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BSTRACT 

ingle-cell genomics is now producing an ever- 
ncreasing amount of datasets that, when integrated, 
ould pr o vide large-scale reference atlases of tis- 
ue in health and disease. Such large-scale atlases 

ncrease the scale and generalizability of analyses 

nd enable combining knowledg e g enerated by in- 
ividual studies. Specifically, individual studies of- 
en differ regarding cell annotation terminology and 

epth, with different groups specializing in different 
ell type compartments, often using distinct termi- 
ology. Under standing ho w these distinct sets of 
nnotations are related and complement each other 
ould mark a major step towards a consensus-based 

ell-type annotation reflecting the latest knowledge 

n the field. Whereas recent computational tech- 
iques, referred to as ‘reference mapping’ meth- 
ds, facilitate the usage and expansion of exist- 

ng reference atlases by mapping new datasets (i.e. 
ueries) onto an atlas; a systematic approach to- 
ards harmonizing dataset-specific cell-type termi- 
ology and annotation depth is still lacking. Here, 
e present ‘treeArches’, a framework to automati- 
ally build and extend reference atlases while enrich- 
ng them with an updatable hierar ch y of cell-type an- 
otations across different datasets. We demonstrate 

arious use cases for treeArches, from automatically 

esolving relations between reference and query cell 
ypes to identifying unseen cell types absent in the 

ef erence, suc h as disease-associated cell states. We 
i
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nvision treeArc hes enab ling data-driven construc- 
ion of consensus atlas-level cell-type hierarchies 

nd facilitating efficient usage of reference atlases. 

NTRODUCTION 

ingle-cell sequencing technologies have revolutionized our 
nderstanding of human health. Hereto, large single-cell 
atasets - r eferr ed to as ‘r efer ence atlases’ - have been built
o characterize the cellular heterogeneity of whole organs. 
n example is all the organ- and body-scale cell atlases con- 

tructed within big consortia such as the human cell atlas 
HCA) ( 1–5 ). Users can contextualize their datasets within 

hese r efer ences to identify nov el cell types. This enab les the
iscovery of disease-affected cell types that can be priori- 
ized for treatment design ( 6–8 ). 

To create a reference atlas, one would ideally le v erage in- 
ormation from multiple scRNA-seq datasets and harmo- 
ize their cell annotations. This, howe v er, is not as easy as 

t seems since all datasets are annotated at a different res- 
lution. Furthermore, matching cell types based on their 
ames is dif ficult. Da tabases such as ‘Cell Ontology’ try 

o overcome this problem, but a complete naming conven- 
ion is still missing ( 9 ). When constructing the Human Lung 

ell Atlas (HLCA), for instance, the cell type labels of 14 

atasets had to be manually harmonized, which is a time- 
onsuming process ( 2 ). To accelerate the construction of 
 efer ence atlases, we de v eloped scHPL: a method to auto- 
a tically ma tch the cell-type labels of multiple datasets and 

onstruct a cell-type hierarchy ( 10 ). In follow-up, Novella- 
ausell et al. showed how scHPL simplified the process 
hen building a mouse kidney atlas ( 11 ). 
The concept of a ‘r efer ence atlas’, howe v er, suggests 

t should help analyze and interpret new datasets (here 
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denoted as ‘query’). This is, howe v er, complica ted by ba tch
effects between the r efer ence and query, limited computa-
tional r esour ces, and data privacy and sharing. Recently,
we , along with others , de v eloped computational approaches
(known as ‘r efer ence mapping’ methods) to addr ess these
challenges ( 4 , 12 , 13 ). Such methods could for instance be
used to map a query dataset to the r efer ence and annotate
the cells. Curr ently, ther e is no method available that tackles
both challenges sim ultaneousl y. 

To address these challenges, we present treeArches, a
frame wor k that builds upon single-cell architectural surgery
(scArches) ( 12 ) and single-cell Hierarchical Progressi v e
Learning (scHPL) ( 10 ) to progressi v ely build and update
a r efer ence atlas and corr esponding hierar chical classifier.
Our approach allows users to build a r efer ence atlas using
existing integration methods supported by scArches (e.g.
scVI, scANVI, totalVI and all others described in ( 14 )).
Next, we use scHPL to augment this r efer ence atlas by
learning the relations between cell types to construct a cell-
type hierarchy. Afterward, query data, which can be either
annotated or unannotated, can be mapped to the r efer ence.
If the query is annotated, the query cells can expand the
newly updated tree by highlighting potential novel cell types
and their relationship with other cell types in the reference.
Otherwise, the created reference can be used to annotate the
query cells and identify new unseen cell types in the query.
Unlike existing methods, we show that tr eeAr ches can be
used to create a reference atlas and corresponding cell-type
hier archy from scr a tch, upda te an existing r efer ence atlas
and the hierarchy by finding novel relations between cell
types, and le v erage a r efer ence atlas to transfer labels to a
new dataset. 

MATERIALS AND METHODS 

Ov ervie w 

tr eeAr ches consists of two main steps: (i) removing the
ba tch ef fects between da tasets and (ii) ma tching the anno-
tated cell types to construct a cell-type hierar chy (Figur e 1 ).
Starting with multiple labeled datasets, hereafter called ref-
erence datasets, we first use neural network-based r efer ence-
building models (e.g. sc(AN)VI ( 14 ) or scGen ( 15 )), which
are top performers in recent data benchmarking efforts ( 16 )
and compatible with scArches, to construct a latent space.
Next, we use scHPL to construct the cell-type hierarchy
(Figure 1 A). For each dataset, we train a classifier in the
learned latent space and cross-predict the labels of the other
dataset(s). Using the confusion matrices, we automatically
match the cell types to create a hierarchy. This hierarchy
also r epr esents a hierar chical classifier wher e e v ery node
r epr esents a cell type in one or more of the datasets. Af-
terwards, we can map new query datasets to the learned la-
tent space using architectural surgery, a transfer learning
a pproach to ma p query datasets to r efer ences, implemented
by scAr ches (Figur e 1 B). Ar chitectural surgery brings the
advantage that the count matrices of the r efer ence datasets
are not needed an ymore f or querying the model. Instead, we
only use the pre-trained neural network ar chitectur e. The
query datasets can either be labeled or unlabeled. In the
case of a labeled dataset, we match the cell types from the
query to the r efer ence and again update the hierarchy we
had learned on the r efer ence datasets. In the case of an un-
labeled query, we annotate the cells using the learned hier-
archy. 

W hen ma tching the cell types or predicting labels of a
query dataset, it is important to identify new cell types that
ar e not pr esent in the r efer ence. This is onl y possible w hen
biological variation is preserved when mapping the datasets
to the latent space and when the classifier in scHPL recog-
nizes unseen cells, i.e. cells that are not present in the tree.
Ther efor e scHPL adopts a rejection strategy, which rejects
these unseen cells and identifies them as a new cell type.
Within scHPL, a cell is rejected if it meets one of the follow-
ing criteria: (i) if the posterior probability of the classifier is
lower than a threshold which means the predicted label is
ambiguous, (ii) if the distance between a cell and its clos-
est neighbors is too big and (iii) if the reconstruction error
(w hen ma pping to a reduced PCA space and back) is above
a threshold, which means the query cell is too different from
the r efer ence cell types. These thr ee thr esholds ar e automat-
ically set based on the distribution of the data. 

tr eeAr ches is a frame wor k built around scArches (version
0.5.3) ( 12 ) and scHPL (version 1.0.1) ( 10 ). A detailed de-
scription of scArches and scHPL can be found in their orig-
inal papers ( 10 , 12 ). Here, we only describe changes to the
original methods when combined in the tr eeAr ches frame-
work. We enhanced the original version of scHPL by adding
the option to use a k- nearest neighbor (kNN) classifier. The
dimensionality of the latent space learned by scArches is
relati v ely low (varying between 10 and 30 dimensions). We
noticed that the linear SVM originally implemented doesn’t
perform well, since the cell types are not linearly separable
anymor e. Ther efor e, it is better to use scHPL with the kNN
classifier in this case. In contrast to the linear SVM, we train
a multiclass classifier for e v ery parent node instead of a bi-
nary classifier for e v ery child node ( 10 ). During training, we
set the default number of neighbors to 50. Howe v er, when
ther e ar e cell types in the da taset tha t consist of less than
50 cells, this is not ideal. Ther efor e, we added an extra op-
tion ( dynamic neighbors ) to automatically decrease k to the
size of the smallest cell type across the direct child nodes.
Since the tree consists of multiple classifiers, it can thus be
that they all use a different number of neighbors because of
this option. For the kNN classifier itself, we implemented
alternati v es using either the FAISS library ( 17 ) or the scikit-
learn library ( 18 ). The FAISS implementation is faster than
the scikit-learn library but is only available on Linux. 

Detecting new or diseased cell types 

We have implemented three methods to detect new or dis-
eased cell types: (i) a threshold on the posterior probabil-
ity, (ii) a threshold on the reconstruction error and (iii) a
threshold on the distance between query and reference. The
first two options wer e alr eady implemented in the previous
version of scHPL. The default threshold for the first op-
tion is 0.5. The threshold for the second rejection option
is determined using a nested cross-validation loop. It is the
median reconstruction error that gi v es a certain amount
of false negati v es on the test folds (default = 0.5%). The
third option rejects cells whose distance to the predicted
class is too big. The threshold for rejection is determined by
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Figure 1. A schematic version of tr eeAr ches and an example using PBMC and bone marrow datasets. ( A ) Pre-training of a latent r epr esentation using 
labeled public r efer ence da tasets. After integra tion, a cell-type hierar chy is cr ea ted by ma tching the cell types of the dif ferent da tasets. Here , for instance , 
cell types (CT) 1 and 2 from study (S) 2 are subtypes of CT1 from S1. ( B ) (Un)labeled query datasets can be added to the latent r epr esentation by a ppl ying 
architectur al surgery. After integr ation, the cell-type hier archy is upda ted with labeled query da tasets. Unlabeled query da tasets can be annota ted using the 
learned hierarchy. ( C ) UMAP embedding showing the integra ted la tent space of the thr ee r efer ence datasets. ( D ) Cell-type hierar chy learned from the thr ee 
r efer ence datasets. MC deri v ed DC: monocyte-deri v ed dendritic cells, MC: monocytes, pDC: plasmacytoid dendritic cells, HSPC: hematopoietic stem and 
progenitor cell. ( E ) Updated hierarchy after the 10X dataset was ad ded. ( F ) UMAP embed ding showing the integrated latent space of the r efer ence and 
query datasets. 
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calculating the neighbors for all cells in the training set, av-
eraging the distance across the neighbors, and taking the
99th percentile. 

Datasets 

PBMC datasets 

The dataset was obtained from the recent data in-
tegration benchmark ( 16 ). The data contains bone
marr ow samples fr om Oetjen et al. ( 19 ) and also
PBMC samples that were obtained from 10x Ge-
nomics https://support.10xgenomics.com/single-cell- 
gene-expression/datasets/3.0.0/pbmc 10k v3 , Freytag et al.
and Sun et al. ( 20 , 21 ), the original url and the preprocessing
and annotation details can be found in Luecken et al. ( 16 ).
Marker genes specific to early erythrocytes and platelets
were downloaded from Azimuth ( 4 ). 

Brain datasets 

We used datasets from the primary motor cortex of three
species: human, mouse, and marmoset ( 22 ). We down-
loaded the datasets from the Cytosplore comparison viewer.
In these datasets, genes were already matched based on
one-to-one homologs. For the analysis, we only kept these
one-to-one matches (15860 genes in total). We selected
2000 highly variable genes based on the r efer ence datasets
(mouse and marmoset) and used those counts as input for
tr eeAr ches. The datasets are annotated at thr ee differ ent r es-
olutions: Class , Subclass , and RNA cluster. The class le v el
contains three broad brain cell types: GABAergic neurons,
glutamatergic neurons, and non-neuronal cells. At the sub-
class le v el, the cells are annota ted a t a higher resolution (5–
10 subclasses per class). The RNA cluster le v el contains the
highest r esolution. Her e, we will use the subclass le v el to
match the cell types. Marker genes used for visualization
were chosen based on Supplementary Tables 5 and 6 from
the original paper ( 22 ). 

Human lung cell atlas 

The human lung cell atlas (HLCA) is a carefully con-
structed r efer ence atlas for the human respiratory system
( 2 ). Sikkema et al. aligned 14 datasets, harmonized the
annotations, and built a cell-type hierarchy consisting of
fiv e le v els. W hen ma tching the cell types, we used the la-
tent space generated in their original paper (downloaded
from https://zenodo.org/record/6337966#.YqmGIidBx3g ).
W hen upda ting the hierarchy with the IPF data, we re-
moved the cell types smaller than 10 cells. Marker genes
were downloaded from the lung reference v2 from Azimuth
( 2 , 4 ). Marker genes for the Meyer cell populations were ob-
tained from [26]. 

We annotated the fibrosis-specific cell types in greater de-
tail by sub clustering the cell types of interest (macrophages,
epithelial cells, myofibroblasts) and identifying the
subtypes by marker gene expression. We identified
transitioning / basaloid epithelial cells by KR T5 / KR T17
e xpression, inflammatory monocyte-deri v ed macrophages
by SPP1 expression, and myofibroblasts by the expression

of CTHRC1.  
The runtime and memory usage of tr eeAr ches on the dif-
ferent datasets can be found in Supplementary Table S1. 

Comparisons 

FR-match 

We ran FR-Match (v2.0.0) with default settings on all pair-
wise combinations of the PBMC r efer ence datasets ( 23 , 24 ).
Before running FR-Match, marker genes have to be selected
for each cell type. We do this using the method recom-
mended by the authors of FR-Match: NS-Forest ( 25 ). We
ran NS-Forest (v3.0) on each dataset separately using the
default settings. 

MetaNeighbor 

We ran MetaNeighbor (v1.13.0) using the default settings
on all pairwise combinations of the PBMC datasets ( 26 ).
MetaNeighbor returns an AUROC score for all cell-type
combinations. As recommended in the MetaNeighbor vi-
gnette, we consider two cell types a match when the AUROC
is higher than 0.9. 

Azimuth 

We run Azimuth using Seurat v4.3.0 ( 4 ) and follow the ‘in-
tegration mapping’ vignette. 

RESULTS 

tr eeAr ches accur ately learns PBMC hier ar chy 

We showcase tr eeAr ches with a sim ulation w here we build
a cell-type hierarchy using one bone marrow and three
PBMC datasets (Supplementary Table S2). We consider
three datasets as the reference (Freytag, Oetjen and Sun),
and one as the query (10X). The annotations of these
datasets have been manually harmonized by Luecken et al.
( 16 ), so we relabel some cells to enforce the datasets to be an-
nota ted a t dif fer ent r esolutions (Supplementary Tables S3
and S4). In the Oetjen dataset, for instance, we relabel all
the CD4 + and CD8 + T cells as T cells. The challenge here
is to correctly match cell types present in multiple datasets
and to reconstruct their hierarchy. Some cell types, howe v er,
are dataset-specific and these should thus be added as a new
node in the tr ee. Her e, it is important to note that these new
cell types are not forced to be aligned with other existing
cell types during the integration step and that the classifier
used by scHPL contains a good rejection option during the
matching step. This harmonizing and afterward relabeling
of the cells allows us to manually construct a ground truth
hierarchy that we can use to evaluate tr eeAr ches (Supple-
mentary Figure S1). 

We remove the ba tch ef fects from the r efer ence datasets
using scVI ( 14 ) and match the cell types in the learned latent
space (see Materials and Methods) (Figure 1 C, D, Supple-
mentary Figure S2). Since both scArches and scHPL are
invariant to a different order of the datasets, tr eeAr ches
will also be invariant ( 10 , 12 ). For scHPL, howe v er, the
datasets still have to be added progressi v ely, which we will
do from low to high resolution (Sun–Oetjen–Freytag). The

https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3
https://zenodo.org/record/6337966#.YqmGIidBx3g
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onstructed tree by treeArches largely matches the ground 

ruth: se v en out of eight Oetjen cell types and all nine Frey-
ag cell types are correctly matched to the Sun cell types (e.g. 
he CD4+ T cells are a subpopulation of the T cells which 

re a subpopulation of the Group 1 - Sun cells). The six cell 
ypes only found in one dataset are all added as new cell 
ypes to the tree (e.g. the CD10+ B cells and erythrocytes). 

Howe v er, the megakaryocyte (MK) progenitor cells from 

he Freytag and Sun dataset do not match the cells from 

etjen. The Freytag and Sun datasets are PBMC datasets 
nd the Oetjen dataset is a bone marrow dataset. Looking 

t the expression of marker genes and the location of the 
egakaryocyte progenitor cells in the UMAP embedding 

upports our claim that the cell types from Sun and Frey- 
ag should not match Oetjen in the hierarchy (Supplemen- 
ary Figure S3). Based on marker gene expression, the MK 

rogenitor cells in the Oetjen dataset should be relabeled as 
arly erythrocytes and the MK progenitor cells in the Frey- 
ag and Sun dataset as platelets. 

After constructing the r efer ence tr ee from the three 
atasets, we align the query dataset to the latent space of the 
 efer ence datasets using scArches and update the learned 

ierarchy with the new cell types (Figure 1 E, F). For this 
tep, only the trained model and r efer ence latent space are 
eeded. Again, almost all cell types (10 out of 12) are added 

o the correct node in the tree, while the plasma cells and 

he MK progenitors are added to the tree as new cell types. 
hese cell types contain 21 and 18 cells, respecti v el y, w hich
akes them difficult to match compared to the other cell 

ypes in the query dataset, which contain more than 1000 

ells on average. 
For some of the cell types, we would expect a per- 

ect match, but the 10X cell type is a subpopulation in- 
tead (NKT cells , CD8+ T cells , MC-deri v ed DC, and 

SPCs). We tested whether this is indeed a subpopula- 
ion and if there are interesting biological differences be- 
ween the groups. To do so, we used the classifier trained 

n the 10X dataset and split the cells from these cell types 
rom the r efer ence into two groups: (i) correctly classified 

nd (ii) rejected. Next, we tested whether there are genes 
iffer entially expr essed between the two groups. Her e, we 
id not look at the HSPCs, since only six cells were cor- 
 ectly pr edicted. For the NKT cells - Freytag, NKT cells 
 Oetjen, and CD8+ T cells - Fr eytag, ther e ar e (almost) no
enes differentially expressed (adjusted P -value < 0.01, log 

oldchange > 0.5) (Supplementary Table S5). However, in 

he monocyte-deri v ed dendritic cells - Oetjen, ther e ar e 85 

enes upregulated in the rejected cells. According to Enrichr 
 27–29 ) 41 of these genes ar e r elated to the Cell Cycle R-
SA-1640170 Reactome pathway (adjusted P -value = 3e- 

0) ( 30 ). The rejected cells are thus probably dividing cells. 
hese results indicate that there could be biological differ- 
nces between the two groups, but that this is not always the 
ase. 

Since ther e ar e many dataset-specific cell types in the 
BMC datasets, it is important that the rejection option 

orks correctly to ensure that cell types such as erythro- 
ytes from the Oetjen dataset are added to the root node. 
n tr eeAr ches, ther e ar e differ ent r ejection options: (i) the
aximum distance to the training data, (ii) the reconstruc- 

ion error and (iii) the posterior probability. If a cell is re- 
ected based on the first or second option, this indicates that 
he cell potentially belongs to a new cell type. In the third 

ase, this indica tes tha t the cell’s gene expression is simi- 
ar to two or more cell types and that we thus cannot la- 
el it with enough confidence. Using the default settings for 
hese parameters, all dataset-specific cell types are indeed 

orr ectly r ejected. We tested thr ee options for all thr esholds 
o test the effect related to the different rejection options. 
his results in minimal differences in the constructed hier- 
r chies (Supplementary Figur e S4). The hierar chies mainly 

iffer in the number of perfect matches. Changing the re- 
ection option causes cell types that were a perfect match to 

e subpopulations of one another. For example, when using 

he default settings the CD4+ T cells from the Oetjen and 

r eytag dataset ar e a perfect match, but when changing the 
ercentage of false negati v es allowed for the reconstruction 

rror to 1%, CD4+ T cells - 10X is a subpopulation of the 
D4+ T cells - Freytag. In two cases, howe v er, tr eeAr ches

annot r esolve wher e the NKT cells from the 10X dataset 
hould be added to the hierarchy and this cell type is thus 
issing. In three cases, the megakaryocyte progenitor cells 

rom the Oetjen dataset form a match with the HSPCs from 

he 10X da taset. W hen removing all three rejection options, 
owe v er, the tree looks completely different (Supplemen- 
ary Figure S4). Cell types tha t are da taset-specific are not 
dded to the root node but match another population. For 
nstance, the erythrocytes now are a subpopulation of the 

roup 1 cells (a combination of T cells, NK cells, NKT 

ells and B cells) from the Sun dataset. This shows the im- 
ortance of the rejection options within treeArches. 
Since there is no method with exactly the same function- 

lity as tr eeAr ches, we benchmark parts of the algorithm 

eparately. First, we compare our constructed hierarchy for 
he r efer ence data to the output of two cell-type match- 
ng algorithms: FR-Match and MetaNeighbor ( 23 , 24 , 26 ). 
t is important to note that these methods were de v eloped 

or pairwise comparisons and do not construct a hierarchy. 
e ran both methods on all combinations of the r efer ence 

atasets and visualized their matches in a graph (Supple- 
entary Figure S5). To allow comparisons, we transform 

he learned hierarchy by treeArches to a graph by adding 

dges between a parent and all descendants (Supplementary 

igure S5). When comparing the resulting graphs to the 
round-truth graph constructed based on the relabeled cell 
ypes, tr eeAr ches outperforms FR-Match and MetaNeigh- 
or (Supplementary Table S6). Using tr eeAr ches, only two 

dges are missing and no wrong edges were introduced while 
sing FR-Match and MetaNeighbor there are respecti v ely 

1 and 8 wrong edges, and 7 and 11 missing edges. 
Next, we compare the cell type classification performance 

f tr eeAr ches to Azimuth ( 4 ). Azimuth allows label trans- 
er by projecting a query dataset onto a r efer ence atlas but 
ssumes that the labels of the r efer ence ar e alr eady har-
onized. Ther efor e, we compar e the performance in two 

ays: (i) using the datasets annotated at a different reso- 
ution and (ii) using the datasets with the manually harmo- 
ized labels. We use the Sun, Oetjen, and Freytag datasets 
s a r efer ence and the 10X dataset as the query. In the
rst comparison, tr eeAr ches outperforms Azimuth (Sup- 
lementary Figure S6), but during the second compari- 
on, Azimuth performs better (Supplementary Figure S7). 
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During the second comparison, tr eeAr ches uses a flat classi-
fier instead of the hierarchical classifier, which might explain
why tr eeAr ches’ performance decr eases. Both Azimuth and
tr eeAr ches r ely on a near est neighbor classifier. Ther efor e,
it’s most likely that Azimuth outperforms tr eeAr ches be-
cause of better data integration. For the data integration,
howe v er, Azimuth needs both the r efer ence and query data,
while tr eeAr ches only uses the trained model and the query
data. Purely looking at cell type classification, Azimuth thus
outperforms tr eeAr ches on this dataset but tr eeAr ches of-
fers a broader functionality. Here, we also compare the per-
formance of tr eeAr ches using the kNN (default) and a lin-
ear SVM which is the best-performing method according to
our classification benchmark ( 31 ). Since the latent space is
not linear ly separ able an ymore, the kNN outperf orms the
linear SVM (Supplementary Figure S7). This motivates the
use of a kNN classifier within tr eeAr ches. 

Increasing the resolution of the human lung cell atlas using
tr eeAr ches 

The human lung cell atlas (HLCA) is a carefully con-
structed r efer ence atlas for the human respiratory system
( 2 ). Sikkema et al. integrated 14 datasets, re-annotated the
cells and constructed a cell-type hierarchy consisting of fiv e
le v els (Figure 2 A, Supplementary Figure S8). Furthermore,
they used scArches to project multiple datasets to this refer-
ence atlas. Since the cell-type hierarchy for the reference is
w ell-defined, w e can omit the r efer ence-building step and
le v erage tr eeAr ches to update the r efer ence hierar chy us-
ing one of the labeled query datasets (Meyer) ( 32 ). Using
scHPL, we matched the cell types of the Meyer dataset to
the cell types from the r efer ence (Supplementary Figure S9).
In the updated hierarchy, many cell types from the query
da taset ma tch a cell type from the r efer ence as expected
based on the cell-type names. Neuroendocrine-Meyer, for
instance, is a perfect match to the neuroendocrine cells from
the r efer ence. Since no ground truth cell-type matches be-
tween the r efer ence datasets and Meyer is known, we cannot
assess this quantitati v ely. For some parts of the hierarchy,
we can e v en incr ease the r esolution. If we zoom in on the
b lood v essel branch in the tree , for instance , the pulmonary
and systemic endothelial vascular arterial cell types from
the query both match endothelial cells arterial (EC arterial)
from the r efer ence (Figur e 2 B). 

For some parts of the tree, e.g. the airway epithelium se-
cretory cells, the matches are not what we would expect
based on the names (Figure 2 C). The secretory goblet cells
from the query da taset ma tch not only the goblet but also
the club cells from the r efer ence and the secretory club
cells match the transitional club-alveolar type 2 (AT2) cells.
Transitional club-AT2 cells were only recently discovered,
which could explain why they are missing from the origi-
nal Meyer annotations ( 33–35 ). Based on the expression of
marker genes, we can conclude that the match between the
transitional club-AT2 and secretory club cells is a correct
match (Figure 2 D). The expression of the marker genes in
the other cell types, howe v er, is ambiguous and it is hard to
determine what is the correct match. Furthermore, in the
HLCA paper, label transfer for these cell types from the ref-
erence atlas to the Meyer data did not match well with the
original labels either ( 2 ). 

Furthermore, we see sixteen cell types from the query
added to the root node of the tree as a new cell type (Sup-
plementary Figure S9). Of these cell types, most of them,
e.g. chondr ocytes, erythr ocytes, Schwann cells, and B plas-
mablasts, are indeed not in the reference atlas. For some,
such as some macrophage subtypes that are seen as new, it is
more difficult to determine whether they are new or whether
they should match one of the macrophage subtypes in the
tree. The ‘Macro CHIT1’ cells from the Meyer dataset, for
instance, form a relati v ely big cell type of 1570 cells and are
still seen as new. We visualized the expression of CHIT1 , the
gene this cell type was named after, and the marker genes
that were used to annotate the cells in the r efer ence data
(Supplementary Figure S10). This shows that the Macro
CHIT1 cell type is the only cell type that expresses CHIT1.
Furthermore, the marker gene profile of the other cell types
does not correspond to the profile of the Macro CHIT1
cells, which indicates that this cell type was indeed rejected
correctly. 

Howe v er, twelv e out of 77 cell types are missing from
the tree, which means that it was impossible to match these
Meyer cell types with a cell type from the r efer ence. Due
to man y-to-man y matches between the r efer ence and query
cell types, it is sometimes unclear where a cell type should
be added to the tree. Especiall y, w hen the boundary between
cell types is diffuse, it can be quite arbitrary where to put the
thr eshold. If this thr eshold is differ ent in each dataset or if
cells are wrongly annotated in general, this can cause impos-
sible matching scenarios. Here, we notice that this mainly
happens with some immune and stromal subtypes. The B
cells and plasma cells from the r efer ence and Meyer dataset,
for instance, could not be matched automaticall y, w hich is
caused by the plasma cells in the Meyer dataset that are
partially misannotated (Supplementary Figure S11). Cell
types that are missing from the hierarchy thus usually in-
dica te tha t these cells are wrongly annota ted in a t least one
of the datasets. This information could thus still be used to
improve the annotations. Either by using label transfer for
these cells using trained hierarchy or manually by visualiz-
ing specific marker genes in both datasets. 

Next, we annotate a second healthy query dataset (Tata)
( 34 ) using the original and updated r efer ence to show that
cells in this new query dataset will indeed be mapped to the
new Meyer cell types we added to the hierarchy. The major-
ity of the pr edictions r emained unchanged (72.1%) (Sup-
plementary Figure S12). When the predictions differ, cells
are often annotated as a Meyer cell type which is a sub-
population of the original annotation (18.4%). A clear ex-
ample is the T cells: cells previously annotated as CD4+ or
CD8+ T cells are now annotated as a subpopulation (Figure
2 e). These new annotations are supported by the expression
of marker genes (Figure 2 F, Supplementary Figure S13). 

tr eeAr ches identifies unseen disease-associated cell types in
the query data 

Next, we sho w ho w we can use tr eeAr ches to detect pr e-
viously unseen cell types in idiopathic pulmonary fibrosis
(IPF) samples ( 36 ). This dataset was mapped on the HLCA
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with scArches (Figure 3 A–C). Ideally, we would use scHPL
to update the hierarchy with the cell types from this query
dataset. A downside of the original annotations, howe v er, is
that the resolution is very low. Cells are, for instance, only
annotated as endothelial cells. Ther efor e, we used scHPL to
predict the labels of the IPF data and compare those predic-
tions to the original annotations (Figure 3 D). In the predic-
tions, we see some interesting differences between the IPF
and healthy cells. 

For the IPF cells, many macrophages and epithelial cells
ar e r ejected, while almost none for the healthy cells. Fur-
thermore, most healthy Col1+ cells are predicted to be alve-
olar fibroblasts, while the diseased Col1+ are mainly SM-
activated str ess r esponse cells. In all datasets, howe v er, we
notice confusion between the B cells and dendritic cells.
Based on marker gene expression, the cells originally an-
notated as B cells and dendritic cells ar e mor e likely to be
plasma cells and B cells respecti v ely (Supplementary Figure
S14). The cells originally annotated as dendritic cells also
overlap in the UMAP with the lymphoid lineage mainly in-
stead of the myeloid lineage (Figure 3 A, B). 

Next, we annotated the cells at a higher resolution (see
Materials and Methods) and used these annotations to up-
date the hierarchy (Supplementary Figure S15). In the up-
dated hierarchy, the healthy and IPF transitioning epithe-
lial cells are not present in the reference atlas and are now
correctly added as a new cell type. As expected, we also see
some differences in how the healthy and IPF cell types were
added to the tree. IPF alveolar macrophage proliferating
cells , for instance , are seen as new, while the healthy cells
match with the same cell type in the hierarchy. For other
IPF macrophage cell types, howe v er, this is not the case e v en
though many cells wer e r ejected pr eviously. Comparing the
new annotations with the previously obtained predictions
and the matches in the hierarchy, we notice that there are
still many macrophages rejected (Figure 3 E). For most IPF
cell types, howe v er, only a subset of the cells is rejected. For
instance, for the IPF monocyte-deri v ed macrophages (Md-
M), 486 cells are rejected and 750 are predicted to be Md-M.
Ther efor e, the two cell types are still matched. Comparing
the two IPF ‘subtypes’ of Md-M, the top differentially ex-
pressed gene is SPP1 (adjusted P -value = 9.9e-20). Mono-
cytes and macrophages expressing SPP1 are known to be
a hallmark of IPF pathogenesis ( 37 , 38 ). The rejected Md-
M cells are the only group of cells expressing SPP1 (Figure
3 F). For the alveolar and interstitial macrophages, there are
214 / 493 and 19 / 276 cells rejected respecti v ely. In these re-
jected populations, SPP1 is also upregulated, but only in
the alveolar macrophages, it is also differentially expressed
(adjusted P -value = 0.0011) (Supplementary Figure S16).
This could indicate that these rejected cells are also a dis-
eased subpopulation. By combining the confusion matrices
with the created hierarchy, these diseased subtypes are easily
found, either directly as the proliferating cells, or by looking
at the rejected cells of a matched cluster. 

tr eeAr ches can correctly map cell types across species 

Next, we show how tr eeAr ches can be applied to map the
relationship between cell types of different species. We con-
struct a cell-type hierarchy for the motor cortex of the brain
using human, mouse, and marmoset data (Supplementary
Table S7) ( 22 ). We integrate the r efer ence datasets, mouse
and marmoset, using scVI and construct the cell-type hier-
ar chy using scHPL (Figur e 4 A, B, Supplementary Figur e
S17). Here, we focus on the GABAergic neurons to make
the results less cluttered. Almost all cell types (5 out of 7) are
a perfect match, except for ‘Meis2’ and ‘Sncg’. In the latent
space, the Meis2 cell types from mouse and marmoset also
show no overlap, and both cell types were defined using dif-
ferent marker genes (Supplementary Figure S18A-B). Fur-
thermore, Bakken et al. didn’t find a match between these
two either ( 22 ). This could indicate that the Meis2 cells are
species-specific and should indeed not match one another. It
is unclear why the Sncg cell types (559 and 960 cells in mouse
and marmoset respecti v ely) do not match. Even though the
cell types are aligned in the UMAP embedding as expected
and the marker genes correspond quite well, the cells are re-
jected based on distance (Supplementary Figure S18C, D).
This means that the cells are still too separated in the latent
space. Next, we align the human dataset to the r efer ence us-
ing architectural surgery and add the human cell type to the
r efer ence hierar chy (Figur e 4 B, C). Her e, the constructed hi-
erarchy looks like what we would expect based on the names
of the cell types. 

All pr evious r esults wer e obtained using the default pa-
rameters (number of neighbors = 50, dynamic number
of neighbors = True, see Materials and Methods), which
turned out to be relati v ely robust (Supplementary Figure
S19). The main difference is whether a match is found be-
tween the Sncg cell types. When increasing the number of
neighbors, this match is correctly found. 

DISCUSSION 

In this study, we present treeArches, a method to create
and extend a r efer ence atlas and the corresponding cell-
type hierar chies. tr eeAr ches builds on scAr ches, which al-
lows users to easil y ma p new query datasets to the latent
space learned from the r efer ence datasets using architec-
tur al surgery. Architectur al surgery has the advantage that
the r efer ence datasets ar e not needed anymor e for the map-
ping and that the latent space corresponding to the refer-
ence datasets does not change. This last point is especially
important for scHPL, which then allows users to match the
cell types of multiple labeled datasets to build a cell-type hi-
erarchy. If the latent space of all datasets would be altered
when a new dataset is added, we would have to restart the
construction of the tree completely. 

We have shown three different situations where
tr eeAr ches can be applied: building a r efer ence atlas
from scratch, extending an existing r efer ence atlas to
add new cell types or increase the resolution, or using
an existing r efer ence atlas to label cells in a new dataset.
By using the HLCA data, we show an example of how
tr eeAr ches can be used to extend a hierarchy or to label
cells in a new dataset. The HLCA r efer ence atlas consists
of 16 datasets with a well-defined cell-type hierarchy. We
show that tr eeAr ches can be used to extend this hierarchy.
For instance, by increasing the resolution of some branches
of the tree, but also by adding new cell types. We could also
detect diseased cell types in the IPF datasets. 
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Figure 3. Identifying diseased cells in IPF data. ( A–C ) UMAPs show the HLCA and IPF datasets after alignment. The cells ar e color ed according to their 
cell type or condition. ( D ) Heatmap showing the predicted labels by scHPL and original labels. The dark boundaries indicate the hierarchy of the r efer ence 
tree. ( E ) Sankey diagram showing the new annotations and predictions for the macrophages for the IPF condition. ( F ) Expression of SPP1 in the different 
cell types of the r efer ence and query datasets. 
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Whether building or extending a r efer ence atlas or label-
ing new cells, it is essential that we can detect new cell types,
such as disease-specific cell types. To do so, it is important
that during the mapping, the cell types are not forced to
align; the biological variation should be preserved. Further-
more, during the classification, there should be a correctly
working rejection option (i.e. cells are recognized to belong
to a new unseen class). Here, we showed that this indeed
works in all tested scenarios. A disadvantage of our current
approach is that new cell types are usually added to the root
node directly instead of to an intermediate node in the hier-
archy. Howe v er, this is still informati v e for potential users. It
indica tes tha t a certain cell type is different from the known
cell types in the tree, and by using prior knowledge or visual-
izing potential marker genes such cell types could manually
be placed at a differ ent, mor e specific place in the hierarchy.

Due to the extended rejection options, however, it is dif-
ficult to match small cell types ( < 50 cells). We modified the
kNN classifier from scHPL such that the number of neigh-
bors automatically decreases when there is a small cell type
in the training data, but a pparentl y, this is not sufficient in
all cases. The number of neighbors is a trade-off between
the ability to learn a r epr esentation for small cell types and
the generalizability of the big cell types. 

tr eeAr ches r elies on the original annotations to extend
the cell-type hierarchy. This can be a problem in two differ-
ent situations. If the annotations are missing or at a too low
resolution, it is impossible to extend the atlas. This was the
case with the original annotations of the IPF dataset. Alter-
nati v ely, annotations can have a high resolution, but (par-
tiall y) incorrect. Especiall y w hen there is no clear boundary
between cell types, experts might disagree on where to put
the boundary (the threshold for the classifier). Inconsisten-
cies like this might result in a hierarchy that looks erroneous
at first sight. In those cases, howe v er, tr eeAr ches can still be
more useful than expected. A cell-type hierarchy that looks
different than expected, is usually a sign that the original an-
notations are inconsistent (e.g. different thresholds are used
in dif ferent da tasets). Certain parts of the dataset, e.g. the
cell types that could not be added to the tree or caused con-
fusion, can then be r eannotated. Furthermor e, the tr ee can
still be adapted afterwards. Examples of this are the goblet
and club cells in the HLCA and the megakaryocyte progen-
itor cells in the PBMC datasets. The learned hierarchy is a
good starting point. Based on marker gene expression or
expert knowledge, cell types can also be added to the tree,
removed from the tree, or rewired. After manually adapting
the tree, the classifiers have to be retrained though. 

Our proposed method builds upon existing data integra-
tion methods. Thus, it naturally inherits both advantages
and disadvantages linked to these existing models. As pre-
viously reported ( 12 ), the choice of the reference building
algorithm and r efer ence atlas itself can influence the qual-
ity of r efer ence mapping. Ther efor e, in scenarios wher e the
query dataset is strikingly different from the reference, the
integrated query will still contain batch effects leading to
inaccura te estima tion of hierarchies in tr eeAr ches. This er-
roneous modeling results in weak label transfer results and
thus identifies many overlapping cell types between query
and r efer ence as a new cell type only pr esent in the query.
We advise users to choose a comprehensi v e r efer ence atlas
and e xtensi v ely benchmar k and screen various data integra-
tion methods for an optimal r efer ence r epr esentation ( 16 ). 

In summary, we present treeArches, a method that can
be used to combine multiple labeled datasets to create or
extend a r efer ence atlas and the corresponding cell-type
hierarchy. This way we provide users with an easy-to-use
pipeline to map new datasets to a current reference at-
las, match cell types across multiple labeled datasets, and
consistently label cells in new datasets. With the increas-
ing availability of r efer ence atlases, we envision tr eeAr ches
facilitating the usage of r efer ence atlases allowing users to
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utomaticall y anal yze their datasets from label transfer to 

he automa tic identifica tion of novel cell states in the query 

ata. In conclusion, tr eeAr ches will enab le a data-dri v en 

ath towards consensus-based cell type annotation of (hu- 
an) tissues and will significantly speed up the building and 

nnotation of atlases. 

ODE A V AILABILITY 

r eeAr ches is part of the scArches repository ( https://github. 
om/theislab/scarches , https://doi.org/10.5281/zenodo. 
086075 ). The code for scHPL as a standalone package can 

e found here: https://github.com/lcmmichielsen/scHPL , 
ttps://doi.org/10.5281/zenodo.8086716 . All code to 

 eproduce the r esults and figur es can be found at the
eproducibility GitHub: https://github.com/lcmmichielsen/ 
r eeAr ches-r eproducibility . 

A T A A V AILABILITY 

BMC count data: https://doi.org/10.6084/m9.figshare. 
2420968.v8 

Brain count data: https://doi.org/10.5281/zenodo. 
086471 

PBMC + brain latent space: https://doi.org/10.5281/ 
enodo.8086471 

HLCA latent space: https://doi.org/10.5281/zenodo. 
337966 

UPPLEMENT ARY DA T A 

upplementary Data are available at NARGAB Online. 
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Büttner,M., Wagenstetter,M., Avsec, ̌Z., Ga y oso,A., Yosef,N., 
Interlandi,M. et al. (2022) Mapping single-cell data to r efer ence 
atlases by transfer learning. Nat. Biotechnol. , 40 , 121–130. 

3. Kang,J.B., Nathan,A., Weinand,K., Zhang,F., Millard,N., 
Rumker,L., Moody,D.B., Korsunsky,I. and Raychaudhuri,S. (2021) 
Efficient and precise single-cell reference atlas mapping with 
Symphony. Nat. Commun. , 12 , 5890. 

4. Ga y oso,A., Lopez,R., Xing,G., Boyeau,P., Valiollah Pour Amiri,V., 
Hong,J., Wu,K., Jay asuriy a,M., Mehlman,E., Langevin,M. et al. 
(2022) A Python library for probabilistic analysis of single-cell omics 
data. Nat. Biotechnol. , 40 , 163–166. 

5. Lotfollahi,M., Wolf,F.A. and Theis,F.J. (2019) scGen predicts 
single-cell perturbation responses. Nat. Methods , 16 , 715–721. 
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