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Chapter 7

Conclusion

In this chapter, we present the conclusions of the thesis. In Section 7.1, we recall the
problem statement and research questions and we provide them with answers. Next,
in Section 7.2, we discuss the limitations of our work. Finally, in Section 7.3, we
discuss some promising directions for future work.

7.1 Research overview
In this thesis, we studied the speedups provided by several QML proposals over their
classical counterparts, and how to get the best possible performance out of these
proposals. Specifically, the problem statement of this thesis was:

Problem statement. Can we substantiate the capacity of various QML proposals
to (superpolynomially) outperform their classical counterparts, and what methods can
we devise to attain their best possible performance?

The above problem statement was split into 4 research question. Below, we restate
these research questions and subsequently provide them with answers.

Chapter 3 investigated the potential of a class of problems arising from the quan-
tum algorithm for topological data analysis [130] to become genuinely useful applica-
tions of quantum computers with a superpolynomial quantum speedup, with the first
research question in mind:

Research question 1. Can the linear-algebraic QML algorithms for Betti numbers
maintain their speculated superpolynomial quantum speedups, even with the develop-
ment of better classical algorithms?

We showed that this algorithm along with a number of new algorithms provided
by us (with applications in numerical linear algebra, machine learning and complex
network analysis) solve problems that are classically intractable under widely-believed
complexity-theoretic assumptions by showing that they are as hard as simulating the
one clean qubit model. Specifically, our results showed that the methods of the quan-
tum algorithm for topological data analysis withstand the sweeping dequantization
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results of Tang et al. [186, 60]. To analyze whether it is possible to further strengthen
the argument for quantum advantage (or, to actually find an efficient classical al-
gorithm) for the narrow TDA problem, we investigated state-of-the-art classical al-
gorithms and we highlighted the theoretical hurdles that, at least currently, stymie
such classical approaches. Regarding near-term implementations, we identified that
implementing sparse access to the input matrix is a major bottleneck in terms of the
required number of qubits, we proposed multiple methods to circumvent this bottle-
neck via classical precompilation strategies, and we investigated the required resources
to challenge the best known classical methods.

Chapter 4 studied how to implement structural risk minimization for quantum
machine learning models based on parameterized quantum circuits, to answer the
second research question:

Research question 2. Can we identify hyperparameters within novel quantum learn-
ing models based on parameterized quantum circuits that impact both complexity mea-
sures and performance on training data, as is crucial for the successful implementation
of structural risk minimization?

In particular, in Theorem 12 and Theorem 14 we characterized the VC-dimension
and fat-shattering dimension of these quantum models and identified hyperparameters
– such as the rank and Frobenius norms of the observables – that influence these
complexity measures. Moreover, in Proposition 15 and Proposition 17 we showed that
these hyperparameters also influence the performance that these quantum models can
have on training data. Finally, we showed how our findings can be used to construct
new quantum machine learning models with favourable performance guarantees based
on the principle of structural risk minimization.

Chapter 5 investigated quantum reinforcement learning agents based on parame-
terized quantum circuits motivated by our third research question:

Research question 3. How can new quantum machine learning models based on pa-
rameterized quantum circuits be effectively leveraged within the realm of reinforcement
learning? Specifically, can these quantum approaches demonstrate the potential to be
on par with classical models in standard benchmarking tasks and outperform them in
novel specific scenarios?

We proposed several constructions and showed the impact of certain design choices
on learning performance. In particular, we introduced the softmax-PQC model,
where a softmax policy is computed from expectation values of a parameterized quan-
tum circuit with both trainable observable weights and input scaling parameters.
These added features to standard parameterized quantum circuits used in machine
learning (e.g., as quantum classifiers) enhance both the expressivity and flexibility
of parameterized quantum circuit policies, which allows them to achieve a learning
performance on benchmarking environments comparable to that of standard deep
neural networks. We additionally demonstrated the existence of task environments,
constructed out of parameterized quantum circuit, that are very natural for parame-
terized quantum circuit agents, but on which deep neural network agents have a poor
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performance. To strengthen this result, we constructed several reinforcement learning
environments, each with a different degree of degeneracy (i.e., closeness to a supervised
learning task), where we showed a rigorous separation between a class of parameter-
ized quantum circuit agents and any classical learner, based on the widely-believed
classical hardness of the discrete logarithm problem. We believe that our results con-
stitute strides toward a practical quantum advantage in reinforcement learning using
(near-term) quantum devices.

Chapter 6 focused on the identification of learning problems within the probably
approximately correct (PAC) learning framework, where quantum learners exhibit
exponential advantages over classical learners, as motivated by our fourth research
question:

Research question 4. How can we identify learning problems that exhibit a prov-
able exponential speedup for quantum learning algorithms compared to their classical
counterparts, and can we confirm the validity of the folklore that quantum machine
learning excels when handling quantum-generated data?

Firstly, we delved into the intricacies of precisely defining what it means for a
quantum learner to exhibit an exponential advantage over its classical counterpart.
Subsequently, we studied prior instances of learning separations [126, 173], pinpoint-
ing the exact source of classical hardness and the quantum edge. Lastly, we exam-
ined the folklore that quantum machine learning excels most in scenarios involving
quantum-generated data. In doing so, we established a framework through which any
BQP-complete problem can lead to a learning separation, thereby substantiating the
quantum advantage across numerous domains in physics.

7.2 Limitations
In this section, we highlight certain limitations in the outcomes of this thesis. Firstly,
concerning our findings in Chapter 3, it is important to note that our discussion of the
noise-robustness of the quantum algorithm for topological data analysis lacks experi-
ments to confirm or reject our statements due to our limited access to sufficiently large
quantum hardware. Secondly, in relation to our results in Chapter 4, our analysis does
not consider the structure of the feature map, which has the potential to enhance the
effectiveness of structural risk minimization. Moreover, in reference to our outcomes
in Chapter 5, our ability to benchmark reinforcement learning models was limited to
toy problems, as we lacked access to hardware capable of handling real-world problem
sizes. Lastly, with respect to our findings in Chapter 6, it is worth noting that the
results of Theorem 26, in most instances, rely on contrived data distributions that
may not be representative of real-world scenarios.

7.3 Future work
The findings presented in this thesis open up exciting avenues for future research,
offering several promising directions to explore. In this section, we highlight a few of
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these potential interesting opportunities for future work.
Regarding the topological data analysis results in Chapter 3, there are several

interesting open questions. First, it remains open whether ABNE, as outlined in
Section 1.1, is indeed DQC1-hard. In particular, it remans open whether LLSD retains
its DQC1-hardness when restricted to combinatorial Laplacians. Exploring quantum
algorithms’ capabilities for poroblems in topological data analysis beyond computing
Betti numbers, such as handling other aspects of barcodes [83], presents another av-
enue of research. Lastly, the potential utility of quantum algorithms in computing
eigenvalues and eigenvectors of combinatorial Laplacians for complex network analy-
sis, as hinted in [134], merits further investigation.

Concerning the results presented in Chapter 4, which delve into structural risk
minimization for quantum machine learning models relying on parameterized quan-
tum circuits, several interesting research directions emerge. Firstly, it is worth explor-
ing alternative complexity measures beyond VC-dimension and fat-shattering dimen-
sion. Such an exploration can potentially uncover additional sets of hyperparameters
relevant to the structural risk minimization tradeoff. Additionally, there is room for
investigating how the phenomenon of overparameterization, as extensively studied in
the context of neural networks [18], extends to quantum machine learning models
that employ parameterized quantum circuits. This investigation can provide valuable
insights into the generalization performance of these quantum models, shedding light
on their behavior in comparison to classical counterparts.

In light of the results discussed in Chapter 5, which pertain to reinforcement
learning with quantum machine learning models based on parameterized quantum
circuits, several interesting avenues for future research come to the forefront. Firstly,
an exciting direction would involve exploring the potential of our novel quantum
machine learning models when combined with state-of-the-art policy gradient methods
or actor-critic methods like DDPG [123], PPO [172], or A3C [138]. Such investigations
can unveil synergies between classical reinforcement learning techniques and quantum
enhancements, potentially leading to superior performance in complex learning tasks.
Furthermore, it would be worthwhile to delve deeper into the capabilities of our novel
quantum machine learning models as we scale up the number of available qubits.

The results of Chapter 6, which delve into the exponential separations between
quantum and classical learning separations, prompt us to consider several interesting
directions for future inquiry. Firstly, an interesting direction of future research would
involve extending our investigations beyond the PAC learning framework. Delving
into alternative learning frameworks, such as the Angluins learning framework [19],
can broaden our understanding of quantum versus classical learning separations.
Moreover, the outcomes of our work underscore the significance of probing the heuris-
tic hardness of BQP-complete problems. Such investigations could give rise to novel
learning separations within specific physics-inspired scenarios, thus contributing to a
deeper understanding of the quantum advantage in practical applications.
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