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BACKGROUND: Pain evaluation remains largely subjective in neurosurgical practice, but machine learning provides the
potential for objective pain assessment tools.
OBJECTIVE: To predict daily pain levels using speech recordings from personal smartphones of a cohort of patients with
diagnosed neurological spine disease.
METHODS: Patients with spine disease were enrolled through a general neurosurgical clinic with approval from the
institutional ethics committee. At-home pain surveys and speech recordings were administered at regular intervals
through the Beiwe smartphone application. Praat audio features were extracted from the speech recordings to be used
as input to a K-nearest neighbors (KNN) machine learning model. The pain scores were transformed from a 0 to 10 scale
to low and high pain for better discriminative capacity.
RESULTS: A total of 60 patients were enrolled, and 384 observations were used to train and test the prediction model.
Using the KNN prediction model, an accuracy of 71% with a positive predictive value of 0.71 was achieved in classifying
pain intensity into high and low. The model showed 0.71 precision for high pain and 0.70 precision for low pain. Recall of
high pain was 0.74, and recall of low pain was 0.67. The overall F1 score was 0.73.
CONCLUSION: Our study uses a KNN to model the relationship between speech features and pain levels collected from
personal smartphones of patients with spine disease. The proposed model is a stepping stone for the development of
objective pain assessment in neurosurgery clinical practice.

KEY WORDS: Digital phenotyping, Speech analysis, Patient-reported outcome measures, Spine surgery, Machine learning, Smartphone
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Pain due to spine disease can be debilitating and is a primary
driver of spine surgery.1 However, the subjective nature of
pain makes its assessment and treatment challenging. The

current gold standard for pain assessment in neurosurgical clinical
practice includes methods such as Numeric Rating Scale (NRS) and

visual analog scale; NRS is a numeric scale in which patients rate their
pain on a scale between 0 and 10.2,3 Although these painmeasurement
methods are proven simple pain assessment methods, they often
require in-person clinic visits and rely on patient recollection.
As a supplement to physical visits and recalls, remote health

monitoring through modern digital devices such as smartphones
and tablets has recently emerged to inform prevention and care
management. Smartphone-based patient monitoring offers the
possibility for clinicians to monitor their patients’ health when they
are at home interacting with the outside world. “Digital phenotyping,”
a term coined byOnnela and reported inOnnela et al,4,5 is a technique

ABBREVIATIONS: GPS, global positioning system; KNN, K-nearest
neighbors; MFCC, Mel-frequency cepstral coefficient; NRS, Numeric
Rating Scale; PCA, principal component analysis.

Supplemental digital content is available for this article at neurosurgery-online.com.
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which quantifies a patient’smoment-by-moment phenotype driven by
continuous data collection from mobile devices such as smartphones.
Recent studies have found a correlation between pain and mobility as
measured by smartphone global positioning system (GPS) data in
patients with spine disease.6,7 Digital phenotyping data, therefore,
seem to hold great potential to track and assess pain which can
supplement in-person clinic visits. Although pain is a sensation which
includes elements of subjectivity, a digital phenotyping approach may
better control for fluctuations in patient perception.
Prior research has shown that pain can modify speech in certain

patients.8 In addition, speech has been shown to provide valuable
insight into aberrant brain activity for diagnosing depression,9,10

schizophrenia,11 and Alzheimer disease.12 Therefore, speech data
may represent a digital biomarker for pain which could supple-
ment current pain assessment methods.
In neurosurgery research, the applicability of machine learning

methods has increased substantially over the past few years.13,14

Machine learning techniques in digital phenotyping data analysis are
pertinent because of their ability to createmodels from large data sets for
a variety of applications. Large-scale data streams collected in digital
phenotyping have great potential; however, there are also significant
challenges with implementing applications such as pain prediction in a
clinical setting. The purpose of this study was to create a machine
learning model using digital phenotyping speech data collected through
a smartphone application to predict same-day pain levels in patients
with spine disease.

METHODS

Patient Enrollment
This study was approved by the ethics committee at our institution

(protocol number 2016P000095), and patient consent to participate in the
study was obtained. The patients in this study were enrolled by the Neu-
rosurgery Department at our institution between June 2017 and July 2019.
The inclusion criteria for this study were patients with spine disease who
presented to the neurosurgery department for treatment. Patients with a

history of opioid abuse and patients undergoing multiple spine surgeries were
excluded from the cohort. Not all patients underwent surgery before or
during the study. Patient participation in the study included preoperative
participation only, postoperative participation only, and both preoperative
and postoperative participation. Inclusion criteria based on length of follow-
up was not defined since each data point was treated independently. Par-
ticipating patients were asked to download and install the Beiwe smartphone
application (Onnela Lab LLC).15 Patients who downloaded the Beiwe ap-
plication but did not record a speech sample were excluded from the study.

The 2 sources of data for this study were pain surveys and speech re-
cordings. The timing of speech and pain data collectionwas predetermined by
the smartphone app without input from the authors. Pain surveys were
prompted through smartphone notifications each day at 5 PM local time. The
pain surveys were administered using the NRS pain scale. The survey text
read, “Please rate your pain over the last 24 hours on a scale from 0 to 10;
where 0 is no pain at all and 10 is the worst pain imaginable.” Speech
recordings were prompted once per week on Monday at 5 PM local time
through smartphone notifications from the Beiwe application. Patients were
asked to read aloud the first paragraph from “A Tale of Two Cities” by
Charles Dickens. This passage was standardized across all patients and time
points for each speech recording. Free speech responses, such as verbal ex-
pressions of how the patient was feeling, were not analyzed in this study. Data
collection continued until the app was deleted, and all data were stored on a
secure database. The data used in this study are not publicly available.

Data Preprocessing
Since patients did not always complete the pain surveys and speech re-

cordings were only prompted once per week, the speech recordings and pain
surveys were matched according to completion time. Only speech recordings
with a pain survey completed within 24 hours before the recording were
included in the analysis. Ifmultiple pain surveysmet the criteria, the pain survey
completed closest to the time of the speech recording was selected. The speech
recordings were manually screened to exclude all incomplete and accidental
recordings. All unmatched pain surveys and speech recordings were excluded.

Feature Extraction
Speech recordings from the Beiwe application are provided in various

formats. For compatibility with software packages, speech recordings

FIGURE 1. Flow chart showing excluded patients and speech recordings.
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originally recorded in MP3 were converted to waveform audio file format
format. Speech features were extracted from using the parselmouth Python
library, an implementation of the Praat audio analysis software.16 The list of
extracted speech features consisted of meanF0Hz, stdevF0Hz, harmonic-
to-noise ratio, localJitter, localabsoluteJitter, rapJitter, ppq5Jitter, local-
Shimmer, localdbShimmer, apq3Shimmer, apq5Shimmer, apq11Shim-
mer, JitterPCA, and ShimmerPCA. F0 refers to the fundamental frequency,
harmonic-to-noise ratio is the ratio between periodic and nonperiodic
components, jitter describes frequency variation, and shimmer describes

amplitude variation.17 The Praat speech features are derived from the time
domain. In addition, 13Mel-frequency cepstral coefficient (MFCC) speech
features from the frequency domain were extracted using the librosa Python
library.18

Univariate Analysis
Linear mixed models were created to check for significant associations

between speech features and pain scores. For each model, pain was the
outcome variable, and each speech feature was treated as its own pre-
dictor. A random intercept was added for each patient to control for
variations in baseline pain perception.

Model Training
To train the machine learning model, the data were prepared for 5-fold

cross validation and eventually split into disjoint training (80%) and test
sets (20%) such that patients in the test set were not included in the
training data. To prevent model bias toward speech features with larger
values, the train and test data were scaled using robust scaling before
training.19 Robust scaling is a statistical method which uses the
interquartile range to scale data in a way that decreases the effect of
outliers. Because of limitations of sample size, we created a binary
classification model. Pain scores between 0 and 4 were classified as low
pain, and pain scores between 5 and 10 were classified as high pain. These
specific pain score groups were selected to provide equal samples of “high”
and “low” pain scores.

K-Nearest Neighbors–Based Prediction Model
A K-nearest neighbor (KNN) classifier was used to classify speech

recordings into low or high pain categories.20 We selected this algorithm
because of its simplicity and clear interpretation. KNN is one of many
different machine learning algorithms commonly used in medical re-
search. The algorithm functions by plotting the training data in the
n-dimensional space and classifying each test data point according to the
K-nearest training data points. Logistic regression and random forest
models were also trained. The Scikit-learn python library was used to
build and train the machine learning models.19 All models were trained
using the following computational hardware: Intel(R) Core(TM) i5-
10210U CPU @ 1.60GHz, Architecture x86_64, Operating system
Ubuntu 20.04.1 LTS, CPU(s): 8.

TABLE 1. Patient Characteristics

Characteristic All patients (n = 60)

Age

Mean (SD) 58.5 (12.7)

<50 14 (23.3%)

50-59 18 (30.0%)

60-69 17 (28.3%)

≥70 11 (18.3%)

Sex

Male 26 (43.3%)

Female 34 (56.7%)

Race

White 53 (88.3%)

Asian 2 (3.3%)

Hispanic 2 (3.3%)

Others 2 (3.3%)

N/A 3 (5.0%)

Spinal levels

Cervical 13 (21.7%)

Thoracic 2 (3.3%)

Lumbar 37 (61.7%)

Sacral 2 (3.3%)

Mixed levels 6 (10.0%)

Primary diagnosis

Central stenosis 22 (36.7%)

Herniated disk 12 (20.0%)

Foraminal stenosis 8 (13.3%)

Spondylolisthesis 8 (13.3%)

Scoliosis 4 (6.7%)

Others 6 (10.0%)

FIGURE 2. Distribution of number of speech recordings per patient.
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RESULTS

Patient Demographics
After applying exclusion criteria, 384 speech recordings from

60 different patients were used to train and test the KNN model
(Figure 1). The mean age was 58.5 years, and 26 (43.3%) patients
were male. The median follow-up interval was 33 days (range 0-
187 days). Fifty-three (88.3%) patients were white. A majority of
patients had lumbar spine disease (61.7%) while cervical spine
disease (21.7%) was the second most common location of spine
disease (Table 1). Patient spine diagnoses included central stenosis
in 22 (36.7%) patients, herniated disk in 12 (20.0%), foraminal
stenosis in 8 (13.3%), spondylolisthesis in 8 (13.3%), and sco-
liosis in 4 (6.7%). Fracture, epidural mass, sacroiliac joint pa-
thology, and discitis were considered “other” diagnoses.
Thirty-six (60.0%) of the 60 patients in the study underwent

surgery. Of the patients undergoing surgery, 27 patients (75.0%)
had at least 1 speech recording before surgery, and 26 patients
(72.2%) had at least 1 speech recording after surgery. Seventeen
patients (47.2%) had at least 1 speech recording both before and
after surgery. Among patients with at least 1 speech recording after
surgery, the median follow-up from the date of surgery was 47 days
(range 0-273 days).

Pain and Speech Data
The median number of audio files per patient was 5 (range 1-28,

Figure 2), and the mean pain score was 4.6 ± 2.7 (Table 2). A
histogram of pain scores is provided in Figure 3. The mean audio
recording length was 43.3 ± 10.1 seconds. After converting the pain
scores into low pain and high pain, there were 183 speech samples
with low pain scores and 201 samples with high pain scores.

Univariate Analysis
The results from our linear mixed model analysis showed that none

of the Praat speech features were significantly associated with pain
scores (Table 3). MFCC 2 (Coef: 0.552; 95% CI: [0.254, 0.850];
P < .001) andMFCC12 (Coef:�0.286; 95%CI: [�0.538,�0.034];
P = .026) were significantly associated with pain scores (Supplemental
Digital Content 1, http://links.lww.com/NEU/D762).

Model Performance
There were 268 speech recordings in the training set and 116

speech recordings in the test set. In the test set, 55 (47.4%) samples
were low pain and 61 (52.6%) were high pain. The KNN prediction
accuracy on the test data set was 71%. A confusion matrix is pre-
sented in Figure 4, which shows a precision of 0.71 and recall of 0.74
for high pain. For low pain, the precision was 0.70 and recall was
0.67. The overall F1 score was 0.73 (Table 4). Logistic regression and
random forest model results are provided in Supplemental Digital
Content 2 & 3, http://links.lww.com/NEU/D763 and http://links.
lww.com/NEU/D764. KNNmodel results using MFCC features as
predictors are provided in Supplemental Digital Content 4, http://
links.lww.com/NEU/D765.

DISCUSSION

Spine disease remains a common pathology in neurosurgical
practice and often leads to significant and multifactorial pain.
Although the current pain assessment methods have been validated
in clinical practice, they are subject to patient recollection biases and
require in-person clinic visits. Continuous and remote pain
monitoring through smartphones and other mobile devices would
be invaluable to neurosurgeons in their patient evaluations. Using
digital phenotyping data, it may be possible to supplement the
current pain assessment tools with timely pain assessment in a home
setting which controls for variations in patient perceptions of their
pain. The purpose of our study was to build a data-driven machine
learning model to predict same-day pain levels using speech data
collected from personal smartphones of patients with spine disease.
Pain recollection is multifaceted and depends on severity,

chronicity, and timing of the pain. Pain intensity is often cited as
the most critical element in pain perception,21 and severe pain can
cause decreased mobility, sleep deprivation, medication depen-
dency, and anxiety.22,23 Furthermore, chronic pain can be complex
and often changes with time. Therefore, it can be difficult for
patients to communicate their pain experiences to neurosurgeons

TABLE 2. Speech Recordings and Pain Scores

Characteristic All patients (n = 60)

Speech samples per patient

Median (IQR) 5 (2.5-7.0)

Range 1-28

Pain scores

Mean (SD) 4.6 (2.7)

Range 0-10

FIGURE 3. Distribution of pain scores.
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between follow-up visits. In addition, self-reported pain mea-
surement can be biased by pain intensity and time of day.24 On the
other hand, digital phenotyping provides insight into a patient’s

daily functioning by (1) taking advantage of the ubiquity and
familiarity of smartphones and (2) ease associated with data pro-
curement.4,25

Continuous patient monitoring using patient smartphones
within neurosurgery has been studied previously. Digital phe-
notyping studies by Cote et al and Boaro et al used GPS data from
the Beiwe smartphone application to study pain and patient
reported outcomes in patients with spine disease. In 2019, Cote
et al6 implemented a linear mixed model approach which found
that higher pain correlated with less mobility, as measured by GPS
summary statistics. More recently in 2021, Boaro et al7 showed
that GPS summary statistics were significantly correlated with
visual analog scale, Oswestry Disability Index, and Patient-
Reported Outcome Measurement Information System 10 men-
tal and physical scores. These studies together prove that digital
phenotyping data collected from personal smartphones can reveal
patient well-being at home. Our study adds to this literature by
providing a framework to objectively and continuously assess pain
due to spine disease in the home setting.
The human body likely exhibits pain signals through various

media including electrical signals, facial expression, and speech.
Previous studies have used speech features to detect depression,9,10

Alzheimer disease,12 and schizophrenia.11 In an observational study
by Di Matteo et al,26 ambient speech was recorded from smart-
phones of patients with depression and anxiety and correlated with
clinical symptoms. In addition, Laguarta et al27 presented a model
which was able to discriminate between patients with and without
COVID-19 through analysis of a large database of cough audio
recordings from more than 5000 participants. These studies pro-
vide evidence that speech is a physiologic conduit for diagnosing
many human diseases. There is potential to create speech

TABLE 3. Linear Mixed Model Results Showing Associations
Between Praat Speech Features and Pain Scores With a Random
Intercept for Each Patient

Audio feature Coefficient 95% CI P value

meanF0Hz 0.038 (�0.188, 0.265) .739

stdevF0Hz 0.005 (�0.197, 0.206) .964

HNR 0.159 (�0.071, 0.388) .176

localJitter �0.086 (�0.302, 0.130) .437

localabsoluteJitter �0.122 (�0.412, 0.169) .412

rapJitter �0.096 (�0.310, 0.118) .380

ppq5Jitter �0.053 (�0.272, 0.165) .632

ddpJitter �0.096 (�0.310, 0.118) .380

localShimmer �0.112 (�0.327, 0.103) .308

localdbShimmer �0.084 (�0.299, 0.131) .443

apq3Shimmer �0.108 (�0.326, 0.111) .334

apq5Shimmer �0.067 (�0.277, 0.144) .533

apq11Shimmer �0.055 (�0.257, 0.147) .593

ddaShimmer �0.108 (�0.326, 0.111) .334

JitterPCA �0.101 (�0.323, 0.120) .369

ShimmerPCA �0.003 (�0.206, 0.199) .975

HNR, harmonic-to-noise ratio; PCA, principal component analysis.

FIGURE 4. Confusion matrix of K-nearest neighbor pain prediction
model.

TABLE 4. Results of K-Nearest Neighbor Pain Prediction Model
Using the Test Data Set

Testing characteristics Model

Low pain scores 55

High pain scores 61

True positives 45

True negatives 37

False positives 18

False negatives 16

Sensitivity (true-positive rate) 0.74

Specificity (true-negative rate) 0.67

Positive predictive value 0.71

Negative predictive value 0.67

Accuracy 0.71

F1 score 0.73
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biomarkers which represent meaningful phenotypes of pain based
on data collected frommobile devices. However, it is unclear which
speech features would be best suited for understanding pain.
In our study, we used audio features from the Praat software

because of their simplicity and wide adoption in speech re-
search.28-30 We also tested MFCC features with our machine
learning model. Although MFCC 2 and 12 were significantly
associated with pain scores in the univariate mixed model analysis,
this did not translate to an improved KNN model accuracy
compared with the KNN model trained with Praat features.
MFCCs are commonly used audio features in speech analysis
which represent a transformation of audio signals that mimics how
the human ear perceives sound.31,32 Researchers have developed
other audio features to study human speech. OpenSmile is a
common speech analysis software which includes some aspects of
the MFCC features in addition to many other features.33,34 This
diversity of speech features should be further explored to discover
those which are influential in understanding pain.
Several machine learning techniques have gained recent at-

tention to automatically analyze biomarkers and predict real-time
pain, including KNN, support vector machines, and tree-based
approaches such as random forest algorithms. Because of their
ability to learn patterns from massive data sets, machine learning
techniques are powerful tools to harness clinically relevant sig-
natures and build a predictive model. In 2021, Kong et al35

published a study in which the authors built a random forest
machine learning model to predict real-time pain using electro-
dermal activity from a calibrated wrist device. Similarly, Hasan
et al36 implemented a support vector machine classification model

with facial recognition technology to predict pain. However, little
has been done towards training machine learning models that use
audio biomarkers to predict pain.
Motivated by these previous studies, our study explores ma-

chine learning techniques to harness the speech features as pre-
dictors. Given our relatively small data set, we used a KNN
machine learning model which we determined to be the best fit for
our speech data. These days deep learning frameworks include
convolutional neural networks, long-short term memory net-
works, and transformers which can learn the complex time series
relationship of speech signals.37,38 Such models may better handle
heterogeneous populations and improve discriminative capacity at
multiple pain levels. Although we experimentally explored other
models including random forests, support vector machines, and
artificial neural networks, these more powerful algorithms typi-
cally perform better with larger data sets.
One advantage of a digital phenotyping approach to pain as-

sessment is a potential reduction in administrative fees associated
with survey administration. To implement our technology in a
clinic setting, we believe that integration with the electronic
medical record would be essential. Furthermore, it is important to
standardize data collection across institutions and simplify par-
ticipation for patients. Our suggested workflow includes an ex-
ample of how our tool might be implemented in clinical practice.
Between visits, patients would be asked to fill out regular pain
surveys and provide sample voice recordings using their smart-
phone. These pain surveys and voice recordings would be
combined with other digital phenotyping data sources in a
comprehensive machine learning model to provide an estimation

FIGURE 5. Suggested digital phenotyping workflow with machine learning integration into medical records. During the first clinical
visit, patient consent is acquired and the digital phenotyping application is installed onto the patient’s smartphone. From this moment,
digital phenotyping data are collected over time in the patient’s home environment (surveys, voice recordings, mobility data, and
sociability data). The digital phenotyping data and machine learning model enriche electronic medical records with its estimation and,
health care professionals are able to follow the patient over time to provide a well-informed treatment plan.
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of pain while correcting for variations in patient perceptions over
time. Next, the model would directly upload pain estimates to the
electronic medical record and the patient’s survey responses for
direct comparison. These data would be used by both the physician
and patient at their next visit while discussing an appropriate
treatment plan. Our proposed digital phenotyping workflow has
been illustrated in Figure 5.

Limitations
Although we believe that this study is a valuable addition to the

literature, there are a few limitations that we would like to ac-
knowledge. Our study was limited to spine patients at a single in-
stitution and may not generalize to other neurosurgery clinics, and
our limited sample size of 60 patients total is not sufficient to build a
generalizable model. A multicenter study with patients from different
disciplines could reach more generalizable results. Our pain pre-
diction model was based on self-reported pain scores, and, therefore,
predictions are based on patient perception of pain rather than on an
objective measure. As the time interval between pain surveys and
speech recordings ranged up to 24 hours, speech features may not
capture brief pain episodes occurring at the time of the survey and
thus our study is better suited for the assessment of chronic pain.
Moreover, there was significant variation in the length of follow-up
and participation frequency of each patient. Consequently, our data
were not independent with some patients contributing multiple
speech samples. Although we chose to use a KNN model for
simplicity and interpretability, a model which accounts for correlated
data may be a better choice in the long term. With a larger data set,
we can optimize predictive accuracy by analyzing more complex
speech features with deep learning approaches.

CONCLUSION

This study offers the opportunity for practical objective pain
assessment of neurosurgical spine patients in a home setting. There
is limited research investigating associations between smartphone
speech data and pain in neurosurgical patients. Herein, we propose
a machine learning–based methodology to quantify pain using
speech data from smartphones and self-reported pain surveys in a
cohort of patients with spine disease. Using our prediction model as
a baseline, future models can improve on our framework to better
evaluate pain levels in patients with spine disease.
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