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Chapter 4

Structural risk minimization for
quantum linear classifiers

In this chapter we theoretically analyze and quantify the influence that model parame-
ters of quantum linear classifiers have on the trade-off in structural risk minimization.
We first analyze the effect that model parameters have on the complexity term (i.e.,
the green line in Figure 2.6) and afterwards we analyze their effect on the training
error (i.e., the blue line in Figure 2.6). Specifically, in Section 4.1 we analyze the
complexity term by establishing analytic upper bounds on complexity measures (i.e.,
the VC dimension and fat-shattering dimension) of quantum linear classifiers. In Sec-
tion 4.2 we study the influence that model parameters which influence the established
complexity measure bounds have on the training error term. Finally, in Section 4.3,
we discuss how to implement structural risk minimization of quantum linear classifiers
based on the obtained results.

4.1 Complexity of quantum linear classifiers
In this section we determine the two complexity measures defined in the previous
section – i.e., the fat-shattering dimension and VC dimension – for families of quantum
linear classifiers. As a result, we identify model parameters that allow us to control
the complexity term in the expected error bounds of Theorems 1 and 2. These
bounds upper bound the expected error by a sum of a training error and a complexity
term that we would like to trade-off to achieve the best possible bound. Using the
model parameters that we identify, we can balance this trade-off to construct the best
possible model. In short, these model parameters can be used to balance the trade-off
considered by structural risk minimization, as depicted in Figure 2.6. Throughout this
section we fix the feature map to be the one defined Equation (2.22) and we allow
our separating hyperplanes to come from a family of observables O ⊆ Herm

(
C2n

)

(e.g., the family of observables implementable using either the explicit or implicit
realization of quantum linear classifiers). Our goal is to determine analytical upper
bounds on complexity measures of the resulting family of quantum linear classifiers.
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First, we show that the VC dimension of a family of quantum linear classifiers is
upper bounded by the dimension of the span of the observables that it uses. This in
turn is upper bounded by the square of the dimension of the space upon which the
observables act nontrivially. We remark that while the VC dimension of quantum
linear classifiers also has a clear dependence on the feature map, we chose to focus on
the observables because the resulting upper bounds give rise to more explicit guidelines
on how to tune the quantum model to perform structural risk minimization (as we
discuss in more detail in Section 4.3). We defer the proof to Appendix B.1.1.

Proposition 12. Let O ⊆ Herm
(
C2n

)
be a family of n-qubit observables with r =

dim
(∑

O∈O ImO
)
1. Then, the VC dimension of

COqlin =
{
c(x) = sign

(
Tr [OρΦ(x)]− d

) ∣∣ O ∈ O, d ∈ R
}

(4.1)

satisfies

VC
(
COqlin

)
≤ dim

(
Span

(
O
))

+ 1 ≤ r2 + 1. (4.2)

Remark(s). The quantity r in the above proposition is related to the ranks of the
observables. Specifically, note that for any two observables O,O′ ∈ Herm

(
C2n

)
we

have that

dim
(
ImO + ImO′) = rank

(
O
)
+ rank

(
O′)− dim

(
ImO ∩ ImO′).

The above proposition implies the (essentially obvious) result that VC dimension
of a family of implicit quantum linear classifiers is upper bounded by the number of
training examples (i.e., the operators {ρΦ(x)}x∈D span a subspace of dimension at
most

∣∣D
∣∣). We are however more interested in the application of the above proposition

to explicit quantum linear classifiers. In this case, we choose to focus on the upper
bound r2 + 1 because it has interpretational advantages as to what parts of the
model one has to tune from the perspective of structural risk minimization (i.e.,
recall from Section 2.3 that one way to perform structural risk minimization is to
tune the VC dimension). Moreover, in the case of explicit quantum linear classifiers,
the bound r2 + 1 is only quadratically worse than the bound dim

(
Span

(
O
))

+ 1. To
see this, we consider a family of explicit quantum linear classifiers with observables
Oexplicit =

{
Oλ

θ

}
, where

Oλ
θ =W †(θ) · diag

(
λ(0), . . . , λ(2n − 1)

)
·W (θ)

and we denote W (θ) |i⟩ = |ψi(θ)⟩. Next, suppose that λ(j) = 0 for all j > L and
1Here

∑
denotes the sum of vector spaces and ImO denotes the image (or column space) of the

operator O.
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define

H = SpanC

{
|ψ0(θ)⟩ , . . . , |ψL(θ)⟩ : θ ∈ Rm

}
, (4.3)

V = SpanR

{ L∑

i=0

λ(i) |ψi(θ)⟩ ⟨ψi(θ)| : θ ∈ Rm
}
, (4.4)

Then, Proposition 12 states that

VC
(
COexplicit

qlin

)
≤ dim

(
V
)
+ 1 ≤ dim(H)2 + 1.

Now, by the following lemma, we indeed find that the bound r2 + 1 is only quadrat-
ically worse than the bound dim

(
Span

(
O
))

+ 1. We again defer the proof to App-
pendix B.1.1.

Lemma 13. The vector spaces defined in Eq. (4.3) and Eq. (4.4) satisfy2

dim(H) ≤ dim(V ) ≤ dim(H)2.

Therefore, if we sufficiently limit r = dim(H), then this also limits dim
(
Span

(
O
))

=

dim(V ). Moreover, even though dim
(
Span

(
O
))

+ 1 can provide a tighter bound, it
can still be advantageous to study the bound r2+1 because it might have interpreta-
tional advantages. Specifically, it might be easier to construct cases of ansatze where
the latter bound allows us to identify a controlable hyperparameter that controls the
VC dimension (as we discuss in more detail in Section 4.3).

Note that the quantity r defined in the above proposition, depends on both the
structure of the ansatz W as well as the post-processing function λ. One way to
potentially limit r is by varying the rank of the final measurement (i.e., the value L
defined above). However, for several ansatzes in literature, having either a low-rank or
a high-rank final measurement will not make a difference in terms of the VC dimension
bound r2 + 13. To see this, consider an ansatz consisting of a single layer of parame-
terized X-rotations on all qubits, where each rotation is given a separate parameter.
Already for this simple ansatz even the first columns {⊗n

i=1Xi(θi) |0⟩ | θ ∈ [0, 2π)n}
span the entire n-qubit Hilbert space. In particular, the above proposition gives the
same VC dimension upper bound for the cases where the final measurement is of
rank L = 1, and where it is of full rank L = 2n (i.e., we have no guarantee that
limiting L limits the VC dimension). This motivates us to design ansatzes for which
subsets of columns do not span the entire Hilbert space when varying the variational
parameter θ. On the other hand, to exploit the bound dim

(
Span

(
O
))

+ 1 one needs
to consider the span of the projectors onto the first L columns in the vector space
of Hermitian operators. This quantity can be slightly less intuitive than the span of
the first L columns in the n-qubit Hilbert space, and in Section 4.3 we show that this

2Note that there exists ansatzes for which the inequalities are strict, i.e., dim(H) < dim(V ) <
dim(H)2 (e.g., see the first example discussed in Section 4.3).

3The relationship between the quantity r and the ranks of the observable can be made explicit
by considering the overlaps between the images of the observables. A more detailed explanation of
this can be found in Appendix B.1.2.
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latter quantity can already be used to affirm the effectiveness of certain regulariza-
tion techniques. Specifically, in Section 4.3 we discuss examples of ansatzes for which
subsets of columns do not span the entire Hilbert space when varying the variational
parameter, and we explain how they allow for structural risk minimization by limiting
the rank of the final measurement.

Next, we show that the fat-shattering dimension of a family of quantum linear
classifiers is related to the Frobenius norm of the observables that it uses. In particu-
lar, we show that we can control the fat-shattering dimension of a family of quantum
linear classifiers by limiting the Frobenius norm of its observables. We defer the
proof to Appendix B.1.3, where we also discuss the implications of this result in the
probably approximately correct (PAC) learning framework.

Proposition 14. Let O ⊆ Herm
(
C2n

)
be a family of n-qubit observables with η =

maxO∈O ∥O∥F . Then, the fat-shattering dimension of

FO
qlin =

{
fO,d(x) = Tr [OρΦ(x)]− d

∣∣ O ∈ O, d ∈ R
}

(4.5)

is upper bounded by

fatFO
qlin

(γ) ≤ O
(
η2

γ2

)
. (4.6)

Remark(s). The upper bound in the above proposition matches the result discussed
in [127]. This was derived independently by one of the authors of [95] in [193], and
we include it here for completeness.

The above proposition shows that the fat-shattering dimension of a family of ex-

plicit quantum linear classifiers can be controlled by limiting ||Oλ
θ ||F =

√∑2n

i=1 λ(i)
2.

In particular, it shows that the selection of the postprocessing function λ is impor-
tant when tuning the complexity of the family of classifiers. Furthermore, the above
proposition shows that the fat-shattering dimension of a family of implicit quantum
linear classifiers can be controlled by limiting ||Oα||F ≤ ||α||1. It is important to note
that the Frobenius norm itself does not fully characterize the generalization perfor-
mance of a family of quantum linear classifiers. Specifically, plugging Theorem 14 into
Proposition 2 we find that the generalization performance bounds depend on both the
Frobenius norm as well as the functional margin on training examples4. Therefore, to
optimize the generalization performance bounds one has to minimize the Frobenius
norm, while ensuring the functional margin on training examples stays large. Note
that one way to achieve this is by maximizing the so-called geometric margin, which
on a set of example {xi} is given by mini

∣∣Tr [OρΦ(xi)]− d
∣∣/||O||F .

4Recall that the functional margin of cf,d(x) = sign
(
f(x) − d

)
on a set of examples {xi} is

mini |f(xi)− d|.
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4.2 Expressivity of quantum linear classifiers
Having established that the quantity r defined in Proposition 12 and the Frobenius
norms of the observables influence the complexity of the family of quantum linear
classifiers (i.e., the green line in Figure 2.6), we will now study the influence of these
parameters on the training errors that the classifiers can achieve (i.e., the blue line in
Figure 2.6). First, we study the influence of these model parameters on the ability of
the classifiers to correctly classify certain sets of examples. Afterwards, we study the
influence of these model parameters on the margins that the classifiers can achieve.

Recall from the previous section that the VC dimension of certain families of
quantum linear classifiers depends on the rank of the observables that it uses. For
instance, if the observables are such that their images are (largely) overlapping, then
the quantity r defined in Proposition 12 can be controlled by limiting the ranks of all
observables. In Section 4.3 we use this observation to construct ansatzes for which the
VC dimension bound can be tuned by varying the rank of the observable measured
on the output of the circuit. Since the VC dimension is only concerned with whether
an example is correctly classified (and not what margin it achieves), we choose to
investigate the influence of the rank on being able to correctly classify certain sets
of examples. In particular, we show that any set of examples that can be correctly
classified using a low-rank observable, can also be correctly classified using a high-
rank observable. Moreover, we also show that there exist sets of examples that can
only be correctly classified using observables of at least a certain rank. We defer the
proof to Appendix B.2.1.

Proposition 15. Let C(r)qlin denote the family of quantum linear classifiers correspond-
ing to observables of exactly rank r, that is,

C(r)qlin =
{
c(ρ) = sign

(
Tr [Oρ]− d

) ∣∣ O ∈ Herm
(
C2n

)
, rank

(
O
)
= r, d ∈ R

}
(4.7)

Then, the following statements hold:

(i) For every finite set of examples D that is correctly classified by a quantum linear
classifier c ∈ C(k)qlin with 0 < k < 2n, there exists a quantum linear classifier

c ∈ C(r)qlin with r > k that also correctly classifies D.

(ii) There exists a finite set of examples that can be correctly classified by a classifier
c ∈ C(r)qlin, but which no classifier c′ ∈ C(k)qlin with k < r can classify correctly.

Note that in the above proposition we define our classifiers in such a way that
high-rank classifiers do not subsume low-rank classifiers. In particular, the family of
observables that C(r)qlin and C(k)qlin use are completely disjoint for k ̸= r. The construction
behind the proof of the above proposition is inspired by tomography of observables.
Specifically, we construct a protocol that queries a quantum linear classifier and based
on the assigned labels checks whether the underlying observable is approximately
equal to a fixed target observable of a certain rank. In particular, we can use this
to test whether the underlying observable is really of a given rank, as no low-rank
observable can agree with a high-rank observable on the assigned labels during this
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protocol. Note that if we could query the expectation values of the observable, then
tomography would be straightforward. However, the classifier only outputs the sign of
the expectation value, which introduces a technical problem that we circumvent. Our
protocol could be generalized to a more complete tomographic-protocol which uses
queries to a quantum linear classifier in order to find the spectrum of the underlying
observable.

Next, we investigate the effect that limitations of the rank of the observables
used by a family of quantum linear classifier have on its ability to implement certain
families of standard linear classifiers. In particular, assuming that the feature map
is bounded (i.e., all feature vectors have finite norm), then the following proposition
establishes the following chain of inclusions:

Clin on R2n ⊆ C(≤1)
qlin on n+ 1 qubits ⊆ . . . (4.8)

⊆ C(≤r)
qlin on n+ 1 qubits ⊆ · · · ⊆ Clin on R4n , (4.9)

where C(≤r)
qlin denotes the family of quantum linear classifiers using observables of rank

at most r. Note that C(≤r)
qlin ⊊ C(≤r+1)

qlin is strict due to Proposition 15. We defer the
proof to Appendix B.2.2.

Proposition 16. Let Clin(Φ) denote the family of linear classifiers that is equipped
with a feature map Φ. Also, let C(≤r)

qlin (Φ′) denote the family of quantum linear clas-
sifiers that uses observables of rank at most r and which is equipped with a quantum
feature map Φ′. Then, the following statements hold:

(i) For every feature map Φ : Rℓ → RN with supx∈Rℓ ||Φ(x)|| = M < ∞, there
exists a feature map Φ′ : Rℓ → RN+1 such that ||Φ′(x)|| = 1 for all x ∈ Rℓ and
the families of linear classifiers satisfy Clin(Φ) ⊆ Clin(Φ′).

(ii) For every feature map Φ : Rℓ → RN with ||Φ(x)|| = 1 for all x ∈ Rℓ, there exists
a quantum feature map Φ′ : Rℓ → Herm

(
C2n

)
that uses n = ⌈logN + 1⌉ + 1

qubits such that the families of linear classifiers satisfy Clin(Φ) ⊆ C(≤1)
qlin (Φ′).

(iii) For every quantum feature map Φ : Rℓ → Herm
(
C2n

)
, there exists a classical

feature map Φ′ : Rℓ → R4n such that the families of linear classifiers satisfy
Cqlin(Φ) = Clin(Φ′).

Recall from the previous section that the fat-shattering dimension of a family of
linear classifiers depends on the Frobenius norm of the observables that is uses. In the
following proposition we show that tuning the Frobenius norm changes the margins
that the model can achieve, which gives rise to better generalization performance (as
discussed in Section 2.3). In particular, we show that there exist sets of examples that
can only be classified with a certain margin by a classifier that uses an observable of
at least a certain Frobenius norm. We defer the proof to Appendix B.2.3.
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Proposition 17. Let C(η)qlin denote the family of quantum linear classifiers correspond-
ing to all n-qubit observables of Frobenius norm η, that is,

C(η)qlin =
{
c(ρ) = sign

(
Tr [Oρ]− d

) ∣∣ O ∈ Herm
(
C2n

)
with ||O||F = η, d ∈ R

}
.

(4.10)

Then, for every η ∈ R>0 and 0 < m ≤ 2n there exists a set of m examples consisting
of binary labeled n-qubit pure states that satisfies the following two conditions:

(i) There exists a classifier c ∈ C(η)qlin that correctly classifies all examples with margin
η/
√
m.

(ii) No classifier c′ ∈ C(η
′)

qlin with η′ < η can classify all examples correctly with margin
≥ η/√m.

In conclusion, in Proposition 12 we showed that in certain cases the rank of the ob-
servables control the model’s complexity (e.g., if the observables have overlapping im-
ages), and in Proposition 15 we showed that the rank also controls the model’s ability
to achieve small training errors. Moreover, in Proposition 17 we similarly showed that
the Frobenius norm not only controls the model’s complexity (see Proposition 14),
but that it also controls the model’s ability to achieve large functional margins. How-
ever, note that tuning each model parameter achieves a different objective. Namely,
increasing the rank of the observable increases the ability to correctly classify sets
of examples, whereas increasing the Frobenius norm of the observable increases the
margins that it can achieve. For example, one can increase the Frobenius norm of
an observable by multiplying it with a positive scalar which increases the margin it
achieves, but in order to correctly classify the sets of examples discussed in Proposi-
tion 15 one actually has to increase the rank of the observable.

4.3 Structural risk minimization in practice
Having established how certain model parameters of quantum linear classifiers in-
fluence both the model’s complexity and its ability to achieve small training errors,
we now discuss how to use these results to implement structural risk minimization
of quantum linear classifiers in practice. In particular, we will discuss a common
approach to structural risk minimization called regularization. In short, what regu-
larization entails is instead of minimizing only the training error Etrain, one simulta-
neously minimizes an extra term h(ω), where h is a function that takes larger values
for model parameters ω that correspond to more complex models. In this section, we
discuss different types of regularization (i.e., different choices of the function h) that
can be performed in the context of quantum linear classifiers based on the results of
the previous section. These types of regularization help improve the performance of
quantum linear classifiers in practice, without putting more stringent requirements
on the quantum hardware and are thus NISQ-suitable.

To illustrate how Proposition 12 can be used to implement structural risk mini-
mization in the explicit approach, consider the setting where we have a parameterized
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quantum circuit W (θ) (with θ ∈ Rp) followed by a fixed measurement that projects
onto the first ℓ computational basis states. To use the bound r2 + 1 from Proposi-
tion 12 one has to compute the quantity

dimC

(
SpanC

{
|ψi(θ)⟩ : i = 1, . . . ℓ, θ ∈ Rp

})
, (4.11)

where |ψi(θ)⟩ denotes the ith column ofW (θ). To use the other bound dim
(
Span

(
O
))
+

1 from Proposition 12 one has to compute the quantity

dimR

(
SpanR

{ ℓ∑

i=1

|ψi(θ)⟩ ⟨ψi(θ)| : θ ∈ Rp
})
, (4.12)

Although both are of course possible, in some cases it is slightly easier to see how the
quantity in Eq. (4.11) scales with respect to ℓ. Specifically, utilizing the quantity in
Eq. (4.11) already leads to interesting ansatze that allow for structural risk minimiza-
tion by limiting ℓ. As discussed below Proposition 12, setting ℓ to be either large or
small will not influence the upper bound on the VC dimension independently of the
structure of the parameterized quantum circuit ansatz W . The proposition therefore
motivates the design of ansatzes whose first ℓ columns define a manifold when vary-
ing the variational parameter that is contained in a relatively low-dimensional linear
subspace. Specifically, in this case Proposition 12 results in nontrivial bounds on the
VC dimension that we aim to control by varying ℓ. We now give three examples of
ansatzes that allow one to control the upper bound on the VC dimension by varying ℓ.
In particular, these ansatzes allow structural risk minimization to be implemented by
regularizing with respect to the rank of the final measurement.

Example 1 For the first example, split up the qubits up in a “control register” of
size c and a “target register” of size t (i.e., n = t + c). Next, let C−Ui(θi) denote
the controlled gate that applies the t-qubit parameterized unitary Ui(θi) to the target
register if the control register is in the state |i⟩. Finally, consider the ansatz

W (θ) =
[
C−U2c(θ2c)

]
· . . . ·

[
C−U1(θ1)

]
.5

Note that the matrix of W (θ) is given by the block matrix

W (θ) =




U1(θ1)
U2(θ2)

. . .
U2c(θ2c)


 .

For this choice of ansatz, if the final measurement projects onto ℓ = m2t (m < 2c)
computational basis states, then by Proposition 12 the VC dimension is at most
ℓ2 + 1. Note that t is a controllable hyperparameter that can be used to tune the

5We can control the depth of W (θ) by either limiting the size of the control register or by simply
dropping some of the controlled parameterized unitaries (i.e., setting Ui(θi) = I).
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VC dimension. In particular, we can set it such that the resulting VC dimension is
not exponential in n. Let us now consider the other bound dim

(
Span

(
O
))

+ 1 from
Proposition 12. For this choice of ansatz, computing the quantity in Eq. (4.12) is also
straightforward due to the block structure of the unitary. Moreover, for this choice
of ansatz the inequalities in Lemma 13 are strict, which shows why being able to
compute the quantity in Eq. (4.11) does not always imply that we can also compute
the quantity in Eq. (4.12) (i.e., one is not simply the square of the other).

Example 2 For the second example, consider an ansatz that is composed of pa-
rameterized gates of the form U(θ) = eiθP for some Pauli string P ∈ {X,Y, Z, I}⊗n.
Specifically, consider the ansatz

W (θ) = eiθdPd · . . . · eiθ1P1 .

By the bound r2+1 from Proposition 12, for this choice of ansatz if the final measure-
ment projects onto ℓ computational basis states the VC dimension is at most r2 + 1,
where r = ℓ · 2d. This bound is obtained by computing the quantity in Eq. (4.11),
which can be done by noting that a column of the unitary U(θ) spans a subspace of
dimension at most 2 when varying the variational parameter θ. Moreover, subsequent
layers of U(θ) will only increase the dimension of the span of a column by at most a
factor 2. Thus, when applying U(θ) a total of d times, the dimension of the span of
any ℓ columns of W (θ) is at most r = ℓ · 2d. Also in this construction we note that
d is a controllable hyperparameter that can be used to tune the VC dimension. In
particular, we can set it such that the resulting VC dimension is not exponential in
n. For this particular choice of ansatze, computing the quantity in Eq. (4.12) might
also be possible, but it is a bit more involved and not necessary for our main goal
of establishing that ℓ controls the VC dimension. In particular, one might be able
to compute the quantity in Eq. (4.12), but the bound r2 + 1 from Proposition 12
already suffices to establish that ℓ is a tunable hyperparameter that controls the VC
dimension.

Example 3 For the third example, we use symmetry considerations as a tool to
control the VC dimension. First, partition the n-qubit register into disjoint subsets
I1, . . . , Ik of size |Ij | = mj (i.e.,

∑
j mj = n). Next, consider “permutation-symmetry

preserving” parameterized unitaries on these partitions, which are defined as

S+
Ij
(θ) = e

iθ
∑

i∈Ij
Pi , and S⊗

Ij
(θ) = e

iθ
∏

i∈Ij
Pi ,

where we have say Pi = Xi, Pi = Yi, Pi = Zi or Pi = I for all i ∈ Ij (i.e., the
same operator acting on all qubits in the partition Ij). Note that if we apply these
operators to a permutation invariant state on the mj-qubits in the jth partition, then
it remains permutation invariant (independent of θ). From these symmetric param-
eterized unitaries we construct parameterized layers U(θ1, . . . , θk) =

∏k
j=1 S

+/⊗
Ij

(θj),
from which we construct the ansatz as

W (θ) = U(θd1 , . . . , θ
d
k) · · · · · U(θ11, . . . , θ

1
k), θ ∈ [0, 1π)dk.
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By the bound r2+1 from Proposition 12, for this choice of ansatz if the final measure-
ment projects onto ℓ computational basis states the VC dimension is at most r2 + 1,
where

r = ℓ ·
k∏

j=1

(mj + 1).

This bound is obtained by computing the quantity in Eq. (4.11), which can be done
by noting that if we apply a layer U to an n-qubit state that is invariant under
permutations that only permute qubits within each partition, then it remains invariant
under these permutations (i.e., independent of the choice of θ). In other words,
the first column of W (θ) is always contained in the space of n-qubit states that
are invariant under permutations that only permute qubits within each partition.
Next, note that the dimension of the space of n-qubit states that are invariant under
permutations that only permute qubits within each partition is equal to

∏k
j=1(mj+1).

Finally, note that any other column of W (θ) spans a space whose dimension is at most
that of the first column of W (θ) when varying θ. Thus, any ℓ columns of W (θ) span
a space of dimension is most r = ℓ ·∏k

j=1(mj + 1) when varying θ. Equivalent to
the example above, for this particular choice of ansatze, computing the quantity in
Eq. (4.12) might also be possible, but it is again a bit more involved and not necessary
for our main goal of establishing that ℓ controls the VC dimension. In particular, one
might be able to compute the quantity in Eq. (4.12), but the bound r2 + 1 from
Proposition 12 again already suffices to establish that ℓ is a tunable hyperparameter
that controls the VC dimension.

In all of the above cases we see that we can control the upper bound on the VC
dimension by varying the rank of the final measurement ℓ. It is worth noting that
in these cases the regularized explicit quantum linear classifiers will generally give
rise to a different model then the implicit approach without any theoretical guarantee
regarding which will do better, because the standard relationship between the two
models [165] will not hold anymore (i.e., the regularized explicit model does not
necessarily correspond to a kernel method anymore).

Secondly, recall that by tuning the Frobenius norms of the observables used by
a quantum linear classifier, we can balance the trade-off between its fat-shattering
dimension and its ability to achieve large margins. In particular, this shows that we
can implement structural risk minimization of quantum linear classifiers with respect
to the fat-shattering dimension by regularizing the Frobenius norms of the observ-
ables. Again, it is important to note that the Frobenius norm itself does not fully
characterize the generalization performance, since one also has to take into account
the functional margin on training examples. In particular, to optimize the general-
ization performance one has to minimize the Frobenius norm, while ensuring that the
functional margin on training examples stays large. As mentioned earlier, one way to
achieve this is by maximizing the geometric margin, which on a set of examples {xi}
is given by mini

∣∣Tr [OρΦ(xi)]−d
∣∣/||O||F . As before, for explicit quantum linear clas-

sifiers, we can estimate the Frobenius norm by sampling random computational basis
states and computing the average of the postprocessing function λ on them in order to

estimate ||Oλ
θ ||F =

√∑2n

i=1 λ(i)
2 (note that in some cases the Frobenius norm can be
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computed more directly). On the other hand, for implicit quantum linear classifiers,
we can regularize the Frobenius norm by bounding ||α||1 as ||Oα||F ≤ ||α||1. However,
if the weights are obtained by solving the usual quadratic program [103, 168], then the
resulting observable is already (optimally) regularized with respect to the Frobenius
norm [165].

Besides the types of regularization for which we have established theoretical evi-
dence of the effect on structural risk minimization, there are also other types of reg-
ularization that are important to consider. For instance, for explicit quantum linear
classifiers, one could regularize the angles of the parameterized quantum circuit [153].
Theoretically analyzing the effect that regularizing the angles of the parameterized
quantum circuit has on structural risk minimization would constitute an interest-
ing direction for future research. Another example is regularizing circuit parameters
such as depth, width and number of gates for which certain theoretical results are
known [46, 52]. Finally, it turns out that one can also regularize quantum linear
classifiers by running the circuits under varying levels of noise [47]. For these kinds
of regularization the relationships between the regularized explicit and regularized
implicit quantum linear classifiers are still to be investigated.
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