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Appendix A

Towards quantum advantage via
topological data analysis

A.1 llsd is DQC1-hard
Following the definition of [178], for any problem L ∈ DQC1 and every x ∈ L, there ex-
ists a quantum circuit U of depth T ∈ O (poly(|x|)) that operates on n ∈ O (poly(|x|))
qubits such that

• x ∈ Lyes =⇒ p0 ≥ 1
2 + 1

poly(|x|) ,

• x ∈ Lno =⇒ p0 ≤ 1
2 − 1

poly(|x|) ,

where p0 = Tr
[
(|0⟩ ⟨0| ⊗ I)UρU†] and ρ = |0⟩ ⟨0| ⊗ I/2n−1. From this it can be

gathered that if we can estimate p0 to within 1/poly(|x|) additive precision, then we
can solve L.

For a positive semidefinite matrix H ∈ C2n×2n and a threshold b ∈ R≥0, we define
the normalized subtrace of H up to b as

Trb(H) =
1

2n

∑

0≤λk≤b

λk,

where λ0 ≤ · · · ≤ λ2n−1 denote the eigenvalues of H. The following result by Brandão
shows that if we can estimate the normalized subtrace Trb of log-local Hamiltonians
up to additive inverse polynomial precision, then we can solve any problem in DQC1.
In other words, estimating Trb of log-local Hamiltonians up to additive inverse poly-
nomial precision is DQC1-hard.

Proposition 31 (Brandão [40]). Given as input a description of an n-qubit quantum
circuit U of depth T ∈ O (poly(n)) together with a polynomial r(n), one can efficiently
construct a log-local Hamiltonian H ∈ CT2n×T2n and a threshold b ∈ O (poly(n)) such
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that

∣∣Trb(H)− p0
∣∣ ≤ 1

r(n)
, (A.1)

where p0 = Tr
[
(|0⟩ ⟨0| ⊗ I)UρU†] and ρ = |0⟩ ⟨0| ⊗ I/2n−1. Moreover, H also satis-

fies:

(iii) H is positive semidefinite.

(iv) There exists a δ ∈ Ω (1/poly(n)) such that H has no eigenvalues in the interval
[b, b+ δ].

Remark(s). The Hamiltonian in the above proposition is obtained by applying Ki-
taev’s circuit-to-Hamiltonian construction directly to the circuit U . However, instead
of adding penalty terms

∑n
i=1 |1⟩ ⟨1|i ⊗ |0⟩ ⟨0|clock to constrain the initial state of all

qubits i = 1, . . . , n, we only add a single penalty term |1⟩ ⟨1|1 ⊗ |0⟩ ⟨0|clock that con-
straints the first qubit to |0⟩ (i.e., a clean qubit) and leaves the rest unconstrained to
emulate the maximally mixed state.

We will show that we can efficiently estimate the normalized subtrace Trb in Equa-
tion A.1 to within additive inverse polynomial precision using an oracle for llsd. To
be precise, we show that we can estimate this normalized subtrace to within additive
inverse polynomial precision using a polynomial amount of nonadaptive queries to an
oracle for llsd (whose input is restricted to log-local Hamiltonians), together with
polynomial-time classical preprocessing of the inputs and postprocessing of the out-
puts. In other words, we provide a polynomial-time truth-table reduction from the
problem of estimating Trb to llsd. We gather this in Lemma 32, which together with
Proposition 31 shows that llsd with the input restricted to log-local Hamiltonians is
DQC1-hard under polynomial-time truth-table reductions.

Lemma 32. Given as input H ∈ CT2n×T2n and b ∈ O (poly(n)) as described in
Proposition 31, together with a polynomial q(n), one can compute a quantity Λ that
satisfies

|Λ− Trb(H)| ≤ 1

q(n)
,

using a polynomial number of queries to an oracle for llsd, together with polynomial-
time classical preprocessing of the inputs and postprocessing of the outputs.

Proof. Define ∆ = (3q(n))
−1, M = b/∆, ϵ = (6Mbq(n))−1 and let δ < ∆/3 be

such that H has no eigenvalues in the interval [b, b + δ]. Also, define the thresholds
xj = (j + 1)∆, for j = 0, . . . ,M − 1. Next, denote by χ̂j the outcome of llsd with
threshold b = xj and precision parameters δ, ϵ as defined above. That is, χ̂j is an
estimate of ŷj to within additive accuracy ϵ, where

ŷj = NH(0, xj) + γ̂j , with 0 ≤ γ̂j ≤ NH(xj , xj + δ).
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Subsequently, define χ0 = χ̂0, y0 = ŷ0 and

yj = ŷj − ŷj−1, (A.2)
χj = χ̂j − χ̂j−1, (A.3)

for 1 ≤ j ≤M − 1. Finally, define the estimate

Λ =

M−1∑

j=0

χjxj . (A.4)

We will show that Λ is indeed an estimate of Trb(H) to within additive precision
±1/q(n). To do so, we define γ0 = γ̂0 and γj = γ̂j − γ̂j−1 for 1 ≤ j ≤M − 1, and we
define and expand

Γ =

M−1∑

j=0

yjxj =

M−1∑

j=0

(NH(xj−1, xj) + γj)xj =

M−1∑

j=0

NH(xj−1, xj)xj

︸ ︷︷ ︸
B:=

+

M−1∑

j=0

γjxj

︸ ︷︷ ︸
Ebin:=

.

We start by upper-bounding the magnitude of the Ebin term. To do so, we rewrite

Ebin =

M−1∑

j=0

γjxj = γ̂0x0 +

M−1∑

j=1

(γ̂j − γ̂j−1)xj

=

M−1∑

j=0

γ̂jxj −
M−1∑

j=1

γ̂j−1xj

=

M−1∑

j=0

γ̂jxj −
M−1∑

j=1

γ̂j−1(xj−1 +∆)

=

M−1∑

j=0

γ̂jxj −
M−1∑

j=1

γ̂j−1xj−1 −∆

M−1∑

j=1

xj−1

= γ̂M−1︸ ︷︷ ︸
=0

xM−1 −∆

M−1∑

j=1

γ̂j−1

︸ ︷︷ ︸
≤1

,

and we conclude that |Ebin| ≤ ∆. Next, we upper-bound the absolute difference of B
and Trb(H).

∣∣B − Trb(H)
∣∣ =

∣∣∣∣∣∣

M−1∑

j=0

NH(xj−1, xj)xj − Trb(H)

∣∣∣∣∣∣
≤

M−1∑

j=0

∆ ·NH(xj−1, xj) ≤ ∆.
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Finally, we upper-bound the absolute difference between Λ and Γ.

|Λ− Γ| =

∣∣∣∣∣∣

M−1∑

j=0

(χj − yj)xj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

M−1∑

j=0

2ϵxj

∣∣∣∣∣∣
≤M · 2ϵ · b = 1

3q(n)

Combining all of the above we find that

|Λ− Trb(H)| ≤ |Λ− Γ|+ |Γ− Trb(H)|
≤ |Λ− Γ|+ |B − Trb(H)|+ |E|

≤ 1

3q(n)
+ ∆+∆ =

1

q(n)
.

A.2 Quantum algorithms for sues and llsd

In this section we give a quantum algorithm for sues and a quantum algorithm for
llsd. Moreover, if the input is a log-local Hamiltonian, then the quantum algorithms
we give in this section turn out to be a DQC1 algorithm in the case of llsd, and a
DQC1logn algorithm in the case of sues. That is, if the input is a log-local Hamilto-
nian, then these algorithms can be implemented in the one clean qubit model, where
in the case of sues we need to measure logarithmically many qubits (as opposed to
just one), in order to read out the entire encoding of the eigenvalue.

By scaling the input H ′ = H/Λ, where Λ ∈ O (poly(n)) is an upper bound on
the largest eigenvalue of H, we can assume without loss of generality that ||H|| < 1.
Moreover, we will use that allowing up to O (log(n)) clean qubits does not change the
class DQC1 [178]. That is, the class of problems that can be solved in polynomial time
using the one clean qubit model of computation is the same as the class of problems
that can be solved in polynomial time using the k-clean qubit model of computation,
for k ∈ O (log n). We use this result since the quantum algorithms we describe need
additional ancilla qubits, which have to be initialized in the all-zeros state and hence
be ‘clean’.

A.2.1 Quantum algorithm for sues
In this section we describe a quantum algorithm for sues, which when the input is
restricted to log-local Hamiltonians turns out to be a DQC1logn algorithm. That
is, if the input is a log-local Hamiltonian, then this algorithm can be implemented
using the one clean qubit model of computation where we are allowed to measure
logarithmically many of the qubits at the end, in order to read out the encoding of
the eigenvalue.

The quantum algorithm for sues implements an approximation of the unitary eiH
using Hamiltonian simulation, to which it applies quantum phase estimation with the
eigenvector register starting out in the maximally mixed state. In the remainder of
this section we will show that we can control the errors such that quantum phase
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estimation applied to the approximation of eiH outputs the corresponding eigenvalue
of H up to precision δ ∈ Ω (1/poly(n)), with error probability µ ∈ Ω (1/poly(n)).
Because the maximally mixed state is in a given eigenstate with uniform probabilities
over all eigenstates, this shows that this quantum algorithm is able to output a sample
from a (δ, µ)-approximation of the uniform distribution over the eigenvalues of H.

Errors can arise in two places, namely due to the imprecisions of the unitary
implemented by the Hamiltonian simulation and due to the imprecisions of estimat-
ing eigenvalues using quantum phase estimation. First, we discuss the errors of the
Hamiltonian simulation step. Given sparse access to H, we can implement a unitary
V such that

||V − eiH || < γ, (A.5)

in time O (poly (n, log(1/γ))) [133]. The algorithms for Hamiltonian simulation of ma-
trices specified by an oracle unfortunately require more than O (log n) ancilla qubits,
which implies that they can not be implemented using the one clean qubit model. On
the other hand, if H is a log-local Hamiltonian, then Hamiltonian simulation tech-
niques based on the Trotter-Suzuki formula can implement a unitary V that satisfies
Equation A.5 in time O (poly(n, 1/γ)) [129], while only using a constant number of
ancilla qubits [51]. Therefore, if H is a log-local Hamiltonian, then using the one
clean qubit model we can implement a unitary V that satisfies Equation A.5 in time
O (poly(n, 1/γ)).

Denote by λj and ζj the output of the quantum phase estimation routine (where
for now we assume that it works perfectly, i.e., introduces no error) when run using
eiH and V , respectively. Then, by Equation A.5 we have

|eiλj − eiζj | ≤ γ,

where we assume that |λj−ζj | ≤ π by adding multiples of 2π to λj if necessary. With
some algebra [51], we can show that this implies that

|λj − ζj | ≤ πγ/2.

Choosing the accuracy of the Hamiltonian simulation to be γ = δ/π ∈ Ω (1/poly(n)),
we get that

|λj − ζj | < δ/2. (A.6)

Next, we will consider the errors that arise from using the quantum phase esti-
mation routine to estimate the eigenvalues ζj of the unitary V . The quantum phase
estimation routine requires a register of t ancilla qubits (also called the eigenvalue
register), onto which the eigenvalue will be loaded. If we take

t = log(2/δ) + ⌈log(2 + 1/2µ)⌉ ∈ O (log n)

qubits in the eigenvalue register, then quantum phase estimation outputs an estimate
ζj that satisfies

|ζj − ζj | ≤ δ/2,
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with probability at least (1− µ) [145]. In particular, with probability at least (1− µ)
this estimate satisfies

|ζj − λj | ≤ |ζj − ζ|+ |ζj − λj | ≤ δ.

This requires Õ (2t) = Õ (poly(n)) applications of the unitary V , each of which can
be implemented in O (poly(n)) time as discussed above. In addition, this quantum
phase estimation step requires only O (log n) ancilla qubits, making it possible to be
implemented using the one clean qubit model.

In conclusion, both the Hamiltonian simulation and the quantum phase estimation
can be implemented up to the required precision in time O (poly(n)). Moreover,
if H is a log-local Hamiltonian, then this can be done using the one clean qubit
model. Finally, to read out the encoding of the eigenvalue, we need to measure the
t ∈ O (log(n)) qubits in the eigenvalue register, resulting in a DQC1logn algorithm for
sues if the input is a log-local Hamiltonian.

A.2.2 Quantum algorithm for llsd
In this section, we will describe two quantum algorithms for llsd, both of which turn
into DQC1 algorithms when the input is restricted to log-local Hamiltonians. That
is, if the input is a log-local Hamiltonian, then these algorithms can be implemented
using the one clean qubit model of computation.

Counting eigenvalues below the threshold

A straightforward approach is to solving llsd is to repeatedly sample from the output
of sues and then compute the fraction of samples that lie below the given threshold.
The downside of this is that it requires one to measure the entire eigenvalue register
consisting of logarithmically many qubits, which is prohibitive as we are only allowed
to measure a single qubit in the one clean qubit model. This can be circumvented by
simply adding an extra clean qubit and flipping this qubit conditioned on the state
in the eigenvalue register being smaller than the given threshold. This extra qubit
will be flipped with probability close to the low-lying spectral density, allowing us to
obtain a solution to llsd by only measuring this single qubit. Moreover, if H is a
log-local Hamiltonian, then this ‘fully quantum’ algorithm can be implemented using
the one clean qubit model, as it requires only a few more additional clean qubits on
top of those required for the quantum algorithm for sues discussed in Section A.2.1.

Note that the outcome probabilities of this ‘fully quantum’ algorithm are identical
to those obtained by measuring the entire eigenvalue register, followed by classical
counting of the number of samples below the given threshold. Consequently, the same
error analysis applies in both cases. In the rest of this section we will discuss the error
analysis of classically counting the number of samples below the given threshold.

Let m = ϵ−2 ∈ O (poly(n)) and draw for j = 1, . . . ,m a sample λkj from sues
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with δ/2 as the precision parameter. Next, compute

χj =

{
1 if λkj ∈ (a− δ/2, b+ δ/2),

0 otherwise.

For now we assume that all samples λkj
were correctly sampled, i.e., each kj is

drawn uniformly at random from the set {0, . . . , 2n− 1} and |λkj −λkj | ≤ δ/2, where
λkj

denotes the eigenvalue of which λkj
is an estimate. We now show that under this

assumption the quantity

χ :=
1

m

m∑

j=1

χj (A.7)

is, with high probability, a correct solution to llsd. By the Chernoff-Hoeffding in-
equality χ is, with high probability, an estimate to within additive precision ϵ of

y := Pr
λ∼sues

[
λ ∈ (a− δ/2, b+ δ/2)

]
,

where the probability is taken over the λ being correctly sampled from sues. Because
we assume that the λ are correctly samples from sues, we know that they satisfy
|λ− λ| ≤ δ/2, where λ denotes the eigenvalue of which λ is an estimate. This implies
that

(v) y ≤ Prλ∼U{λj}2n
j=1

[
λ ∈ (a− δ, b+ δ)

]
= NH(a− δ, b+ δ),

(vi) y ≥ Prλ∼U{λj}2n
j=1

[
λ ∈ (a, b)

]
= NH(a, b),

where the probabilities are taken over the λ being sampled uniformly from the set of
all eigenvalues of H. Combining this with the Chernoff-Hoeffding inequality, we find
that χ is, with high probability, an estimate of y up to additive precision ϵ, where y
satisfies

NH(a, b) ≤ y ≤ NH(a− δ, b+ δ).

That is, if all λkj
were sampled correctly from sues, then χ is with high probability

a correct solution to llsd.
Finally, we consider the probability that all samples λkj were indeed sampled

correctly. By the union bound this probability is at least 1 −mµ, where µ denotes
the sampling error probability of sues. Because m ∈ O (poly(n)), we can choose µ ∈
Ω
(
1/poly(ϵ−2, n)

)
= Ω(1/poly(n)) such that all our samples are sampled correctly

with probability close to 1. Therefore, we conclude that the χ defined in Equation A.7
is a correct solution to llsd, with probability close to 1. Moreover, χ can be obtained
from a polynomial number of samples from sues, and can therefore be computed in
time O (poly(n)).
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Using trace estimation of eigenvalue transform

In our paper, we use a result of Cade & Montanaro [51] to argue that the complexity
of estimating the spectral entropy of a Hermitian matrix is closely related to DQC1.
In their work, Cade & Montanaro describe a DQC1 algorithm can estimate traces
of general functions of Hermitian matrices (i.e., beyond spectral entropies). This
algorithm could also be used to extract other interesting properties encoded in the
spectrum of the combinatorial Laplacian. To illustrate this and connect even further
to this line of work, we provide an alternative algorithm for llsd based on this
algorithm. The main result we will utilize is the following Lemma.

Lemma 33 (Cade & Montanaro [51]). For a log-local Hamiltonian H ∈ C2n×2n , and
any log-space polynomial-time computable function f : I → [−1, 1] (where I contains
the spectrum of H) that is Lipschitz continuous with constant K (i.e., |f(x)−f(y)| ≤
K|x− y| for all x, y ∈ I), there exists a DQC1 algorithm to estimate Tr(f(H))/2n =∑

j f(λj)/2
n up to additive accuracy ϵ(K+1), where λj denote the eigenvalues of H,

and ϵ ∈ Ω(1/poly(n)).

It is clear that if the function f is the step-function with threshold b+ δ/2 given by

f(x) =

{
1 if x ≤ b+ δ/2,

0 otherwise,

then the quantity estimated by the algorithm of Lemma 33 is a correct solution to
llsd. However, as this function is not Lipschitz continuous, we will use a smooth
approximation based on the following lemma.

Lemma 34 (Smooth approximation of the sign function). Let δ > 0, ϵ ∈ (0, 1) and
γ = δ

√
2ϵ−ϵ2

1−ϵ . Then, the function gγ(x) =
x√

x2+γ2
satisfies

(vii) for all x ∈ [−2, 2] : −1 ≤ gγ(x) ≤ 1,

(viii) for all x ∈ [−2, 2]\(−δ, δ) : |gγ(x)− sgn(x)| ≤ ϵ, and

(ix) supx∈[−2,2] |g′γ(x)| ≤ 1
γ .

Proof. (i) It is clear that for all x ∈ [−2, 2] we have: −1 ≤ gγ(−2) ≤ gγ(x) ≤
gγ(2) ≤ 1.

(ii) Let x ∈ (δ, 2], then

|gγ(x)− sgn(x)| = |gγ(x)− 1| ≤ |gγ(δ)− 1| = ϵ.

For x ∈ [−2,−δ) we note that

|gγ(x)− sgn(x)| = |gγ(x) + 1| ≤ |gγ(−δ) + 1| = | − (gγ(δ)− 1)| = ϵ.

(iii) It is clear that: supx∈[−2,2] |g′γ(x)| = |g′γ(0)| = 1
γ .
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Let γ = (δ/2)
√
2ϵ−ϵ2

1−ϵ and define g = gγ as in Lemma 34. We define our smooth
approximation of the step-function by

f̂(x) =
g(−x+ b′) + 1

2
,

where b′ = b + δ/2. By Lemma 34 we know that f̂ is Lipschitz continuous on [0, 1]
with constant 1/γ ∈ O (poly(n)), and that it satisfies

• for all x ∈ [0, 1] : 0 ≤ f̂(x) ≤ 1, and

• for all x ∈ [0, 1]\(b, b+ δ) : |f̂(x)− f(x)| ≤ ϵ/2.
Subsequently, we define our estimation objective

y =
1

2n


 ∑

j : λj∈[0,b]

f(λj) +
∑

j : λj∈[b,b+δ]

f̂(λj)


 ,

and we note that y indeed satisfies NH(0, b) ≤ y ≤ NH(0, b+ δ), since

y =
1

2n


 ∑

j : λj∈[0,b]

f(λj) +
∑

j : λj∈[b,b+δ]

f̂(λj)




= NH(0, b) +
1

2n

∑

j : λj∈[b,b+δ]

f̂(λj)︸ ︷︷ ︸
∈[0,1]︸ ︷︷ ︸

∈[0,NH(b,b+δ)]

.

Now our goal is to use Lemma 33 to obtain an ϵ-approximation of y. To this end, we
first define

Λ =
1

2n

2n∑

j=1

f̂(λj),

and we upper-bound the absolute difference between y and Λ as follows

∣∣∣Λ− y
∣∣∣ ≤ 1

2n

∣∣∣∣∣∣
∑

j : λj∈[0,b]

(
f̂(λj)− f(λj)

)
+

∑

j : λj∈[b+δ,1]

f̂(λj)

∣∣∣∣∣∣

≤ 1

2n


 ∑

j : λj∈[0,b]

∣∣∣f̂(λj)− f(λj)
∣∣∣+

∑

j : λj∈[b+δ,1]

∣∣∣f̂(λj)
∣∣∣




≤ 1

2n


 ∑

j : λj∈[0,b]

ϵ/2 +
∑

j : λj∈[b+δ,1]

ϵ/2


 ≤ ϵ/2.

Finally, let χ be the output of the algorithm of Lemma 33 applied to our function
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f̂ with precision parameter ϵ̂ = ϵ/(2(K+1)) ∈ Ω(1/poly(n)). In particular, χ satisfies
|χ− Λ| ≤ ϵ̂(K + 1) = ϵ/2. We conclude that χ is a correct solution to llsd since

|χ− y| ≤ |χ− Λ|+ |Λ− y| ≤ ϵ/2 + ϵ/2 = ϵ,

and y indeed satisfies NH(0, b) ≤ y ≤ NH(0, b+ δ) as discussed earlier.

A.3 Betti number and spectral gap calculations
The purpose of this section is to prove Propositions 8 and 9.

Definition 22. Given two simplicial complexes X and Y , define their join X ∗ Y to
be the simplicial complex consisting of faces σ ⊗ τ := σ ∪ τ for all σ ∈ X, τ ∈ Y .

Observe that K(m, k) = K(m, k − 1) ∗K(m, 1).
In this section, we will work with reduced homology. This is identical to regu-

lar homology, except that we have an extra 1-dimensional space C−1 and an extra
boundary map ∂0 : C0 → C−1 which maps every vertex (0-simplex) to the unique
basis vector of C−1. This has the effect that the reduced homology H0 is equal to
the number of connected components minus one, rather than simply the number of
connected components. The rest of the homology groups Hk for k > 0 are unchanged.

The homology of the join is given by the well-known Kunneth formula.

Lemma 35. (Kunneth formula)

H̃k(X ∗ Y ) =
⊕

i+j=k−1

H̃i(X)⊗ H̃j(Y ) (A.8)

=⇒ β̃k(X ∗ Y ) =
∑

i+j=k−1

β̃i(X)β̃j(Y ) (A.9)

We would also like to relate the Laplacian of X ∗Y to the Laplacians of X and Y .

Lemma 36. Let σ ∈ X be an i-simplex and τ ∈ Y a j-simplex with i + j = k − 1.
Then

∆X∗Y
k (σ ⊗ τ) = (∆X

i σ)⊗ τ + σ ⊗ (∆Y
j τ) (A.10)

Proof. Let’s work in the graded algebra C−1 ⊕ C0 ⊕ C1 ⊕ . . . . We have

∆ = ∂†∂ + ∂∂†

∂(σ ⊗ τ) = (∂σ)⊗ τ + (−1)|σ|σ ⊗ (∂τ)

∂†(σ ⊗ τ) = (∂†σ)⊗ τ + (−1)|σ|σ ⊗ (∂†τ)

=⇒ ∆(σ ⊗ τ) = (∆σ)⊗ τ + σ ⊗ (∆τ)

Corollary 37. Let spec∆ denote the set of eigenvalues of ∆.

spec∆X∗Y
k =

⋃

i+j=k−1

spec∆X
i + spec∆Y

j (A.11)
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Here the plus notation for sets means A+B = {a+ b : a ∈ A, b ∈ B}.
Proof. Use Lemma 36 and let σ ∈ CX

i and τ ∈ CY
j be eigenchains of ∆X

i and ∆Y
j

respectively.

Proposition 38. (Restatement of Proposition 8.)
The (k − 1)th Betti number of the clique complex of K(m, k) is

βk−1 = (m− 1)k (A.12)

Proof. K(m, k) = K(m, k− 1) ∗K(m, 1) and the Betti numbers of K(m, 1) are (m−
1, 0, 0, . . . ). Thus by induction using the Kunneth formula, we have βk−1 = (m −
1)k.

Proposition 39. (Restatement of Proposition 9.)
The combinatorial Laplacian ∆G

k−1 = (∂Gk−1)
†∂Gk−1+∂

G
k (∂Gk )† of the clique complex

of K(m, k) has spectral gap
λmin = m (A.13)

Proof. Again K(m, k) = K(m, k−1)∗K(m, 1). The spectrum of the ∆K(m,1)
0 is 0 with

multiplicity m− 1, and m with multiplicity 1. Thus by induction using Corollary 37,
the spectrum of ∆K(m,k)

k−1 is (ignoring multiplicities) {0,m, 2m, . . . , km}. This gives
λmin = m.

A.4 SWES is DQC1-hard
In this section, we will show that swes is DQC1-hard. We will do so by showing that
we estimate the DQC1-hard normalized subtrace Trb(H) from Proposition 31 up to
additive polynomial precision ϵ ∈ Ω(1/poly) using a polynomial number of queries to
an oracle for swes, together with polynomial-time classical preprocessing of the input
and postprocessing of the output.

First, by considering how H is constructed in [40], we note that Tr(H) is known
and that Tr(H)/2n ∈ O (poly(n)). Next, we define ϵ̂ = (ϵ/(Tr(H)/2n)) and m =
1/ϵ̂2. Subsequently, let λk1

, . . . , λkm
denote samples drawn from swes with estimation

precision δ/2, where δ is such that H has no eigenvalues in [b, b + δ]. For now we
assume that all samples were correctly sampled, i.e., |λkj

− λkj
| ≤ δ/2, where λkj

denotes the eigenvalue of which λkj is an estimate. Afterwards, we estimate the
normalized subtrace Trb(H) by computing the ratio of samples that is below b+ δ/2

χ =
1

m

∑

j : λkj
≤b+δ/2

1

By the Chernoff-Hoeffding inequality (together with the fact thatH has no eigenvalues
in [b, b+ δ]), this ratio χ is, with high probability, an estimate of

Λ =
∑

j : λj≤b

λj/Tr(H),
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up to additive precision ϵ̂. Therefore, (Tr(H)/2n) · χ is, with high probability, an ϵ
estimate of (Tr(H)/2n) · Λ = Trb(H).

Finally, we consider the probability that all samples λkj
were indeed sampled

correctly. By the union bound this probability is M ·µ, where µ denotes the sampling
error probability of swes. Because m ∈ O (poly(n)), we can choose µ ∈ Ω(1/m) =
O (poly(n)) such that all our samples are sampled correctly with probability close to
1.
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Appendix B

Structural risk minimization for
quantum linear classifiers

B.1 Proofs of Section 4.1

B.1.1 Proofs of Proposition 12 and Lemma 13
Proposition 12. Let O ⊆ Herm

(
C2n

)
be a family of n-qubit observables with r =

dim
(∑

O∈O ImO
)
1. Then, the VC dimension of

COqlin =
{
c(x) = sign

(
Tr [OρΦ(x)]− d

) ∣∣ O ∈ O, d ∈ R
}

(4.1)

satisfies

VC
(
COqlin

)
≤ dim

(
Span

(
O
))

+ 1 ≤ r2 + 1. (4.2)

Proof. Define V =
∑

O∈O ImO ⊂ C2n and let PV denote the orthogonal projector onto
V . Let Φ : X → Herm

(
C2n

)
denote the feature map of COqlin and define Φ′ = PV ΦPV .

Note that COqlin(Φ′) = COqlin(Φ). It is known that the VC dimension of linear classifiers
on Rℓ is ℓ + 1, and it is clear that Herm

(
V
)
≃ Herm

(
Cr
)
≃ Rr2 . Also, note that

Span
(
O
)

is a subspace of Herm
(
V
)
. We therefore conclude that

VC
(
COqlin(Φ)

)
= VC

(
COqlin(Φ′)

)

≤ VC
(
linear classifiers on Span

(
O
))

= dim
(
Span

(
O
))

+ 1

≤ VC
(
linear classifiers on Herm

(
V
)
≃ Rr2

)
= r2 + 1.

1Here
∑

denotes the sum of vector spaces and ImO denotes the image (or column space) of the
operator O.
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Lemma 13. The vector spaces defined in Eq. (4.3) and Eq. (4.4) satisfy2

dim(H) ≤ dim(V ) ≤ dim(H)2.

Proof. First, we note that V is contained in the space of Hermitian operators on H.
Since the dimension of the space of Hermitian operators on H is equal to dim(H)2,
this implies that

dim(V ) ≤ dim(H)2.

Next, we fix a basis of H which we denote {|ψk⟩}dim(H)
k=1 , where we each |ψk⟩ is of the

form |ψi(θ)⟩ for some i ∈ {1, . . . , L} and θ ∈ Rm. To show that dim(V ) ≥ dim(H), we
will show that the operators {|ψk⟩ ⟨ψk|}dim(H)

k=1 ⊂ V are linearly independent. We do so
by contradiction, i.e., we assume they are not linearly independent and show that this
leads to a contradiction. That is, we assume that there exists a k′ ∈ {1, . . . ,dim(H)}
and {αk}k ̸=k′ ⊂ R such that

|ψ′
k⟩ ⟨ψ′

k| =
∑

k ̸=k′

αk |ψk⟩ ⟨ψk| .

This implies that

|ψ′
k⟩ =

(
|ψ′

k⟩ ⟨ψ′
k|
)
|ψ′

k⟩
=
( ∑

k ̸=k′

αk |ψk⟩ ⟨ψk|
)
|ψ′

k⟩

=
∑

k ̸=k′

(αk ⟨ψk | ψ′
k⟩) |ψk⟩ ,

which shows that {|ψk⟩}dim(H)
k=1 are not linearly independent. This clearly contradicts

the assumption that {|ψk⟩}dim(H)
k=1 is basis of H. We therefore conclude that the

operators {|ψk⟩ ⟨ψk|}dim(H)
k=1 ⊂ V are linearly independent, which shows that dim(V ) ≥

dim(H).

B.1.2 Relationship Proposition 12 and ranks of observables
In this section we discuss one possible way to relate the quantity r in Proposition 12
with the ranks of the observables by considering the overlaps of the images of the
observables. Specifically, consider a family of observables {Oi}ni=1, where each ob-

2Note that there exists ansatzes for which the inequalities are strict, i.e., dim(H) < dim(V ) <
dim(H)2 (e.g., see the first example discussed in Section 4.3).
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servable is of rank R3. Next, define the quantities

Ii = dim (ImOi ∩ [ImOi+1 + · · ·+ ImOn]) (B.1)

and

Oi = R− Ii. (B.2)

Note that Oi measures the extent to which the image of the observable Oi overlaps
with the images of the observables Oi+1, . . . ,On. Specifically, Oi is equal to zero
if the images are fully overlapping, and it is equal to R if there is no overlap at
all. Now Lemma 40 below provides a way to relate the quantity r in Proposition 12
with the ranks of the observables R and the overlaps of the images Oi. Note that
we consider the case where the family of observables is finite, whereas in the case of
explicit quantum linear classifiers this family is infinite. However, since all images live
in a finite dimensional space, summing only finitely many images is already sufficient.
More precisely, for any family of n-qubit observables O (possibly infinitely large) there
exists a O′ ⊆ O with |O′| ≤ 2n and

∑

O′∈O′

ImO′ =
∑

O∈O
ImO.

In Lemma 40 below we can thus w.l.o.g. consider the case where the family of observ-
ables is finite.

Lemma 40. Consider a family of observables O = {Oi}i∈I , where each observable is
of rank R. Then, for r defined in Proposition 12 and {Oi}i∈I defined in Eq. (B.2),
we have that

r = R+

n−1∑

i=1

Oi

Proof. The proof is basically a repeated application of the formula

dim (ImO1 + ImO2) = dim (ImO1) + dim (ImO2)− dim (ImO1 ∩ ImO2) .

3The results in this section hold more generally for families with varying ranks, though for sim-
plicity (and to more closely relate it to Proposition 15) we assume all observables have some fixed
rank R (from which it should be clear how to adapt it to the case where the observables can have
different ranks).

148



Specifically, by repeatedly applying the above formula we find that

r = dim

(
n∑

i=1

ImOi

)
= dim (ImO1) + dim

(
n∑

i=2

ImOi

)

− dim

(
ImO1 ∩

n∑

i=2

ImOi

)

= dim (ImO1) + dim (ImO2) + dim

(
n∑

i=3

ImOi

)

− dim

(
ImO1 ∩

n∑

i=2

ImOi

)

− dim

(
ImO2 ∩

n∑

i=3

ImOi

)

= nR− (I1 + · · ·+ In−1)

= R−
n−1∑

i=1

(R− Ii) = R−
n−1∑

i=1

Oi

B.1.3 Proof of Proposition 14
Proposition 14. Let O ⊆ Herm

(
C2n

)
be a family of n-qubit observables with η =

maxO∈O ∥O∥F . Then, the fat-shattering dimension of

FO
qlin =

{
fO,d(x) = Tr [OρΦ(x)]− d

∣∣ O ∈ O, d ∈ R
}

(4.5)

is upper bounded by

fatFO
qlin

(γ) ≤ O
(
η2

γ2

)
. (4.6)

Proof. Due to the close relationship to standard linear classifiers, we can utilize pre-
viously obtained results in that context. In particular, for our approach we use the
following proposition.

Proposition 41 (Fat-shattering dimension of linear functions [175]). Consider the
family of real-valued functions on the ball of radius R inside RN given by

Flin =
{
fw,d(x) = ⟨w, x⟩ − d

∣∣∣ w ∈ RN with ||w|| = 1, d ∈ R with |d| ≤ R
}
.

The fat-shattering dimension of Flin can be bounded by

fatFlin
(γ) ≤ min{9R2/γ2, N + 1}+ 1.
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The context in the above proposition is closely related, yet slightly different than
that of quantum linear classifiers. Firstly, n-qubit density matrices lie within the ball
of radius R = 1 inside Herm

(
C2n

)
equipped with the Frobenius norm. However, as

in our case the hyperplanes arise from the family of observables O, whose Frobenius
norms are upper bounded by η, we cannot directly apply the above proposition. We
therefore adapt the above proposition by exchanging the role of R with the upper
bound on the norms of the observables in O, resulting in the following lemma.

Lemma 42. Consider the family of real-valued functions on the ball of radius R = 1
inside RN given by

F≤η
lin =

{
fw,d(x) = ⟨w, x⟩ − d

∣∣∣ w ∈ RN with ||w|| ≤ η, d ∈ R with |d| ≤ η
}
.

The fat shattering dimension of F≤η
lin can be upper bounded by

fatF≤η
lin

(γ) ≤ min{9η2/γ2, N + 1}+ 1.

Proof. Let us first determine the fat-shattering dimension of the family of linear func-
tions with norm precisely equal to η on points that lie within the ball of radius R = 1,
i.e.,

F=η
lin =

{
fw,d(x) = ⟨w, x⟩ − d

∣∣∣ w ∈ RN with ||w|| = η, d ∈ R with |d| ≤ η
}
.

Suppose F=η
lin can γ-shatter a set of points {x1, . . . , xk} that lie within the ball of

radius R = 1. Because ⟨w, xi⟩ = ⟨w/η, ηxi⟩, we find that F=1
lin can γ-shatter the set

of points ηx1, . . . , ηxk that lie within the ball of radius R = η. By Proposition 41
we have k ≤ min{9η2/γ2, N + 1}+ 1. Thus, the fat-shattering dimension of F=η

lin on
points within the ball of radius R = 1 is upper bounded by

fatF=η
lin

(γ) ≤ min{9η2/γ2, N + 1}+ 1.

To conclude the desired results, note that this bound is monotonically increasing
in η, and thus allowing hyperplanes with with norm ∥w∥ < η will not increase the
fat-shattering dimension.

From the above lemma we can immediately infer an upper bound on the fat-
shattering dimension of quantum linear classifiers by identifying that as vector spaces
Herm

(
C2n

)
≃ R4n .

Sample complexity in the PAC-learning framework

Besides being related to generalization performance, the fat-shattering dimension is
also related to the so-called sample complexity in the probably approximately correct
(PAC) learning framework [117]. The sample complexity captures the amount classi-
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fier queries required to find another classifier that with high probability agrees with
the former classifier on unseen examples.

By plugging the upper bound of Proposition 14 into previously established theo-
rems on the sample complexity of families of classifiers [21, 29], we derive the following
corollary, which can be viewed as a dual of the result of [8].

Corollary 43. Let O ⊆ Herm
(
C2n

)
be a family of observables with η = maxO∈O ∥O∥F

and consider the family of real-valued functions FO
qlin defined in Eq. (4.5). Fix an el-

ement F ∈ FO
qlin as well as parameters ϵ, ν, γ > 0 with γϵ ≥ 7ν. Suppose we draw

m examples D = {ρ1, . . . , ρm} independently according to a distribution P , and then
choose any function H ∈ FO

qlin such that |H(ρi) − F (ρi)| ≤ ν for all ρi ∈ D. Then,
with probability at least 1− δ over P , we have that

Pr
ρ∼P

(
|H(ρ)− F (ρ)| > γ

)
≤ ϵ,

provided that

m ∈ Ω

(
1

γ2ϵ2

( η2

γ2ϵ2
log2

1

γϵ
+ log

1

δ

))
.

Proof. Follows directly from plugging the uppper bound of Proposition 14 into Corol-
lary 2.4 of [8].

B.2 Proofs of propositions Section 4.2

B.2.1 Proof of Proposition 15

Proposition 15. Let C(r)qlin denote the family of quantum linear classifiers correspond-
ing to observables of exactly rank r, that is,

C(r)qlin =
{
c(ρ) = sign

(
Tr [Oρ]− d

) ∣∣ O ∈ Herm
(
C2n

)
, rank

(
O
)
= r, d ∈ R

}
(4.7)

Then, the following statements hold:

(x) For every finite set of examples D that is correctly classified by a quantum linear
classifier c ∈ C(k)qlin with 0 < k < 2n, there exists a quantum linear classifier

c ∈ C(r)qlin with r > k that also correctly classifies D.

(xi) There exists a finite set of examples that can be correctly classified by a classifier
c ∈ C(r)qlin, but which no classifier c′ ∈ C(k)qlin with k < r can classify correctly.

Proof. (i): Suppose cO,b ∈ C(k)qlin correctly classifies D. Next, we define

δ = min
x∈D−

∣∣Tr [Oρx]− d
∣∣,
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where D− is the subset of examples with label −1, and note that since D is correctly
classified we have δ > 0. Fix the basis we work in to be the eigenbasis of O ordered
in such a way that

O = diag(λ1, . . . , λk, 0, . . . , 0)

and define
P =

1

r − kdiag(0, . . . , 0︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
r−k times

, 0, . . . , 0︸ ︷︷ ︸
2n−r times

).

For every 0 < ϵ < δ we have that O′ = O + ϵP has rank(O′) = r. What remains to
be shown is that cO′,b ∈ C(r)qlin correctly classifies D. To do so, first let x ∈ D+ (i.e.,
labeled +1) and note that

Tr [O′ρx]− b = (Tr [Oρx]− b)︸ ︷︷ ︸
≥0

+ ϵTr [Pρx]︸ ︷︷ ︸
≥0

≥ 0,

which shows that indeed cO′,b(x) = +1. Next, let x ∈ D− (i.e., labeled −1) and note
that

Tr [O′ρx]− b = (Tr [Oρx]− b)︸ ︷︷ ︸
≤−δ

+ ϵTr [Pρx+ ]︸ ︷︷ ︸
<δ

< 0,

which shows that indeed cO′,b(x) = −1.
(ii):
We will describe a protocol that queries a classifier cO,b and based on its outcomes

checks whether O is approximately equal to a fixed target observable T of rank r. We
will show that if the queries to cO,b are labeled in a way that agrees with the target
classifier that uses the observable T , then the spectrum of O has to be point-wise
within distance ϵ of the spectrum of T . In particular, this will show that the rank of
O has to be at least r if we make ϵ small enough. Consequently, if the rank of O is less
than r, then at least one query made during the protocol has to be labeled differently
by cO,b than the target classifier. In the end, the queries made to the classifier during
the protocol will therefore constitute the set of examples described in the theorem.

Let us start with some definition. For a classifier cO,b(ρ) = sgn
(
Tr
[
Oρ
]
− b
)

we
define its effective observable Oeff = O − bI which we express in the computational
basis as Oeff = (Oij). Next, we define our target classifier to be cT ,−1 where the
observable T is given by

T = −r |0⟩ ⟨0|+
r−1∑

i=1

i |i⟩ ⟨i| ,

and we define its effective observable Teff = T + I which we express in the computa-
tional basis as Teff = (Tij). Rescaling Oeff with a positive scalar does not change the
output of the corresponding classifier. Therefore, to make the protocol well-defined,
we define Oeff to be the unique effective observable whose first diagonal element is
scaled to be equal to O00 = −(r + 1).

Our approach is as follows. First, we query cO,b in such a way that if the outcomes
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agree with with the target classifier cT ,−1, then the absolute values of the off-diagonal
entries in the first row and column of Oeff must be close to zero (i.e., approximately
equal to those of Teff). Afterwards, we again query cO,b but now in such a way that
if the outcomes agree with the target classifier cT ,−1, then the diagonal elements of
Oeff must be approximately equal to those of Teff. In the end, we query cO,b one final
time but this time in such a way that if the outcomes agree with the target classifier
cT ,−1, then the absolute values of the remaining off-diagonal elements of Oeff must
be close to zero (i.e., again approximately equal to those of Teff). Finally, we use
Gershgorin’s circle theorem to show that the spectrum of Oeff has to be point-wise
close to the spectrum of Teff. We remark that this procedure could be generalized to
a more complete tomography approach, where one uses queries to the classifier cO,b

in order to reconstruct the entire spectrum of Oeff.
First, we query the quantum states |i⟩ for i = 0, . . . , 2n − 1. Without loss of

generality, we can assume that the classifiers cO,b and cT ,−1 agree on the label, i.e.,

cO,b

(
|0⟩ ⟨0|

)
= −1, and cO,b

(
|i⟩ ⟨i|

)
= +1 for i = 1, . . . , 2n − 1, (B.3)

as otherwise a set of examples containing just these states would already separate
cO,b and cT ,−1.

In order to show that the absolute value of the off-diagonal elements of the first
row and column of Oeff must be close to zero and that the diagonal elements of Oeff
must be close to those of Teff, we consider the quantum states given by

|γθ(α)⟩ =
√
1− α |0⟩+ eiθ

√
α |j⟩ , with α ∈ [0, 1] and θ ∈ [0, 2π). (B.4)

Its expectation value with respect to Oeff is given by

⟨γθ(α)| Oeff |γθ(α)⟩ = (1− α)O00 + αOjj +
√
α(1− α)Cθ, (B.5)

where Cθ := Re
(
eiθO0j

)
, and its expectation value with respect to Teff is given by

⟨γθ(α)| Teff |γθ(α)⟩ = (1− α)T00 + αTjj . (B.6)

Crucially, by Equation (B.3) we know that the label of |γθ(α)⟩ goes from −1 to +1
as α goes 0 → 1. Note that the expectation value of |γθ(α)⟩ with respect to Teff is
independent from the phase θ.

To determine that
∣∣O0j

∣∣ is smaller than δ > 0, we query the classifier cO,b on the
states |γθ̂(α̂)⟩ for all θ̂ in a ζ-mesh of [0, 2π) and for all α̂ in a ξ-mesh of [0, 1] and
we suppose they are labeled the same as the target classifier cT ,−1 would label them.
Using these queries we can find estimates α̂Oeff

cross(θ̂) that are ξ-close to the unique
αOeff

cross(θ) = α′ that satisfies

⟨γθ(α′)| Oeff |γθ(α′)⟩ = 0, (B.7)

by finding the smallest α̂ where the label has gone from −1 to +1. We refer to the α′

satisfying Equation (B.7) as the crossing point at phase θ. Because the label assigned
by cT ,−1 does not depend on the phase θ, and since all states |γθ̂(α̂)⟩ were assigned
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the same label by cO,b and cT ,−1, we find that the crossing point estimate α̂Oeff
cross(θ̂) is

the same for all θ̂. In particular, this implies that the actual crossing points αOeff
cross(θ̂)

have to be within ξ-distance of each other for all θ̂.
Before we continue, we first show that if cO,b assigns the same labels as cT ,−1,

then Ojj is bounded above by a quantity that only depends on n. Fix θ̃ to be any
point inside the ζ-mesh such that Cθ̃ ≤ 0, and define the function E(α) = (1 −
α)O00+αOjj +

√
(1− α)αCθ̃. By our choice of T , we have that αT

cross ∈ ( r+1
2r+1 ,

r+1
r+3 ).

Therefore, if cO,b and cT ,−1 agree on the entire ξ-mesh for a small enough ξ, then
it must hold that αOeff

cross(θ̃) ∈ ( 12 ,
2n+1
2n+2 ). By the mean value theorem there exists an

α′ ∈ (αOeff
cross(θ̃),

2n+1
2n+2 ) such that

E′(α′) =
E( 2

n+1
2n+2 )− E(αOeff

cross(θ̃))
2n+1
2n+2 − α

Oeff
cross(θ̃)

. (B.8)

After some rewriting, we can indeed conclude from the above equation that Ojj is
bounded above by a quantity that only depends on n.

Next, write O0j =
∣∣O0j

∣∣eiϕ with ϕ ∈ [0, 2π), let θ̂abs denote the point in the ζ-
mesh of [0, 2π) that is closest to 2π − ϕ, and let θ̂0 denote the point in the ζ-mesh of
[0, 2π) that is closest to π/2−ϕ modulo 2π. By our previous discussion we know that∣∣αOeff

cross(θ̂abs) − αOeff
cross(θ̂0)

∣∣ < ξ, which together with the previously established bound
on Ojj implies that

∣∣∣Cθ̂abs
− Cθ̂0

∣∣∣ < f(ξ), (B.9)

where f is a continuous function (independent from cO,b) with f(ξ) → 0 as ξ → 0.
Moreover, using the inequality cos(ζ) ≥ 1 − λζ, where λ ≈ 0.7246 is a solution of
λ
(
π − arcsin(λ)

)
= 1 +

√
1− λ2, together with the inequality cos(π/2− ζ) ≤ ζ, we

can derive that
∣∣∣Cθ̂abs

− Cθ̂0

∣∣∣ =
∣∣∣
∣∣O0j

∣∣ cos
(
θ̂abs + ϕ

)
−
∣∣O0j

∣∣ cos
(
θ̂0 + ϕ

)∣∣∣

≥
∣∣∣O0j

∣∣∣ ·
∣∣∣ cos

(
ζ
)
− cos

(
π/2− ζ

)∣∣∣

≥
∣∣∣O0j

∣∣∣ ·
∣∣∣1−

(
λ+ 1

)
ζ
∣∣∣.

(B.10)

Finally, by combining Equation (B.9) with Equation (B.10) we can conclude that

∣∣O0j

∣∣ < f(ξ)

1− (λ+ 1)ζ
,

which for ξ and ζ small enough shows that
∣∣O0j

∣∣ < δ for any chosen precision δ > 0
(i.e., the fineness of both meshes ξ and ζ will depend on the choice of δ).

To determine that Ojj is within distance δ′ > 0 of Tjj we again query the classifier
cO,b but this time on the states |γ0(α̂)⟩ for all α̂ in a ξ′-mesh of [0, 1] and we suppose
they are labeled the same as the target classifier cT ,−1 would. Using these queries
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we can find estimates α̂Oeff
cross(0), α̂Teff

cross(0) that are ξ′-close to the corresponding actual
crossing point. As we assumed that all queries are labeled the same by cO,b and cT ,−1,
the crossing point estimate α̂Oeff

cross(0) has to be equal to the crossing point estimate
α̂Teff

cross(0). In particular, this implies that the actual crossing points αOeff
cross(0) and

αTeff
cross(0) have to be within ξ′-distance of each other. Next, define g(α,C) to be the

unique coefficient O ∈ R≥0 that satisfies

(1− α)O00 + αO +
√
α(1− α)C = 0.

It is clear that g is a continuous function in α and C that is independent from cO,b,
and that Tjj = g(αTeff

cross(0), 0) and Ojj = g(αOeff
cross(0), C0). Finally, we let δ > 0 and

ξ′ > 0 be small enough such that if
∣∣αOeff

cross(0)− αTeff
cross(0)

∣∣ < ξ′ and
∣∣C0

∣∣ < δ, then
∣∣Ojj − Tjj

∣∣ =
∣∣g(αTeff

cross(0), 0)− g(αOeff
cross(0), C0)

∣∣ < δ′.

In conclusion, to determine that Ojj is within distance δ′ > 0 of Tjj we first do the
required queries to determine that

∣∣C0

∣∣ =
∣∣O0j

∣∣ < δ, after which we do the required
queries to determine that

∣∣αOeff
cross(0) − αTeff

cross(0)
∣∣ < ξ′, which together indeed implies

that Ojj is within distance δ′ > 0 of Tjj .
In order to show that the absolute value of the remaining off-diagonal elements of

Oeff must be close to zero (i.e., close to those of Teff) we consider the quantum states
given by

|µθ(α)⟩ =
√
1− α√
2

(
|0⟩+ |i⟩

)
+ eiθ

√
α |j⟩ , with α ∈ [0, 1] and θ ∈ [0, 2π). (B.11)

Its expectation value with respect to Oeff is given by

⟨µθ(α)| Oeff |µθ(α)⟩ =
(
1− α

)(
O00 +Oii + Re(O0i)

)
+ αOjj (B.12)

+
√
2α(1− α)Cθ, (B.13)

where Cθ := Re
(
eiθ(O0j+Oij)

)
, and its expectation value with respect to Teff is given

by

⟨µθ(α)| Teff |µθ(α)⟩ =
(
1− α

)(
T00 + Tii

)
+ αTjj . (B.14)

Crucially, by our choice of T we know that the label of |µθ(α)⟩ goes from −1 to +1
as α goes 0 → 1. Note that the expectation value of |µθ(α)⟩ with respect to Teff is
independent from the phase θ.

To determine that
∣∣Oij

∣∣ is smaller than δ′′ > 0 for i, j ≥ 1 and i ̸= j, we query
the classifier cO,b on the states |γθ̂(α̂)⟩ for all θ̂ in a ζ ′′-mesh of [0, 2π) and for all α̂ in
a ξ′′-mesh of [0, 1] and we suppose they are labeled the same as the target classifier
cT ,−1 would. Using these queries we can find estimates α̂Oeff

cross(θ̂) that are ξ-close to
the unique αOeff

cross(θ) = α′ that satisfies

⟨µθ(α
′)| Oeff |µθ(α

′)⟩ = 0, (B.15)
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by finding the smallest α̂ where the label has gone from −1 to +1. Because the label
assigned by cT ,−1 does not depend on the phase θ, and since all states |µθ̂(α̂)⟩ were
assigned the same label by cO,b and cT ,−1, we find that the crossing point estimate
α̂Oeff

cross(θ̂) is the same for all θ̂. In particular, this implies that the actual crossing
points αOeff

cross(θ̂) have to be within ξ′′-distance of each other for all θ̂. Subsequently,
write O0j + Oij =

∣∣O0j + Oij

∣∣eiϕ with ϕ ∈ [0, 2π), let θ̂abs denote the point in the
ζ ′′-mesh of [0, 2π) that is closest to 2π−ϕ, and let θ̂0 denote the point in the ζ ′′-mesh
of [0, 2π) that is closest to π/2 − ϕ modulo 2π. By our previous discussion we know
that

∣∣αOeff
cross(θ̂abs)− αOeff

cross(θ̂0)
∣∣ < ξ′′, which implies
∣∣∣Cθ̂abs

− Cθ̂0

∣∣∣ < h(ξ′′), (B.16)

where h is a continuous function (independent from cO,b and cT ,−1) with h(ξ′′)→ 0 as
ξ′′ → 0. Moreover, using the inequality cos(ζ ′′) ≥ 1−λζ ′′, where λ ≈ 0.7246 is a solu-
tion of λ

(
π− arcsin(λ)

)
= 1+

√
1− λ2, together with the inequality cos(π/2− ζ ′′) ≤

ζ ′′, we can derive that
∣∣∣Cθ̂abs

− Cθ̂0

∣∣∣ =
∣∣∣
∣∣O0j +Oij

∣∣ cos
(
θ̂abs + ϕ

)
−
∣∣O0j +Oij

∣∣ cos
(
θ̂0 + ϕ

)∣∣∣

≥
∣∣∣O0j +Oij

∣∣∣ ·
∣∣∣ cos

(
ζ ′′
)
− cos

(
π/2− ζ ′′

)∣∣∣

≥
∣∣∣O0j +Oij

∣∣∣ ·
∣∣∣1−

(
λ+ 1

)
ζ ′′
∣∣∣.

(B.17)

Finally, by combining Equation (B.16) with Equation (B.17) we can conclude that

∣∣O0j +Oij

∣∣ < h(ξ′′)
1− (λ+ 1)ζ ′′

,

which for ξ′′ and ζ ′′ small enough shows that
∣∣O0j +Oij

∣∣ < δ′′/2 (i.e., the fineness of
both meshes ξ′′ and ζ ′′ will depend on the choice of δ′′). In conclusion, to determine
that

∣∣Oij

∣∣ is smaller than δ′′ > 0 we first do the required queries to determine that∣∣O0j

∣∣ < δ′′/2, after which we do the required queries to determine that
∣∣O0j +Oij

∣∣ <
δ′′/2, which together indeed implies that

∣∣Oij

∣∣ < δ′′.
All in all, we have described a (finite) set of states such that if the label assigned by

cO,b agrees with the label assigned by cT ,−1, then the absolute value of the off-diagonal
elements of the first row of Oeff have to be smaller than δ, the diagonal elements of
Oeff have to be within δ′-distance of those of Teff, and the remaining off diagonal
elements of Oeff have to be smaller than δ′′. Finally, we choose δ, δ′, δ′′ = 1/2n+1 and
use the above protocol to establish that for 1 ≤ i ≤ r − 1 the Gershgorin discs Di

of Oeff (i.e., with center Oii and radius
∑

j |Oij |) have to be contained in the disks
D̃i with center i+1 and radius 1/2. Moreover, we establish that the Gershgorin disc
D0 has to be contained in the disks D̃0 with center −r + 1 and radius 1/2. Since
the disks D̃i as disjoint, so are the Gershgorin discs Di, which implies that Oeff must
have at least r distinct eigenvalues, and thus that rank

(
O
)
≥ r. Consequently, if

rank
(
O
)
< r, then cO,b must disagree with cT ,−1 on the label of at least one of the
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states queried during the protocol.

B.2.2 Proof of Proposition 16
Proposition 16. Let Clin(Φ) denote the family of linear classifiers that is equipped
with a feature map Φ. Also, let C(≤r)

qlin (Φ′) denote the family of quantum linear clas-
sifiers that uses observables of rank at most r and which is equipped with a quantum
feature map Φ′. Then, the following statements hold:

(xii) For every feature map Φ : Rℓ → RN with supx∈Rℓ ||Φ(x)|| = M < ∞, there
exists a feature map Φ′ : Rℓ → RN+1 such that ||Φ′(x)|| = 1 for all x ∈ Rℓ and
the families of linear classifiers satisfy Clin(Φ) ⊆ Clin(Φ′).

(xiii) For every feature map Φ : Rℓ → RN with ||Φ(x)|| = 1 for all x ∈ Rℓ, there exists
a quantum feature map Φ′ : Rℓ → Herm

(
C2n

)
that uses n = ⌈logN + 1⌉ + 1

qubits such that the families of linear classifiers satisfy Clin(Φ) ⊆ C(≤1)
qlin (Φ′).

(xiv) For every quantum feature map Φ : Rℓ → Herm
(
C2n

)
, there exists a classical

feature map Φ′ : Rℓ → R4n such that the families of linear classifiers satisfy
Cqlin(Φ) = Clin(Φ′).

Proof. (i): First, we define the feature map Φ′ : Rℓ → RN+1 which maps

x 7→ Φ(x)

M
+

√
1− ||Φ(x)||

2

M2
eN+1,

where eN+1 denotes the (N +1)-th standard basis vector. Note that this feature map
indeed satisfies that ||Φ′(x)|| = 1 for all x ∈ Rℓ. Next, for any classifier cw,b ∈ Cqlin(Φ)
we define w′ = w and b′ = b/M and we note that for any x ∈ Rℓ we have

cw′,b′(Φ
′(x)) = sign

(
⟨w′,Φ′(x)⟩ − b′

)

= sign
(
M−1

[
⟨w,Φ(x)⟩ − b

])

= sign
(
⟨w,Φ(x)⟩ − b

)
= cw,b(Φ(x)).

(ii): First, we define the feature map Φ̃ : Rℓ → RN+1 which maps

x 7→ Φ(x) + eN+1,

where eN+1 denotes the (N + 1)-th standard basis vector. Next, for any classifier
cw,b ∈ Clin(Φ) we define w̃ = w − beN+1 and we note that for all x ∈ Rℓ we have

cw̃,0(Φ̃(x)) = sign
(
⟨Φ̃(x), w̃⟩

)
= sign

(
⟨Φ(x), w⟩ − b

)
= cw,b(Φ(x)).

Therefore, it suffices to show that we can implement any linear classifier on RN+1

with b = 0 as a quantum linear classifier on n = ⌈logN + 1⌉+ 1 qubits. To do so, we
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define the quantum feature map Φ′ : Rℓ → Herm
(
C2n

)
which maps

x→ ρx =

( |Φ(x)⟩+ |0⟩√
2

)( ⟨Φ(x)|+ ⟨0|√
2

)
,

where |0⟩ is a vector that does not lie in the support of Φ (note this vectors exists
since we have chosen n large enough). Finally, for any linear classifier cw,0 ∈ Clin(Φ)
on RN+1 we define b′ = ||w||2/2 and O = |w′⟩ ⟨w′|, where |w′⟩ = |w⟩ + ||w|| |0⟩ and
we note that for all x ∈ R we have

cO,b′(Φ
′(x)) = sign

(
Tr [Oρx]− b′

)

= sign
(1
2

∣∣∣ ⟨w | Φ(x)⟩+ ||w||
∣∣∣
2

− ||w||
2

2

)

= sign
(
⟨w,Φ(x)⟩

)
= cw,0(Φ(x)).

(iii): This follows directly from the fact that Herm
(
C2n

)
≃ R4n .

B.2.3 Proof of Proposition 17

Proposition 17. Let C(η)qlin denote the family of quantum linear classifiers correspond-
ing to all n-qubit observables of Frobenius norm η, that is,

C(η)qlin =
{
c(ρ) = sign

(
Tr [Oρ]− d

) ∣∣ O ∈ Herm
(
C2n

)
with ||O||F = η, d ∈ R

}
.

(4.10)

Then, for every η ∈ R>0 and 0 < m ≤ 2n there exists a set of m examples consisting
of binary labeled n-qubit pure states that satisfies the following two conditions:

(xv) There exists a classifier c ∈ C(η)qlin that correctly classifies all examples with margin
η/
√
m.

(xvi) No classifier c′ ∈ C(η
′)

qlin with η′ < η can classify all examples correctly with margin
≥ η/√m.

Proof. Define Dm = D+
m∪D−

m whose positive examples (i.e., labeled +1) are given by

D+
m =

{
|i⟩ ⟨i| | i = 1, . . . ,

m

2

}
,

and whose negative examples (i.e., labeled −1) are given by

D−
m =

{
|i⟩ ⟨i| | i = m

2
+ 1, . . . ,m

}
.

To classify this set of examples we take the classifier cO,0 ∈ C(η)qlin whose observable is
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given by

O =
η√
m



(m/2∑

i=1

|i⟩ ⟨i|
)
+
( m∑

j=m
2 +1

|j⟩ ⟨j|
)

 .

We remark that cO,0 can indeed classify the set of examples Dr with margin η/
√
m.

Now suppose cO′,b′ ∈ Cη
′

qlin with η′ < η can classify Dm with margin γ′, that is

Tr
[
O′ |i⟩ ⟨i|

]
{
≥ b′ + γ′ if i = 1, . . . , m2 ,

≤ b′ − γ′ if i = m
2 + 1, . . . ,m.

(B.18)

Define ρ+ =
∑m/2

i=1 |i⟩ ⟨i| and ρ− =
∑m

i=m
2 +1 |i⟩ ⟨i| and note that Equation (B.18)

implies that
Tr
[
O′ρ+

]
≥ m

2
b′ +

m

2
γ′

and that
Tr
[
O′ρ−

]
≤ m

2
b′ − m

2
γ′

By combining these two inequalities we find that

Tr
[
O′(ρ+ − ρ−)

]
≥ m

2
b′ − m

2
b′ +

m

2
γ′ +

m

2
γ′ = mγ′. (B.19)

Finally, by the Cauchy–Schwarz inequality we find that

Tr
[
O′(ρ+ − ρ−)

]
≤ ||O′||F︸ ︷︷ ︸

<η

· ||ρ+ − ρ−||F︸ ︷︷ ︸
=
√
m

< η
√
m. (B.20)

Combining Equation (B.19) and (B.20) we find that

mγ′ ≤ Tr
[
O′(ρ+ − ρ−)

]
< η
√
m

from which we can conclude that γ′ < η/
√
m.
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Appendix C

Parametrized quantum policies
for reinforcement learning

C.1 Derivation of the log-policy gradient
For a softmax-PQC defined in Def. 16, we have:

∇θ log πθ(a|s) = ∇θ log e
β⟨Oa⟩s,θ −∇θ log

∑

a′

eβ⟨Oa′ ⟩s,θ

= β∇θ ⟨Oa⟩s,θ −
∑

a′

eβ⟨Oa′ ⟩s,θβ∇θ ⟨Oa′⟩s,θ∑
a′′ e

β⟨Oa′′ ⟩s,θ

= β

(
∇θ ⟨Oa⟩s,θ −

∑

a′

πθ(a
′|s)∇θ ⟨Oa′⟩s,θ

)
.

C.2 Efficient implementation of softmax-PQC poli-
cies

C.2.1 Efficient approximate policy sampling
In this section we prove Lemma 19, restated below:

Lemma 19. For a softmax-PQC policy πθ defined by a unitary U(s,θ) and observ-
ables Oa, call ⟨Õa⟩s,θ approximations of the true expectation values ⟨Oa⟩s,θ with at
most ε additive error. Then the approximate policy π̃θ = softmaxβ(⟨Õa⟩s,θ) has total
variation distance O(βε) to πθ = softmaxβ(⟨Oa⟩s,θ). Since expectation values can be
efficiently estimated to additive error on a quantum computer, this implies efficient
approximate sampling from πθ.
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Proof. Consider |A| estimates
{
⟨Õa⟩s,θ

}
1≤a≤|A|

, obtained all to additive error ε, i.e.,

∣∣∣⟨Õa⟩s,θ − ⟨Oa⟩s,θ
∣∣∣ ≤ ε, ∀a

and used to compute an approximate policy

π̃θ(a|s) =
eβ⟨Õa⟩s,θ

∑
a′ eβ⟨Õa′ ⟩s,θ

.

Due to the monoticity of the exponential, we have, for all a:

e−βεeβ⟨Oa⟩s,θ

eβε
∑

a′ e
β⟨Oa′ ⟩s,θ

≤ eβ⟨Õa⟩s,θ
∑

a′ eβ⟨Õa′ ⟩s,θ
≤ eβεeβ⟨Oa⟩s,θ

e−βε
∑

a′ e
β⟨Oa′ ⟩s,θ

⇔ e−2βεπθ(a|s) ≤ π̃θ(a|s) ≤ e2βεπθ(a|s). (C.1)

Hence,

TV(πθ, π̃θ) =
∑

a

|π̃θ(a|s)− πθ(a|s)|

≤
∑

a

∣∣e2βεπθ(a|s)− e−2βεπθ(a|s)
∣∣

=
∑

a

∣∣e2βε − e−2βε
∣∣πθ(a|s)

= 2|sinh(2βε)| =
βε→0+

4βε+O
(
(βε)3

)
,

where TV(., .) denotes the total-variation distance, and we used

{π̃θ(a|s), πθ(a|s)} ∈ [e−2βεπθ(a|s), e2βεπθ(a|s)]

in the first inequality.

C.2.2 Efficient estimation of the log-policy gradient
Using a similar approach to the proof of the previous section, we show the following
lemma:

Lemma 44. For a softmax-PQC policy πθ defined by a unitary U(s,θ) and observ-
ables Oa, call ∂i⟨Õa⟩s,θ approximations of the true derivatives ∂i⟨Oa⟩s,θ with at most
ε additive error, and ⟨Õa⟩s,θ approximations of the true expectation values ⟨Oa⟩s,θ
with at most ε′ = ε(4βmaxa ∥Oa∥)−1 additive error. Then the approximate log-policy
gradient ∇θ log π̃θ(a|s) = β

(
∇θ⟨Õa⟩s,θ−

∑
a′ π̃θ(a

′|s)∇θ⟨Õa′⟩s,θ
)

has distance O(βε)
to ∇θ log πθ(a|s) in ℓ∞-norm.
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Proof. Call xa,i = πθ(a|s)∂i⟨Oa⟩s,θ and x̃a,i = π̃θ(a|s)∂i⟨Õa⟩s,θ, such that:

∂i log π̃θ(a|s) = β
(
∂i⟨Õa⟩s,θ −

∑
a′
x̃a′,i

)
.

and similarly for ∂i log πθ(a|s).
Using Eq. (C.1) and that |∂i⟨Oa⟩s,θ − ∂i⟨Õa⟩s,θ| ≤ ε,∀a, i, we have:

e−2βε′πθ(a|s) (∂i⟨Oa⟩s,θ − ε) ≤ π̃θ(a|s)∂i⟨Õa⟩s,θ (C.2)

≤ e2βε′πθ(a|s) (∂i⟨Oa⟩s,θ + ε) (C.3)

which implies that

e−2βε′

(∑

a

xa,i − ε
)
≤

∑

a

x̃a,i ≤ e2βε′
(∑

a

xa,i + ε

)
(C.4)

where we summed the first inequalities over all a. Hence:
∣∣∣∣∣
∑

a

xa,i −
∑

a

x̃a,i

∣∣∣∣∣ ≤
∣∣∣∣∣e

2βε′

(∑

a

xa,i + ε

)
− e−2βε′

(∑

a

xa,i − ε
)∣∣∣∣∣

≤
∣∣∣∣∣(e

2βε′ + e−2βε′)ε+ (e2βε
′ − e−2βε′)

∑

a

xa,i

∣∣∣∣∣

≤
∣∣∣∣∣2 cosh(2βε

′)ε+ 2 sinh(2βε′)
∑

a

xa,i

∣∣∣∣∣

=
βε′→0+

∣∣∣∣∣ε+ 4βε′
∑

a

xa,i +O
(
(βε′)2ε

)
+O

(
(βε′)3

)
∣∣∣∣∣. (C.5)

We also have
∣∣∣∣∣
∑

a

xa,i

∣∣∣∣∣ =
∣∣∣∣∣
∑

a

πθ(a|s)∂i⟨Oa⟩s,θ
∣∣∣∣∣ ≤ max

a,i
|∂i⟨Oa⟩s,θ| ≤ max

a
∥Oa∥

where the last inequality derives from the parameter-shift rule (Eq. (5.4)) formulation
of ∂i ⟨Oa⟩ for derivatives w.r.t. rotation angles of the PQC and the fact that ∂i ⟨Oa⟩
are simply expectation values ⟨Ha,i⟩ with ∥Ha,i∥ ≤ ∥Oa∥ for observable weights.
Applying the triangular inequality on the right side of Eq. (C.5), we hence have:

∣∣∣∣∣
∑

a

xa,i −
∑

a

x̃a,i

∣∣∣∣∣ ≤
βε′→0+

ε+ 4βε′ max
a
∥Oa∥+O

(
(βε′)2ε

)
+O

(
(βε′)3

)
.

For ε′ = ε(4βmaxa ∥Oa∥)−1 and using |∂i⟨Oa⟩s,θ − ∂i⟨Õa⟩s,θ| ≤ ε,∀a, i, we finally
have:

|∂i log πθ(a|s)− ∂i log π̃θ(a|s)| ≤
βε→0+

3βε+O(βε3) ∀i
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C.3 Role of trainable observables in softmax-PQC

In Sec. 5.1.1, we presented a general definition of the softmax-PQC observables
Oa =

∑
i wa,iHa,i in terms of an arbitrary weighted sum of Hermitian matrices Ha,i.

In this appendix, we clarify the role of such a decomposition.

C.3.1 Training the eigenbasis and the eigenvalues
Consider a projective measurement defined by an observable O =

∑
m αmPm, to be

performed on a quantum state of the form V (θ) |ψ⟩, where V (θ) denotes a (varia-
tional) unitary. Equivalently, one could also measure the observable V †(θ)OV (θ) on
the state |ψ⟩. Indeed, these two measurements have the same probabilities p(m) =
⟨ψ|V †(θ)PmV (θ) |ψ⟩ of measuring any outcome αm. Note also that the possible
outcomes αm (i.e., the eigenvalues of the observable O) remain unchanged.

From this observation, it is then clear that, by defining an observable O =∑
m αmPm using projections Pm on each computational basis state of the Hilbert

space H and arbitrary eigenvalues αm ∈ R, the addition of a universal variational uni-
tary V (θ) prior to the measurement results in a family of observables {V †(θ)OV (θ)}θ,α
that covers all possible Hermitian observables in H. Moreover, in this setting, the
parameters that define the eigenbasis of the observables V †(θ)OV (θ) (i.e., θ) are com-
pletely distinct from the parameters that define their eigenvalues (i.e., α). This is not
the case for observables that are expressed as linear combinations of non-commuting
matrices, for instance.

In our simulations, we consider restricted families of observables. In particular,
we take the Hermitian matrices Ha,i to be diagonal in the computational basis (e.g.,
tensor products of Pauli-Z matrices), which means they, as well as Oa, can be de-
composed in terms of projections on the computational basis states. However, the
resulting eigenvalues α that we obtain from this decomposition are in our case de-
generate, which means that the weights wa underparametrize the spectrums of the
observables Oa. Additionally, the last variational unitaries Vvar(ϕL) of our PQCs are
far from universal, which restricts the accessible eigenbasis of all variational observ-
ables V †

var(ϕL)OaVvar(ϕL).

C.3.2 The power of universal observables
Equivalently to the universal family of observables {V †(θ)OV (θ)}θ,α that we defined
in the previous section, one can construct a family of observables {Ow =

∑
i wiHi}w

that parametrizes all Hermitian matrices in H (e.g., by taking Hi to be single com-
ponents of a Hermitian matrix acting on H). Note that this family is covered by
our definition of softmax-PQC observables. Now, given access to data-dependent
quantum states |ψs⟩ that are expressive enough (e.g., a binary encoding of the input
s, or so-called universal quantum feature states [89]), one can approximate arbitrary
functions of s using expectations values of the form ⟨ψs|Ow |ψs⟩. This is because the
observables Ow can encode an arbitrary quantum computation. Hence, in the case
of our softmax-PQCs, one could use such observables and such encodings |ψs⟩ of
the input states s to approximate any policy π(a|s) (using an additional softmax),
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without the need for any variational gates in the PQC generating |ψs⟩.
As we mentioned in the previous section, the observables that we consider in this

work are more restricted, and moreover, the way we encode the input states s leads to
non-trivial encodings |ψs,ϕ,λ⟩ in general. This implies that the variational parameters
ϕ,λ of our PQCs have in general a non-trivial role in learning good policies. One
can even show here that these degrees of freedom are sufficient to make such PQCs
universal function approximators [158].

C.4 Environments specifications and hyperpameters
In Table C.1, we present a specification of the environments we consider in our numer-
ical simulations. These are standard benchmarking environments from the OpenAI
Gym library [43], described in Ref. [151], PQC-generated environments that we de-
fine in Sec. 5.3.2, and the CognitiveRadio environment of Ref. [58] that we discuss in
Appendix C.5.

Environment
State

dimension
Number of
actions

Horizon Reward function Termination conditions

CartPole-v1 4 2 500 +1 until termination

� Pole angle or cart position
outside of bounds

� Reaching horizon

MountainCar-v0 2 3 200
−1 + height

until termination
Reaching goal or horizon

Acrobot-v1 6 3 500 −1 until termination Reaching goal or horizon

SL-PQC 2 2 20
+1 for good action

Reaching horizon−1 for wrong action

Cliffwalk-PQC 2 2 20
+1 for good action � Doing wrong action

−1 for wrong action � Reaching horizon

CognitiveRadio
2 to 5

2 to 5 100
+1 for good action

Reaching horizon
(discrete) −1 for wrong action

Table C.1: Environments specifications. The reward function of Mountaincar-
v0 has been modified compared to the standard specification of OpenAI Gym [43],
similarly to Ref. [71].

In Tables C.2 and C.3, we list the hyperparameters used to train our agents on
the various environments we consider. All agents use an ADAM optimizer. For the
plots presented in this manuscript, all quantum circuits were implemented using the
Cirq library [88] in Python and simulated using a Qulacs backend [184] in C++. For
the tutorial [161], the TensorFlow Quantum library [44] was used.
All simulations were run on the LEO cluster (more than 3000 CPUs) of the University
of Innsbruck, with an estimated total compute time (including hyperparametrization)
of 20 000 CPU-hours.
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C.5 Deferred plots and shape of policies PQCs vs.
DNNs

C.5.1 Influence of architectural choices on raw-PQC
In Fig. C.1, we run a similar experiment to that of Sec. 5.2.2 in the main text,
but on raw-PQC agents instead of softmax-PQC agents. We observe that both
increasing the depth of the PQCs and training the scaling parameters λ have a similar
positive influence on the learning performance, and even more pronounced than for
softmax-PQC agents. Nonetheless, we also observe that, even at greater depth, the
final performance, as well as the speed of convergence, of raw-PQC agents remain
limited compared to that of softmax-PQC agents.
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Figure C.1: Influence of the model architecture for raw-PQC agents. The
blue curves in each plot correspond to the learning curves from Fig. 5.2 and are taken
as a reference.
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Environment Model
Learning
rates

Discount
γ

Final
β

Batch
size

Depth Width

CartPole-v1
softmax-PQC [0.01, 0.1, 0.1] 1 1 10 {1, 5} 4

raw-PQC [0.01, 0., 0.1] 1 ✗ 10 {1, 5} 4

MountainCar-v0
softmax-PQC [0.01, 0.1, 0.01] 1 1.5 10 {4, 6} 2

raw-PQC [0.01, 0., 0.01] 1 ✗ 10 {4, 6} 2

Acrobot-v1
softmax-PQC [0.01, 0.1, 0.1] 1 1 10 {2, 5} 6

raw-PQC [0.01, 0., 0.1] 1 ✗ 10 {2, 5} 6

SL-PQC
softmax-PQC [0.01, 0.1, 0.01] 0.9 1 10 4 2

DNN 0.01 0.9 1 10 4 16

Cliffwalk-PQC
softmax-PQC [0.01, 0.1, 0.1] 0.9 1 10 4 2

DNN 0.01 0.9 1 10 4 16

CognitiveRadio softmax-PQC [0.01, 0.1, 0.1] 0.9 1 1 3 2 to 5

Table C.2: Hyperparmeters 1/2. For PQC policies, we choose 3 distinct learning
rates [αϕ, αw, αλ] for rotation angles ϕ, observable weights w and scaling parameters
λ, respectively. For softmax-PQCs, we take a linear annealing schedule for the
inverse temperature parameter β starting from 1 and ending up in the final β. The
batch size is counted in number of episodes used to evaluate the gradient of the value
function. Depth indicates the number of encoding layers Denc for PQC policies, or
the number of hidden layers for a DNN policy. Width corresponds to the number of
qubits n on which acts a PQC (also equal to the dimension d of the environment’s
state space), or the number of units per hidden layer for a DNN.
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Environment Model
Entang.
topology

Train
entang.

Observables
Number

of
params.

Baseline

CartPole-v1
softmax-PQC All-to-all Yes [wZ0Z1Z2Z3, (− . . .)] {31, 119} No

raw-PQC All-to-all Yes [Z0Z1Z2Z3, (− . . .)] {30, 118} No

MountainCar-v0
softmax-PQC One-to-one No [w0Z0, w1Z0Z1, w2Z1] {39, 55} Yes

raw-PQC One-to-one No [P0,1, P2, P3] {36, 52} Yes

Acrobot-v1
softmax-PQC Circular Yes

[
wi · (Z0, . . . , Z5)

T
]
1≤i≤3

{90, 180} Yes

raw-PQC Circular Yes [P0..21, P22..42, P43..63] {72, 162} Yes

SL-PQC
softmax-PQC One-to-one No [wZ0Z1, (− . . .)] 37 No

DNN ✗ ✗ ✗ 902 No

Cliffwalk-PQC
softmax-PQC One-to-one No [wZ0Z1, (− . . .)] 37 No

DNN ✗ ✗ ✗ 902 No

CognitiveRadio softmax-PQC Circular No [w0Z0, w1Z1, . . . , wnZn] 30 to 75 No

Table C.3: Hyperparmeters 2/2. We call entangling layer a layer of 2-qubit gates
in the PQC. Circular and all-to-all topologies of entangling layers are equivalent for
n = 2 qubits, so we call them one-to-one in that case. When trained, entangling
layers are composed of Rzz = e−iθ(Z⊗Z)/2 rotations, otherwise, they are composed of
Ctrl-Z gates. For policies with 2 actions, the same observable, up to a sign change,
is used for both actions. Zi refers to a Pauli-Z observable acting on qubit i, while
Pi..j indicates a projection on basis states i to j. In the experiments of Sec. 5.2.2,
when the weights of the softmax-PQC are kept fixed, the observables used for
MountainCar-v0 and Acrobot-v1 are [Z0, Z0Z1, Z1], and those used for CartPole-v1
are [Z0Z1Z2Z3,−Z0Z1Z2Z3]. The different number of parameters in a given row
correspond to the different depths in that same row in Table C.2.
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C.5.2 Shape of the policies learned by PQCs v.s. DNNs
In CartPole-v1 The results of the Sec. 5.2 demonstrate that our PQC policies can
be trained to good performance in benchmarking environments. To get a feel of the
solutions found by our agents, we compare the softmax-PQC policies learned on
CartPole to those learned by standard DNNs (with a softmax output layer), which
are known to easily learn close-to-optimal behavior on this task. More specifically,
we look at the functions learned by these two models, prior to the application of the
softmax normalization function (see Eq. (5.2)). Typical instances of these functions
are depicted in Figure C.3. We observe that, while DNNs learn simple, close to piece-
wise linear functions of their input state space, PQCs tend to naturally learn very
oscillating functions that are more prone to instability. While the results of Schuld
et al. [166] already indicated that these highly oscillating functions would be natural
for PQCs, it is noteworthy to see that these are also the type of functions naturally
learned in a direct-policy RL scenario. Moreover, our enhancements to standard
PQC classifiers show how to make these highly oscillating functions more amenable
to real-world tasks.

In PQC-generated environments Fig. C.4 shows the analog results to Fig.
5.4 in the main text but with two different random initializations of the environment-
generating PQC. Both confirm our observations. In Fig. C.5, we compare the policies
learned by prototypical softmax-PQC and DNN agents in these PQC-generated
environments. We observe that the typical policies learned by DNNs are rather simple,
with up to 2 (or 3) regions, delimited by close-to-linear boundaries, as opposed to
the policies learned by softmax-PQCs, which delimit red from blue regions with
wide margins. These observations highlight the inherent flexibility of softmax-PQC
policies and their suitability to these PQC-generated environments, as opposed to the
DNN (and raw-PQC) policies we consider.

C.5.3 Additional simulations on CognitiveRadio
In a related work on value-based RL with PQCs, the authors of Ref. [58] introduced
the CognitiveRadio environment as a benchmark to test their RL agents. In this
environment, the agent is presented at each interaction step with a binary vector
(0, 0, 0, 1, 0) of size n that describes the occupation of n radio channels. Given this
state, the agent must select one of the n channels as its communication channel, such
as to avoid collision with occupied channels (a ±1 reward reflects these collisions).
The authors of Ref. [58] consider a setting where, in any given state, only one channel
is occupied, and its assignment changes periodically over time steps, for an episode
length of 100 steps. While this constitutes a fairly simple task environment with
discrete state and action spaces, it allows to test the performance of PQC agents on
a family of environments described by their system size n and make claims on the
parameter complexity of the PQCs as a function of n. As to reproduce the findings of
Ref. [58] in a policy-gradient setting, we test the performance of our softmax-PQC
agents on this environment. We find numerically (see Fig. C.2) that these achieve a
very similar performance to the PQC agents of Ref. [58] on the same system sizes they
consider (n = 2 to 5), using PQCs with the same scaling of number of parameters,
i.e., O(n).
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Figure C.2: Performance of our softmax-PQC agents on the CognitiveRa-
dio environment proposed in Ref. [58]. Average performance of 20 agents for
system sizes (and number of qubits) n = 2 to 5.
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Figure C.3: Prototypical unnormalized policies learned by softmax-PQC
agents and DNN agents in CartPole. Due to the 4 dimensions of the state space
in CartPole, we represent the unnormalized policies learned by (a) softmax-PQC
agents and (b) DNN agents on 3 subspaces of the state space by fixing unrepresented
dimensions to 0 in each plot. To get the probability of the agent pushing the cart to
the left, one should apply the logistic function (i.e., 2-dimensional softmax) 1/(1 +
exp(−z)) to the z-axis values of each plot.
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Figure C.4: Different random initializations of PQC-generated environments
and their associated learning curves. See Fig. 5.4 for details. The additional
learning curves (20 agents per curve) of randomly-initialized raw-PQC agents high-
light the hardness of these environments for PQC policies drawn from the same family
as the environment-generating PQCs.
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Figure C.5: Prototypical policies learned by softmax-PQC agents and
DNN agents in PQC-generated environments. All policies are associated to
the labeling function of Fig. C.4.d. Policies (a) and (b) are learned in the SL-PQC
environment while policies (c) and (d) are learned in the Cliffwalk-PQC environment.
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C.6 Supervised learning task of Liu et al.

Define p a large prime number, n = ⌈log2(p − 1)⌉, and g a generator of Z∗
p =

{1, 2, . . . , p − 1} (i.e., a g ∈ Z∗
p such that {gy, y ∈ Zp−1} = Z∗

p). The DLP con-
sists in computing logg x on input x ∈ Z∗

p. Based on DLP, Liu et al. [128] define
a concept class C = {fs}s∈Zp−1

over the input space X = Z∗
p, where each labeling

function of this concept class is defined as follows:

fs(x) =

{
+1, if logg x ∈ [s, s+ p−3

2 ],

−1, otherwise.
(C.6)

Each function fs : Z∗
p → {−1, 1} hence labels half the elements in Z∗

p with a label
+1 and the other half with a label −1. We refer to Figure 1 in Ref. [128] for a good
visualization of all these objects.
The performance of a classifier f is measured in terms of its testing accuracy

Accf (fs) = Prx∼X [f(x) = fs(x)].

C.7 Proof of Theorem 20
In the following, we provide constructions of a) fully random, b) partially random
and c) fully deterministic environments satisfying the properties of Theorem 20. We
consider the three families of environments separately and provide individual lemmas
specifying their exact separation properties.

Fully random: the SL-DLP environment. This result is near-trivially obtained
by noting that any classification problem can be easily mapped to a (degenerate) RL
problem. For this, the environment will be an MDP defined as follows: its state
space is the input space of the classification problem, its action space comprises all
possible labels, rewards are trivially +1 for assigning a correct label to an input
state and −1 otherwise, and the initial and next-state transition probabilities are
state-independent and equal to the input distribution of the classification task. The
optimal policy of this MDP is clearly the optimal classifier of the corresponding SL
task. Consider now the classification task of Liu et al., defined in detail in Appendix
C.6: the input distribution is taken to be uniform on the state space, i.e., P (st) = 1

|S| ,
and the performance of a classifier f w.r.t. a labeling (or ground truth) function f∗

is measured in terms of a testing accuracy

Accf (f∗) =
1

|S|
∑

s

Pr[f(s) = f∗(s)]. (C.7)
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For the MDP associated to this classification task and length-1 episodes of interaction,
the value function of any policy π(a|s) is given by

Vπ(s0) =
1

|S|
∑

s0

(π(f∗(s0)|s0)− π(−f∗(s0)|s0))

=
1

|S|
∑

s0

2π(f∗(s0)|s0)− 1

= 2Accπ(f∗)− 1,

which is trivially related to the testing accuracy of this policy on the classification
task. Note that we also have Vrand(s0) = 0 and Vopt(s0) = 1.
Since these observations hold irrespectively of the labeling function f∗, we can show
the following result:

Lemma 45 (Quantum advantage in SL-DLP). There exists a uniform family of SL-
DLP MDPs, each derived from a labeling function f∗ of the DLP concept class C (see
Appendix C.6), for which classical hardness and quantum learnability holds. More
specifically, the performance of any classical learner is upper bounded by 1/poly(n),
while that of a class of quantum agents is lower bounded by 0.98 with probability above
2/3 (over the randomness of their interaction with the environment and noise in their
implementation).

Proof. Classical hardness is trivially obtained by contraposition: assuming no classical
polynomial-time algorithm can solve DLP, then using Theorem 1 of Liu et al., any
classical policy would have testing accuracy Accπ(f∗) ≤ 1/2 + 1/poly(n), and hence
its value function would be Vπ(s0) ≤ 1/poly(n).

For quantum learnability, we define an agent that first collects poly(n) random
length-1 interactions (i.e., a random state s0 and its associated reward for an action
+1, from which the label f∗(s0) can be inferred), and use Theorem 2 of Liu et al.
to train a classifier that has test accuracy at least 0.99 with probability at least 2/3
(this process can be repeated O

(
log
(
δ−1
))

times to increase this probability to 1− δ
via majority voting). This classifier has a value function Vπ(s0) ≥ 0.98.

Note that this proof trivially generalizes to episodes of interaction with length
greater than 1, when preserving the absence of temporal correlation in the states
experienced by the agents. For episodes of length H, the only change is that the
value function of any policy, and hence the bounds we achieve, get multiplied by a
factor of 1−γH

1−γ for a discount factor γ < 1 and by a factor H for γ = 1.

Partially random: the Cliffwalk-DLP environment. One major criticism to
the result of Lemma 45 is that it applies to a very degenerate, fully random RL
environment. In the following, we show that similar results can be obtained in envi-
ronments based on the same classification problem, but while imposing more temporal
structure and less randomness (such constructions were introduced in Ref. [72], but
for the purpose of query separations between RL and QRL). For instance, one can
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consider cliffwalk-type environments, inspired by the textbook “cliff walking” environ-
ment of Sutton & Barto [183]. This class of environments differs from the previous
SL-DLP environments in its state and reward structure: in any episode of interac-
tion, experienced states follow a fixed “path” structure (that of the cliff) for correct
actions, and a wrong action yields to immediate “death” (negative reward and episode
termination). We slightly modify this environment to a “slippery scenario” in which,
with a δ probability, any action may lead to a uniformly random position on the cliff.
This additional randomness allows us to prove the following separation:

Lemma 46 (Quantum advantage in Cliffwalk-DLP). There exists a uniform family
of Cliffwalk-DLP MDPs with arbitrary slipping probability δ ∈ [0.86, 1] and discount
factor γ ∈ [0, 0.9], each derived from a labeling function f∗ of the DLP concept class
C, for which classical hardness and quantum learnability holds. More specifically, the
performance of any classical learner is upper bounded by Vrand(s0) + 0.1, while that
of a class of quantum agents is lower bounded by Vopt(s0)− 0.1 with probability above
2/3 (over the randomness of their interaction with the environment and noise in their
implementation). Since Vrand(s0) ≤ − 1

2 and Vopt = 0, we always have a classical-
quantum separation.

The proof of this lemma is deferred to Appendix C.8 for clarity.

Fully deterministic: the Deterministic-DLP environment. The simplest ex-
ample of a deterministic RL environment where separation can be proven is a partially
observable MDP (POMDP) defined as follows: it constitutes a 1-D chain of states of
length k+2, where k is poly(n). We refer to the first k states as “training states", and
we call the last two states “test” and “limbo” states, respectively. The training states
are of the form (x, fs(x)), i.e., a point uniformly sampled and its label. The actions
are +1,−1, and both lead to the same subsequent state on the chain (since the same
(x, fs(x)) can appear twice in the chain, this is the reason why the environment is
partially observable), and no reward is given for the first k states. In the test state,
the agent is only given a point x with no label. A correct action provides a reward
of 1 and leads to the beginning of the chain, while an incorrect action leads to the
limbo state, which self-loops for both actions and has no rewards. In other words,
after poly-many examples where the agent can learn the correct labeling, it is tested
on one state. Failure means it will never obtain a reward.

For each concept fs, we define exponentially many environments obtained by
random choices of the states appearing in the chain. In a given instance, call T =
(x0, . . . , xk−1) the training states of that instance, xk its testing state and l its limbo
state. The interaction of an agent with the environment is divided into episodes of
length k + 1, but the environment keeps memory of its state between episodes. This
means that, while the first episode starts in x0, depending on the performance of the
agent, later episodes start either in x0 or in l. For a policy π, we define the value
Vπ(s0) as the expected reward1 of this policy in any episode of length k + 1 with an
initial state s0 ∈ {x0, l}. Since the testing state xk is the only state to be rewarded,

1Note that we assume here a discount factor γ = 1, but our results would also hold for an arbitrary
γ > 0, if we scale the reward of the testing state to γ−k.
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we can already note that Vπ(x0) = π(f∗(xk)|T, xk), that is, the probability of the
policy correctly labeling the testing state xk after having experienced the training
states T . Also, since s0 ∈ {x0, l} and Vπ(l) = 0, we have Vπ(x0) ≥ Vπ(s0).

With this construction, we obtain the following result:

Lemma 47 (Quantum advantage in Deterministic-DLP). There exists a uniform
family of Deterministic-DLP POMDPs (exponentially many instances for a given
concept fs of the DLP classification problem) where:
1) (classical hardness) if there exists a classical learning agent which, when placed in
a randomly chosen instance of the environment, has value Vc(s0) ≥ 1/2 + 1/poly(n)
(that is, 1/poly(n) better than a random agent), with probability at least 0.845 over
the choice of environment and the randomness of its learning algorithm, then there
exists an efficient classical algorithm to solve DLP,
2) (quantum learnability) there exists a class of quantum agents that attains a value
Vq(s0) = 1 (that is, the optimal value) with probability at least 0.98 over the choice of
environment and randomness of the learning algorithm.

The proof of this lemma is deferred to Appendix C.9 for clarity.
By combining our three lemmas, and taking the weakest separation claim for the

cases ii) and iii), we get Theorem 20. For the interested reader, we list the following
remarks, relating to the proofs of these lemmas:

• SL-DLP and Deterministic-DLP are the two closest environments to the DLP clas-
sification task of Liu et al. While the value function in SL-DLP is trivially equiv-
alent to the accuracy of the classification problem, we find the value function in
Deterministic-DLP to be weaker than this accuracy. Namely, a high accuracy triv-
ially leads to a high value while a high (or non-trivial) value does not necessarily
lead to a high (or non-trivial) accuracy (in all these cases, the high probability over
the randomness of choosing the environments and of the learning algorithms is im-
plied). This explains why the classical hardness statement for Deterministic-DLP
is weaker than in SL-DLP.

• In Cliffwalk-DLP, it is less straightforward to relate the testing accuracy of a policy
to its performance on the deterministic parts of the environment, which explains
why we trivially upper bound this performance by 0 on these parts. We believe
however that these deterministic parts will actually make the learning task much
harder, since they strongly restrict the part of the state space the agents can see.
This claim is supported by our numerical experiments in Sec. 5.3.2. Also, since we
showed classical hardness for fully deterministic environments, it would be simple
to construct a variant of Cliffwalk-DLP where these deterministic parts would be
provably hard as well.

C.8 Proof of Lemma 46
Consider a slippery cliffwalk environment defined by a labeling function f∗ in the
concept class C of Liu et al. This cliffwalk has p− 1 states ordered, w.l.o.g., in their
natural order, and correct actions (the ones that do not lead to immediate “death")
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f∗(i) for each state i ∈ Z∗
p. For simplicity of our proofs, we also consider circular

boundary conditions (i.e, doing the correct action on the state p− 1 of the cliff leads
to the state 1), random slipping at each interaction step to a uniformly sampled state
on the cliff with probability δ > 0, an initialization of each episode in a uniformly
sampled state i ∈ Z∗

p, and a 0 (−1) reward for doing the correct (wrong) action in
any given state.

C.8.1 Upper bound on the value function
The value function of any policy π which has probability π(i) (we abbreviate π(f∗(i)|i)
to π(i)) of doing the correct action in state i ∈ Z∗

p is given by:

Vπ(i) = π(i)γ


(1− δ)Vπ(i+ 1) + δ

1

p− 1

p−1∑

j=1

Vπ(j)


− (1− π(i)) (C.8)

Since this environment only has negative rewards, we have that Vπ(i) ≤ 0 for any
state i and policy π, which allows us to write the following inequality:

Vπ(i) ≤ π(i)γ


δ 1

p− 1

p−1∑

j=1

Vπ(j)


− (1− π(i))

We use this inequality to bound the following term:

1

p− 1

p−1∑

i=1

Vπ(i) ≤
1

p− 1

p−1∑

i=1


π(i) γδ

p− 1

p−1∑

j=1

Vπ(j)− (1− π(i))




=

(
1

p− 1

p−1∑

i=1

π(i)

)
 γδ

p− 1

p−1∑

j=1

Vπ(j) + 1


− 1

We note that the first factor is exactly the accuracy of the policy π on the classification
task of Liu et al.:

Accπ(f∗) =
1

p− 1

p−1∑

i=1

π(i).

We hence have:

1

p− 1

p−1∑

i=1

Vπ(i) ≤ Accπ(f∗)


γδ 1

p− 1

p−1∑

j=1

Vπ(j) + 1


− 1

which is equivalent to:

1

p− 1

p−1∑

i=1

Vπ(i) ≤
Accπ(f∗)− 1

1−Accπ(f∗)γδ
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when Accπ(f∗)γδ < 1.
We now note that this average value function is exactly the value function evaluated
on the initial state s0 of the agent, since this state is uniformly sampled from Z∗

p for
every episode. Hence,

Vπ(s0) ≤
Accπ(f∗)− 1

1−Accπ(f∗)γδ
(C.9)

C.8.2 Lower bound on the value function
Again, by noting in Eq. (C.8) that we have Vπ(i) ≤ 0 and π(i) ≤ 1 for any policy π
and state i ∈ Z∗

p, we have:

Vπ(i) ≥ γ


(1− δ)Vπ(i+ 1) +

δ

p− 1

p−1∑

j=1

Vπ(j)


− (1− π(i))

We use this inequality to bound the value function at the initial state s0:

Vπ(s0) =
1

p− 1

p−1∑

i=1

Vπ(i)

≥ γ


1− δ
p− 1

p−1∑

i=1

Vπ(i+ 1) +
δ

p− 1

p−1∑

j=1

Vπ(j)


+

1

p− 1

p−1∑

i=1

π(i)− 1

= γ ((1− δ)Vπ(s0) + δVπ(s0)) + Accπ(f∗)− 1

= γVπ(s0) + Accπ(f∗)− 1

by using the circular boundary conditions of the cliffwalk in the third line.
This inequality is equivalent to:

Vπ(s0) ≥
Accπ(f∗)− 1

1− γ (C.10)

when γ < 1.

C.8.3 Bounds on classical- vs. and quantum- learnability
We use the bounds derived in the two previous sections to prove classical hardness
and quantum learnability of this task environment, as stated in Lemma 46.

For this, we start by noting the following expression for the value function of a
random policy (one that does random actions in all states):

Vrand(s0) =
γ

2


1− δ
p− 1

p−1∑

i=1

Vrand(i+ 1) +
δ

p− 1

p−1∑

j=1

Vrand(j)


− 1

2

=
γ

2
Vrand(s0)−

1

2
= − 1

2− γ
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again due to the circular boundary conditions of the cliffwalk and the resulting absence
of termination conditions outside of “death".
As for the value function of the optimal policy, this is trivially Vopt = 0.

Proof of classical hardness

For any policy π, we define the function g(x, δ, γ) = V (x, δ, γ) − Vrand(γ), where we
adopt the short-hand notation x = Accπ(f∗) and call V the upper bound on the value
function Vπ(s0) of π. The expression of g(x, δ, γ) (for (x, δ, γ) ̸= (1, 1, 1)) is given by:

g(x, δ, γ) =
x− 1

1− δγx +
1

2− γ (C.11)

To prove classical hardness, it is sufficient to show that x ≤ 0.51 implies g(x, δ, γ) ≤ 0.1
for δ ∈ [δ0, 1], γ ∈ [0, γ1] and a {δ0, γ1} pair of our choosing. To see this, notice
that the contraposition gives x = Accπ(f∗) > 0.51 which is sufficient to construct an
efficient algorithm that solves DLP. To achieve this result, we show the three following
inequalities, ∀ x ≤ 0.51 and ∀ (δ, γ) ∈ [δ0, 1]× [0, γ1]:

g(x, δ, γ)
(i)

≤ g(0.51, δ, γ)
(ii)

≤ g(0.51, δ0, γ)
(iii)

≤ g(0.51, δ0, γ1)

where δ0 and γ1 are chosen such that g(0.51, δ0, γ1) ≤ 0.1.

Proof of (i). We look at the derivative of g w.r.t. x:

∂g(x, δ, γ)

∂x
=

1− δγ
(1− δγx)2 ≥ 0 ∀(x, δ, γ) ∈ [0, 1]3\(1, 1, 1)

and hence g is an increasing function of x, which gives our inequality.

Proof of (ii). We look at the derivative of g w.r.t. δ:

∂g(x, δ, γ)

∂δ
=

γ(x− 1)x

(1− δγx)2 ≤ 0 ∀(x, δ, γ) ∈ [0, 1]3\(1, 1, 1)

and hence g is a decreasing function of δ, which gives our inequality.

Proof of (iii). We look at the derivative of g w.r.t. γ:

∂g(x, δ, γ)

∂γ
=

δ(x− 1)x

(1− δγx)2 +
1

(2− γ)2 ∀(x, δ, γ) ∈ [0, 1]3\(1, 1, 1)

We have:

∂g(x, δ, γ)

∂γ
≥ 0⇔

(
(δx)2 + δ(x2 − x)

)
γ2 − 2δ(2x2 − x)γ + 4δ(x2 − x) + 1 ≥ 0
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By setting x = 0.51 and δ = 0.86, we find

∂g(0.51, 0.86, γ)

∂γ
≥ 0 ∀γ ∈ [0, 1]

since the roots of the second-degree polynomial above are approximately {−2.91, 2.14}
and we have (δx)2 + δ(x− 1)x ≈ −0.0225 < 0.
Hence g(0.51, δ0, γ) is an increasing function of γ, which gives our inequality.

Given that g(0.51, 0.86, 0.9) ≈ 0.0995 < 0.1, we then get our desired result for
δ0 = 0.86 and γ1 = 0.9. Noting that Vπ(s0) − Vrand(γ) ≤ g(x, δ, γ) ≤ 0.1 from Eq.
(C.9), we hence have classical hardness ∀ (δ, γ) ∈ [δ0, 1]× [0, γ1].

Proof of quantum learnability

Proving quantum learnability is more trivial, since, for Accπ(f∗) ≥ 0.99 and γ ≤ 0.9,
we directly have, using Eq. (C.10):

Vπ(s0) ≥ −0.1 = Vopt − 0.1

To conclude this proof, we still need to show that we can obtain in this environment a
policy π such that Accπ(f∗) ≥ 0.99 with high probability. For that, we use agents that
first collect poly(n) distinct samples (states s and their inferred labels f∗(s)) from the
environment (distinct in order to avoid biasing the distribution of the dataset with
the cliffwalk temporal structure). This can be done efficiently in poly(n) interactions
with the environment, since each episode is initialized in a random state s0 ∈ Z∗

p. We
then use the learning algorithm of Liu et al. to train a classifier π with the desired
accuracy, with high probability.

C.9 Proof of Lemma 47

C.9.1 Proof of classical hardness
Suppose that a polynomial-time classical agent achieves a value Vc(s0) ≥ 1

2 + 1
poly(n)

with probability (1 − δ) over the choice of environment and the randomness of its
learning algorithm. We call “success" the event Vc(s0) ≥ 1

2 + 1
poly(n) and Sδ the

subset of the instances S = {T, xk} for which, theoretically, a run of the agent would
“succeed" (this is hence a set that depends on the randomness of the agent).

Note that, on every instance in Sδ, π(f∗(xk)|T, xk) = Vc(x0) ≥ Vc(s0) ≥ 1
2 +

1
poly(n) . Since this probability is bounded away from 1/2 by an inverse polynomial,
this means that we can “boost" it to a larger probability (1 − ε). More specifically,
out of the policy π obtained after interacting for k steps with the environment, we
define a classifier fc acting on xk such that we sample O

(
log
(
ε−1
))

-many times from
π(a|T, xk) and label xk by majority vote. For the instances in Sδ, the probability of
correctly labeling xk is Pr [fc(xk) = f∗(xk)] ≥ 1− ε.

Define P (T ) = Pr[T = T ] and P (xk) = Pr[xk = xk] the probabilities of sampling
certain training states T and a testing state xk, when choosing an instance of the
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environment. We now look at the following quantity:

EP (T ) [Accfc(T )] =
∑

T

P (T )
∑

xk

P (xk)Pr [fc(xk) = f∗(xk)|T, xk]

=
∑

T,xk

P (T, xk)Pr [fc(xk) = f∗(xk)|T, xk]

≥
∑

T,xk

P (T, xk)Pr
[
success|T, xk

]

× Pr
[
fc(xk) = f∗(xk)|T, xk, success

]

≥ (1− δ)(1− ε)

since Pr [fc(xk) = f∗(xk)|T, xk] ≥ 1− ε for instances in Sδ and by definition we have
∑

T,xk

P (T, xk)Pr
[
success|T, xk

]
≥ 1− δ.

In the following, we set 1− ε = 0.999 and 1− δ ≥ 0.845 (the reason for this becomes
apparent below), such that:

EP (T ) [Accfc(T )] ≥ 0.844155 >
5

6
+

1

96
(C.12)

Now, consider the following learning algorithm: given a training set T , construct
a Deterministic-DLP environment that uses this T and a randomly chosen xk, and
define the classifier fc that boosts the π(a|T, xk) obtained by running our classical
agent on this environment (as explained above). We want to show that fc has accuracy
Accfc(T ) ≥ 1

2 + 1
poly(n) with probability at least 2/3 over the choice of T and the

randomness of its construction, which is sufficient to solve DLP classically. For that,
we show a stronger statement. Call Tsucc the subset of all instances of training states
T = {T} for which Accfc(T ) ≥ 1

2 + 1
poly(n) . We prove by contradiction that |Tsucc| ≥

2|T |
3 :

Assume |Tsucc| < 2|T |
3 , then

EP (T ) [Accfc(T )] =
∑

T

P (T )Accfc(T )

=
1

|T |


 ∑

T∈Tsucc

Accfc(T ) +
∑

T /∈Tsucc

Accfc(T )




<
|Tsucc|
|T | × 1 +

|T | − |Tsucc|
|T |

(
1

2
+

1

poly(n)

)

<
5

6
+

1

3poly(n)
< 0.844155

for large enough n, in contradiction with Eq. (C.12).
Hence, with probability at least 2/3 over the choice of training states and the ran-
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domness of the learning algorithm, our constructed classifier has accuracy Accfc(T ) ≥
1
2 +

1
poly(n) . By using Theorem 8, Remark 1 of Liu et al., this is sufficient to construct

an efficient classical algorithm that solves DLP.

C.9.2 Proof of quantum learnability
Using the learning algorithm of Liu et al., we can construct a quantum classifier that
achieves accuracy Accq(T ) ≥ 0.99 with probability at least 2/3 over the randomness
of the learning algorithm and the choice of training states T , of length |T | = poly(n).
Now define instead training states T of length |T | =Mpoly(n), forM = O

(
log
(
δ′−1

))

(hence |T | is still polynomial in n), and use each of the M segments of T to train
M independent quantum classifiers. Define fq as a classifier that labels xk using a
majority vote on the labels assigned by each of these classifiers. This constructed
classifier has accuracy Accfq (T ) ≥ 0.99 with now probability 1− δ′ over the choice of
training states T and the randomness of the learning algorithm.

We then note that, by calling “success" the event Accfq (T ) ≥ 0.99, we have:
∑

T,xk

P (T, xk)Pr
[
Vq(x0) = 1|T, xk

]

≥
∑

T

P (T )
∑

xk

P (xk)Pr
[
success|T

]

× Pr
[
Vq(x0) = 1|T, xk, success

]

=
∑

T

P (T )Pr
[
success|T

]∑

xk

P (xk)

× Pr
[
fq(xk) = f∗(xk)|T, xk, success

]

=
∑

T

P (T )Pr
[
success|T

]
Accfq (T )

≥ (1− δ′)× 0.99

which means that our constructed agent achieves a value Vq(x0) = 1 (which also im-
plies Vq(s0) = 1) with probability at least (1−δ′)×0.99 over the choice of environment
and the randomness of the learning algorithm. By setting (1 − δ′) = 0.98/0.99, we
get our statement.

C.10 Construction of PQC agent for the DLP envi-
ronments

In the two following appendices, we construct a PQC classifier that can achieve close-
to-optimal accuracy in the classification task of Liu et al. [128] (see Appendix C.6),
and can hence also be used as a learning model in the DLP environments defined in
Sec. 5.3.1.
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C.10.1 Implicit vs. explicit quantum SVMs
To understand the distinction between the quantum learners of Liu et al. and the
PQC policies we are constructing here, we remind the reader of the two models for
quantum SVMs defined in Ref. [169]: the explicit and the implicit model. Both models
share a feature-encoding unitary U(x) that encodes data points x into feature state
|ϕ(x)⟩ = U(x) |0⊗n⟩.
In the implicit model, one first evaluates the kernel values

K(xi, xj) = |⟨ϕ(xi)⟩ϕ(xj)|2 (C.13)

for the feature states associated to every pair of data points {xi, xj} in the dataset,
then uses the resulting kernel matrix in a classical SVM algorithm. This algorithm
returns a hyperplane classifier in feature space, defined by its normal vector ⟨w| =∑

i αi ⟨ϕ(xi)| and bias b, such that the sign of |⟨w | ϕ(x)⟩|2 + b gives the label of x.
In the explicit model, the classifier is instead obtained by training a parametrized
|wθ⟩. Effectively, this classifier is implemented by applying a variational unitary
V (θ) on the feature states |ϕ(x)⟩ and measuring the resulting quantum states using
a fixed observable, with expectation value |⟨wθ | ϕ(x)⟩|2.

In the following sections, we describe how the implicit quantum SVMs of Liu et
al. can be transformed into explicit models while guaranteeing that they can still
represent all possible optimal policies in the DLP environments. And in Appendix
C.11, we show that, even under similar noise considerations as Liu et al., these optimal
policies can also be found using poly(n) random data samples.

C.10.2 Description of the PQC classifier
As we just described, our classifier belongs to a family of so-called explicit quantum
SVMs. It is hence described by a PQC with two parts: a feature-encoding unitary
U(x), which creates features |ϕ(x)⟩ = U(x) |0⊗n⟩ when applied to an all-0 state,
followed by a variational circuit V (θ) parametrized by a vector θ. The resulting
quantum state is then used to measure the expectation value ⟨O⟩x,θ of an observable
O, to be defined. We rely on the same feature-encoding unitary U(x) as the one used
by Liu et al., i.e., the unitary that creates feature states of the form

|ϕ(x)⟩ = 1√
2k

2k−1∑

i=0

|x · gi⟩ (C.14)

for k = n − t log(n), where t is a constant defined later, under noise considerations.
This feature state can be seen as the uniform superposition of the image (under
exponentiation s′ 7→ gs

′
) of an interval of integers [logg(x), logg(x) + 2k − 1] in log-

space. Note that U(x) can be implemented in Õ(n3) operations [128].
By noting that every labeling functions fs ∈ C to be learned (see Eq. (C.6)) is de-

limiting two equally-sized intervals of log
(
Z∗
p

)
, we can restrict the decision boundaries

to be learned by our classifier to be half-space dividing hyperplanes in log-space. In
feature space, this is equivalent to learning separating hyperplanes that are normal
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to quantum states of the form:

|ϕs′⟩ =
1√

(p− 1)/2

(p−3)/2∑

i=0

|gs′+i⟩ . (C.15)

Noticeably, for input points x such that logg(x) is away from some delimiting regions
around s and s + p−3

2 , we can notice that the inner product |⟨ϕ(x)⟩ϕs|2 is either
∆ = 2k+1

p−1 or 0, whenever x is labeled +1 or −1 by fs, respectively. This hence leads
to a natural classifier to be built, assuming overlaps of the form |⟨ϕ(x)⟩ϕs′ |2 can be
measured:

hs′(x) =

{
1, if |⟨ϕ(x)⟩ϕs′ |2/∆ ≥ 1/2,

−1, otherwise
(C.16)

which has an (ideal) accuracy 1−∆ whenever s′ = s.
To complete the construction of our PQC classifier, we should hence design the

composition of its variational part V (θ) and measurement O such that they result in
expectation values of the form ⟨O⟩x,θ = |⟨ϕ(x)⟩ϕs′ |2. To do this, we note that, for
|ϕs′⟩ = V̂ (s′) |0⟩, the following equality holds:

|⟨ϕ(x)⟩ϕs′ |2 =
∣∣∣⟨0⊗n| V̂ (s′)†U(xi) |0⊗n⟩

∣∣∣
2

= Tr
[
|0⊗n⟩ ⟨0⊗n| ρ(x, s′)

]

where ρ(x, s′) = |ψ(x, s′)⟩ ⟨ψ(x, s′)| is the density matrix of the quantum state |ψ(x, s′)⟩ =
V̂ (s′)†U(xi) |0⊗n⟩. Hence, an obvious choice of variational circuit is V (θ) = V̂ (s′),
combined with a measurement operator O = |0⊗n⟩ ⟨0⊗n|. Due to the similar nature
of |ϕ′s⟩ and |ϕ(x)⟩, it is possible to use an implementation for V̂ (s′) that is similar to
that of U(xi) (take xi = gs

′
and k ≈ n/2).2 We also note that, for points x such that

logg(x) is (p−1)∆/2 away from the boundary regions of hs′ , the non-zero inner prod-
ucts |⟨ϕ(x)⟩ϕs′ |2 are equal to ∆ = O(n−t). These can hence be estimated efficiently
to additive error, which allows to efficiently implement our classifier hs′ (Eq. (C.16)).

C.10.3 Noisy classifier
In practice, there will be noise associated with the estimation of the inner products
|⟨ϕ(x)⟩ϕs′ |2, namely due to the additive errors associated to sampling. Similarly
to Liu et al., we model noise by introducing a random variable eis′ for each data
point xi and variational parameter gs

′
, such that the estimated inner product is

2Note that we write V̂ (s′) and Us′ to be parametrized by s′ but the true variational parameter
here is gs

′
, since we work in input space and not in log-space.
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|⟨ϕ(xi)⟩ϕs′ |2 + eis′ . This random variable satisfies the following equations:




eis′ ∈ [−∆,∆]

E[eis′ ] = 0

Var[eis′ ] ≤ 1/R

where R is the number of circuit evaluations used to estimate the inner product. We
hence end up with a noisy classifier:

h̃s′(xi) =

{
1, if

(
|⟨ϕ(xi)⟩ϕs′ |2 + eis′

)
/∆ ≥ 1/2,

−1, otherwise

The noise has the effect that some points which would be correctly classified by
the noiseless classifier have now a non zero probability of being misclassified. To limit
the overall decrease in classification accuracy, we focus on limiting the probability
of misclassifying points xi such that logg(xi) is (p− 1)∆/2 away from the boundary
points s′ and s′ + p−3

2 of gs′ . We call Is′ the subset of Z∗
p comprised of these points.

For points in Is′ , the probability of misclassification is that of having |eis′ | ≥ ∆/2.
We can use Chebyshev’s inequality to bound this probability:

Pr
(
|eis′ | ≥

∆

2

)
≤ 4

∆2R
(C.17)

since E[eis′ ] = 0 and Var[eis′ ] ≤ 1/R.

C.11 Proof of trainability of PQC agent in the SL-
DLP

In this Appendix, we describe an optimization algorithm to train the variational pa-
rameter gs

′
of the PQC classifier we defined in Appendix C.10. This task is non-trivial

for three reasons: 1) even by restricting the separating hyperplanes accessible by our
classifier, there are still p−1 candidates, which makes an exhaustive search for the op-
timal one intractable; 2) noise in the evaluation of the classifier can potentially heavily
perturb its loss landscape, which can shift its global minimum and 3) decrease the
testing accuracy of the noisy classifier. Nonetheless, we show that all these consid-
erations can be taken into account for a simple optimization algorithm, such that it
returns a classifier with close-to-optimal accuracy with high probability of success.
More precisely, we show the following Theorem:

Theorem 48. For a training set of size nc such that

c ≥ max

{
logn(8/δ), logn

(
log(δ/2)

log(1− 2n−t)

)}

for t ≥ max {3 logn(8/δ), logn(16/ε)} in the definition of ∆, and a number of cir-
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cuit evaluations per inner product R ≥ max
{

4n2(t+c)

δ , 128ε3

}
, then our optimization

algorithm returns a noisy classifier h̃s′ with testing accuracy Acch̃s′
(fs) on the DLP

classification task of Liu et al. such that

Pr
(
Acch̃s′

(fs) ≥ 1− ε
)
≥ 1− δ.

The proof of this Theorem is detailed below.
Given a training set X ⊂ X polynomially large in n, i.e., |X| = nc, define the

training loss:

L(s′) = 1

2|X|
∑

x∈X

|hs′(x)− fs(x)|

and its noisy analog:

L̃(s′) = 1

2|X|
∑

x∈X

∣∣∣h̃s′(x)− fs(x)
∣∣∣

Our optimization algorithm goes as follows: using the noisy classifier h̃s′ , evaluate
the loss function L̃

(
logg(x)

)
for each variational parameter gs

′
= x ∈ X, then set

gs
′
= argminx∈X L̃(logg(x)).

This algorithm is efficient in the size of the training set, since it only requires |X|2
evaluations of h̃s′ .
To prove Theorem 48, we show first that we can enforce argminx∈X L̃(logg(x)) =
argminx∈XL(logg(x)) with high probability (Lemma 49), and second, that this algo-
rithm also leads to s′ close to the optimal s in log-space with high probability (Lemma
50).

Lemma 49. For a training set of size nc such that c ≥ logn(8/δ), a t ≥ 3c in the
definition of ∆, and a number of circuit evaluations per inner product R ≥ 4n2(t+c)

δ ,
we have

Pr
(

argmin
x∈X

L̃(logg(x)) = argmin
x∈X

L(logg(x))
)
≥ 1− δ

2

Proof. In order for the minima of the two losses to be obtained for the same x ∈ X,
it is sufficient to ensure that the classifiers hlogg(xi) and h̃logg(xi) agree on all points
xj , for all (xi, xj) ∈ X. This can be enforced by having:



⋂

i,j
i̸=j

xi ∈ Ilogg(xj)


 ∩


⋂

i,s′

|ei,s′ | ≤
∆

2




that is, having for all classifiers hlogg(xj) that all points xi ∈ X, xi ̸= xj , are away
from its boundary regions in log-space, and that the labels assigned to these points
are all the same under noise.
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We bound the probability of the negation of this event:

Pr



⋃

i,j
i̸=j

xi /∈ Ilogg(xj) ∪
⋃

i,s′

|ei,s′ | ≥
∆

2


 ≤ Pr



⋃

i,j
i̸=j

xi /∈ Ilogg(xj)




+ Pr


⋃

i,s′

|ei,s′ | ≥
∆

2




using the union bound.
We start by bounding the first probability, again using the union bound:

Pr



⋃

i,j
i̸=j

xi /∈ Ilogg(xj)


 ≤

∑

i,j
i̸=j

Pr
(
xi /∈ Ilogg(xj)

)

=
∑

i,j
i̸=j

∆

2
≤ n2c∆

2

By setting t ≥ 3c, we have ∆ ≤ 4n−t ≤ 4n−3c, which allows us to bound this first
probability by δ/4 when c ≥ logn(8/δ).
As for the second probability above, we have

Pr


⋃

i,s′

|ei,s′ | ≥
∆

2


 ≤

∑

i,s′

Pr
(
|ei,s′ | ≥

∆

2

)

≤ 4n2c

∆2R

using the union bound and Eq. (C.17). By setting R ≥ 4n2(t+c)

δ ≥ 16n2c

∆2δ (since
∆ ≥ 2n−t), we can bound this second probability by δ/4 as well, which gives:

Pr
(

argmin
x∈X

L̃(logg(x)) = argmin
x∈X

L(logg(x))
)
≥ 1− Pr

(⋃

i,j
i̸=j

xi /∈ Ilogg(xj)

∪
⋃

i,s′

|ei,s′ | ≥
∆

2

)

≥ 1− δ/2

Lemma 50. For a training set of size nc such that

c ≥ logn

(
log(δ/2)

log(1− 2ε)

)
,
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then s′ = logg
(
argminx∈XL(logg(x))

)
is within ε distance of the optimal s with prob-

ability:

Pr
( |s′ − s|
p− 1

≤ ε
)
≥ 1− δ

2

Proof. We achieve this result by proving:

Pr
( |s′ − s|
p− 1

≥ ε
)
≤ δ

2

This probability is precisely the probability that no logg(x) ∈ logg(X) is within ε
distance of s, i.e.,

Pr

( ⋂

x∈X

log(x) /∈ [s− ε(p− 1), s+ ε(p− 1)]

)

As the elements of the training set are all i.i.d., we have that this probability is equal
to

Pr (log(x) /∈ [s− ε(p− 1), s+ ε(p− 1)])
|X|

Since all the datapoints are uniformly sampled from Z∗
p, the probability that a dat-

apoint is in any region of size 2ε(p − 1) is just 2ε. With the additional assumption
that |X| = nc ≥ log1−2ε(δ/2) (and assuming ε < 1/2), we get:

Pr
( |s′ − s|
p− 1

≥ ε
)
≤ (1− 2ε)log1−2ε(δ/2) =

δ

2

Lemma 49 and Lemma 50 can be used to prove:

Corollary 51. For a training set of size nc such that

c ≥ max

{
logn(8/δ), logn

(
log(δ/2)

log(1− 2ε)

)}
,

a t ≥ 3c in the definition of ∆, and a number of circuit evaluations per inner product
R ≥ 4n2(t+c)

δ , then our optimization algorithm returns a variational parameter gs
′

such that
Pr
( |s′ − s|
p− 1

≤ ε
)
≥ 1− δ

From here, we notice that, when we apply Corollary 51 for ε′ ≤ ∆
2 , our optimiza-

tion algorithm returns an s′ such that, with probability 1− δ, the set Is′ is equal to
Is and is of size (p− 1)(1− 2∆). In the event where |s′ − s|/(p− 1) ≤ ε′ ≤ ∆

2 , we can
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hence bound the accuracy of the noisy classifier:

Acch̃s′
(fs) =

1

p− 1

∑

x∈X
Pr
(
h̃s′(x) = fs(x)

)

≥ 1

p− 1

∑

x∈Is

Pr
(
h̃s′(x) = fs(x)

)

≥ (1− 2∆) min
xi∈Is

Pr
(
|ei,s′ | ≤

∆

2

)

≥ (1− 2∆)

(
1− 4

∆2R

)

= 1−
(
2∆

(
1− 4

∆2R

)
+

4

∆2R

)

with probability 1− δ.
We now set t ≥ max {3 logn(8/δ), logn(16/ε)}, ε′ = n−t and R ≥ max

{
4n2(t+c)

δ , 128ε3

}
,

such that 2ε′ = 2n−t ≤ ∆ ≤ 4n−t ≤ ε
4 ,
(
1− 4

∆2R

)
≤ 1 and 4

∆2R ≤ ε
2 .

Using these inequalities, we get

Acch̃s′
(fs) ≥ 1− ε

with probability 1− δ, which proves Theorem 48.
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Appendix D

Exponential separations
between classical and quantum
learners

D.1 Details regarding definitions

D.1.1 Constraining hypothesis classes to those that are effi-
ciently evaluatable

In this section, we discuss why it makes sense to restrict the hypothesis class to
be efficiently evaluatable. Specifically, we show that if we allow the learner to use
hypotheses that run for superpolynomial time, then every concept class that is learn-
able in superpolynomial time is also learnable in polynomial time. Thus, if we do
not restrict the hypotheses to be efficiently evaluatable, then the restriction that the
learning algorithm has to run in polynomial time is vacuous (i.e., it imposes no extra
restrictions on what can be learned). For more details we refer to [116].

Consider a concept class C that is learnable by a superpolynomial time learning
algorithm A using a hypothesis class H. To show that this concept class is learnable
using a polynomial time learning algorithm, consider the hypothesis class H whose
hypotheses are enumerated by all possible polynomially-sized sets of examples. Each
hypothesis in H′ runs the learning algorithm A on its corresponding set of examples,
and it evaluates the hypothesis from H that the learning algorithm outputs based
on this set of examples. Finally, consider the polynomial-time learning algorithm A′

that queries the example oracle a polynomial number of times and outputs the speci-
fication of the hypothesis in H′ that corresponds to the obtained set of examples. By
construction, this polynomial-time learning algorithm A′ now learns C.

D.1.2 Proof of Lemma 3
Lemma 3. CQ = QQ.
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Proof. Since any efficient classical algorithm can be simulated using an efficient quan-
tum algorithm it is obvious that CQ ⊆ QQ. For the other inclusion, let L = (C,D) ∈
QQ. That is, the concept classes C are efficiently learnable under the distributions D
by a quantum learning algorithm Aq using a quantum evaluatable hypothesis class
H. To show that L ∈ CQ, consider the quantum evaluatable hypothesis class H′

whose hypotheses are enumerated by all possible polynomially-sized sets of training
examples. Each hypothesis in H′ runs the quantum learning algorithm Aq on its
corresponding set of examples, and evaluates the hypothesis from H that the quan-
tum learning algorithm Aq outputs based on the set of examples. Finally, consider
the classical polynomial-time learning algorithm Ac that queries the example ora-
cle a polynomial number of times and outputs the specification of the hypothesis in
H′ that corresponds to the obtained set of examples. By construction, this classical
polynomial-time algorithm Ac can learn the concept classes C under the distributions
D using the quantum evaluatable hypothesis class H′. This shows that L ∈ CQ.

D.1.3 Proof of Lemma 4
Lemma 4. HeurBPP/samp ⊆ HeurP/poly.

Proof. The proof strategy is analogous to the arguments in Section 2 of the supple-
mentary material of [109], where they show that BPP/samp ⊆ P/poly.

Let (L, {Dn}n∈N) ∈ HeurBPP/samp. In particular, there exist a polynomial-time
classical algorithms A with the following property: for every n and ϵ > 0 it holds that

Prx∼Dn

[
Pr
(
A(x, 0⌊1/ϵ⌋, T ) = L(x)

)
≥ 2

3

]
≥ 1− ϵ, (D.1)

where the inner probability is over the randomization of A and

T = {(xi, L(xi)) | xi ∼ Dn}poly(n)i=1 .

Let ϵ > 0 and partition the set of n-bit strings as follows

{0, 1}n = Incorrect(ϵ) ⊔ Inerror(ϵ), (D.2)

such that for every x ∈ Incorrect(ϵ) we have

Pr
(
A(x, 0⌊1/ϵ⌋, T ) = L(x)

)
≥ 2

3
, (D.3)

where the probability is taken over the internal randomization of A and T . Impor-
tantly, we remark that our partition is such that

Prx∼Dn

[
x ∈ Incorrect(ϵ)

]
≥ 1− ϵ. (D.4)

By applying the arguments of Section 2 of the supplementary material of [109]
to A with the bitstring 0⌊1/ϵ⌋ fixed as input we obtain a polynomial-time classical
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algorithm A′ with the following property: for every n there exists an advice string
αn,ϵ ∈ {0, 1}poly(n,1/ϵ)1 such that for every x ∈ Incorrect(ϵ):

A′(x, 0⌊1/ϵ⌋, αn,ϵ) = L(x). (D.5)

Intuitively, the algorithm A′(x, 0⌊1/ϵ⌋, αn,ϵ) runs A(x, 0⌊1/ϵ⌋, T ) a certain number of
times and decides its output based on a majority-vote. Moreover, A′ does so with a
particular setting of random seeds and training data T that makes it correct decide
L(x), which is collected in αn,ϵ. Finally, from Eq. (D.4) we find that we have

Prx∼Dn

[
A′(x, 0⌊1/ϵ⌋, αn,ϵ) = L(x)

]
≥ 1− ϵ, (D.6)

which shows that (L, {Dn}n∈N) ∈ HeurP/poly.

D.2 Proof of Theorem 24
Theorem 24. If the 2c-DCRA holds, then the learning problem

Lmodexp =
(
{Cmodexp

n }n∈N, {DU
n }n∈N)

exhibits a CC/QC separation, where DU
n denotes the uniform distribution over Z∗

N .

Proof. To see why Lmodexp is not in CC, we first note that the modular exponenti-
ation concept class contains the cube root function f−1

N discussed in Section 6.1.2.
Therefore, the proof presented in [116], which shows that the cube root concept class
is not in CC under the DCRA, also implies that the modular exponentiation concept
class is not in CC under the DCRA. To briefly recap, recall from Section 6.1.2 that we
can efficiently generate examples (y, f−1

N (y)), for y ∈ Z∗
N uniformly at random. If we

put these examples into an efficient classical learning algorithm for the modular expo-
nentiation concept class, the learning algorithm would with high probability identify
a classically efficiently evaluatable hypothesis that agrees with f−1

N on a polynomial
fraction of inputs. This directly violates the DCRA, which states that evaluating f−1

N

is classically intractable, even on a polynomial fraction of inputs (i.e., it is outside of
HeurBPP).

What remains to be shown is that Lmodexp is in QC. Suppose we are given access
to an example oracle EX(cd,DU

n ) which when queried returns an example (x, xd

mod N), where x is sampled uniformly at random from Z∗
N . To show that Lmodexp

is in QC, we will describe a O(poly(n, 1/δ))-time quantum learning algorithm that
uses queries to EX(cd,DU

n ) and identifies d with probability at least 1 − δ. Before
describing the quantum learning algorithm, we will first prove the following lemma,
which is used to prove that our quantum learning algorithm is correct.

Lemma 52. Write (p − 1)(q − 1) = 2c · pk1
1 · · · pkℓ

ℓ , where the pis are distinct odd
primes. Then, for any i = 1, . . . , ℓ we have that with probability at least 1/2, an

1Note that the advice string also depends on ϵ, since 0⌊1/ϵ⌋ was fixed as input to A.
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example (x, xd mod N) queried from EX(cd,DU
n ) satisfies

pki
i | ordN (x), (D.7)

where ordN (x) denotes the order of x in Z∗
N .

Proof of Lemma 52. Let Ck denote the cyclic group of order k. Since (p−1)(q−1) =
2ca and gcd(p − 1, q − 1) = 2c

′
as described in Definition 19, the Chinese remainder

theorem tells us that

Z∗
N ≃ Z∗

p × Z∗
q ≃ Cp−1 × Cq−1 ≃ C2c1 × C2c2 × Cp

k1
1
× · · · × C

p
kℓ
ℓ

,

for some c1, c2 such that c1 + c2 = c. For any x ∈ Z∗
N we will use

x = (x
(1)
0 , x

(2)
0 , x1, . . . , xℓ)

to denote its corresponding element in C2c1 × C2c2 × C
p
k1
1
× · · · × C

p
kℓ
ℓ

. Next,
note that the order of x in Z∗

N is the least common multiple of the orders of all
x
(1)
0 , x

(2)
0 , x1, . . . , xℓ in their respective groups. What this implies is that any element

x = (x
(1)
0 , x

(2)
0 , x1, . . . , xℓ) satisfies

pki
i | ordN (x),

if xi is a generator of C
p
ki
i

. The number of generators of C
p
ki
i

is equal to φ(pki
i )

(where φ denotes Euler’s totient function), and the number of elements of x =

(x
(1)
0 , x

(2)
0 , x1, . . . , xℓ) such that xi is a generator of C

p
ki
i

is therefore equal to

2c1 · 2c2 · pk1
1 · · · p

ki−1

i−1 · φ(pki
i ) · pki+1

i+1 · · · pkℓ

ℓ .

Thus, the probability that a uniformly random x ∈ Z∗
N satisfies Eq. (D.7) is at least

2c1 · 2c2 · pk1
1 · · ·φ(pki

i ) · · · pkℓ

ℓ .

#Z∗
N

=
2c1 · 2c2 · pk1

1 · · · p
ki−1

i−1 · φ(pki
i ) · pki+1

i+1 · · · pkℓ

ℓ .

(p− 1)(q − 1)

=
φ(pki

i )

pki
i

≥ 1

2
.

We now describe the quantum learning algorithm that can identify d in time
O(poly(n, 1/δ)) using queries to EX(cd,DU

n ). We write (p−1)(q−1) = 2c ·pk1
1 · · · pkℓ

ℓ ,
where the pis are distinct primes. The idea is to query EX(cd,DU

n ) sufficiently many
times such that for every i = 1, . . . , ℓ we have an example (xi, x

d
i mod N) where

pki
i | ordN (xi). (D.8)

Next, we use Shor’s algorithm [176] to compute ri = ordN (xi) and ai = logxi
(xdi ),
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where loga(b) denotes the discrete logarithm of b in the group generated by a (i.e.,
the smallest integer ℓ such that aℓ = b). Now by elementary group theory we obtain
the congruence relation

d ≡ ai mod ri,

which by Eq. (D.8) implies the congruence relation

d ≡ ai mod pki
i .

In other words, the examples allowed us to recover d mod pki
i for every i = 1, . . . , ℓ.

By the Chinese remainder theorem, all that remains is to recover d mod 2c, which
we can do by brute force search since c is constant. All in all, if we query EX(cd,DU

n )
sufficiently many times such that for every i = 1, . . . , ℓ we have an example (xi, x

d
i

mod N) satisfying Eq. (D.8), then we can recover d.
What remains to be shown is that with probability 1 − δ a total number of

O(poly(n, 1/δ)) queries to EX(cd,DU
n ) suffices to find an example (xi, x

d
i mod N)

satisfying Eq. (D.8) for every i = 1, . . . , ℓ. To do so, we invoke Lemma 52 and conclude
from it that for any individual i = 1, . . . , ℓ after O(log(1/δ′)) queries with probability
at least 1− δ′ we found an example (xi, x

d
i mod N) satisfying Eq. (D.8). In particu-

lar, this implies that after a total of O(log(n, 1/δ)) queries we found with probability
at least 1− δ examples (xi, x

d
i mod N) satisfying Eq. (D.8) for all i = 1, . . . , ℓ.

D.2.1 Discrete cube root assumption for moduli of Defini-
tion 19

Recall that in Definition 19 we have constraint our moduli N = pq to satisfy the
conditions

(a) gcd(3, (p− 1)(q − 1)) = 1,

(b) (p− 1)(q − 1) = 2c · a, where a ∈ N is odd and c is a constant,

(c) gcd(p− 1, q − 1) = 2c
′
for some c′.

Firstly, we remark that (a) is a standard condition required for the function cube root
function f−1

N to be well-defined, and it therefore does not influence the DCRA. On
the other hand, the implications that the conditions (b) and (c) have on the hardness
in the DCRA are relatively unexplored. Nonetheless, there are reasons to believe that
the DCRA still holds under conditions (b) and (c).

To see why conditions (b) and (c) might not influence the DCRA, we remark that
the DCRA is closely-related to the security of the RSA cryptosystem. Specifically, the
DCRA for a specific modulus N is equivalent to assuming that the RSA cryptosystem
with public exponentiation key e = 3 and modulus N has an “exponential security”
(i.e., deciphering a ciphertext without the private key requires time exponential in the
cost of decryption). In other words, if a certain family of moduli is used in practice,
or are not actively avoided, this can be considered as supporting evidence that the
DCRA holds for those moduli.
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In practice it is generally prefered to use so-called “cryptographically strong primes”2
p and q when constructing the modulus N = pq for the RSA cryptosystem. One of
the conditions for a prime p to be a cryptographically strong prime is that p− 1 has
large prime factors. Note that if p− 1 has large prime factors, then the largest power
of 2 that divides it must be small. In other words, if p and q are cryptographically
strong primes, then condition (b) holds. Moreover, if p− 1 and q − 1 only have large
prime factors, then the probability that p − 1 and q − 1 share a prime factors is rel-
atively small, and condition (c) is thus likely to hold. Finally, we note that recently
factored RSA numbers3, which is a factoring challenge of a set of cryptographically
strong moduli organized by the inventors of the RSA cryptosystem, all satisfy both
conditions (b) and (c). For instance, all RSA numbers that have been factored over
the last five years (i.e., RSA-250, RSA-240, RSA-768, RSA-232 and RSA-230) all have
c′ ≤ 2 and c ≤ 8 in conditions (b) and (c).

D.3 Proof of Theorem 25
Theorem 25. LDCRI =

(
{CDCRI

n }n∈N, {DU
n }n∈N) exhibits a CH/QH separation, where

H = CDCRI and DU
n denotes the uniform distribution over Z∗

N .

Proof. To show quantum learnability, we note that N is known and we can thus use
Shor’s algorithm [176] to efficiently compute d ∈ {0, . . . , (p− 1)(q − 1)} such that

(m3)d ≡ m mod N, for all m ∈ Z∗
N . (D.9)

Next, we note that from (x, cm(x)) we can retrieve the kth bit of m3, where k =
int(x1 : · · · : x⌊logn⌋). Since for any given k ∈ [n] we have

Prx∼DU
n

(
int(x1 : · · · : x⌊logn⌋) = k

)
=

1

n
(D.10)

we find that O(poly(n)) examples suffices to reconstruct the full binary representation
of m3 with high probability. Finally, using d and m3 we can compute (m3)d ≡ m
mod N .

To show classical non-learnability we show that an efficient classical learning al-
gorithm Alearn can efficiently solve the discrete cube root problem. To do so, we let
e ∈ Z∗

N and our goal is to use Alearn to efficiently compute m ∈ Z∗
N such that m3 ≡ e

mod N . First, we generate examples

(x, cm(x)) = (x, bin(e, k)), (D.11)

where x ∈ {0, 1}n is sampled uniformly at random and k = int(x1 : · · · : x⌊logn⌋).
If we plug these examples into Alearn with ϵ = 1/n3 and δ = 1/3, then with high

2https://en.wikipedia.org/wiki/Strong_prime
3https://en.wikipedia.org/wiki/RSA_numbers
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probability we obtain some m′ such that

Prk∼[n]

(
bin(m3, k) ̸= bin((m′)3, k)

)
≤ 1

n3
, (D.12)

where k ∈ [n] is sampled uniformly at random. Next, we claim that m3 ≡ (m′)3

mod N . Specifically, suppose there exists some i such that bin(m3, i) ̸= bin((m′)3, i),
then this implies that

Prk∼[n]

(
bin(m3, k) ̸= bin((m′)3, k)

)
=

1

n

n∑

k=1

1
[
bin(m3, k) = bin((m′)3, k)

]
(D.13)

≥ 1

n
, (D.14)

which clearly contradicts Eq. (D.12). Now since x 7→ x3 mod N is a bijection to and
from Z∗

N we conclude that m = m′ and that we have thus solved our instances of the
discrete cube root.

D.4 Proof of Theorem 26
Theorem 26. Consider a family of concept classes {Cn}n∈N and distributions {Dn}n∈N
such that

Quantum learnability:

(a) Every cn ∈ Cn can be evaluated quantumly in time O (poly(n)).

(b) There exists a polynomial p such that for every n ∈ N we have

|Cn| ≤ p(n).

Classical non-learnability:

(c) There exists a family {cn}n∈N, where cn ∈ Cn, such that

({cn}n∈N, {Dn}n∈N) ̸∈ HeurP/poly.

Then, L = ({Cn}n∈N, {Dn}n∈N) exhibits a CC/QQ learning separation.

Proof. Firstly, a quantum learner can iterate over all concepts in Cn and find the
one that matches the examples obtained from the oracle. In other words, a quantum
learner can implement empirical risk minimization through brute-force search. By
Corollary 2.3 of [174] this shows that L ∈ QQ.

Next, suppose L ∈ CC, i.e., suppose there exists an efficient classical learning
algorithm for L that uses a classically evaluatable hypothesis class. By combining
the classical learning algorithm with the evaluation algorithm of the hypothesis class
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we obtain a polynomial-time classical randomized algorithm A such that for every
c′n ∈ Cn on input T = {(xi, c′n(xi)) | xi ∼ Dn}poly(n)i=1 and x ∈ {0, 1}n we have

Prx∼Dn

[
Pr
(
A(x, 0⌊1/ϵ⌋, T ) = c′n(x)

)
≥ 2

3

]
≥ 1− ϵ

If we applyA to the concepts {cn}n∈N we obtain ({cn}n∈N, {Dn}n∈N) ∈ HeurBPP/samp ⊆
HeurP/poly, which contradicts the classical non-learnability assumption. Therefore,
it must hold that L ̸∈ CC.

D.4.1 Proof of Lemma 27
Lemma 27. If there exists a (L,D) ̸∈ HeurP/poly with L ∈ BQP, then for every
L′ ∈ BQP-complete4 there exists a family of distributions D′ = {D′

n}n∈N such that
(L′,D′) ̸∈ HeurP/poly.

Proof. Let L′ ∈ BQP-complete and consider the many-to-one polynomial-time reduc-
tion f : L→ L′ such that L(x) = L′(f(x)). Also, consider the pushforward distribu-
tions D′

n = f(Dn) on {0, 1}n′5, i..e, the distribution induced by first sampling x ∼ Dn

and subsequently computing f(x). Next, we suppose that (L′,D′) ∈ HeurP/poly.
Specifically, we suppose that there exists a classical algorithm A and a sequence ad-
vice strings {αn}n∈N as in Definition 13 such that for every n ∈ N:

Pry∼D′
n

[
A(y, 0⌊1/ϵ⌋, αn′) = L′(y)

]
≥ 1− ϵ (D.15)

By the definition of the push-forward distribution D′
n we have

Pry∼D′
n

[
A(y, 0⌊1/ϵ⌋, αn′) = L′(y)

]
= Prx∼Dn

[
A(f(x), 0⌊1/ϵ⌋, αn′) = L′(f(x))

]

(D.16)

Finally, we define a polynomial-time classical algorithm A′ that uses advice as follows

A′(x, 0⌊1/ϵ⌋, αn) = A(f(x), 0⌊1/ϵ⌋, αn).

Then, by Eq. (D.16) we have that

Prx∼Dn

[
A′(x, 0⌊1/ϵ⌋, αn) = L(x)

]
= Prx∼Dn

[
A(f(x), 0⌊1/ϵ⌋, αn) = L′(f(x))

]

(D.17)

≥ 1− ϵ (D.18)

which implies that (L,D) ∈ HeurP/poly. This contradicts the assumptions, and we
therefore conclude that indeed (L′,D′) ̸∈ HeurP/poly.

4With respect to many-to-one reductions (as is the case for, e.g., quantum linear system solv-
ing [101]).

5Note that f can map instances x ∈ {0, 1}n to instances of size n′ that are at most polynomially
larger than n.
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D.4.2 Proof of Lemma 28
Lemma 28. If L ̸∈ P/poly and L is polynomially random self-reducible with respect
to some distribution D, then (L,D) ̸∈ HeurP/poly.

Proof. Since L is polynomially random self-reducible (for a formal definition we re-
fer to [79]), we know that there exists a family of distributions D = {Dn}n∈N, a
polynomial-time computable function f , and some integer kn = O(poly(n)) such that

Pry1,...,ykn∼Dn

(
f
(
x, L(y1), . . . , L(ykn

)
)
= L(x)

)
≥ 3

4
(D.19)

Suppose (L,D) ∈ HeurP/poly, i.e., there exists a polynomial-time classical algo-
rithm A and a sequence of advice strings {αn}n∈N such that

Pry∼Dn

(
A(y, 0⌊1/ϵ⌋, αn) = L(y)

)
≥ 1− ϵ. (D.20)

Let ϵ′ = 1/(9k), then by combining Eq. (D.19) and Eq. (D.20) we get that

Pry1,...,ykn∼Dn(x)

(
f
(
x,A(y1, 01/ϵ

′
, αn), . . . ,A(ykn

, 01/ϵ
′
, αn)

)
= L(x)

)
≥ 2

3
(D.21)

In other words, if we define

A′(x, αn) = f
(
x,A(y1, 01/ϵ

′
, αn), . . . ,A(y1, 01/ϵ

′
, αn)

)
,

where yi ∼ Dn are sampled during the runtime of the algorithm, then we conclude
that L ∈ BPP/poly = P/poly. This contradicts the assumption in the lemma, and we
therefore conclude that (L,D) ̸∈ HeurP/poly.

D.5 Proof of Theorem 30
Theorem 30. Suppose there exists a polynomial-time randomized classical algo-
rithm A with the following property: for every geometrically-local family of n-qubit
Hamiltonians H(x) there exist a dataset TH ∈ {0, 1}poly(n) such that for every sum
O =

∑L
i=1Oi of L ∈ O(poly(n)) many local observables with

∑L
i=1 ||Oi|| ≤ B for

some constant B, the function

fH,O(x) = A(x,O, TH)

satisfies

Ex∼[−1,1]m

[ ∣∣fH,O(x)− fH,O(x)
∣∣
]
<

1

6
,

where fH,O(x) = Tr [ρH(x)O] and ρH(x) denotes the ground state of H(x). Then,
DLP ∈ P/poly.
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Proof. We define DLP to be the problem of computing the first bit of loga x (i.e.,
the smallest positive integer ℓ such that aℓ ≡ x mod p) with respect to a generator
a ∈ Z∗

p for a given x ∈ Z∗
p.

First, using Shor’s algorithm we can construct a polynomial-depth circuit UShor

such that

UShor |0, x, 0ℓ⟩ = (1− α) |DLP(x), x, 0ℓ⟩+ α |garbage⟩ , (D.22)

for all x ∈ {0, 1}n and where α = O(2−n). Next, we parameterize

U(x) = U ·
(
I0 ⊗

[
n⊗

i=1

Xi(gγ(xi) · 2π)
])

, (D.23)

where X is a rotation such that X(0) |0⟩ = |0⟩ and X(2π) |0⟩ = |1⟩, and gγ is a
continuous function such that

gγ(xi) =





0, xi ∈ [−1,−γ)
(2γ − x)(γ + x)/(4γ3), x ∈ (−γ, γ)
1, xi ∈ (γ, 1]

, (D.24)

for some γ > 0. Finally, we add 2T layers of identities to U(x), where T denotes the
depth of UShor.

We define H(x) to be the Hamiltonian family on C2s ⊕ C23T with s = n + ℓ + 1
given by

H(x) = Hinit +Hclock +

3T∑

t=1

Ht(x), (D.25)

with

Hinit =

s∑

i=1

|0⟩ ⟨0|i , (D.26)

Hclock =

3T−1∑

t=1

|01⟩ ⟨01|clockt,t+1 , (D.27)

Ht(x) =
1

2

(
I ⊗ |100⟩ ⟨100|clockt−1,t,t+1 + I ⊗ |110⟩ ⟨110|clockt−1,t,t+1− (D.28)

Ut(x)⊗ |110⟩ ⟨100|clockt−1,t,t+1 − Ut(x)
† ⊗ |100⟩ ⟨110|clockt−1,t,t+1

)
(D.29)

where |.⟩ ⟨.|i acts on the ith site of C2s , |.⟩ ⟨.|clockj acts on the jth site of C23T and Ut

denotes the tth layer of gates in U(x). Note that H(x) is 5-local for all x ∈ [−1, 1].
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The ground state of H(x) is given by ρ(x) = |ψ(x)⟩ ⟨ψ(x)|, where

|ψ(x)⟩ = 1√
3T

T∑

t=1

(Ut · · ·U1)(x) |0s⟩ |1t03T−t⟩ , (D.30)

We define O = |0⟩ ⟨0|0 ⊗ I ⊗ |1⟩ ⟨1|
clock
T and note that it is a local observable with

constant norm. Now fH,O defined in Eq. 6.8 is such that

fH,O(x) = Tr [ρ0(x)O] =
2

3
p1(x), (D.31)

where p1(x) denotes the probability that |ψout(x)⟩ = U(x) |0s⟩ outputs 1 when mea-
suring the first qubit in the computational basis. In particular, we have that

fH,O(x) = Tr [ρ0(x)O] =
2

3
((1− α)DLP(gγ(x)) + α · garb) , (D.32)

for all x ∈ [−1, 1]n for which there does not exists xi ∈ (−γ, γ), and some quantity
garb ≤ 1.

Finally, assume that we obtain fH,O such that

Ex∼[−1,1]n

[ ∣∣fH,O − fH,O

∣∣
]
<

1

6
. (D.33)

Also, suppose there exists a bitstring y ∈ {0, 1}n whose corresponding corner Cy ⊂
[−1, 1]n6 with size γ is such that

∣∣∣Ex∼Cy

[
fH,O

]
− Ex∼Cy

[
fH,O

]∣∣∣ > 1

3
. (D.34)

Then, we find that

Ex∼[−1,1]n

[ ∣∣fH,O − fH,O

∣∣
]
=

∫

[−1,1]n

∣∣fH,O − fH,O

∣∣ dx (D.35)

≥
∫

Cy

∣∣fH,O − fH,O

∣∣ dx (D.36)

≥
∣∣∣∣∣

∫

Cy

fH,O − fH,Odx

∣∣∣∣∣ (D.37)

=

∣∣∣∣∣

(∫

Cy

fH,Odx

)
−
(∫

Cy

fH,Odx

)∣∣∣∣∣ (D.38)

=
∣∣∣Ex∼Cy

[
fH,O

]
− Ex∼Cy

[
fH,O

]∣∣∣ > 1

3
. (D.39)

6Here y ∈ {0, 1}n is mapped to {−1, 1}n by setting all 0s to −1, and the corner Cy consists of
all points x ∈ [−1, 1]n whose ith coordinate is γ close to yi for all i ∈ [n].
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which clearly contradicts Eq. (D.33). We therefore conclude that
∣∣∣Ex∼Cy

[
fH,O

]
− Ex∼Cy

[
fH,O

]∣∣∣ < 1

3
. (D.40)

In conclusion, for every y ∈ {0, 1}n the quantity Ex∼Cy [fH,O] is exponentially
close to DLP(y). Finally, we can efficiently estimate Ex∼Cy

[fH,O] to within additive
inverse-polynomial error, which allows us to compute DLP(y) in BPP/poly = P/poly.

Spectral gap and smoothness Note that the Hamiltonian family constructed
above indeed does not satisfy all requirements for the methods of Huang et al. [107]
to work. In particular, it is known that the spectral gap of Hamiltonians obtained
from Kitaev’s circuit-to-Hamiltonian construction (i.e., those defined in Eq. (D.25))
have a spectral gap that is inverse polynomial in the depth of the circuit, which is
our case is polynomial in the instance size n. Moreover, since we apply a function gγ
to the parameters x (which has a rapid increase between −γ and γ), it is likely that
the average gradient of the function Tr [OρH(x)] is not bounded by a constant, but
rather scales with the number of parameters m (which in our case also scales with
the instance size n).
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