., 2005) option, which retains additional components,
if given the first components the remaining explanatory variables of the outcome among the original predictors reach
statistical significance (alpha = 0.05). Due to practical computational time limitations and incidental extreme run-times,
the number of PLS components was limited to a maximum of 30. The subsetted PLS component scores were used as
predictors in MLE, ridge, and LASSO logistic regression models.
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TABLE 2 Overview of performance measures.

Performance measure Definition
Discrimination
Concordance (c-statistic) Area under the ROC curve for 𝑦𝑖

Calibration
Re-calibration model log(

𝑝𝑖

1−𝑝𝑖
) = 𝑎 + 𝑏 log(

𝑦𝑖

1−𝑦𝑖
), with 𝑝𝑖 = 𝑃𝑟(𝑦𝑖 = 1|𝑋𝑖)

Calibration slope 𝑏 in recalibration model
Calibration in the large 𝑎 in a recalibration model with 𝑏 = 1

Prediction error

Brier score 1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

Root mean squared prediction error

√
1

𝑁

𝑁∑
𝑖=1

(𝜋𝑖 − 𝑦𝑖)2

Mean absolute prediction error 1

𝑁

𝑁∑
𝑖=1

|𝜋𝑖 − 𝑦𝑖|
Note: 𝑁, sample size; 𝑦𝑖 , observed outcome in validation data; 𝑦𝑖 , predicted event probability; 𝜋𝑖 , true probability based on data-generating model.

3.3 Predictive performance metrics

Predictive performance was evaluated with respect to discrimination, calibration, and total prediction error (Steyerberg
et al., 2010) in the independently generated validation datasets. Table 2 provides a detailed overview of all performance
measures assessed in the present study as well as their computation.
Discrimination was evaluated using the concordance statistic (c-statistic) which, for binary logistic regressionmodels, is

equivalent to the area under the ROC curve (Steyerberg et al., 2010). This rank order statistic can range from0.5 (indicating
no discrimination) to 1 (indicating perfect discrimination).
Calibration was assessed by the calibration slope and calibration in the large (CIL) (Miller et al., 1993; Steyerberg et al.,

2010). Perfect (weak) calibration corresponds to a calibration slope of one, with the predicted risk matching the observed
frequency and CIL of zero (van Calster et al., 2019). Calibration slopes < 1 indicate predictions that are too extreme, indi-
cating overfitting; calibration slopes of > 1 indicate underfitting. The CIL > 0 indicates systematically too low predicted
risk; CIL < 0 indicates systematically too high predicted risks (Steyerberg et al., 2010).
Prediction error was evaluated using the Brier score (also average prediction error (Steyerberg et al., 2004)), the rootmean

squared prediction error (rMSPE), and the mean absolute prediction error (MAPE). The rMSPE and MAPE pertain to the
distance of predicted and true probabilities and can thus only be applied when the true probabilities are known (as in
simulation studies). Perfect models have prediction errors of zero.

3.3.1 Ranking

The predictive performance of methods was ranked per simulation iteration. Hence performance of modeling approaches
was compared based on identical derivation as well as validation data. The performance was rounded to three decimals
for the c-statistic and Brier score and two decimals for calibration slope. In the case of the calibration slope, slopes closer
to one received a higher ranking. Ties received the minimum of shared ranks, while not affecting the other ranks.

3.3.2 Derivation of metamodels

Variations in predictive performance across simulation parameters were modeled via simulation metamodels (Harwell
et al., 1992; Kleijnen & Sargent, 2000), which quantify the impact of features of the derivation dataset on a given predictive
performance measure per model derivation approach. A second set of metamodels was fit containing parameters that are
easily conceivable in practical applications.Wewill refer to the former set ofmetamodels as full and the latter as simplified.
Metamodels were developed for the following performance indicators. Discrimination was evaluated in terms of loss

in c-statistic (Δ𝐴𝑈𝐶 of the c-statistic obtained from the development dataset and the c-statistic from the validation set).
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For the calibration, we modeled the absolute value of 1 minus the calibration slope. Higher values indicated a calibration
slope further away from the ideal of one. Due to the lack of variance in CIL, this indicator of predictive performance was
not modeled. For the prediction error outcomes, metamodels were developed for log-transformed Brier score, rMSPE,
and MAPE.
All metamodels were developed on the simulation outcome data (each row is a simulation run) using OLS-based ridge

regression with the performance indicators as outcomes and the following covariates for the full metamodels: 𝑝 (natu-
ral log transformed), EPV (natural log transformed), estimated c-statistic in the derivation dataset, event fraction in the
derivation dataset, percentage of noise predictors (ordinal with three levels), presence of sparse binary predictors (dummy
coded), upper quartile of empirical bivariate absolute correlation in derivation dataset, square root of median variance
inflation factor of candidate predictors, upper quartile of absolute predictor effects.

3.4 Computation and error handling

Simulations were carried out on high-performance clusters. Details regarding the computational framework can be
obtained from Supporting Information Section A. Overall, the simulation ran the equivalent of approximately 2400 CPU
core hours and was computed on up to 200 servers in parallel in the AWS compute cloud. The statistical software R (ver-
sion 3.5.3) (R Core Team, 2019) was used for data simulation, prediction model derivation, and all consecutive analyses.
Data generation and prediction model derivation was carried out in docker containers based on identical images, ensur-
ing identical software setup between simulation iterations. Estimation errors were closely monitored (see Table D.3 in the
Supporting Information for descriptive statistics).
We followed the recommendations of Morris et al. (2019) to mimic real-life strategies in light of modeling difficulties

by using substitutions when a certain method was not estimable. If component selection resulted in less than two com-
ponents, no consecutive glmnet-based analysis could be performed as glmnet requires a minimum of two predictors. In
such a case, the result was replaced by the corresponding MLE result. When LASSO regression resulted in a model with-
out any predictors, the result was substituted with the MLE logistic regression solution. Extreme calibration slopes were
winsorized at 10 and 0.01. For derivation of metamodels, these values were treated as missing.
The complete simulation and analysis code can be found on the Open Science Framework (OSF) https://osf.io/gcjn6/.

Additional measures taken to ensure reproducibility can be found in Supporting Information A.

3.5 Justification of design decisions to promote neutral comparison

Simulation parameters were derived from the literature. In order to not givemethods an advantage that frequently “break”
under less favorable simulation scenarios, we provide detailed error descriptives. These runswere furthermore substituted
with the unpenalizedmaximum likelihood result whichwe consider the fallback option formostmethods in practice. The
ranking of methods was performed after rounding to three decimals. Hereby, we tried to emulate a realistic assessment of
equally good performance As some models can in rare cases result in extreme calibration slopes thereby highly distorting
average performance we winsorized calibration slopes at 10 and 0.01. To provide a more complete picture of the between
model comparison in terms of ranking, we complemented the average rank of eachmethod with the full ranking distribu-
tion, thereby allowing to potentially uncover whether some methods might show a U-shaped performance. In the same
vein, we provide an insight into performance variability using boxplots.

4 RESULTS

Figure 1 summarizes the average predictive performance of the likelihood penalization and variance decomposition risk
prediction modeling approaches. It is shown that on average, with the exception of cross-validated PCA, all modeling
approaches outperformed the default MLE on the c-statistic, calibration slope, rMSPE, andMAPE. In addition to superior
average performance, the c-statistic and calibration slope of most MLE alternatives varied less over simulation iterations
as indicated by the boxplot whiskers in Figure 1.
Figure 2 displays the average performance ranking regarding c-statistic, Brier score, and calibration slope. The

likelihood-penalization-basedmethods persistently occupy top ranks compared to the variance decomposition approaches
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8 of 17 LOHMANN et al.

F IGURE 1 Boxplots of performance measures per modeling approach. Diamonds indicate mean performance. Whiskers extend to the
third quartile plus 1.5 × 𝐼𝑄𝑅 as well as the first quartile minus 1.5 × 𝐼𝑄𝑅. *The panel displays the distance to an optimal c-statistic with a
value of 1. MLE, binary logistic regression with maximum likelihood estimation; LASSO, least absolute shrinkage and selection operator;
PCAAIC, incomplete principal component regression with components that correspond to minimal AIC; PLSstop, incomplete partial least
squares regression with stopping criterion; PLSLASSO, LASSO regression on PLS components; PCACV, incomplete principal component
regression with components that correspond to minimal CV error; MAPE, mean absolute prediction error.

and penalization–decomposition combinations regarding the validated c-statistic and Brier score. Patterns are less clear
regarding calibration slope. With the elastic net and LASSO also occupying the top tiers regarding calibration slope, some
variance decomposition approaches and penalization–decomposition combinations obtain a high ranking despite their
low rankings on the other performance measures. Additionally, the low ranking of ridge regression is noteworthy. Differ-
ences between methods regarding Brier score and rMSPE and MAPE were generally small, leading to a large number of
shared ranks.
Below we discuss the simulation results for discrimination, calibration, and prediction error separately.

4.1 Discrimination

Figures 1 and 3 and Table 3 show the loss in the area under the curve expressed as the difference of the c-statistic obtained
in the validation dataset and the c-statistic of the data-generating model.
For all methods, the loss in the c-statistic was greater when EPV and the true AUC were lower and the event fraction

was closer to 0.5 (Table 3).
The presence of sparse predictors, negatively affected the discrimination of all modeling approaches whereby the effect

on MLE was the most pronounced, and discrimination of penalization approaches was affected the least. Up to 15 EPV,
penalization as well as PLS-based modeling approaches clearly exhibited a lower loss in the c-statistic compared to MLE
both in terms of average performance as well as in a lower interquartile range (IQR).
While the regression penalization approaches systematically outranked the variance decomposition approaches (see

Figure 2), the differences in average discriminative performance were generally small (see Figure 3), with the exception
of the poorer performing cross-validated PCA. This observation is further supported by the results of the metamodels for
loss in c-statistics compared to the data-generating model (Table 3), with similar results across penalization and variance
decomposition approaches.
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LOHMANN et al. 9 of 17

F IGURE 2 Average ranking of modeling approaches. Ranking of calibration slope based on the absolute distance to one. Ranking was
performed on performance rounded to two decimals. Sport ranking was applied with equal performances receiving a minimum of shared
rank. Numbers in circles refer to average ranking. MLE, binary logistic regression with maximum likelihood estimation; LASSO, least
absolute shrinkage and selection operator; PCAAIC, incomplete principal component regression with components that correspond to minimal
AIC; PLSstop, incomplete partial least squares regression with stopping criterion; PLSLASSO, LASSO regression on PLS components; PCACV,
incomplete principal component regression with components that correspond to minimal CV error.

4.2 Calibration

Calibration in the large did not differ noticeably between penalization and variance decomposition approaches. All
methods produced models with near-perfect CIL with small variation of similar magnitude across modeling approaches
(Figure 1).
Conversely, the calibration slope varied strongly between differentmodeling approaches. On average,most penalization

and variance decomposition approaches outperformed the MLE. The impact of individual simulation parameters is illus-
trated in Figure 4. As expected, EPVnoticeably influenced calibration slopes acrossmodeling approaches, with calibration
slopes coming closer to the ideal value with increasing EPV. As shown in Figure 4, the variance-decomposition-based
approaches exhibited a tendency to produce calibration slopes under 1, consistent with model overfitting and in the same
direction as MLE, while penalization-based approaches as well as the hybrid 𝑃𝐿𝑆𝐿𝐴𝑆𝑆𝑂 are better calibrated with a slight
tendency to produce calibration slopes above 1, consistent with model underfitting. The calibration slopes across models
were largely unaffected by the presence of noise predictors or sparse predictors.
Figure 5 further shows the variation of the calibration slope from the ideal value (value of 1), following the work in Van

Calster et al. (2020) expressed in the root mean squared difference (RMSD) in the logarithm of the calibration slope. The
general trend of improved performance is comparable across approaches with differences between modeling approaches
largely disappeared at EPV above 25, with the exception of the consistently poorer performing cross-validated PCA.
Compared to the other performance measures, within-model variation regarding calibration slope cannot be well

explained by the covariates of the metamodels, as evidenced by low 𝑅2 values (Table 4). Especially among variance
decomposition approaches, explained variance was low indicating limited influence of the data characteristics under
investigation beyond EPV in this study.
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10 of 17 LOHMANN et al.

TABLE 3 Metamodel for c-statistic, modeled outcome: log(Δ𝐴𝑈𝐶) = log(|𝑐𝑑𝑔𝑚 − 𝑐𝑣𝑎𝑙|).
Model Method interc 𝐥𝐨𝐠(𝑬𝑷𝑽) 𝐥𝐨𝐠(𝒆𝒗𝒆𝒏𝒕𝒇𝒓𝒂𝒄) 𝐥𝐨𝐠(𝒑) 𝐥𝐨𝐠(𝑨𝑼𝑪) Sparse Noise 𝑽𝑰𝑭

𝒑(𝒑−𝟏)∕𝟐
ES 𝑹𝟐 𝒏

Full MLE −14.121 −1.154 0.555 −0.216 25.652 0.766 −0.012 6.60e-06 −0.576 0.429 19727
Simplified MLE −13.396 −1.140 0.546 0.031 24.682 0.735 0.036 2.85e-06 − 0.418 19727
Full enet −13.035 −0.918 0.440 −0.303 23.410 0.776 −0.017 −1.67e-05 −0.214 0.339 19727
Simplified enet −11.882 −0.864 0.406 −0.193 21.658 0.697 0.000 −1.72e-05 − 0.334 19727
Full ridge −13.474 −0.894 0.432 −0.338 23.789 0.803 0.030 −1.60e-05 −0.28 0.347 19727
Simplified ridge −12.495 −0.856 0.407 −0.205 22.347 0.740 0.051 −1.72e-05 − 0.341 19727
Full LASSO −13.836 −0.990 0.483 −0.334 24.949 0.802 −0.096 1.99e-06 −0.291 0.366 19348
Simplified LASSO −12.543 −0.934 0.444 −0.189 22.995 0.716 −0.067 −1.35e-07 − 0.361 19348
Full PCAAIC −10.540 −1.123 0.494 −0.343 21.350 0.846 0.004 −9.86e-06 −0.23 0.364 19727
Simplified PCAAIC −9.853 −1.086 0.473 −0.236 20.304 0.798 0.021 −1.12e-05 − 0.358 19727
Full PLSstop −13.485 −0.924 0.434 −0.259 24.282 0.782 −0.003 −1.71e-05 −0.15 0.364 19727
Simplified PLSstop −13.357 −0.925 0.434 −0.197 24.135 0.779 0.009 −1.81e-05 − 0.360 19727
Full PLSLASSO −14.750 −0.966 0.464 −0.310 25.809 0.782 −0.010 −3.80e-06 −0.389 0.384 19596
Simplified PLSLASSO −14.181 −0.956 0.457 −0.140 25.036 0.757 0.023 −6.28e-06 − 0.376 19596
Full PCACV −4.754 −1.529 0.692 −0.945 21.453 0.765 0.037 −6.19e-05 0.778 0.335 29024
Simplified PCACV −5.934 −1.599 0.734 −1.328 23.421 0.836 −0.025 −6.19e-05 − 0.336 29024

Abbreviations: Full, includes all predictors; Simplified, does not contain ES (upper quartile of absolute predictor effect); interc, intercept; EPV, events per variable;
event frac, empirical event fraction; 𝑝, number of candidate predictors; AUC, empirical area under the ROC curve; sparse, sparse predictors present (yes/no);
VIF, variance inflation factor; ES, upper quartile of predictor effects; 𝑅2 cross-validated 𝑅2; n = number of complete cases that were used for the derivation of the
metamodel; MLE, binary logistic regression with maximum likelihood estimation; LASSO, least absolute shrinkage and selection operator; 𝑃𝐶𝐴𝐴𝐼𝐶 , incomplete
principal component regression with components that correspond to minimal AIC; 𝑃𝐿𝑆𝑠𝑡𝑜𝑝 , incomplete partial least squares regression with stopping criterion;
𝑃𝐿𝑆𝐿𝐴𝑆𝑆𝑂, LASSO regression on PLS components; 𝑃𝐶𝐴𝐶𝑉 , incomplete principal component regression with components that correspond to minimal CV error.

TABLE 4 Metamodel for calibration slope, modeled outcome: |1 − 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑙𝑜𝑝𝑒|).
Model Method interc 𝐥𝐨𝐠(𝑬𝑷𝑽) 𝐥𝐨𝐠(𝒆𝒗𝒆𝒏𝒕𝒇𝒓𝒂𝒄) 𝐥𝐨𝐠(𝒑) 𝐥𝐨𝐠(𝑨𝑼𝑪) Sparse Noise 𝑽𝑰𝑭

𝒑(𝒑−𝟏)∕𝟐
ES 𝑹𝟐 𝒏

Full MLE 0.729 −0.104 0.040 −0.015 −0.246 0.034 0.001 −1.83e-07 0.008 0.536 19727
Simplified MLE 0.725 −0.102 0.039 −0.016 −0.242 0.033 0.001 −1.58e-07 − 0.536 19727
Full enet 1.311 −0.000 0.000 −0.000 −0.000 0.000 −0.000 −9.53e-41 0 0.041 19646
Simplified enet 1.311 −0.000 0.000 −0.000 −0.000 0.000 −0.000 −9.53e-41 − 0.040 19646
Full ridge 1.818 −0.000 0.000 −0.000 −0.000 0.000 −0.000 −1.25e-40 0 0.050 19642
Simplified ridge 1.818 −0.000 0.000 −0.000 −0.000 0.000 −0.000 −1.25e-40 − 0.048 19642
Full LASSO 0.144 −0.000 0.000 −0.000 −0.000 0.000 0.000 5.93e-42 0 0.206 19348
Simplified LASSO 0.244 −0.006 0.001 −0.005 −0.096 0.002 0.000 4.74e-07 − 0.206 19348
Full PCAAIC 0.243 −0.000 −0.000 −0.000 −0.000 0.000 −0.000 −6.43e-42 0 0.004 19727
Simplified PCAAIC 0.243 −0.000 −0.000 −0.000 −0.000 0.000 −0.000 −6.43e-42 − 0.003 19727
Full PLSstop 0.521 −0.059 0.020 −0.023 −0.230 0.029 0.000 −1.37e-07 0.061 0.400 19727
Simplified PLSstop 0.555 −0.061 0.020 −0.030 −0.215 0.031 −0.001 3.11e-08 − 0.400 19727
Full PLSLASSO 0.538 −0.023 0.007 −0.017 −0.407 0.003 0.001 1.81e-06 0.066 0.242 19596
Simplified PLSLASSO 0.421 −0.015 0.004 −0.014 −0.267 0.003 0.000 1.40e-06 − 0.240 19596
Full PCACV 0.340 −0.000 0.000 −0.000 −0.000 −0.000 −0.000 −1.86e-41 0 0.002 29024
Simplified PCACV 0.340 −0.000 0.000 −0.000 −0.000 −0.000 −0.000 −1.86e-41 − 0.002 29024

Abbreviations: Full, includes all predictors; Simplified, does not contain ES (upper quartile of absolute predictor effect); interc, intercept; EPV, events per variable;
event frac, empirical event fraction; 𝑝, number of candidate predictors; AUC, empirical area under the ROC curvel sparse, sparse predictors present (yes/no);
VIF, variance inflation factor; ES, upper quartile of predictor effects; 𝑅2, cross validated 𝑅2; n, number of complete cases that were used for the derivation of the
metamodel; MLE, binary logistic regression with maximum likelihood estimation; LASSO, least absolute shrinkage and selection operator; 𝑃𝐶𝐴𝐴𝐼𝐶 , incomplete
principal component regression with components that correspond to minimal AIC; 𝑃𝐿𝑆𝑠𝑡𝑜𝑝 , incomplete partial least squares regression with stopping criterion;
𝑃𝐿𝑆𝐿𝐴𝑆𝑆𝑂, LASSO regression on PLS components; 𝑃𝐶𝐴𝐶𝑉 , incomplete principal component regression with components that correspond to minimal CV error.
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LOHMANN et al. 11 of 17

F IGURE 3 Boxplots of distance to optimal c-statistic of 1 per modeling approach and simulation factor. (Top: expected EPV. Bottom:
number of candidate predictors.) Diamonds indicate mean performance. Whiskers extend to the third quartile plus 1.5 × 𝐼𝑄𝑅 as well as the
first quartile minus 1.5 × 𝐼𝑄𝑅. Outliers are omitted due to their large number. MLE, binary logistic regression with maximum likelihood
estimation; LASSO, least absolute shrinkage and selection operator; PCAAIC, incomplete principal component regression with components
that correspond to minimal AIC; PLSstop, incomplete partial least squares regression with stopping criterion; PLSLASSO, LASSO regression on
PLS components; PCACV, incomplete principal component regression with components that correspond to minimal CV error.

4.3 Prediction error

The Brier score did not differ noticeably between penalization and variance decomposition approaches (Figure 1). Vari-
ation in the Brier score could be well explained by metamodels across modeling approaches (Table 5), showing similar
results across penalization and variance decomposition approaches.
Small but noticeable differences are found in the rMSPE and MAPE outcomes, in a similar pattern to that found for

the c-statistic (Figure 1). While differences are small, on average, the regression penalization approaches systematically
perform better than the variance decomposition approaches (see Table 6).

4.4 Additional results: Combinations between penalization and decomposition
approaches

Supplementary Figure D.4 displays additional results where penalization–decomposition is combined.
(See Supporting Information Section D for the full distribution of ranking for each method and performance measure.)

5 APPLICATION TO THE PREDICTION OF PERIPHERAL ARTERIAL DISEASE

To illustrate the likelihood penalization and variance decomposition methods in a real example, we imitated a study by
Zhang et al. (2016) who derived a risk predictionmodel for peripheral arterial disease using data from the National Health
and Nutrition Examination Survey (NHANES). The identified candidate predictors consisted of a mixture of demogra-
phy, lifestyle, co-morbidity, and physiology. The predictors were low-to-moderately correlated with bivariate correlations

 15214036, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200108 by U
niversity O

f L
eiden, W

iley O
nline L

ibrary on [05/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 17 LOHMANN et al.

TABLE 5 Metamodel for the Brier score, modeled outcome: log(𝑏𝑟𝑖𝑒𝑟)).

Model Method interc 𝐥𝐨𝐠(𝑬𝑷𝑽) 𝐥𝐨𝐠(𝒆𝒗𝒆𝒏𝒕𝒇𝒓𝒂𝒄) 𝐥𝐨𝐠(𝒑) 𝐥𝐨𝐠(𝑨𝑼𝑪) Sparse Noise 𝑽𝑰𝑭

𝒑(𝒑−𝟏)∕𝟐
ES 𝑹𝟐 𝒏

Full MLE −0.479 −0.026 0.673 −0.005 −0.601 −0.003 −0.001 5.72e-07 −0.012 0.961 19727
Simplified MLE −0.469 −0.026 0.673 0.000 −0.614 −0.004 −0.000 5.12e-07 − 0.961 19727
Full enet −0.470 −0.016 0.663 −0.006 −0.683 −0.005 −0.001 2.97e-07 −0.007 0.960 19727
Simplified enet −0.464 −0.016 0.663 −0.002 −0.690 −0.005 −0.001 2.62e-07 − 0.960 19727
Full ridge −0.469 −0.016 0.663 −0.006 −0.684 −0.005 −0.001 2.11e-07 −0.007 0.960 19727
Simplified ridge −0.463 −0.016 0.663 −0.003 −0.692 −0.005 −0.000 1.73e-07 − 0.960 19727
Full LASSO −0.499 −0.015 0.664 −0.005 −0.653 −0.004 −0.001 3.01e-07 −0.008 0.961 19348
Simplified LASSO −0.491 −0.015 0.664 −0.001 −0.663 −0.004 −0.001 2.55e-07 − 0.961 19348
Full PCAAIC −0.494 −0.022 0.669 −0.008 −0.601 −0.002 −0.001 4.38e-07 −0.009 0.960 19727
Simplified PCAAIC −0.487 −0.022 0.669 −0.004 −0.611 −0.002 −0.000 3.93e-07 − 0.960 19727
Full PLSstop −0.498 −0.019 0.667 −0.006 −0.619 −0.002 −0.001 1.38e-07 −0.007 0.961 19727
Simplified PLSstop −0.492 −0.019 0.667 −0.003 −0.627 −0.003 −0.000 1.03e-07 − 0.961 19727
Full PLSLASSO −0.510 −0.015 0.664 −0.004 −0.635 −0.004 −0.001 2.00e-07 −0.009 0.961 19596
Simplified PLSLASSO −0.502 −0.015 0.664 −0.000 −0.645 −0.004 −0.000 1.50e-07 − 0.961 19596
Full PCACV −0.481 −0.021 0.671 −0.010 −0.586 −0.004 −0.000 1.60e-07 −0.002 0.960 29024
Simplified PCACV −0.479 −0.021 0.671 −0.009 −0.588 −0.004 −0.000 1.51e-07 − 0.960 29024

Abbreviations: Full, includes all predictors; Simplified, does not contain ES (upper quartile of absolute predictor effect); interc, intercept; EPV, events per variable;
event frac, empirical event fraction; 𝑝, number of candidate predictors; AUC, empirical area under the ROC curve; sparse, sparse predictors present (yes/no);
VIF, variance inflation factor; ES, upper quartile of predictor effects; 𝑅2, cross-validated 𝑅2; n, number of complete cases that were used for the derivation of the
metamodel; MLE, binary logistic regression with maximum likelihood estimation; LASSO, least absolute shrinkage and selection operator; 𝑃𝐶𝐴𝐴𝐼𝐶 , incomplete
principal component regression with components that correspond to minimal AIC; 𝑃𝐿𝑆𝑠𝑡𝑜𝑝 , incomplete partial least squares regression with stopping criterion;
𝑃𝐿𝑆𝐿𝐴𝑆𝑆𝑂, LASSO regression on PLS components; 𝑃𝐶𝐴𝐶𝑉 , incomplete principal component regression with components that correspond to minimal CV error.

TABLE 6 Metamodel for MAPE, modeled outcome: log(𝑀𝐴𝑃𝐸).

Model Method interc 𝐥𝐨𝐠(𝑬𝑷𝑽) 𝐥𝐨𝐠(𝒆𝒗𝒆𝒏𝒕𝒇𝒓𝒂𝒄) 𝐥𝐨𝐠(𝒑) 𝐥𝐨𝐠(𝑨𝑼𝑪) Sparse Noise
√
𝑽𝑰𝑭 ES 𝑹𝟐 𝒏

Full MLE −0.548 −0.481 0.809 −0.003 −0.349 −0.012 −0.002 2.72e-06 −0.009 0.942 19727
Simplified MLE −0.541 −0.481 0.809 0.001 −0.358 −0.012 −0.001 2.68e-06 − 0.942 19727
Full enet 0.266 −0.424 0.779 −0.042 −1.616 −0.011 −0.015 −3.02e-07 0.11 0.928 19727
Simplified enet 0.176 −0.424 0.779 −0.092 −1.494 −0.008 −0.025 2.15e-07 − 0.927 19727
Full ridge 0.028 −0.392 0.771 −0.051 −1.410 −0.000 0.006 −9.18e-07 0.108 0.929 19727
Simplified ridge −0.060 −0.392 0.771 −0.100 −1.291 0.003 −0.004 −4.06e-07 − 0.928 19727
Full LASSO 0.088 −0.424 0.775 −0.038 −1.423 −0.006 −0.024 −3.56e-07 0.096 0.926 19348
Simplified LASSO 0.024 −0.427 0.780 −0.082 −1.305 −0.004 −0.033 1.15e-08 − 0.925 19348
Full PCAAIC −0.445 −0.464 0.799 −0.064 −0.479 0.040 0.000 5.27e-07 0.036 0.933 19727
Simplified PCAAIC −0.474 −0.464 0.799 −0.080 −0.439 0.041 −0.003 6.95e-07 − 0.933 19727
Full PLSstop −0.520 −0.403 0.779 −0.030 −0.598 0.017 −0.004 −2.87e-06 0.091 0.926 19727
Simplified PLSstop −0.594 −0.403 0.779 −0.071 −0.497 0.019 −0.013 −2.44e-06 − 0.925 19727
Full PLSLASSO 0.002 −0.409 0.775 −0.026 −1.334 −0.034 0.001 6.16e-07 0.085 0.933 19596
Simplified PLSLASSO −0.072 −0.409 0.775 −0.065 −1.236 −0.032 −0.007 1.05e-06 − 0.932 19596
Full PCACV −0.231 −0.357 0.770 −0.151 −0.371 0.001 0.010 −5.08e-06 0.147 0.889 29024
Simplified PCACV −0.351 −0.357 0.770 −0.218 −0.209 0.004 −0.003 −4.39e-06 − 0.887 29024

Abbreviations: Full, includes all predictors; Simplified, does not contain ES (upper quartile of absolute predictor effect); interc, intercept; EPV, events per variable;
event frac, empirical event fraction; 𝑝, number of candidate predictors; AUC, empirical area under the ROC curve; sparse, sparse predictors present (yes/no);
VIF, variance inflation factor; ES, upper quartile of predictor effects; 𝑅2, cross-validated 𝑅2; n, number of complete cases that were used for the derivation of the
metamodel; MLE, binary logistic regression with maximum likelihood estimation; LASSO, least absolute shrinkage and selection operator; 𝑃𝐶𝐴𝐴𝐼𝐶 , incomplete
principal component regression with components that correspond to minimal AIC; 𝑃𝐿𝑆𝑠𝑡𝑜𝑝 , incomplete partial least squares regression with stopping criterion;
𝑃𝐿𝑆𝐿𝐴𝑆𝑆𝑂, LASSO regression on PLS components; 𝑃𝐶𝐴𝐶𝑉 , incomplete principal component regression with components that correspond to minimal CV error.
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F IGURE 4 Boxplots of calibration slope per modeling approach and simulation factor (top: expected EPV, bottom: number of candidate
predictors). Diamonds indicate mean performance. Whiskers extend to the third quartile plus 1.5 × 𝐼𝑄𝑅 as well as the first quartile minus
1.5 × 𝐼𝑄𝑅. Outliers are omitted due to their large number. MLE, binary logistic regression with maximum likelihood estimation; LASSO, least
absolute shrinkage and selection operator; PCAAIC, incomplete principal component regression with components that correspond to minimal
AIC; PLSstop, incomplete partial least squares regression with stopping criterion; PLSLASSO, LASSO regression on PLS components; PCACV,
incomplete principal component regression with components that correspond to minimal CV error.

F IGURE 5 Root mean squared distance
(RMSD) of the logarithm of the calibration slope.
EPV, events per variable; MLE, binary logistic
regression with maximum likelihood estimation;
LASSO, least absolute shrinkage and selection
operator; PCAAIC, incomplete principal component
regression with components that correspond to
minimal AIC; PLSstop, incomplete partial least
squares regression with stopping criterion;
PLSLASSO, LASSO regression on PLS components;
PCACV, incomplete principal component regression
with components that correspond to minimal CV
error.

up to 𝑟 = 0.56. The final model reported by Zhang and colleagues included eight of the 12 candidate predictors (race,
age, sex, body mass index, smoking status, total cholesterol (TC), diabetes, hypertension, pulse pressure, TC/high density
lipoprotein (HDL) ratio, HbA1c, and HDL) and reported a c-statistic of 0.82 (95% confidence interval (CI) 0.82, 0.83) in
the derivation set and 0.76 (95% CI 0.72, 0.79) in the independent validation set. The original derivation sample size was
𝑁 = 6059 (NHANES cohorts 1999–2000 and 2001–2002, 491 cases of peripheral arterial disease), the validation sample
size was 𝑁 = 3086 (NHANES cohorts 2003–2004, 322 cases of peripheral arterial disease).
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14 of 17 LOHMANN et al.

In addition to the original derivation dataset, we repeated model derivation with as a smaller set comprising a ran-
dom sample of𝑁 = 600 (50 cases of peripheral arterial disease) from the derivation dataset. With the smaller sample, we
mimic a setting with a lower EPV of 5.6. Derivation of prediction models was carried out in the same way as with the
simulated data.
The general pattern of performance across modeling approaches in this example resembles the result from the sim-

ulations. Penalization methods outperformed variance decomposition approaches as well as MLE regarding c-statistic
and calibration slope in the original-sized sample. The noteworthy exception to this trend is the PLS–LASSO combina-
tion which achieved the highest average ranking in the full sample regarding calibration slope. None of the regression
approaches evaluated in the present study was able to match the original c-statistic from the literature. The MAPE was
slightly above the MLE performance for penalization methods and combined approaches, whereas variance decompo-
sition methods exhibited a slight improvement compared to MLE. Cross-validated PCA exhibited lower average MAPE
as well as lower variability of the same. The other performance outcomes did not vary noticeably across approaches for
the full sample. The highest mean out-of-sample c-statistics for the original sample were obtained by LASSO (0.74, 95%
CI 0.71, 0.76) with most other techniques showing overlapping intervals (Figure C in the Supporting Information). In
line with findings from the simulation study, performance differences were more pronounced in the 10% random sam-
ple (Figure C.2 in the Supporting Information), especially regarding calibration slope. The MLE-derived model exhibited
an average calibration slope of 0.13 (standard error = 0.0086) in 100 bootstrap samples of the validation set, which is a
profoundly worse performance compared to the top-ranking approach (𝑃𝐶𝐴𝐶𝑉) with a mean calibration slope of 0.97
(standard error= 0.0098). Despite the favorable calibration slopes obtained using cross-validated PCA, the method scored
worst or among theworst on all other performancemeasures illustrating the importance and difficulty of evaluatingmodel
performance across various indicators.
More details can be found in Supporting Information C.

6 DISCUSSION

In this study, we considered various likelihood penalization and variance decomposition approaches for the derivation
of clinical risk prediction models. Our simulation study showed that deriving prediction models in low dimensional
settings with penalized likelihood regression, variance decomposition techniques, and combinations of them generally
improves the average predictive performance as compared to regular MLE-based logistic regression, especially in settings
with smaller sample size, and/or a larger number of candidate predictor variables.
Predictive performance differences between modeling strategies were most pronounced for the calibration slope out-

come. This is in line with previous simulation studies that focused on likelihood penalization approaches only (Ambler
et al., 2012; Steyerberg et al., 2001; Van Smeden et al., 2019). In particular, in small sample size settings, we found likelihood
penalization approaches to be more effective than the variance decomposition approaches in producing models with an
average calibration slope close to ideal, that is a value of 1. However, as also shown elsewhere (Van Calster et al., 2020),
the variation in performance in small datasets shows that the out-of-sample predictive performance can be poor despite
approaches that aim to circumvent model overfitting such as likelihood penalization and variance decomposition. This
supports the notion that the development of usable risk predictionmodels requires an appropriate sample size (Ogundimu
et al., 2016; Riley et al., 2019; Van Smeden et al., 2019).
Likelihood penalization approaches often occupied top-ranking positions and were generally more stable in average

performance across various performance indicators. In particular, the elastic net approach showed the highest average
ranking, albeit the performance differences between modeling approaches often being relatively small compared to the
variation between simulation conditions. Variance decomposition methods seemed to benefit most from a combination
with the LASSO especially with regard to the calibration slope whereas ridge regression generally did not yield favor-
able performance of calibration slopes. We further investigated the influence of data characteristics on the predictive
performance using simulation metamodels. Low EPV, the presence of noise predictors, and the sparsity of predictors was
shown to consistently negatively affect out-of-sample performance under all modeling approaches. MLE-based models
were affected most by these properties of the data, with penalization methods showing better performance on average as
well as less variation between the simulation iterations.
In linewith previous findings (Van Smeden et al., 2019), the application of ridge regression tended to produce calibration

slopes above 1 on average, indicating a tendency to produce underfitted predictionmodels. Elastic net, which had not been
the subject of investigation in the risk prediction literature as frequently, exhibited similar properties. The same holds for
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the LASSO albeit to a much lesser degree. For ranking performance, we treated the distance from a perfect calibration
slope (slope of 1) as symmetrical. We acknowledge that in practice this symmetry is usually not a given. The effects of
overfitted risks (too extreme predictions, calibration slopes < 1) or underfitted risks (not extreme enough, calibration
slopes > 1) may vary and, dependent on the context. Hence, different costs to the miscalibration may be involved.
Some limitations apply to our study. We investigated 1050 low-dimensional simulation scenarios where we aimed to

mimic realistic risk prediction modeling settings. However, as with any simulation study, the number of simulation
settings remains finite and generalization far beyond the simulation conditions that we have studied is not advised.
Also, the present study hence focused on more frequently discussed regression penalization and variance decomposi-
tion approaches for which software implementations to derive binomial logistic regression models are available without
too much burden on the part of the researcher. Several techniques were implemented with default settings because the
computational complexity of the simulation did not allow for further hyperparameter tuning. In practice, we expect that
this tuning may sometimes further improve the performance. The effect of hyperparameter tuning in low-dimensional
small sample setting deserves further investigation.
In addition to limited hyperparameter tuning, the automated nature of simulation studies has additional shortcomings

that make it difficult to assess performance. Deranged models with “extreme” properties such as no predictors or very
extreme predictor weights would be easily spotted in practice. For an automated assessment, any cutoff for such extreme-
ness is arbitrary. In order to provide a realistic and neutral comparison, we aimed at methods to neither suffer nor benefit
from inherent modeling properties that would have been easily spotted in practice.
In conclusion, the likelihood penalization ridge, LASSO, and elastic net performed well across a wide range of low-

dimensional prediction modeling settings, and in most cases occupied the top ranks in our simulations. The variance
decomposition methods were mostly inferior to likelihood penalization approaches but in many cases performance dif-
ference was minor. However, despite the fact that most approaches investigated in the present study showed an improved
average performance compared to MLE, all prediction modeling approaches exhibited a large performance variability.
Hence, the application of any modeling technique for deriving risk prediction models from datasets with a relatively
small sample size (n) and/or a large number of parameters (p) should be viewed with skepticism.
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