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Summary

In this thesis, the contribution of quantum computers to machine learning has been
explored, falling under the domain of Quantum Machine Learning. This domain
promises novel perspectives and methods for addressing complex issues in machine
learning by leveraging the unique capabilities of quantum computers. Quantum com-
puters differ fundamentally from classical computers in their use of quantum mechan-
ics, resulting in unique computational abilities. Unlike classical bits, which can be
either 0 or 1, quantum computers employ qubits that can exist as both 0 and 1 si-
multaneously due to a phenomena called “superposition”. Moreover, “entanglement”
enables quantum computers to bring qubits into a mutually dependent state, allowing
for complex parallel computations. Within the research domain of quantum machine
learning, this thesis has explored various proposals regarding how quantum computers
can enhance certain components of machine learning.

The first proposal examined in this thesis is the applications of quantum comput-
ers in topological data analysis. Topological data analysis is an innovative approach
that extracts robust properties from datasets by understanding their inherent “shape”.
The focus was specifically on quantum algorithms for linear algebra, aiming to de-
termine if they could offer superpolynomial speedups compared to classical methods.
The results of this thesis demonstrated that existing quantum algorithms, along with
algorithms developed in this thesis (with applications in numerical linear algebra,
machine learning, and complex network analysis), solve problems that are classically
deemed intractable according to widespread assumptions in complexity theory. Specif-
ically, these results showed that the speedup provided by quantum algorithm methods
for topological data analysis is resilient against the development of faster classical al-
gorithms. These findings shed light on the potential power of quantum computers
in addressing complex problems in topological data analysis, machine learning, and
network analysis.

Another aspect of this thesis is the investigation of structural risk minimization
in the context of quantum machine learning models. Structural Risk Minimization
(SRM) is a principle in machine learning that seeks a balance between model complex-
ity and performance on new data. It involves selecting a model from a given family by
striking a balance between training error (how well the model fits the training data)
and a complexity term (penalizing overly complex models). The focus on this thesis
was on understanding the impact of certain design choices in machine learning mod-
els based on parameterized quantum circuits. In essence, a parameterized quantum
circuit can be seen as a quantum variant of a neural network, manipulating a set of
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qubits depending on parameters and seeking the right parameters for the problem at
hand. The research in this thesis explored whether important settings within new
quantum machine learning models based on parameterized quantum circuits can be
identified, influencing both complexity measures and training error, which is crucial
for the successful implementation of SRM. In particular, this thesis demonstrated how
to construct new quantum machine learning models with favorable performance guar-
antees based on the SRM principle. These insights contribute to optimizing quantum
machine learning models, enhancing their performance.

The subsequent topic explored in this thesis was how quantum computers can
improve reinforcement learning. Reinforcement learning revolves around learning
through interaction to achieve a specific goal, typically modeled by the interaction
between an “agent” (the learner) and an “environment”. The agent takes continuous
actions, and after each action, the environment responds by providing the agent with
a “reward”. The goal of the agent is to maximize these rewards over time. In this the-
sis, quantum models based on parameterized quantum circuits were introduced within
reinforcement learning. Notably, these models demonstrated comparable performance
to traditional classical models (such as deep neural networks), while showing superior
performance in certain scenarios. These results suggest that quantum models can be
a powerful tool for solving complex problems in reinforcement learning.

The final part of the research in this thesis focused on identifying learning tasks
within computational learning theory for which quantum learning algorithms have
exponential advantages over classical algorithms. Computational learning theory is
a mathematical framework introduced in the 1990s with the aim of providing formal
arguments about why and how machine learning can be successful in practice. This
thesis delved deep into the details to precisely define what it means for a quantum
learner to have an exponential advantage over its classical counterparts. It then
explored previous cases of exponential advantages, identifying the exact source of
classical complexity and the advantage of quantum models. Finally, it investigated
the general belief that quantum machine learning performs best in scenarios with data
generated by quantum processes. This involved establishing a framework in which
any problem with data generated by quantum processes can lead to an exponential
quantum advantage. This opens doors to the application of quantum computing in
specific scenarios where classical algorithms fall short.

In summary, this thesis provides an exploration of quantum machine learning,
applying the unique capabilities of quantum computers to diverse domains within
machine learning. The proposals researched ranged from the application of quan-
tum algorithms in topological data analysis, understanding the influence of design
choices on structural risk minimization and the introduction of quantum models in
reinforcement learning to examinations of learning tasks in computational learning
theory where quantum learning algorithms can offer exponential advantages. As a
whole, this thesis contributes to the understanding of the promising role of quantum
computers in addressing complex problems within machine learning.
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