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Chapter 6

Exponential separations
between classical and quantum
learners

In this chapter we address the challenge of finding learning settings where quantum
learners can achieve a provable exponential speedup over classical learners in the
efficient probably approximately correct (PAC) framework.

First, in Section 6.1, we discuss known learning separations that rely on efficient
data generation [126, 173], and we provide a fine-grained analysis of where the classical
hardness of learning stems from. While discussing these learning separations, we find
that the ones available in literature largely rely on the classical hardness of evaluating
the function generating the data on unseen points, as opposed to the hardness of
identifying it. We elaborate how the identification problem can be what is needed in
practice, and we address this gap by proving two new learning separations where the
classical hardness primarily lies in identifying the function generating the data (see
Theorems 24 and 25).

Afterwards, in Section 6.2, we show how leveraging stronger complexity-theoretic
assumptions can lead to learning separations where the data is generated by a genuine
quantum process. Our main contribution is Theorem 26, which outlines a method
of establishing learning separations from BQP-complete functions. We also provide
two lemmas, Lemmas 27 and 28, which introduce natural assumptions under which
the criteria in Theorem 26 are satisfied. Finally, in Section 6.2.1, we show how
Theorem 26 can be used to build learning separations from problems in quantum
many-body physics.

To connect our work to some of the related results in the field [107, 109, 146, 97],
we discuss selected topics related to learning separations with classical data. In Sec-
tion 6.3.1 we discuss the milestone work of Huang et al. [107] and how their classical
machine learning methods based on the classical shadow framework relate to learning
separations with quantum-generated data (i.e., those from Theorem 26). In particular,
we highlight their limitations by constructing a family of Hamiltonians whose ground
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state properties cannot be predicted based on cryptographic assumptions (see Theo-
rem 30). In Section 6.3.2 we discuss a specific example (i.e., evaluating parameterized
quantum circuits) that exemplifies how access to data radically enhances what is effi-
ciently evaluated classically. In Section 6.3.3 we discuss how two physically-motivated
problems (i.e., Hamiltonian learning, and identifying order parameters and phases of
matter) naturally fit in a learning setting where the learner is constrained to output
a hypothesis from a fixed hypothesis class.

6.1 Learning separations with efficient data genera-
tion

A commonality between the learning separations of [126, 173] is that the proof of
classical non-learnability relies on the fact that the examples can be efficiently gen-
erated classically (i.e., the example oracle can be efficiently simulated classically)1.
This is crucial, since it ensures that access to the example oracle does not enhance
what a classical learner can evaluate relative to a conventional (non-learning) classical
algorithm. This then allows one to directly deduce classical non-learnability from a
complexity-theoretic hardness assumption related to the concepts, since the existence
of an efficient classical learner would imply the existence of an efficient classical al-
gorithm. A similar observation was made by the authors of [156] (which came out
after our initial observation [94]), where they also study the problem of distribution-
independent learning separations.

In this section we study the learning separations of [126, 173], and we characterize
them with respect to the type of learning separation they achieve (as discussed in
Section 2.5.1), and the kind of hardness assumptions they leverage to obtain classical
non-learnability (as discussed in Section 2.5.2). Firstly, in Section 6.1.1, we discuss the
CC/QQ separation of the discrete logarithm concept class of [126], whose concepts are
believed to be classically intractable, no matter how they are specified. Secondly, in
Section 6.1.2, we discuss the CC/QC separation of the cube root concept class of [116,
173], whose concepts are specified in a way that makes them classically intractable,
though when specified in a different way they become classically efficient (i.e., the
concepts are “obfuscated” versions of classically efficient functions).

While discussing the learning separations of [126, 173], we notice that their proofs
largely rely on the classical difficulty of evaluating the hypotheses on unseen exam-
ples, rather than the difficulty of identifying a hypothesis that is close to the concept
generating the examples. To complement these works, we present two new examples
of learning separations where the classical hardness lies in identifying the concept
that is generating the examples. Specifically, in Section 6.1.3, we provide an exam-
ple of a CC/QC separation (contingent on a plausible though relatively unexplored
hardness assumption) where the concepts are classically efficiently evaluatable, mak-
ing it impossible for the classical hardness to come from evaluating them on unseen
examples. Afterwards, in Section 6.1.4, we provide an example of a separation in the
setting where the learner is constrained to output hypotheses from a fixed hypothesis

1The notion of efficiently generatable examples is closely related to the notion of random verifia-
bility [25].

93



class, in which case the learner is only required to identify the concept generating the
examples, therefore also eliminating the possibility that the classical hardness comes
from evaluating them on unseen examples2.

6.1.1 A learning separation based on a worst-case to average-
case reduction

In this section we discuss the discrete logarithm concept class studied in [126]. In
this work, the authors prove that the discrete logarithm concept class defined below
exhibits a CC/QQ separation.

Definition 17 (Discrete logarithm concept class [126]). Fix an n-bit prime number
p and a generator a of Z∗

p (i.e., the multiplicative group of integers modulo p). We
define the discrete logarithm concept class as CDL

n = {ci}i∈Z∗
p
, where

ci(x) =

{
1, if loga x ∈ [i, i+ p−3

2 ],

0, otherwise.
(6.1)

Remark(s). Here loga x denotes the discrete logarithm of x with respect to the gen-
erator a. That is, the discrete logarithm loga x is the smallest positive integer ℓ such
that aℓ ≡ x mod p.

To see why the examples are efficiently generatable for the discrete logarithm class,
first note that the examples are of the form

(x, ci(x)) = (ay, fi(y)) , (6.2)

where y ∈ {1, . . . , p− 1} is the unique integer such that x ≡ ay mod p, and we let

fi(y) =

{
1, if y ∈ [i, i+ p−3

2 ],

0, otherwise.
(6.3)

Secondly, note that y 7→ ay mod p is a bijection from {1, . . . , p − 1} to Z∗
p, which

implies that sampling x ∈ Z∗
p uniformly at random is equivalent to sampling y ∈

{0, . . . , p − 1} uniformly at random and computing x = ay mod p. By combining
this observation with Eq. (6.2), one finds that one can efficiently generate examples of
the discrete logarithm concept ci under the uniform distribution over Z∗

p by sampling
y ∈ {1, . . . , p− 1} uniformly at random, and computing (ay, fi(y)).

The hardness assumption that one can leverage to obtain classical non-learnability
is that the discrete logarithm is classically intractable (i.e., not in BPP)3. Namely,

2We remark that the concept class of Section 6.1.3 also exhibits a separation in the setting the
learner is constrained to output a hypothesis from a fixed hypothesis class. However, we choose to
present it as a CC/QC separation to highlight that such separations are still possible if the concepts
are classically efficiently evaluatable. Moreover, we still include the separation in the setting the
learner is constrained to output a hypothesis from a fixed hypothesis class of Section 6.1.4, because
it is not contingent on a relatively unexplored hardness assumption.

3For some sequence of primes {pn}n∈N, where |pn| = n and given n one can efficiently con-
struct pn.
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in [36] it is shown that computing the most-significant bit of the discrete logarithm
on any 1

2 + 1
poly(n) fraction of inputs is at least as hard as computing the discrete

logarithm on all inputs. Using the terminology of Section 2.5.2, if one assumes that
the discrete logarithm is classically intractable (i.e., not in BPP), then the concepts
c0 ∈ CDL

n lie outside of HeurBPP. In conclusion, to obtain the classical non-learnability
it is sufficient to assume that the discrete logarithm is classically intractable.

We remark that one could obtain a similar learning separation for the singleton
concept class C′n = {c} for any choice of c ∈ CDL

n . This singleton concept class is
quantum learnable without requiring use of the example oracle (i.e. without requiring
any data), and one could thus argue that it is not a genuine learning problem anymore
(i.e., similar to Observation 1).

Having discussed classical non-learnability, one still needs to ensure quantum
learnability. To this end, the authors of [126] show that a general-purpose quantum
learning algorithm (i.e., a quantum kernel method) can efficiently learn the discrete
logarithm concept class under the uniform distribution. We summarize the result
of [126] discussed in this section in the following theorem.

Theorem 22 ([126]). LDLP =
(
{CDLP

n }n∈N, {DU
n }n∈N) exhibits a CC/QQ separation,

where DU
n denotes the uniform distribution over Z∗

p.

The hypothesis class the authors of [126] use is quantumly evaluatable, and to
the best of our knowledge it is unknown whether the discrete logarithm concepts
are quantumly learnable using a classically evaluatable hypothesis class (which would
imply a CC/QC separation).

6.1.2 A learning separation based on obfuscation
The cube root concept class was first studied in [116], and the fact that this concept
class exhibits a CC/QC separation was first observed in [173], albeit using different
terminology. We note that there exist many similar concept classes based on public-
key cryptosystems such as the RSA cryptosystem that exhibit CC/QC separations
(see [115]). Recall that for CC/QC separations the hypothesis class has to be classically
evaluatable, so the role of the quantum computer is only to identify which hypothesis
is close to the concept that is generating the examples.

Definition 18 (Cube root concept class [116]). Fix an n-bit integer N = pq4, where
p and q are two ⌊n/2⌋-bit primes such that gcd

(
3, (p− 1)(q − 1)

)
= 1. We define the

cube root concept class as CDCR
n = {ci}i∈[n], with

ci(x) = bin(f−1
N (x), i),

where bin(y, i) denotes the ith bit of the binary representation of y, and the function
f−1
N is the inverse of fN (x) = x3 mod N defined on Z∗

N (i.e., the multiplicative group
of integers modulo N).

Remark(s). By requiring that p and q satisfy gcd
(
3, (p− 1)(q − 1)

)
= 1, we ensure

that f−1
N exists.

4Throughout this chapter, the integer N is known to the learner beforehand but p and q are not.
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To see why the examples are efficiently generatable for the cube root concept class,
first note that the examples are of the form

(x, ci(x)) =
(
y3,bin(y, i)

)
, (6.4)

where y ∈ Z∗
N is the unique element such that x ≡ y3 mod N . Secondly, note that

fN (x) = x3 mod N is a bijection from Z∗
N to itself, which implies that sampling

x ∈ Z∗
N uniformly at random is equivalent to sampling y ∈ Z∗

N uniformly at random
and computing x = y3 mod N . By combining this observation with Eq. (6.4), one
finds that one can efficiently generate examples of the cube root concept ci under the
uniform distribution over Z∗

N by first sampling y ∈ Z∗
N uniformly at random, and then

computing y3 mod N together with the ith bit of the binary representation of y.
The hardness assumption that one can leverage to obtain classical non-learnability

is what we will call the Discrete Cube Root Assumption (DCRA), which states that
computing f−1

N is classically intractable (i.e., not in BPP)5. Namely, in [17, 87] it is
shown that computing the least-significant bit of f−1

N on any 1
2 + 1

poly(n) fraction of
inputs is at least as hard as computing entire binary representation of f−1

N (x) on all
inputs. Using the terminology of Section 2.5.2, if one assumes that computing f−1

N

is classically intractable (i.e., not in BPP), then the concepts cn ∈ CDCR
n lie outside

of HeurBPP. In conclusion, analogous to the discrete logarithm concept class, to
obtain the classical non-learnability it is sufficient to assume that computing f−1

N is
classically intractable.

We remark that also in this case one could obtain a similar learning separation
for the singleton concept class C′n = {cn} for the concept cn ∈ CDCR

n . This singleton
concept class is quantum learnable without requiring the example oracle (i.e. without
requiring any data), and one could thus argue that it is not a genuine learning problem
anymore (i.e., similar to Observation 1).

However, there is a significant distinction between the learning separations for the
discrete logarithm concept class and the cube root concept class that is worth high-
lighting: the latter is quantumly learnable using a classically evaluatable hypothesis
class. To see why this is the case, it is important to note that f−1

N is of the form

f−1
N (y) = yd

∗
mod N, (6.5)

for some d∗ that only depends on N6. The function f−1
N is a type of “trap-door

function” in that if one is also given d∗, then computing f−1
N suddenly becomes classi-

cally tractable. In other words, there exist polynomially-sized Boolean circuits which
evaluate this function, whereas for the discrete logarithm we do not know whether
such circuits exist. In this example we thus see the relevance of how the concepts
are specified. The specifications “f−1

N where f(x) = x3” and “f−1
N = xd

∗
” refer to

the same functions, yet computing them is in one case classically tractable, and in
the other case it is classically intractable (under the DCRA). The ideas of concealing
(easy) functions in difficult descriptions is reminiscent of the term “obfuscation” in

5For some sequence of moduli {Ni}i∈N, where |Ni| = i and given i one can efficiently construct Ni.
6In cryptographic terms, d∗ is the private decryption key corresponding to the public encryption

key e = 3 and public modulus N in the RSA cryptosystem.
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computer science, and we will use this term in this context as well. Specifically, we
say that the specification “f−1

N where f(x) = x3” is an obfuscation of the specification
“f−1

N = xd
∗
”. Using the terminology of Section 2.5.2, this establishes that the problem

of evaluating the concepts actually lies inside P/poly (where the advice string – i.e.,
d∗ – is used to “de-obfuscate” the function).

With regards to quantum learnability, in [173] the authors note that using Shor’s
algorithm a quantum learning algorithm can efficiently compute d∗ following the stan-
dard attack on the RSA cryptosystem. The cube root concept class is thus quantumly
learnable using the classically evaluatable hypothesis class

{
fd,i(x) = bin(xd mod N, i)

∣∣ d ∈ [N ], i ∈ [n]
}
, (6.6)

Another feature of the cube root concept class which warrants a comment is that
even though computing d∗ does not require access to the example oracle (recall that
N is known beforehand), we still have to learn the bit of xd

∗
that is generating the

examples, which does require access to the example oracle (i.e., it requires data). We
summarize the results regarding the separation of the cube root concept class in the
following theorem.

Theorem 23 ([173, 116]). LDCR =
(
{CDCR

n }n∈N, {DU
n }n∈N) exhibits a CC/QC sepa-

ration, where DU
n denotes the uniform distribution over Z∗

N .

6.1.3 A learning separation with efficiently evaluatable con-
cepts

In this section we establish a learning separation (contingent on a plausible though
relatively unexplored hardness assumption) where the concepts do not just admit
polynomial-sized Boolean circuits, but are also given in a representation which is
efficiently evaluatable on a classical computer. For this concept class, the hardness of
learning then cannot stem from the hardness of evaluating the concepts, and it thus
lies in identifying which specific concept is generating the examples. To the best of
our knowledge, no such separation was given in the literature before. The concept
class that satisfies all of the above is the modular exponentiation concept class defined
as follows.

Definition 19 (Modular exponentiation concept class). Let N = pq be an n-bit 2c-
integer as defined in Definition 20 with gcd

(
3, (p − 1)(q − 1)

)
= 1. We define the

modular exponentiation concept class as

Cmodexp
n =

{
cd

∣∣∣ d = 1, . . . , (p− 1)(q − 1) and gcd(d, (p− 1)(q − 1) = 1
}
,

where

cd : Z∗
N → Z∗

N , cd(x) = xd mod N, (6.7)

and Z∗
N denotes the multiplicative group of integers modulo N .
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Remark(s). The concepts are not binary-valued, and it is an open question whether
and how the separation can be translated to also hold for binary-valued concepts.

Definition 20 (2c-integer). An n-bit integer N = pq is a 2c-integer if p and q are
two ⌊n/2⌋-bit primes such that:

(i) There exists a constant c (i.e., independent of n) such that 2c ∤ (p− 1)(q − 1).

(ii) There exists a constant c′ (i.e., independent of n) such that gcd(p−1, q−1) = 2c
′
.

We show that the above concept class is not classically learnable under the as-
sumption that computing f−1

N is classically intractable (i.e., not in BPP) when we
restrict N to be a 2c integer. We will refer to this assumption as the 2c-discrete cube
root assumption (2c-DCRA). First, note that the modular exponentiation concept
class contains the cube root function f−1

N discussed in the previous section (though
this time it is not “obfuscated”). Moreover, using the construction from the previous
section we can efficiently generate examples (y, f−1

N (y)), for y ∈ Z∗
N uniformly at

random. If we put these examples into an efficient classical learning algorithm for
the modular exponentiation concept class, it would with high probability identify a
classically efficiently evaluatable hypothesis that agrees with f−1

N on a 1− 1
poly(n) frac-

tion of inputs. Analogous to the previous section, by the worst-case to average-case
reduction of [17, 87] this directly violates the 2c-DCRA.

We note that by imposing that N is a 2c-integer might cause the 2c-DCRA to
no longer hold, since there could be an efficient classical algorithm for these specific
2c-integer moduli. However, since 2c-integers are generally not considered to be un-
secure or “weak” moduli for the RSA cryptosystem, and since recently factored RSA
numbers7 are all essentially 2c-integers, it is plausible that the 2c-DCRA still holds
(see Appendix D.2.1 for more details).

To show that the modular exponentiation concept class is quantumly learnable,
we use a combination of the quantum algorithm for order-finding and the quantum
algorithm for the discrete logarithm [176]. The key observation is that an example
(x, xd mod N) specifies a congruence relation d ≡ a mod r, where r denotes the
multiplicative order of x ∈ Z∗

N , and a denotes the discrete logarithm of xd in the
subgroup generated by x (i.e., the smallest positive integer ℓ such that xℓ ≡ xd

mod N). Next, using the fact that N is a 2c-number, we show that a polynomial
number of these congruences suffices to recover d with high probability. We summarize
the learning separation of the modular exponentiation concepts in Theorem 24, and
defer the proof to Appendix D.2.

Theorem 24. If the 2c-DCRA holds, then the learning problem

Lmodexp =
(
{Cmodexp

n }n∈N, {DU
n }n∈N)

exhibits a CC/QC separation, where DU
n denotes the uniform distribution over Z∗

N .

In conclusion, the modular exponentiation concept class exhibits a CC/QC sep-
aration (assuming the 2c-DCRA hold), where the concepts are classically efficiently

7https://en.wikipedia.org/wiki/RSA_numbers
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evaluatable. Since the concepts are classically efficiently evaluatable, one could argue
that the classical hardness lies in identifying rather than evaluating a hypothesis that
is close to the concept generating the examples. We remark that for the modular
exponentation concept class, it is not possible to restrict the concept class and obtain
a similar learning separation where a quantum learner does not require any data (i.e.,
similar to Observation 1). In fact, since the concepts are efficiently evaluatable, any
polynomially-sized subset of concepts is classically learnable since one can simply do
a brute-force search to find the concept that best matches the data.

In the next section, we present an example of a separation in the setting where
the learner is constrained to only output hypotheses from a fixed hypothesis class.
Since the learner is not required to evaluate the concepts on unseen examples, it can
be argued that in this case the classical hardness also lies in identifying rather than
evaluating the concept generating the examples.

6.1.4 A learning separation with a fixed hypothesis class
In this section we establish a separation in the setting where the learner is constrained
to only output hypotheses from a fixed hypothesis class. Recall that in this setting the
learner is not required to be able to evaluate the concepts, so the hardness of learning
must stem from the hardness of identifying the hypothesis that is close to the concept
generating the data. The main differences compared to the modular exponentiation
concept class are that the concepts discussed in this section are binary-valued and that
it is unknown whether they exhibit a separation in the setting where the learner is free
to output arbitrary hypotheses. The concept class we discuss in this section is defined
below, and it is a modification of the cube root concept class from Definition 18.

Definition 21 (Cube root identification concept class). Fix an n-bit integer N = pq,
where p and q are two ⌊n/2⌋-bit primes such that gcd

(
3, (p − 1)(q − 1)

)
= 1. We

define the cube root identification concept class as CDCRI
n = {cm}m∈Z∗

N
, with

cm(x) = bin(m3 mod N, int(x1 : · · · : x⌊logn⌋)),

where bin(y, k) denotes the kth bit of the binary representation of y, and int(x1 : · · · :
x⌊logn⌋) is the integer encoded by the first ⌊log n⌋-bits of x ∈ {0, 1}n.

We show that the cube root identification concept class is not classically learnable
with a fixed hypothesis class under the Discrete Cube Root Assumption (DCRA)
discussed in Section 6.1.2. To show that the existence of an efficient classical learner
violates the DCRA, we let e ∈ Z∗

N and show we how an efficient classical learner can
efficiently compute m = f−1

N (e). First, we generate examples (x,bin(e, k)), where
k = int(x1 : · · · : x⌊logn⌋). When plugging these examples into an efficient classical
learner it will with high probability identify an m′ such that (m′)3 ≡ m mod N .
Since x 7→ x3 mod N is a bijection on Z∗

N we find that m = m′, and thus conclude
that an efficient classical learner can indeed efficiently compute the solution to our
discrete cube root instance.

To establish that the cube root identification concept class is quantumly proper
learnable, we first note that using O(poly(n)) examples of a concept cm under the
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uniform distribution we can with high probability reconstruct the full binary repre-
sentation of m3. Next, since N is known we can use Shor’s algorithm [176] to compute
d such that (m3)d ≡ m mod N , which allows us to correctly identify the concept cm.
Note that the quantum learner needs access to the data to obtain a full reconstruc-
tion of the binary representation of m3. We summarize the learning separation of
the cube root identification concept class in Theorem 25, and we defer the proof to
Appendix D.3.

Theorem 25. LDCRI =
(
{CDCRI

n }n∈N, {DU
n }n∈N) exhibits a CH/QH separation, where

H = CDCRI and DU
n denotes the uniform distribution over Z∗

N .

In conclusion, the cube root identification concept class exhibits a separation in
the setting where the learner is constrained to only output hypotheses from a fixed
hypothesis class. In fact, this is a separation in the proper efficient PAC learning
framework, since the hypothesis class is the same as the concept class. Since in this
setting it is not required to evaluate the concepts on unseen examples, the classical
hardness has to lie in identifying rather than evaluating the concept generating the
examples. We remark that for the cube root identification concept class it is not
possible to obtain a similar learning separation for a singleton concept class where a
learner does not require any data (see also Observation 1).

6.2 Learning separations without efficient data gen-
eration

In the quantum machine learning community there is an often-mentioned conjecture
that quantum machine learning is most likely to have its advantages for data that
is generated by a “genuine quantum process”1. We understand this to mean that
the concepts generating the data are BQP-complete or perhaps DQC1-complete. It
is worth noting that if concepts in BQP or DQC1 that are not in BPP are already
considered a “genuine quantum process”, then the discrete logarithm concept class
discussed in Section 6.1.1 suffices. However, we aim to investigate learning separations
beyond these concepts, i.e., where the concepts are BQP-complete.

A natural question that arises is, given a family of BQP-complete concepts, what
additional assumptions are sufficient to prove that these concepts exhibit a learning
separation? In Section 6.1, we discussed proofs of learning separations that were
predicated on the data being efficiently generatable by a classical device. However,
since there is no reason to believe that a family of BQP-complete concepts allow for
efficient data generation, we will need to adopt a different proof-strategy.

To ensure quantum learnability of a family of BQP-complete concepts {Cn}n∈N, we
can simply limit the size of each concept class Cn to be no more than a polynomial in n.
When the size of the concept class is polynomial, a quantum learner can iterate over
all concepts and identify the concept that best matches the examples from the oracle.
In more technical terms, a quantum learner can efficiently perform empirical risk

1Recently, there have been notable developments that have yielded contrasting conclusions. For
instance, in [107], surprisingly complex physics problems are efficiently learned by classical learners.
We will briefly discuss this in Section 6.3.1.
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minimization through brute-force fitting. From standard results in learning theory
(e.g., Corollary 2.3 in [174]), it follows that this method results in a learner that
satisfies the conditions of the PAC learning framework.

As discussed in Section 2.5.2, assuming that the concepts are not in HeurP/poly is
sufficient to ensure that the concept class is not classically learnable. Intuitively, this
is because if the concepts were classically learnable, the examples could be used to
construct an advice string that, together with an efficient classical learning algorithm,
would put the concepts in HeurP/poly. By combining this with our approach to ensure
quantum learnability, we can show that if there exists a family of polynomially-sized
concept classes consisting of BQP-complete concepts that are not in HeurP/poly, then
this family of concept classes exhibits a CC/QQ separation. Moreover, in Section 6.2.1
we discuss how several of these separations can be build around data that is generated
by a “genuine quantum process”. The following theorem summarizes our findings, and
we defer the proof to Appendix D.4.

Theorem 26. Consider a family of concept classes {Cn}n∈N and distributions {Dn}n∈N
such that

Quantum learnability:

(a) Every cn ∈ Cn can be evaluated quantumly in time O (poly(n)).

(b) There exists a polynomial p such that for every n ∈ N we have

|Cn| ≤ p(n).

Classical non-learnability:

(c) There exists a family {cn}n∈N, where cn ∈ Cn, such that

({cn}n∈N, {Dn}n∈N) ̸∈ HeurP/poly.

Then, L = ({Cn}n∈N, {Dn}n∈N) exhibits a CC/QQ learning separation.

At face value, it may not be clear whether there exist concept classes that satisfy
both conditions (a) and (c), since condition (a) puts the concepts in BQP and it may
not be clear how large HeurP/poly is relative to BQP. Notably, it is known that if the
discrete logarithm is not in BPP, then it is also not in HeurP under certain distribu-
tions. Additionally, it is widely believed that a polynomial amount of advice does not
significantly improve the computational complexity of solving the discrete logarithm
problem. Hence, it is plausible to imagine the existence of problems L ∈ BQP for
which there is a distribution D such that (L,D) ̸∈ HeurP/poly. Moreover, it is inter-
esting to observe that if there exists a single L ∈ BQP that is not in HeurP/poly under
some distribution, then for every BQP-complete problem there exists a distribution
under which it is not in HeurP/poly. We summarize this in the lemma below, and we
defer the proof to Appendix D.4.1.
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Lemma 27. If there exists a (L,D) ̸∈ HeurP/poly with L ∈ BQP, then for every
L′ ∈ BQP-complete2 there exists a family of distributions D′ = {D′

n}n∈N such that
(L′,D′) ̸∈ HeurP/poly.

In summary, to obtain a learning separation for data generated by a “genuine
quantum process”, it is sufficient to have a single problem L ∈ BQP that lies out-
side HeurP/poly under some distribution. An example of such a problem is the dis-
crete logarithm. However, the resulting distribution under which the BQP-complete
problem lies outside of HeurP/poly is artificial as it comes from explicitly encoding
the discrete logarithm into the learning problem through the reduction to the BQP-
complete problem. Besides the discrete logarithm, little is known about the heuristic
hardness of problems in BQP (especially those that are considered “genuinely quan-
tum”). Therefore, the question arises as to what additional properties are required
for a BQP-complete problem to lie outside HeurP/poly under some distribution. We
show that a worst-case to average-case reduction combined with the assumption that
BQP ̸⊆ P/poly is sufficient for this purpose. While the question of BQP ̸⊆ P/poly
remains open, we proceed under this assumption based on its implications for cryp-
tography. Specifically, if BQP ⊆ P/poly, then problems like the discrete logarithm
would be in P/poly, which would break cryptographic systems assumed to be secure3.
Under the assumption that BQP ̸⊆ P/poly, the only missing piece is that our prob-
lem L ∈ BQP that lies outside P/poly is random self-reducible with respect to some
distribution (i.e., it admits a worst-case to average case reduction as discussed in Sec-
tion 2.5.2). We summarize these findings in the lemma below, and we defer the proof
to Appendix D.4.2.

Lemma 28. If L ̸∈ P/poly and L is polynomially random self-reducible with respect
to some distribution D, then (L,D) ̸∈ HeurP/poly.

By combining Lemma 27 with Lemma 28, we obtain a set of assumptions that
result in provable learning separations for data that could be generated by a genuine
quantum process, as stated in Theorem 26 (see also Section 6.2.1). These assumptions
include the existence of a problem L ∈ BQP that is not in P/poly which is polynomially
random self-reducible with respect to some distribution.

Corollary 29. If there exists an L ∈ BQP such that L ̸∈ P/poly and it is random
self-reducible, then every BQP-complete problem gives rise to a CC/QQ separation.

Although establishing such learning separations is not straightforward, the criteria
listed in Lemma 27, Lemma 28 and Corollary 29 suggest some challenges that when
addressed lead to provable learning separations. In particular, they highlight the
need for further investigation into the heuristic hardness of problems in BQP from
the perspective of quantum machine learning.

2With respect to many-to-one reductions (as is the case for, e.g., quantum linear system solv-
ing [101]).

3In cryptography it is common to assume non-uniform adversaries (i.e., with computational re-
sources of P/poly), and even in this case most public-key cryptosystems such as RSA and Diffie-
Hellman are still assumed to be safe).
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Generative modeling To the authors it is not entirely clear precisely how strong
the assumption that BQP ̸⊆ P/poly is. It is worth noting though that for sampling
problems arguably more iron-clad assumptions, such as the non-collapse of the poly-
nomial hierarchy, could potentially lead to analogous conclusions. In particular, one
possibility is to use quantum supremacy arguments [10, 42] to establish learning sep-
arations in generative modeling, where the task is to learn a distribution instead of
a binary function. If the distribution to be learned is in SampBQP (i.e., sampling
problems solvable by a polynomial-time quantum algorithm), then for classical non-
learnability, the corresponding requirement is that not all SampBQP problems are
in SampBPP/poly (i.e., sampling problems solvable by a polynomial-time classical
algorithm with polynomial-sized advice)4. This is analogous to the supervised learn-
ing case, but for sampling problems we might have further evidence this is unlikely.
Specifically, as sketched by Aaronson in [9], if SampBQP ⊆ SampBPP/poly, then this
could cause the polynomial hierarchy to collapse. In other words, one could arguably
use these arguments to show that a family of distributions is not classically learnable,
under the assumption that the polynomial hierarchy does not collapse.

6.2.1 Learning separations from physical systems
Many quantum many-body problems are either BQP-complete or QMA-complete
when appropriately formalized, making them suitable for defining concepts that are
not classically learnable (recall that this also implies a learning separation, since quan-
tum learnability can be ensured by considering polynomially-sized concept classes).
To be more precise, recall that any problem in BQP that does not lie in HeurP/poly
with respect to some distribution can be used to construct a distribution under which
a hard quantum many-body problem defines a learning problem that is not classically
learnable (as shown by Theorem 26 and Lemma 27). However, the induced distri-
bution under which the physical system is not classically learnable is artificial, as it
is induced by a particular choice of reduction, and there is no evidence that these
induced distributions are relevant in practice.

Examples of physical systems For concreteness, let us discuss some examples.
There are many physical systems that are in some sense universal for quantum com-
puting, such as the Bose-Hubbard model [62], the antiferromagnetic Heisenberg and
antiferromagnetic XY model [159], the Fermi-Hubbard model [150], supersymmetric
systems [49], interacting bosons [197], and interacting fermions [125]. In particular,
each of these physical systems defines a family of Hamiltonians and, for several of
these Hamiltonian families, time-evolution is BQP-complete when appropriately for-
malized [96, 63]. That is, for several of these universal Hamiltonian families H(β),
where β denote the Hamiltonian parameters, we can define BQP-complete concepts

cH(β, t) = sign

(∣∣⟨0n|eiH(β)tZ1e
−iH(β)t|0n⟩

∣∣2 − 1

2

)
,

4For a formal definition of these complexity classes we refer to [10].
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where Z1 denotes the Pauli-Z operator on the first qubit and identity elsewhere.
Additionally, one could also use BQP-complete problems in high energy physics, such
as scattering in scalar quantum field theory [112].

As another example, we note that for any of the universal Hamiltonian families
the problem of finding the ground state energy is QMA-complete. That is, for any
universal Hamiltonian family H(β), where β denote the Hamiltonian parameters, we
can define QMA-complete concepts

cH(β) = sign

(
Tr [H(β) |ψH(β)⟩]− 1

2

)
,

where |ψH(β)⟩ denotes the ground state of H(β). Naturally, one worries that these
concepts are too hard to evaluate on a quantum computer, but there are a few
workarounds. Firstly, sometimes there is a natural special case of the problem that
is BQP-complete (e.g., the subset of Hamiltonians obtained through a circuit-to-
Hamiltonian mapping). Moreover, more generically it holds that any problem that is
QMA-complete has a restriction that is BQP-complete (i.e., take any BQP-complete
problem and consider the image of this problem under a many-to-one reduction). Fi-
nally, one could use recent results on the guided local Hamiltonian problem to relax
the QMA-complete problems and obtain a BQP-complete problem [196, 50, 82].

In short, by exploiting a reduction from a problem that is in BQP which under
a given distribution lies outside HeurP/poly onto a chosen BQP-complete problem
(as in Lemma 27), any physical system that is in some sense universal for quantum
computing can be used to construct a learning separation. Nonetheless, since the
reduction is implicitely used to construct the distribution under which the physical
system becomes not classically learnable, the distributions will be artificial and there
is no reason to believe these have any relevance in practice.

6.3 Connections to other works on (quantum) learn-
ing tasks

In this section we discuss other topics of relevance. First, in Section 6.3.1, we dis-
cuss the implications and limitations of the milestone work of Huang et al. [107] on
establishing learning separations from physical systems. Next, in Section 6.3.2, we
discuss how having access to data radically enhances what can be efficiently evaluated
by discussing the example of evaluating parameterized quantum circuits. Afterwards,
in Section 6.3.3, we discuss how two physically-motivated problems (i.e., Hamilto-
nian learning, and identifying order parameters for phases of matter) fit in the PAC
learning setting where the learner is constrained to output hypotheses from a fixed
hypothesis class.

104



6.3.1 Provably efficient machine learning with classical shad-
ows

In the milestone work of Huang et al. [107], the authors design classical machine learn-
ing methods (in part built around the classical shadow paradigm) that can efficiently
learn quantum many-body problems. One of the problems studied in [107] is that of
predicting ground states of Hamiltonian. More precisely, for a family of Hamiltonians
H(x) with ground states ρH(x), one wants to predict the expectation value of some
observable O when measured on ρH(x). That is, one wants to efficiently learn to
evaluate the function

fH,O(x) = Tr [ρH(x)O] . (6.8)

One of the main things that [107] show is that given a polynomial number of data
points, one is able to efficiently evaluate the functions in Eq. (6.8) with a constant
expected error under certain criteria. Recall that in Section 6.2.1 we argued that
concepts based on physical systems can be used as a source of learning separations.
Since these concepts are of a similar form as the functions described in Eq. (6.8), one
might wonder how the results of Huang et al. relate.

Let us take a closer look at the requirements of the methods described in [107].
Firstly, the Hamiltonians H(x) must all be geometrically-local, and the observable
O must be a sum of polynomially many local observables O =

∑L
i=1Oi such that∑L

i=1 ||Oi|| is bounded by a constant. Additionally, the Hamiltonians H(x) must all
have a constant spectral gap (i.e., the difference between the smallest and the next
smallest eigenvalue) and they must depend smoothly on x (or more precisely, the
average gradient of the function in Eq. (6.8) must be bounded by a constant). One
might wonder what will happen if we relax the above requirements, while simultane-
ously maintaining the fact that a quantum computer would still be able to evaluate
the function in Eq. (6.8) (and hence build a learning separation around it based on
Theorem 26).

Two possible relaxations of the requirements are the absence of a constant spectral
gap (while maintaining an inverse polynomial spectral gap) and a reduced smooth-
ness dependency of the Hamiltonian family on x (i.e., compared to what is required
for the methods of [107]). It turns out that if one relaxes these requirements, then
under cryptographic assumptions the methods proposed by Huang et al. are no longer
capable of evaluating the function in Eq. (6.8) with constant expected error. More
precisely, any classical machine learning method that would still be able to evaluate
the function in Eq. (6.8) up to constant expected error under the relaxed assump-
tions would be able to solve DLP in P/poly, which contradicts certain cryptographic
assumptions. We provide a formal statement of this in the following theorem, the
proof of which is deferred to Appendix D.5.

Theorem 30. Suppose there exists a polynomial-time randomized classical algo-
rithm A with the following property: for every geometrically-local family of n-qubit
Hamiltonians H(x) there exist a dataset TH ∈ {0, 1}poly(n) such that for every sum
O =

∑L
i=1Oi of L ∈ O(poly(n)) many local observables with

∑L
i=1 ||Oi|| ≤ B for
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some constant B, the function

fH,O(x) = A(x,O, TH)

satisfies

Ex∼[−1,1]m

[ ∣∣fH,O(x)− fH,O(x)
∣∣
]
<

1

6
,

where fH,O(x) = Tr [ρH(x)O] and ρH(x) denotes the ground state of H(x). Then,
DLP ∈ P/poly.

In conclusion, Theorem 30 shows that any method similar to that of [107] can-
not learn to predict ground state properties of certain physical systems discussed in
Section 6.2.1. Moreover, there are a few subtle differences between the setup of [107]
and the one discussed in this thesis. Firstly, the classical shadow paradigm uses data
that is different from the PAC learning setting (i.e., the data does not correspond to
evaluations of the function it aims to predict). This distinction in setup makes the
approach of [107] more versatile, as their data can be utilized to evaluate multiple
different observables (moreover, their methods also work in the PAC setting). Sec-
ondly, the functions fH,O in Eq. (6.8) are real-valued, which differs from our setting
where we investigate functions that map onto a discrete label space. It is possible to
address this difference by applying a threshold function to fH,O after it is learned.
However, this thresholding introduces a mismatch in the types of data, as it would
involve using real-valued data to learn a function with discrete values (which is clearly
different from the PAC setting).

6.3.2 Power of data
In [109] the authors show how having access to data radically enhances what can
be efficiently evaluated. In this section we connect the ideas from their work to the
formalism we introduce in this thesis. Specifically, we will discuss a family of functions
inspired by [109] that from their description alone cannot be efficiently evaluated
classically, yet access to a few examples (i.e., evaluations of the function) allows them
to be efficiently evaluated classically. This highlights an important difference between
complexity-theoretic separations and learning separations, since in the latter one has
to deal with the learner having access to data when proving classical non-learnability.

Consider a polynomial-depth parameterized quantum circuit U(θ, ϕ⃗) – with two
types of parameters θ ∈ R parameterizing a single gate and ϕ⃗ ∈ Rℓ parameterizing
multiple other gates – that is universal in the sense that for every polynomial-depth
circuit V there exists parameters ϕ⃗∗ ∈ Rℓ such that

U(0, ϕ⃗∗) |0n⟩ = V |0n⟩ .

Moreover, assume the gates in U are of the form exp
(
− iθ

2 A
)
, with A2 = I (e.g., Z-

or X-rotations). By measuring the output of the circuit we define a family of single
parameter functions given by

fϕ⃗(θ) = ⟨0n|U(θ, ϕ⃗)†MU(θ, ϕ⃗) |0n⟩ .
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Following an argument similar to [109], due to the universality of the parameterized
quantum circuit no efficient randomized classical algorithm can take as input a ϕ⃗ ∈ Rℓ

and compute the function fϕ⃗ on a given point θ ∈ R up to constant error in time
O (poly(n)), unless BPP = BQP. Intuitively, one might thus think that the concept
class {fϕ⃗ | ϕ⃗ ∈ Rℓ} exhibits a separation between classical and quantum learners.
However, it turns out that the examples given to a classical learner radically enhance
what it can efficiently evaluate. In particular, given a few of evaluations of fϕ⃗ for some
fixed but arbitrary ϕ⃗ ∈ Rℓ, a classical learner is suddenly able to efficiently evaluate
the function. To see this, note that by [144] one can write the functions as

fϕ⃗(θ) = α cos(θ − β) + γ, for α, β, γ ∈ R,

where the coefficients α, β and γ are all independent of θ (but they do depend on
ϕ⃗). From this we can see that any three distinct examples

{(
θi, fϕ⃗(θi)

)}3
i=1

uniquely
determine fϕ⃗(θ) and one can simply fit α, β and γ to these three examples to learn how
to evaluate fϕ⃗ on unseen points. We would like to point that the BQP-hard problem in
question is not evaluating fϕ⃗ for a fixed ϕ⃗ ∈ Rℓ, but rather evaluating fϕ⃗ when ϕ⃗ ∈ Rℓ

is part of the input. This approach can be generalized to settings with more than one
free parameter θ, by using the fact that expectation values of parameterized quantum
circuits can be written as a Fourier series [171]. Specifically, when the number of
frequencies appearing in the Fourier series is polynomial, then a polynomial number
of examples suffices to fit the Fourier series and learn how to evaluate the expectation
value of the quantum circuits for an arbitrary choice of parameters.

As discussed in Section 6.1, one way to deal with the fact that data can radi-
cally enhance what can be efficiently evaluated is to ensure that the data itself is
efficiently generatable. However, for the concepts discussed above, the examples are
such that only a quantum computer can generate them efficiently. In other words,
these functions exemplify how hard to generate data can radically enhance what a
classical learner can efficiently evaluate. As discussed in Section 6.1, another way to
deal with the fact that data can radically enhance what can be efficiently evaluated is
to ensure that the concepts lie outside of HeurP/poly. However, for the case discussed
above, every fϕ⃗ corresponds to a function in HeurP/poly, since the coefficients α, β
and γ suffice as the advice. Finally, we note that for certain circuits one could have
exponentially many terms in the Fourier series [54, 53], in which case it is unclear
how to classically learn them.

6.3.3 Physically-motivated PAC learning settings with fixed
hypothesis classes

Throughout this thesis we mainly focused on the setting where the learner is allowed
to output arbibtrary hypotheses (barring that they have to be tractable as discussed
in Appendix D.1.1). However, we want to highlight that setting where the learner is
constrained to only be able to output hypothesis from a fixed hypothesis class is also
relevant from a practical perspective. In particular, in this section discuss how two
well-studied problems (i.e., Hamiltonian learning, and identifying order parameters
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for phases of matter) fit in this setting. Recall that in this setting, it is allowed and
reasonable for the hypothesis class to be classically- or quantumly- intractable.

Hamiltonian learning In Hamiltonian learning one is given measurement data
from a quantum experiment, and the goal is to recover the Hamiltonian that best
matches the data. Throughout the literature, various different types of measure-
ment data have been considered. For example, it could be measurement data from
ground states, (non-zero temperature) thermal sates, or time-evolved states. In our
case, the data will be measurement data from time-evolved states and we formu-
late Hamiltonian learning in terms of a hypothesis class as follows. First, we fix a
(polynomially-sized) set of Hermitian operators {Hℓ}Lℓ=1. Next, we consider a family
of Hamiltonians {Hβ}β∈RL , where

Hβ =

L∑

ℓ=1

βℓHℓ. (6.9)

Finally, we define the hypothesis class HHL = {hβ}β∈RL , with concepts defined as

hβ(z, t) = sign
(
Tr
[
U†(t)ρzU(t)Oz

])
, U(t) = eitHβ . (6.10)

Here z describes the experimental setup, specifying the starting state (that will evolve
under Hβ for time t) and the observable measured at the end. A natural specification
of the concepts that a learner could output are the parameters β. In particular, in
Hamiltonian learning we are only concerned with identifying which concept generated
the data (i.e., what is the specification of the underlying Hamiltonian), as opposed to
finding a hypothesis that closely matches the data. In other words, the problem of
Hamiltonian learning can naturally be formulated as PAC learning setting where the
learner is constrained to only be able to output hypotheses described in Eq. (6.10).

With respect to learning separations, one might think that the above setting is a
good candidate to exhibit a CHHL/QHHL separation, since the hypotheses are classi-
cally intractable and quantumly efficient to evaluate (assuming BPP ̸= BQP). More-
over, according to the folklore, quantum learners are most likely to have its advantages
for data that is “quantum-generated”, which certainly seems to be the case here. How-
ever, recall that in the setting where the learner is constrained to output hypotheses
from a fixed hypothesis class the task is not to evaluate, but rather to identify the
concept generating the examples. Therefore, the arguments we used throughout this
thesis do not directly apply. In fact, it turns out that classical learners can efficiently
identify the parameters of the Hamiltonian generating the data in many natural set-
tings [20, 98, 108], eliminating the possibility of a CHHL/QHHL separation.

Order parameters and phases of matter When studying phases of matter one
might want to identify what physical properties characterize the phase. One can
formulate this problem as finding a specification of the correct hypothesis selected
from a hypothesis class consisting of possible order parameters. In particular, we fix
the hypotheses Horder = {hα} to be of a very special form, which compute certain
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expectation values of ground states given a specification of a Hamiltonian. That is,
we formally define the hypotheses as

hα(β) = sign (Tr [Oαρβ ]) , (6.11)

where ρβ denotes the ground state of some Hamiltonian specified by β (e.g., using
the parameterization in Eq. (6.9)), and α specifies an observable Oα drawn from a
set of observables that are deemed potential candidates for the order parameter that
characterize the phase. In this setting, one might not necessarily want to evaluate
the hypotheses, as they might require one to prepare the ground state, which is
generally intractable (even for a quantum computer). However, one might still want
to identify the observable Oα that correctly characterizes the phase of the physical
system specified by β (i.e., the corresponding order parameter). In other words, the
problem of identifying order parameters naturally fits in the PAC learning setting
where the learner is constrained to only be able to output hypotheses described in
Eq. (6.11).

As in the case of Hamiltonian learning, one might think that the above concepts
are good candidates to exhibit a CHorder/QHorder separation, since the hypotheses are
classically intractable and quantumly efficient to evaluate (assuming BPP ̸= BQP).
In fact, according to the folklore, quantum learners are most likely to have advantages
for data that is “quantum-generated”, which certainly seems to also be the case here.
However, as already mentioned, in the setting where the learner is constrained to
output hypotheses from a fixed hypothesis class the goal is only to identify the correct
hypothesis, and it is therefore not enough to just have concepts that are classically
intractable. We remark that the methods of [107] also apply to phase classification,
but they are more aimed at the PAC learning setting where the learner can output
arbitrary hypotheses (i.e., the main goal is to predict the phase of a given physical
system). In particular, their methods do not directly allow one to obtain a physically-
meaningful description of the order-parameter, which is the main goal in the setting
where the learner is constrained to output hypotheses from a fixed hypothesis class
(which is related to the popular theme of “explainability” in machine learning).

In conclusion, while there has been progress in studying separations in the setting
where the learner is constrained to output hypotheses from a fixed hypothesis class,
there is still much to be discovered. Note that if the hypothesis class is BQP-complete
in the sense that it can perform arbitrary quantum computation, then a collapse
similar to Lemma 3 happens and no separations are possible. All in all, we have yet
to find an example of a learning setting where the data is generated by a genuine
quantum process and where it is necessary to use a quantum algorithm to efficiently
identify the process generating the data.
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