
Computational speedups and learning separations in
quantum machine learning
Gyurik, C.

Citation
Gyurik, C. (2024, April 4). Computational speedups and learning separations
in quantum machine learning. Retrieved from
https://hdl.handle.net/1887/3731364

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3731364

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3731364

Chapter 5

Parametrized quantum policies
for reinforcement learning

In this chapter, we demonstrate the potential of policies based on parameterized quan-
tum circuits (PQCs) in solving classical reinforcement learning (RL) environments.
Firstly, in Section 5.1 we first propose new model constructions and describe their
learning algorithms. Next, in Section 5.2 we show numerically the influence of design
choices on their learning performance. Finally, in Section 5.3, inspired by the classifi-
cation task of Havliček et al. [104], conjectured to be classically hard by the authors,
we construct analogous RL environments where we show an empirical learning advan-
tage of our PQC policies over standard DNN policies used in deep RL. Moreover, we
also construct RL environments with a provable gap in performance between a family
of PQC policies and any efficient classical learner.

5.1 Parametrized quantum policies
In this section, we give a detailed construction of our parametrized quantum policies
and describe their associated training algorithms.

5.1.1 The raw-PQC and softmax-PQC policies
At the core of our parametrized quantum policies is a PQC defined by a unitary
U(s,θ) that acts on a fixed n-qubit state (e.g., |0⊗n⟩). This unitary encodes an
input state s ∈ Rd and is parametrized by a trainable vector θ. Although different
choices of PQCs are possible, throughout our numerical experiments (Sec. 5.2 and
5.3.2), we consider so-called hardware-efficient PQCs [113] with an alternating-layered
architecture [157, 170]. This architecture is depicted in Fig. 5.1 and essentially consists
in an alternation of Denc encoding unitaries Uenc (composed of single-qubit rotations
Rz, Ry) and Denc + 1 variational unitaries Uvar (composed of single-qubit rotations
Rz, Ry and entangling Ctrl-Z gates).

81

Uvar(ϕ0) Uenc(s,λ0)

|0⟩0 H Rz(ϕ0,0) Ry(ϕ0,2) • Ry(λ0,0s0) Rz(λ0,2s0)
Uvar(ϕ1)

|0⟩1 H Rz(ϕ0,1) Ry(ϕ0,3) • Ry(λ0,1s1) Rz(λ0,3s1)

Figure 5.1: PQC architecture for n = 2 qubits and depth Denc = 1. This
architecture is composed of alternating layers of encoding unitaries Uenc(s,λi) taking
as input a state vector s = (s0, . . . , sd−1) and scaling parameters λi (part of a vector
λ ∈ R|λ| of dimension |λ|), and variational unitaries Uvar(ϕi) taking as input rotation
angles ϕi (part of a vector ϕ ∈ [0, 2π]|ϕ| of dimension |ϕ|).

For any given PQC, we define two families of policies, differing in how the fi-
nal quantum states |ψs,θ⟩ = U(s,θ) |0⊗n⟩ are used. In the raw-PQC model, we
exploit the probabilistic nature of quantum measurements to define an RL policy.
For |A| available actions to the RL agent, we partition H in |A| disjoint subspaces
(e.g., spanned by computational basis states) and associate a projection Pa to each of
these subspaces. Using the projections Pa, we define our raw-PQC policy πθ(a|s) =
⟨Pa⟩s,θ. A limitation of this policy family however is that it does not have a directly
adjustable “greediness” (i.e., a control parameter that makes the policy more concen-
trated around certain actions). This consideration arises naturally in an RL context
where an agent’s policy needs to shift from an exploratory behavior (i.e., close to
uniform distribution) to a more exploitative behavior (i.e., a peaked distribution).
To remedy this limitation, we define the softmax-PQC model, that applies an ad-
justable softmaxβ non-linear activation function on the expectation values ⟨Pa⟩s,θ
measured on |ψs,θ⟩. Since the softmax function normalizes any real-valued input, we
can generalize the projections Pa to be arbitrary Hermitian operators Oa. We also
generalize these observables one step further by assigning them trainable weights.
The two models are formally defined below.

Definition 16 (raw- and softmax-PQC). Given a PQC acting on n qubits, taking
as input a state s ∈ Rd, rotation angles ϕ ∈ [0, 2π]|ϕ| and scaling parameters λ ∈ R|λ|,
such that its corresponding unitary U(s,ϕ,λ) produces the quantum state |ψs,ϕ,λ⟩ =
U(s,ϕ,λ) |0⊗n⟩, we define its associated raw-PQC policy as:

πθ(a|s) = ⟨Pa⟩s,θ (5.1)

where ⟨Pa⟩s,θ = ⟨ψs,ϕ,λ|Pa|ψs,ϕ,λ⟩ is the expectation value of a projection Pa associ-
ated to action a, such that

∑
a Pa = I and PaPa′ = δa,a′ . θ = (ϕ,λ) constitute all of

its trainable parameters.
Using the same PQC, we also define a softmax-PQC policy as:

πθ(a|s) =
eβ⟨Oa⟩s,θ

∑
a′ e

β⟨Oa′ ⟩s,θ
(5.2)

where ⟨Oa⟩s,θ = ⟨ψs,ϕ,λ|
∑

i wa,iHa,i|ψs,ϕ,λ⟩ is the expectation value of the weighted
Hermitian operators Ha,i associated to action a, β ∈ R is an inverse-temperature

82

parameter and θ = (ϕ,λ,w).

Note that we adopt here a very general definition for the observables Oa of our
softmax-PQC policies. As we discuss in more detail in Appendix C.3, very ex-
pressive trainable observables can in some extreme cases take over all training of the
PQC parameters ϕ,λ and render the role of the PQC in learning trivial. However,
in practice, as well as in our numerical experiments, we only consider very restricted
observables Oa =

∑
i wa,iHa,i, where Ha,i are (tensor products of) Pauli matrices

or high-rank projections on computational basis states, which do not allow for these
extreme scenarios.

In our PQC construction, we include trainable scaling parameters λ, used in every
encoding gate to re-scale its input components. This modification to the standard
data encoding in PQCs comes in light of recent considerations on the structure of
PQC functions [166]. These additional parameters allow to represent functions with
a wider and richer spectrum of frequencies, and hence provide shallow PQCs with
more expressive power.

5.1.2 Learning algorithm
In order to analyze the properties of our PQC policies without the interference of other
learning mechanisms [198], we train these policies using the basic Monte Carlo policy
gradient algorithm REINFORCE [183, 199] (see Alg. 1). This algorithm consists in
evaluating Monte Carlo estimates of the value function Vπθ

(s0) = Eπθ

[∑H−1
t=0 γtrt

]
,

γ ∈ [0, 1], using batches of interactions with the environment, and updating the policy
parameters θ via a gradient ascent on Vπθ

(s0). The resulting updates (see line 8 of
Alg. 1) involve the gradient of the log-policy ∇θ log πθ(a|s), which we therefore need
to compute for our policies. We describe this computation in the following lemma.

Lemma 18. Given a softmax-PQC policy πθ, the gradient of its logarithm is given
by:

∇θ log πθ(a|s) = β
(
∇θ ⟨Oa⟩s,θ −

∑
a′
πθ(a

′|s)∇θ ⟨Oa′⟩s,θ
)
. (5.3)

Partial derivatives with respect to observable weights are trivially given by ∂wa,i⟨Oa⟩s,θ =
⟨ψs,ϕ,λ|Ha,i|ψs,ϕ,λ⟩ (see Def. 16), while derivatives with respect to rotation angles
∂ϕi
⟨Oa⟩s,θ and scaling parameters1 ∂λi

⟨Oa⟩s,θ can be estimated via the parameter-
shift rule [137, 166]:

∂i ⟨Oa⟩s,θ =
1

2

(
⟨Oa⟩s,θ+π

2 ei
− ⟨Oa⟩s,θ−π

2 ei

)
, (5.4)

i.e., using the difference of two expectation values ⟨Oa⟩s,θ′ with a single angle shifted
by ±π

2 .
For a raw-PQC policy πθ, we have instead:

∇θ log πθ(a|s) = ∇θ ⟨Pa⟩s,θ / ⟨Pa⟩s,θ (5.5)
1Note that the parameters λ do not act as rotation angles. To compute the derivatives

∂λi,j
⟨Oa⟩s,θ , one should compute derivatives w.r.t. sjλi,j instead and apply the chain rule:

∂λi,j
⟨Oa⟩s,θ = sj∂sjλi,j

⟨Oa⟩s,θ .

83

Algorithm 1: REINFORCE with PQC policies and value-
function baselines
Input: a PQC policy πθ from Def. 16; a value-function

approximator Ṽω
1 Initialize parameters θ and ω;
2 while True do
3 Generate N episodes {(s0, a0, r1, . . . , sH−1, aH−1, rH)}i

following πθ;
4 for episode i in batch do
5 Compute the returns Gi,t ←

∑H−t
t′=1 γ

t′r
(i)
t+t′ ;

6 Compute the gradients ∇θ log πθ(a
(i)
t |s(i)t) using

Lemma 18;

7 Fit
{
Ṽω(s

(i)
t)
}
i,t

to the returns {Gi,t}i,t;
8 Compute

∆θ =
1

N

N∑
i=1

H−1∑
t=0
∇θ log πθ(a

(i)
t |s(i)t)

(
Gi,t − Ṽω(s(i)t)

)
;

9 Update θ ← θ + α∆θ;

where the partial derivatives ∂ϕi
⟨Pa⟩s,θ and ∂λi

⟨Pa⟩s,θ can be estimated similarly to
above.

In some of our environments, we additionally rely on a linear value-function base-
line to reduce the variance of the Monte Carlo estimates [91]. We choose it to be
identical to that of Ref. [71].

5.1.3 Efficient policy sampling and policy-gradient evaluation
A natural consideration when it comes to the implementation of our PQC policies is
whether one can efficiently (in the number of executions of the PQC on a quantum
computer) sample and train them.

By design, sampling from our raw-PQC policies can be done with a single exe-
cution (and measurement) of the PQC: the projective measurement corresponding to
the observable O =

∑
a aPa naturally samples a basis state associated to action a with

probability ⟨Pa⟩s,θ. However, as Eq. (5.5) indicates, in order to train these policies
using REINFORCE, one is nonetheless required to estimate the expectation values
⟨Pa⟩s,θ, along with the gradients ∇θ ⟨Pa⟩s,θ. Fortunately, these quantities can be es-
timated efficiently up to some additive error ε, using only O(ε−2) repeated executions
and measurements on a quantum computer.

In the case of our softmax-PQC policies, it is less clear whether similar noisy
estimates ⟨Õa⟩s,θ of the expectation values ⟨Oa⟩s,θ are sufficient to evaluate policies
of the form of Eq. (5.2). We show however that, using these noisy estimates, we can
compute a policy π̃θ that produces samples close to that of the true policy πθ. We
state our result formally in the following lemma, proven in Appendix C.2.

84

Lemma 19. For a softmax-PQC policy πθ defined by a unitary U(s,θ) and observ-
ables Oa, call ⟨Õa⟩s,θ approximations of the true expectation values ⟨Oa⟩s,θ with at
most ε additive error. Then the approximate policy π̃θ = softmaxβ(⟨Õa⟩s,θ) has total
variation distance O(βε) to πθ = softmaxβ(⟨Oa⟩s,θ). Since expectation values can be
efficiently estimated to additive error on a quantum computer, this implies efficient
approximate sampling from πθ.

We also obtain a similar result for the log-policy gradient of softmax-PQCs (see
Lemma 18), that we show can be efficiently estimated to additive error in ℓ∞-norm
(see Appendix C.2 for a proof).

5.2 Performance comparison in benchmarking envi-
ronments

In the previous section, we have introduced our quantum policies and described several
of our design choices. We defined the raw-PQC and softmax-PQC models and
introduced two original features for PQCs: trainable observables at their output and
trainable scaling parameters for their input. In this section, we evaluate the influence
of these design choices on learning performance through numerical simulations. We
consider three classical benchmarking environments from the OpenAI Gym library
[43]: CartPole, MountainCar and Acrobot. All three have continuous state spaces and
discrete action spaces (see Appendix C.4 for their specifications). Moreover, simple
NN-policies, as well as simple closed-form policies, are known to perform very well
in these environments [151], which makes them an excellent test-bed to benchmark
PQC policies.

5.2.1 raw-PQC v.s. softmax-PQC
In our first set of experiments, presented in Fig. 5.2, we evaluate the general per-
formance of our proposed policies. The aim of these experiments is twofold: first,
to showcase that quantum policies based on shallow PQCs and acting on very few
qubits can be trained to good performance in our selected environments; second, to
test the advantage of softmax-PQC policies over raw-PQC policies that we con-
jectured in the Sec. 5.1.1. To assess these claims, we take a similar approach for each
of our benchmarking environments, in which we evaluate the average learning perfor-
mance of 20 raw-PQC and 20 softmax-PQC agents. Apart from the PQC depth,
the shared hyperparameters of these two models were jointly picked as to give the
best overall performance for both; the hyperparameters specific to each model were
optimized independently. As for the PQC depth Denc, the latter was chosen as the
minimum depth for which near-optimal performance was observed for either model.
The simulation results confirm both our hypotheses: quantum policies can achieve
good performance on the three benchmarking tasks that we consider, and we can
see a clear separation between the performance of softmax-PQC and raw-PQC
agents.

85

0 250 500 750 1000 1250 1500 1750 2000
Episode

0

100

200

300

400

500

Av
er
ag

e
co

lle
ct
ed

re
w
ar
ds

CartPole-v1 (n = 4, Denc = 1)

softmax-PQC
raw-PQC

0 250 500 750 1000 1250 1500 1750 2000
Episode

-180

-160

-140

-120

-100

-80

-60
MountainCar-v0 (n = 2, Denc = 4)

softmax-PQC
raw-PQC

0 250 500 750 1000 1250 1500 1750 2000
Episode

-500

-450

-400

-350

-300

-250

-200

-150

-100
Acrobot-v1 (n = 6, Denc = 2)

softmax-PQC
raw-PQC

Figure 5.2: Numerical evidence of the advantage of softmax-PQC over
raw-PQC in benchmarking environments. The learning curves (20 agents
per curve) of randomly-initialized softmax-PQC agents (green curves) and raw-
PQC agents (red curves) in OpenAI Gym environments: CartPole-v1, MountainCar-
v0, and Acrobot-v1. Each curve is temporally averaged with a time window of 10
episodes. All agents have been trained using the REINFORCE algorithm (see Alg.
1), with value-function baselines for the MountainCar and Acrobot environments.

0 250 500 750 1000 1250 1500 1750 2000
Episode

0

100

200

300

400

500

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

CartPole - softmax-PQC

Depth 5
Reference (depth 1)
Fixed lambdas
Fixed weights, β = 2, 10

0 250 500 750 1000 1250 1500 1750 2000
Episode

-180

-160

-140

-120

-100

-80

-60
MountainCar - softmax-PQC

Depth 6
Reference (depth 4)
Fixed lambdas
Fixed weights, β = 2, 10

0 250 500 750 1000 1250 1500 1750 2000
Episode

-500

-450

-400

-350

-300

-250

-200

-150

-100

Acrobot - softmax-PQC

Depth 5
Reference (depth 2)
Fixed lambdas
Fixed weights, β = 2, 10

Figure 5.3: Influence of the model architecture for softmax-PQC agents.
The blue curves in each plot correspond to the learning curves from Fig. 5.2 and are
taken as a reference. Other curves highlight the influence of individual hyperparam-
eters. For raw-PQC agents, see Appendix C.5.

86

5.2.2 Influence of architectural choices
The results of the previous subsection however do not indicate whether other design
choices we have made in Sec. 5.1.1 had an influence on the performance of our quantum
agents. To address this, we run a second set of experiments, presented in Fig. 5.3.
In these simulations, we evaluate the average performance of our softmax-PQC
agents after modifying one of three design choices: we either increment the depth
of the PQC (until no significant increase in performance is observed), fix the input-
scaling parameters λ to 1, or fix the observable weights w to 1. By comparing the
performance of these agents with that of the agents from Fig. 5.2, we can make the
following observations:

• Influence of depth: Increasing the depth of the PQC generally improves (not
strictly) the performance of the agents. Note that the maximum depth we tested
was Denc = 10.

• Influence of scaling parameters λ: We observe that training these scaling
parameters in general benefits the learning performance of our PQC policies, likely
due to their increased expressivity.

• Influence of trainable observable weights w: our final consideration relates to
the importance of having a policy with “trainable greediness” in RL scenarios. For
this, we consider softmax-PQC agents with fixed observables βOa throughout
training. We observe that this has the general effect of decreasing the performance
and/or the speed of convergence of the agents. We also see that policies with fixed
high β (or equivalently, a large observable norm β∥Oa∥) tend to have a poor learning
performance, likely due to their lack of exploration in the RL environments.

Finally, note that all the numerical simulations performed here did not include any
source of noise in the PQC evaluations. It would be an interesting research direc-
tion to assess the influence of (simulated or hardware-induced) noise on the learning
performance of PQC agents.

5.3 Quantum advantage of PQC agents in RL envi-
ronments

The proof-of-concept experiments of the previous section show that our PQC agents
can learn in basic classical environments, where they achieve comparable performance
to standard DNN policies. This observation naturally raises the question of whether
there exist RL environments where PQC policies can provide a learning advantage over
standard classical policies. In this section, we answer this question in the affirmative
by constructing: a) environments with a provable separation in learning performance
between quantum and any classical (polynomial-time) learners, and b) environments
where our PQC policies of Sec. 5.1 show an empirical learning advantage over standard
DNN policies.

87

5.3.1 Quantum advantage of PQC agents over classical agents
In this subsection, we construct RL environments with theoretical guarantees of sep-
aration between quantum and classical learning agents. These constructions are pre-
dominantly based on the recent work of Liu et al. [128], which defines a classification
task out of the discrete logarithm problem (DLP), i.e., the problem solved in the sem-
inal work of Shor [177]. In broad strokes, this task can be viewed as an encryption
of an easy-to-learn problem. For an “un-encrypted” version, one defines a labeling fs
of integers between 0 and p − 2 (for a large prime p), where the integers are labeled
positively if and only if they lie in the segment [s, s + (p − 3)/2] (mod p − 1). Since
this labeling is linearly separable, the concept class {fs}s is then easy to learn. To
make it hard, the input integers x (now between 1 and p−1) are first encrypted using
modular exponentiation, i.e., the secure operation performed in the Diffie–Hellman
key exchange protocol. In the encrypted problem, the logarithm of the input integer
logg(x) (for a generator g of Z∗

p, see Appendix C.6) hence determines the label of
x. Without the ability to decrypt by solving DLP, which is widely believed to be
classically intractable, the numbers appear randomly labeled. Moreover, Liu et al.
show that achieving non-trivial labeling accuracy 1/2 + 1/poly(n) (for n = log(p),
i.e., slightly better than random guessing) with a classical polynomial-time algorithm
using poly(n) examples would lead to an efficient classical algorithm that solves DLP
[128]. In contrast, the same authors construct a family of quantum learners based
on Shor’s algorithm, that can achieve a labeling accuracy larger than 0.99 with high
probability.

SL-DLP Our objective is to show that analogous separations between classical and
quantum learners can be established for RL environments, in terms of their attain-
able value functions. We start by pointing out that supervised learning (SL) tasks
(and so the classification problem of Liu et al.) can be trivially embedded into RL
environments [72]: for a given concept fs, the states x are datapoints, an action a is
an agent’s guess on the label of x, an immediate reward specifies if it was correct (i.e.,
fs(x) = a), and subsequent states are chosen uniformly at random. In such settings,
the value function is trivially related to the testing accuracy of the SL problem, yield-
ing a direct reduction of the separation result of Liu et al. [128] to an RL setting. We
call this family of environments SL-DLP.

Cliffwalk-DLP In the SL-DLP construction, we made the environment fully ran-
dom in order to simulate the process of obtaining i.i.d. samples in an SL setting. It
is an interesting question whether similar results can be obtained for environments
that are less random, and endowed with temporal structure, which is characteristic
of RL. In our second family of environments (Cliffwalk-DLP), we supplement the SL-
DLP construction with next-state transitions inspired by the textbook “cliff walking”
environment of Sutton & Barto [183]: all states are ordered in a chain and some
actions of the agent can lead to immediate episode termination. We keep however
stochasticity in the environment by allowing next states to be uniformly sampled,
with a certain probability δ (common in RL to ensure that an agent is not simply
memorizing a correct sequence of actions). This allows us to show that, as long as

88

sufficient randomness is provided, we still have a simple classical-quantum separation.

Deterministic-DLP In the two families constructed above, each environment in-
stance provided the randomness needed for a reduction from the SL problem. This
brings us to the question of whether separations are also possible for fully determin-
istic environments. In this case, it is clear that for any given environment, there
exists an efficient classical agent which performs perfectly over any polynomial hori-
zon (a lookup-table will do). However, we show in our third family of environments
(Deterministic-DLP) that a separation can still be attained by moving the randomness
to the choice of the environment itself: assuming an efficient classical agent is success-
ful in most of exponentially-many randomly generated (but otherwise deterministic)
environments, implies the existence of a classical efficient algorithm for DLP.

We summarize our results in the following theorem, detailed and proven in Ap-
pendices C.7 through C.9.

Theorem 20. There exist families of reinforcement learning environments which are:
i) fully random (i.e., subsequent states are independent from the previous state and
action); ii) partially random (i.e., the previous moves determine subsequent states,
except with a probability δ at least 0.86 where they are chosen uniformly at random),
and iii) fully deterministic; such that there exists a separation in the value functions
achievable by a given quantum polynomial-time agent and any classical polynomial-
time agent. Specifically, the value of the initial state for the quantum agent Vq(s0) is
ε−close to the optimal value function (for a chosen ε, and with probability above 2/3).
Further, if there exists a classical efficient learning agent that achieves a value Vc(s0)
better than Vrand(s0)+ε

′ (for a chosen ε′, and with probability above 0.845), then there
exists a classical efficient algorithm to solve DLP. Finally, we have Vq(s0) − Vc(s0)
larger than some constant, which depends on the details of the environment.

The remaining point we need to address here is that the learning agents obtained
from the methods of Liu et al. do not rely on PQCs but rather support vector ma-
chines (SVMs) based on quantum kernels [104, 169]. Nonetheless, using a connection
between these quantum SVMs and PQCs [169], we construct PQC policies which are
as powerful in solving the DLP environments as the agents obtained from the meth-
ods of Liu et al. (even under similar noise considerations). We state our result in the
following informal theorem, that we re-state formally, along with the details of our
construction in Appendices C.10 and C.11.

Theorem 21 (informal version). Using a training set of size polynomial in n = log(p)
and a number of (noisy) quantum circuit evaluations also polynomial in n, we can
train a PQC classifier on the DLP task of Liu et al. of size n that achieves a testing
accuracy arbitrarily close to optimal, with high probability. This PQC classifier can in
turn be used to construct close-to-optimal quantum agents in our DLP environments,
as prescribed by Theorem 20.

5.3.2 Quantum advantage of PQC agents over DNN agents
While the DLP environments establish a proof of the learning advantage PQC policies
can have in theory, these environments remain extremely contrived and artificial.

89

0 π 2π0

π

2π (a) PQC labeling function

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

(b) SL-PQC

softmax-PQC
DNN

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 (c) Cliffwalk-PQC

softmax-PQC
DNN

Figure 5.4: Numerical evidence of the advantage of PQC policies over DNN
policies in PQC-generated environments. (a) Labeling function and training
data used for both RL environments. The data labels (red for +1 label and blue for
−1 label) are generated using a raw-PQC of depth Denc = 4 with a margin ∆ = 0.3
(white areas). The training samples are uniformly sampled from the blue and red
regions, and arrows indicate the rewarded path of the cliffwalk environment. (b) and
(c) The learning curves (20 agents per curve) of randomly-initialized softmax-PQC
agents and DNN agents in RL environments where input states are (b) uniformly
sampled from the dataset and (c) follow cliffwalk dynamics. Each curve is temporally
averaged with a time window of 10 episodes.

They are based on algebraic properties that agents must explicitly decrypt in order
to perform well. Instead, we would like to consider environments that are less tailored
to a specific decryption function, which would allow more general agents to learn. To
do this, we take inspiration from the work of Havlíček et al. [104], who, in order
to test their PQC classifiers, define a learning task generated by similar quantum
circuits.

PQC-generated environments

We generate our RL environments out of random raw-PQCs. To do so, we start
by uniformly sampling a raw-PQC that uses the alternating-layer architecture of
Fig. 5.1 for n = 2 qubits and depth Denc = 4. We use this raw-PQC to generate
a labeling function f(s) by assigning a label +1 to the datapoints s in [0, 2π]2 for
which ⟨ZZ⟩s,θ ≥ 0 and a label −1 otherwise. We create a dataset S of 10 datapoints
per label by uniformly sampling points in [0, 2π]2 for which | ⟨ZZ⟩s,θ | ≥ ∆

2 = 0.15.
This dataset allows us to define two RL environments, similar to the SL-DLP and
Cliffwalk-DLP environments of Sec. 5.3.1:

• SL-PQC: this degenerate RL environment encodes a classification task in an
episodic RL environment: at each interaction step of a 20-step episode, a sam-
ple state s is uniformly sampled from the dataset S, the agent assigns a label
a = ±1 to it and receives a reward δf(s),a = ±1.

• Cliffwalk-PQC: this environment essentially adds a temporal structure to SL-
PQC: each episode starts from a fixed state s0 ∈ S, and if an agent assigns the
correct label to a state si, 0 ≤ i ≤ 19, it moves to a fixed state si+1 and receives a

90

+1 reward, otherwise the episode is instantly terminated and the agent gets a −1
reward. Reaching s20 also causes termination.

Performance comparison

Having defined our PQC-generated environments, we now evaluate the performance of
softmax-PQC and DNN policies in these tasks. The particular models we consider
are softmax-PQCs with PQCs sampled from the same family as that of the raw-
PQCs generating the environments (but with re-initialized parameters θ), and DNNs
using Rectified Linear Units (ReLUs) in their hidden layers. In our hyperparameter
search, we evaluated the performance of DNNs with a wide range of depths (number of
hidden layers between 2 to 10) and widths (number of units per hidden layer between
8 and 64), and kept the architecture with the best average performance (depth 4,
width 16).

Despite this hyperparametrization, we find (see Fig. 5.4, and Fig. C.4 in Ap-
pendix C.5 for different environment instances) that the performance of DNN poli-
cies on these tasks remains limited compared to that of softmax-PQCs, that learn
close-to-optimal policies on both tasks. Moreover, we observe that the separation in
performance gets boosted by the cliffwalk temporal structure. This is likely do to the
increased complexity of this task, as, in order to move farther in the cliffwalk, the
policy family should allow learning new labels without “forgetting” the labels of earlier
states. In these particular case studies, the softmax-PQC policies exhibited suffi-
cient flexibility in this sense, whereas the DNNs we considered did not (see Appendix
C.5 for a visualization of these policies). Note that these results do not reflect the dif-
ficulty of our tasks at the sizes we consider (a look-up table would perform optimally)
but rather highlight the inefficacy of these DNNs at learning PQC functions.

91

