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Chapter 3

Towards quantum advantage via
topological data analysis

In this chapter we discuss the advantages that the quantum algorithm for Betti num-
ber estimation can achieve over classical algorithms. Firstly, in Section 3.1, we for-
mally define the computational problems that the quantum algorithm for Betti num-
ber estimation can (efficiently) solve. In particular, it is clear that the techniques
used in the quantum algorithm for Betti number estimation can also be used to esti-
mate the number of small eigenvalues of arbitrary sparse Hermitian matrix, not just
of combinatorial Laplacians. We take this as the starting point to define our natural
generalization, which is called low-lying spectral density estimation (a version of which
was also studied by Brandão [40]). Next, in Section 3.2, we show that this general-
ization is DQC1-hard, which suggests that the quantum-algorithmic methods behind
the quantum algorithm for Betti number estimation may be a source of exponential
separation between quantum and classical computers. We also discuss how to poten-
tially close the gap between the topological data analysis problem of Betti number
estimation and its generalization, which would show that the topological data anal-
ysis problem is itself classically intractable. Setting aside the complexity theory, in
Section 2.2.3 we discuss the state-of-the-art classical algorithms for Betti number esti-
mation and compare them with the quantum algorithms for Betti number estimation.
We also discuss promising approaches for developing novel more efficient classical al-
gorithms that take into account the specifics of the combinatorial Laplacian and we
clearly delineate the theoretical hurdles that, at least currently, stymie such classical
approaches. After discussing the strengths and weaknesses of the classical algorithms,
we identify graphs for which the quantum algorithm can achieve (superpolynomial)
speedups over the best known classical algorithms in Section 3.2.4.

3.1 Problem definitions
In this section we formally define the computational problems whose hardness we will
study. We begin by defining the problems that capture the key steps of the quantum
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algorithm for Betti number estimation. Afterwards, we define the problems related
to topological data analysis that the quantum algorithm for Betti number estimation
aims to solve. We end this section by discussing the precise relationships between
these problems.

The input matrices that we consider are sparse positive semidefinite matrices. We
call a 2n × 2n positive semidefinite matrix sparse if at most O (poly(n)) entries in
each row are nonzero. A special class of sparse positive semidefinite matrices that we
consider is the class of log-local Hamiltonians, i.e., n-qubit Hamiltonians that can be
written as a sum

H =

m∑

j=1

Hj , (3.1)

where each Hj acts on at most O (log n) qubits and we assume that m ∈ O (poly(n)).
Our problems take as input a specification of a sparse positive semidefinite matrix,

and we consider the following two standard cases. First, we consider the case where
the input matrix is specified in terms of sparse access. That is, the input matrix
H ∈ C2n×2n is specified by quantum circuits that let us query the values of its
entries, and the locations of the nonzero entries. More precisely, we assume that we
are given classical descriptions of O (poly(n))-sized quantum circuits that implement
the oracles OH and OH,loc, which map

OH : |i, j⟩ |0⟩ 7→ |i, j⟩ |Hi,j⟩ ,
OH,loc : |j, ℓ⟩ |0⟩ 7→ |j, ℓ⟩ |ν(j, ℓ)⟩ ,

where 0 ≤ i, j, ℓ ≤ 2n − 1, and ν(j, ℓ) ∈ {0, . . . , 2n − 1} denotes the location of the
ℓ-th nonzero entry of the j-th column of H. Secondly, for log-local Hamiltonians, we
also consider specifying the input matrix H by its local-terms {Hj} as in Eq. (3.1).

In order to define the problem of generating approximations of eigenvalues that
are sampled uniformly at random, we fix a suitable notion of an approximation of a
probability distribution. In particular, this notion needs to take into account that the
algorithm may err on both the estimation of the eigenvalue, and on the probability
with which it provides such an estimation. For this we use the following definition
presented in [200]. Let p be some probability distribution over the eigenvalues of a pos-
itive semidefinite matrix H ∈ C2n×2n . That is, sampling according to p will output an
eigenvalue λk with probability p(λk), and

∑2n−1
k=0 p(λk) = 1. In this context, a prob-

ability distribution q with finite support Yq ⊂ R is said to be an (δ, µ)-approximation
of p if it satisfies

∑

y∈Yq : |y−λk|<δ

q(y) ≥ (1− µ)p(λk), ∀k ∈ {0, . . . , 2n−1}.

Intuitively, this means that if we draw a sample according to q, then this sample
will be δ-close to an eigenvalue λk with probability at least (1− µ)p(λk)1 Using this

1This definition captures the distribution generated by quantum phase estimation: the eigenvector
is chosen according to the distribution p specified by the input state, and the output is δ-close to
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definition, we define the problem of generating approximations of eigenvalues that are
sampled uniformly at random from the set of all eigenvalues as follows.

Sparse uniform eigenvalue sampling (SUES)2
Input:
1) A sparse positive semidefinite matrix H ∈ C2n×2n , with ||H|| ≤ poly(n).
2) An estimation precision δ ∈ Ω (1/poly(n)).
3) An error probability µ ∈ Ω (1/poly(n)).
Output: A sample drawn according to a (δ, µ)-approximation of the uniform

distribution over the eigenvalues of H.
In the quantum algorithm for Betti number estimation, samples from sues are used

to estimate the number of eigenvalues of the combinatorial Laplacian that are close to
zero. Clearly, this same idea can be used to estimate the number of eigenvalues that
lie in some given interval for arbitrary sparse positive semidefinite matrices. This is
called the eigenvalue count [40], which for a positive semidefinite matrix H ∈ C2n×2n

and eigenvalue thresholds a, b ∈ R≥0 is given by

NH(a, b) =
1

2n

∑

k : a≤λk≤b

1,

where λ0 ≤ · · · ≤ λ2n−1 denote the eigenvalues ofH. For a threshold b ∈ Ω (1/poly(n)),
we shall refer to the quantity NH(0, b) as low-lying spectral density. This precisely
captures our notion of the number of eigenvalues close to zero as discussed before.
We define the problem of estimating the low-lying spectral density as follows.
Low-lying spectral density estimation (LLSD)3

Input:
1) A sparse positive semidefinite matrix H ∈ C2n×2n , with ||H|| ≤ poly(n).
2) A threshold b ∈ Ω (1/poly(n)).
3) Precision parameters δ, ϵ ∈ Ω (1/poly(n)).
4) A success probability µ > 1/2.
Output: An estimate χ ∈ [0, 1] that, with probability at least µ, satisfies

NH (0, b)− ϵ ≤ χ ≤ NH(0, b+ δ) + ϵ.

To provide some intuition behind this definition, note that it is supposed to pre-
cisely capture the problem that is solved by repeatedly sampling from sues and
computing the frequency of the eigenvalues that lie below the given threshold. We
therefore require the precision parameter δ due to the imprecisions in the quantum
phase estimation algorithm. Moreover, the precision parameter ϵ is necessary due to
the sampling error we incur by estimating a probability by a relative frequency.

Now that we have formally defined the problems that capture the key steps of the

the corresponding eigenvalue with probability at least (1− µ).
2In view of noisy quantum computers, it is interesting to consider distributions that are close

to these (δ, µ)-approximation in total variation distance. Sampling such distributions can be less
demanding, however, the precise hardness remains to be analyzed.

3The exact version of this problem is closely related to #P [45].
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quantum algorithm for Betti number estimation, we define the problems related to
topological data analysis that they allow us to solve. For these problems we consider
the adjacency matrix of the graph to be the input, as this is usually the input to the
quantum algorithm for Betti number estimation. We define the problem of estimating
Betti numbers as follows.
Betti number estimation (BNE)4
Input:
1) The adjacency matrix of a graph G = ([n], E).
2) An integer 0 ≤ k ≤ n− 1.
3) A precision parameter ϵ ∈ Ω (1/poly(n)).
4) A success probability µ > 1/2.
Output: An estimate χ ∈ [0, 1] that, with probability at least µ, satisfies

∣∣∣∣χ−
βG
k

dimHG
k

∣∣∣∣ ≤ ϵ.

As discussed in Section 2.2.2, the quantum algorithm for Betti number estimation
does not precisely solve the above problem. Namely, due to the lack of knowledge
regarding lower bounds on the smallest nonzero eigenvalue of the combinatorial Lapla-
cian, we are not always able to estimate the number of eigenvalues that are exactly
equal to zero. Nonetheless, the quantum algorithm for Betti number estimation is
still able to estimate the number of eigenvalues of the combinatorial Laplacian that
are close to zero, which we called approximate Betti numbers. We define the problem
of estimating approximate Betti numbers as follows.

Approximate Betti number estimation (ABNE)
Input:
1) The adjacency matrix of a graph G = ([n], E).
2) An integer 0 ≤ k ≤ n− 1.
3) Precision parameters δ, ϵ ∈ Ω (1/poly(n)).
4) A success probability µ > 1/2.
Output: An estimate χ ∈ [0, 1] that, with probability at least µ, satisfies

βG
k

dimHG
k

− ϵ ≤ χ ≤ N∆G
k
(0, δ) + ϵ.

We are now set to outline the problem that the quantum algorithm for Betti
number estimation can efficiently solve. As discussed in Section 2.2.2, the quantum
algorithm for Betti number estimation can efficiently solve abne, but only in certain
regimes. In particular, one has to be able to efficiently prepare the maximally mixed
state over all cliques of a given size from the adjacency matrix of the graph. As
mentioned in Section 2.2.2, the efficiency of this state preparation depends on the
graph’s clique-density (i.e., probability that a uniformly random subset of vertices
is a clique), or the graph’s arboricity (which up to a factor 1/2 is equivalent to the

4The exact version of this problem is NP-hard [14]
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maximum average degree of a subgraph). In short, the problem that the quantum
algorithm for Betti number estimation can efficiently solve is a restriction of abne,
where one is promised that the input graph is such that one can efficiently prepare the
maximally mixed state over all cliques of a given size from the adjacency matrix (e.g., if
the graph is sufficiently clique-dense or if it has a sufficiently bounded arboricity). We
discuss this in more detail in Section 3.2.4, where we outline sufficient conditions on
the graph’s clique-density or arboricity that allow the quantum algorithm to efficiently
solve abne.

Next, we will study the complexity of llsd as it is a generalization of the problem
that the quantum algorithm for Betti number estimation efficiently solves. Namely,
as we will show in the following section, we can use llsd to directly solve the problem
that the quantum algorithm for Betti number estimation efficiently solves. Note that
the input to the quantum algorithm for Betti number estimation is the adjacency
matrix, and not the combinatorial Laplacian. Therefore, in order to use llsd to solve
the problem that the quantum algorithm for Betti number estimation efficiently solves,
one first has to construct the appropriate input to llsd. As it is computationally too
expensive to enumerate all cliques in your graph, we cannot take the straightforward
approach of first computing the combinatorial Laplacian to construct the desired
input to llsd. Fortunately, we can still use llsd to efficiently solve the problem that
the quantum algorithm for Betti number estimation efficiently solves by simulating
sparse access to a matrix that is obtained by padding the combinatorial Laplacian
with all-zeros columns and rows (see Section 3.1.1 for more details).

3.1.1 Relationships between the problems
In the previous section we have formally defined the computational problems whose
complexity we will study. In this section we examine the reductions between llsd
and the problems related to topological data analysis in order to elucidate the precise
relationships. An overview of the reductions can be found in Figure 3.1.

First, we discuss the relationship between llsd and abne. It is clear that llsd
with a combinatorial Laplacian as input produces a solution to the corresponding
instance of abne. It is also clear that llsd can be used to solve abne if given
the input of abne (i.e, the adjacency matrix), we can efficiently implement sparse
access to a matrix such that an estimate of its low-lying spectral density allows us to
recover an estimate of the low-lying spectral density of the combinatorial Laplacian.
Interestingly, it turns out that we can do so if the input graph is clique-dense (i.e.,
in precisely the regime that is efficiently solvable by the quantum algorithm for Betti
number estimation). Namely, we can efficiently implement sparse access to the

(
n

k+1

)
×(

n
k+1

)
-sized matrix ΓG

k whose columns and rows are indexed by (k + 1)-subsets of
vertices, and whose entries are given by

(
ΓG
k

)
i,j

=

{
(∆G

k )i,j if i and j are (k + 1)-cliques,
0 otherwise.

(3.2)

In other words, the entries of the columns and rows that correspond to (k+1)-cliques
are equal to the corresponding entries of the combinatorial Laplacian, and all other
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entries are equal to zero. After subtracting the extra nullity caused by adding the(
n

k+1

)
− χk all-zeros columns and rows, and renormalizing the eigenvalue count by a

factor
(

n
k+1

)
/χk, the low-lying spectral density of this ΓG

k is equal to the low-lying
spectral density of the combinatorial Laplacian. In equation form, we have that

N∆G
k
(0, b) =

(
n

k+1

)

χk
NΓG

k
(0, b)−

(
n

k+1

)
− χk

χk
. (3.3)

From Eq. (3.3), it is clear that an estimate of NΓG
k
(0, b) up to additive inverse polyno-

mial precision allows us to obtain an estimate of N∆G
k
(0, b) up to additive inverse

polynomial precision, assuming indeed that the graph is clique-dense – i.e., that
χk/

(
n

k+1

)
∈ Ω (1/poly(n)). Note that this also requires us to have an estimate of

χk/
(

n
k+1

)
. Since the graph is clique-dense, it suffices to estimate χk/

(
n

k+1

)
up to ad-

ditive inverse polynomial precision. An estimate of χk/
(

n
k+1

)
up to additive error ϵ

can be obtained by drawing O(ϵ−2) many k-subsets of vertices uniformly at random,
and computing the fraction of these subsets that constitute an actual k-clique.

We emphasize that the above reduction works in precisely the regime where the
quantum algorithm for Betti number estimation can efficiently solve abne. In other
words, llsd can be used to directly solve the problem that the quantum algorithm
for Betti number estimation can efficiently solve. In this regard, llsd is indeed a
generalization of the problem that the quantum algorithm for Betti number estimation
can efficiently solve.

Finally, let us discuss the reductions between abne and bne. It is clear that bne
is reducible to abne if the size of the smallest nonzero eigenvalue of the combinatorial
Laplacian is at least inverse polynomial in n. The reverse direction is unclear, as for
bne the threshold on the eigenvalues is fixed to be exactly zero. A possible approach
would be to first project the eigenvalues that lie below the given threshold to zero
and then count the zero eigenvalues. However, using techniques inspired by ideas
from [85, 121], we have only been able to project these eigenvalues close to zero, as
opposed to exactly equal to zero, and we are not aware of any way to circumvent this.

3.2 Classical intractability of llsd

To show that quantum computers have an advantage over classical computers in topo-
logical data analysis, one would have to show that Betti number estimation requires
exponential time on a classical computer. In this section we study the classical hard-
ness of the problem efficiently solved by the quantum algorithm for Betti number
estimation. In particular, we show that the natural generalization of this problem
(which we called low-lying spectral density estimation) is classically intractable under
widely-believed complexity-theoretic assumptions by showing that it is hard for the
one clean qubit model of computation. Afterwards, we discuss how to potentially
close the gap between the classical intractability of low-lying spectral density and
(approximate) Betti number estimation in order to show that the topological data
analysis problem is itself classically intractable.
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LLSD

ABNE

BNE

SUES

LGZ

DQC1

Figure 3.1: Overview of the relations between the problems (octagons), algorithm
(rectangle) and complexity class (ellipse) studied in this thesis. A C−→ B stand for: “A
can efficiently solve B if condition C holds”. The algorithm studied is that by Lloyd,
Garnerone and Zanardi (LGZ) as described in Figure 2.5. The problems are sparse
uniform eigenvalue sampling (sues), low-lying spectral density estimation (llsd),
approximate Betti number estimation (abne), and Betti number estimation (bne) as
defined in Section 3.1 The class DQC1 is defined in Section 3.2.1.
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3.2.1 The one clean qubit model of computation
In the next section we will show that the complexity of the problems defined in Sec-
tion 3.1 are closely related to the one clean qubit model of quantum computation [122].
In this model we are given a quantum register that is initialized in a state consisting
of a single ‘clean’ qubit in the state |0⟩, and n − 1 qubits in the maximally mixed
state. We can then apply any polynomially-sized quantum circuit to this register, and
measure only the first qubit in the computational basis. Following [122], we will refer
to the complexity class of problems that can be solved in polynomial time using this
model of computation as DQC1 – “deterministic quantum computation with a single
clean qubit”.

We will refer to a problem as DQC1-hard if any problem in DQC1 can be reduced
to it under polynomial time truth-table reductions. That is, a problem L is DQC1-
hard if we can solve any problem in DQC1 using polynomially many nonadaptive
queries to an oracle for L, together with polynomial time preprocessing of the inputs
and postprocessing of the outcomes. Technically, instead of containing the problem
of estimating a given quantity up to additive inverse polynomial precision, DQC1
contains the decision problem of deciding whether this quantity is greater than 1/2+σ
or less than 1/2 − σ, where σ is some inverse polynomial gap. However, as the
estimation versions of these problems are straightforwardly reduced to their decision
version using binary search, we will bypass this point from now on and only consider
the problems of estimating a given quantity up to inverse polynomial precision [178].

It is widely believed that the one clean qubit model of computation is more pow-
erful than classical computation. For instance, estimating quantities that are sup-
posedly hard to estimate classically, such as the normalized trace of a unitary matrix
corresponding to a polynomial-depth quantum circuit and the evaluation of a Jones
polynomial at a root of unity, turn out to be complete problems for DQC1 [178].
Moreover, it has been shown that classical computers cannot efficiently sample from
the output distribution of the one clean qubit model up to constant total variation
distance error, provided that some complexity theoretic conjectures hold [141, 142].

3.2.2 Hardness of llsd for the one clean qubit model
Recall that in order to show that quantum computers have an advantage over classical
computers in topological data analysis, one would have to show that the problem that
the quantum algorithm for Betti number estimation can efficiently solve is hard for
classical computers. In Section 3.1, we pointed out that the problem that the quantum
algorithm for Betti number estimation can efficiently solve is a restriction of abne to
clique-dense graphs (i.e., graphs which satisfy Eq. (2.31)). Moreover, we showed in
Section 3.1.1 that llsd is a generalization of this version of abne. This motivates us
to study the classical hardness of llsd. In this section we present our results, which
show that the complexity of llsd is intimately related to the one clean qubit model.

Our first and main result is that llsd is hard for the class DQC15, even when
the input is restricted to log-local Hamiltonians. As the one clean qubit model of

5Throughout this section we mean DQC1-hardness with respect to Turing reductions. We believe
that our approach could be modified to a Karp reduction, but since this reduction is not vital for
our claim, we leave this question open for future work.
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computation is widely believed to be more powerful than classical computation, this
shows that llsd is likely hard for classical computers. We discuss the implications of
this result on the classical hardness of the problem that the quantum algorithm for
Betti number estimation can efficiently solve in Section 3.2.3.

Theorem 5. llsd is DQC1-hard. Moreover, llsd with the input restricted to log-local
Hamiltonians remains DQC1-hard.

We now give a sketch of our proof of the above theorem, the complete proof can
be found in Appendix A.1. The main idea behind the proof is to show that we can use
llsd to estimate a quantity similar to a normalized subtrace – or more precisely, a
normalized sum of eigenvalues below a given threshold – which has been shown to be
DQC1-hard by Brandão [40]. We estimate this normalized subtrace by constructing a
histogram approximation of the low-lying eigenvalues, and afterwards computing the
mean of this histogram. To construct this histogram, we use llsd to estimate the
number of eigenvalues that lie in each bin. To avoid double counting of eigenvalues
due to imprecisions around the thresholds of the bins, we subtract the output of llsd
with the eigenvalue threshold set to the lower-threshold of the bin from the output of
llsd with the eigenvalue threshold set to the upper-threshold of the bin. By doing
so, we obtain an estimate of the number of eigenvalues within the bin, and misplace
eigenvalues by at most one bin.

Our second result shows that the complexity of llsd is more closely related to
DQC1 than just hardness. Namely, we point out that if the input to llsd is restricted
to log-local Hamiltonians (or more generally, any type of Hamiltonian that allows for
efficient Hamiltonian simulation using O (log(n)) ancilla qubits), then it can be solved
using the one-clean qubit model. From this it follows that llsd is DQC1-complete
if the input is restricted to log-local Hamiltonians. The main idea behind why we
can solve these instances of llsd using the one clean qubit model is that the one-
clean qubit model can simulate having access to up to O (log(n)) pure qubits [178].
These pure qubits allow for Hamiltonian simulation techniques based on the Trotter-
Suzuki formula [129] and for quantum phase estimation up to the required precision.
We summarize this in the following theorem, the proof of which can be found in
Appendix A.2.

Theorem 6. llsd with the input restricted to log-local Hamiltonians is DQC1-complete.

As an added result, we find that the complexity of sues with the input restricted
to log-local Hamiltonians is also closely related to DQC1. The complexity of this
instance sues was stated as an open problem by Wocjan and Zhang [200]. Moreover,
we believe that it is interesting to study the complexity of sues, as this problem can
potentially find practical applications beyond both llsd and Betti number estimation.
We remark that sues with the input restricted to log-local Hamiltonians was already
shown to be DQC1-hard by Brandão [40]. Here we point out that the complexity of
this instance of sues is more closely related to the one clean qubit model than just
hardness, as it can also be solved using DQC1logn circuits, that is, DQC1 circuits where
we are allowed to measure logarithmically many of the qubits in the computational
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basis at the end (to read out the encoding of the eigenvalue). The proof of the
following proposition can be found in Appendix A.2.

Proposition 7. sues with the input restricted to log-local Hamiltonians can be solved
in polynomial time by the one clean qubit model with logarithmically many qubits
measured at the end.

3.2.3 Closing the gap for classical intractability of abne
The results discussed in the previous section are not sufficient to conclude that abne
and bne are hard for classical computers, because for these problems the family of
input matrices is restricted to combinatorial Laplacians. Nonetheless, because llsd
is a generalization of the problem that the quantum algorithm for Betti number esti-
mation can efficiently solve, our result shows that – aside from the matter regarding
the restriction to combinatorial Laplacians – the quantum algorithm for Betti number
estimation solves a classically intractable problem which in some cases captures inter-
esting information concerning an underlying graph. Moreover, our result eliminates
the possibility of certain routes for dequantization, namely those that are oblivious
to the particular structure of the input matrix, which in particular eliminates the
approaches of Tang et al. [60].

The open question regarding the classical hardness of abne and the problem that
the quantum algorithm for Betti number estimation can efficiently solve is whether
llsd remains classically hard when restricted to combinatorial Laplacians of arbi-
trary or clique-dense graphs, respectively. Even though these restrictions on the in-
put seem quite stringent, note that our result shows that llsd is already DQC1-hard
for the restricted family of log-local Hamiltonians obtained from Kitaev’s circuit-to-
Hamiltonian construction6. Moreover, there exists a family of combinatorial Lapla-
cians that can encode DQC1-hard Hamiltonians, but not all of those are combinatorial
Laplacians of clique complexes [48]. One way we tried to close this gap was by in-
vestigating whether we could encode Hamiltonians obtained from Kitaev’s circuit-to-
Hamiltonian construction into combinatorial Laplacians of sufficiently large graphs.
While indeed various matrices related to quantum gates can be found as submatrices
of combinatorial Laplacians, we did not succeed in finding an explicit embedding. In
our view, this remains a promising way of showing that llsd remains classically hard
when restricted to combinatorial Laplacians (if indeed this claim is true at all).

Besides the above approach based on the Kitaev circuit-to-Hamiltonian construc-
tion, there are many other constructions that could potentially be used to show that
llsd remains classically hard when restricted to combinatorial Laplacians (again, if
indeed this claim is true at all). In particular, there are several constructions used to
prove QMA-hardness of the ground-state energy problem for certain families of Hamil-
tonians (i.e., deciding if the smallest eigenvalue lies above or below some thresholds)7.
All of these constructions typically take as input a (verification) circuit and produce
a Hamiltonian that has a small eigenvalue if and only if there exists a quantum state
(also called a witness) that makes the circuit accept (i.e., if on this input it is more

6In [51, 40] and our case it is unclear whether this holds for k-local Hamiltonians with constant
k, as the standard constructions of these local Hamiltonians involve a clock register that is too large.

7For an overview of circuit-to-Hamiltonian constructions see [39].
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likely to output 1 on the first qubit). A special property of the Kitaev construc-
tion is that for every input to the circuit, there exists a state whose energy with
respect to the corresponding Hamiltonian is close to the acceptance probability of the
circuit (i.e., not just that there exists small eigenvalue if and only if there exists a
state that makes the circuit accept). This property allowed Brandão to prove that
normalized sub-trace estimation for these Hamiltonians is DQC1-hard [40], which is
at the core of our proof of DQC1-hardness of llsd. Hence, a promising approach
to show DQC1-hardness of llsd for a family of Hamiltonians is to look at exist-
ing circuit-to-Hamiltonian constructions used to prove QMA-hardness of versions of
the ground-state energy problem and investigate whether they also have this special
property that the Kitaev construction has (or to see if they can be equipped with
it). This is particularly interesting for the constructions used to show QMA-hardness
of the Bose-Hubbard model [61], or the Fermi-Hubbard model [149]. The reason for
this is that both of these Hamiltonians exhibit similarities to the Hamiltonian of the
hardcore fermion model, which is equal to the combinatorial Laplacian of a clique
complex [48]. Specifically, the Hamiltonian HG of the fermion hardcore model on a
graph G = ([n], E) is given by

HG =
∑

(i,j)∈E

Piaia
†
jPj +

∑

i∈V

Pi, (3.4)

where Pi =
∏

(i,j)∈E(I − nj), ai denotes the fermionic annihilation operator, and nj
denotes the fermionic number operator [48]. For this Hamiltonian HG it holds that

HG =

n−1⊕

k=0

∆Ḡ
k , (3.5)

where Ḡ denotes the complement graph of G, and ∆G
k denotes the k-th combinatorial

Laplacian. Continuing along these lines, the authors of [67] established a circuit-to-
Hamiltonian mapping onto combinatorial Laplacians that allowed them to show that
deciding whether a Betti number is zero or not is QMA1

8-hard (though it has not yet
lead to DQC1-hardness of abne).

Finally, instead of trying to show that the family of combinatorial Laplacians is
sufficiently rich, we could also generalize this family of matrices while still remaining
relevant to topological data analysis. For example, one could consider generalizations
of combinatorial Laplacians, such as weighted combinatorial Laplacians [105] or per-
sistent combinatorial Laplacians [195], and show that these generalized families are
sufficiently rich as to contain DQC1-hard instances. Besides all the approaches dis-
cussed above, other routes such as proving classical hardness of llsd when restricted
to other sets of matrices such as {0,±1}-matrices, or by going through the discrete
structures related to Tutte and Jones polynomials [16, 178] could all be possible as
well.

The open questions regarding the classical hardness of bne are the same as those
regarding the classical hardness of abne, except that there is one additional open

8QMA1 is the one-sided error version of QMA.
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question. Namely, assuming that abne is classically hard, the remaining open ques-
tion regarding the classical hardness of bne is whether estimating the number of
eigenvalues exactly equal to zero is at least as hard as estimating the number of
eigenvalues below a given inverse polynomially small threshold. This question was
already addressed in Section 3.1.1 when we examined the reductions between abne
and bne. As discussed there, one approach would be to project the eigenvalues below
the given threshold to zero, and afterwards count only the zero eigenvalues.

Regardless, even if llsd does not remain classically hard when restricted to
combinatorial Laplacians, we can envision practical generalizations of the quantum-
algorithmic methods used by the algorithm for Betti number estimation that go be-
yond Betti numbers, as we will discuss in more detail in Section 3.3. Specifically,
in Section 3.3 we provide efficient quantum algorithms for two concrete examples of
such practical generalizations, together with complexity-theoretic evidence of their
classical hardness. The first example we discuss is numerical rank estimation, an
important problem in machine learning, data analysis and many other applications.
The second example is spectral entropy estimation, which can be used as a tool in
complex network analysis.

3.2.4 Graphs with quantum speedup
In Section 2.2.2, we outlined criteria that the graph has to satisfy in order for the
quantum algorithm to be able to efficiently estimate (approximate) Betti numbers.
Specifically, the graph has to be such that one can efficiently prepare the input state
in Eq. (2.30), e.g., by sampling uniformly at random from cliques of a given size.
Afterwards, in Section 2.2.3, we discussed the best known classical algorithms and we
outlined the regimes in which they require superpolynomial runtimes. In this section
we put these two considerations together and we concretely characterize families of
graphs for which the quantum algorithm achieves either a high-degree polynomial,
or even a superpolynomial speedup over the best known classical algorithm. In par-
ticular, we identify families of graphs for which the quantum algorithm is efficient
and for which the best known classical algorithms are unable to achieve competitive
runtimes.

As discussed in Section 2.2.2, one way to efficiently prepare the input state is to
use Grover’s algorithm or rejection sampling to sample uniformly at random from
cliques of a given size. Recall that for this to be efficient the graph has to be clique
dense, i.e., it has to satisfy Eq. (2.31). To identify a family a clique-dense graphs,
let us consider clique sizes k ≥ 3, let γ > k−2

2(k−1) be a constant, and consider any
graph on n vertices with at least γn2 edges. Suppose we want to estimate the k-th
approximate Betti number of this graph, where k and the precision parameters are
constant. The quantum algorithm for Betti number estimation can do so in time

Õ
(√

nk+1/χk + n3
)
,

where χk denotes the number of (k+1)-cliques. Having chosen the graph the way we
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did, the clique density theorem [162] now directly guarantees that our graph satisfies

χk ∈ Ω(nk+1),

which is a phenomenon known as “supersaturation”. In particular, this implies that
our graph is clique-dense and that the quantum algorithm for Betti number estimation
estimates the required approximate Betti number in time

Õ
(
n3
)
.

Moreover, as discussed in Section 2.2.3, the best known classical algorithm requires
time

O
(
nk+1

)
,

as the number of nonzero entries of the corresponding combinatorial Laplacian is at
least χk. We conclude that in these instances the quantum algorithm for Betti number
estimation achieves a (k−2)-degree polynomial speedup over the best known classical
methods, which for large enough k might allow for runtime advantages on prospective
fault-tolerant computers, even when all overheads are accounted for [27].

We can push the above separation between the best known classical algorithm and
the quantum algorithm even further. Consider the same setting as above, but with γ =
k−1
k and we allow k to scale with n. Using a result of Moon and Moser [140, 132, 191],

we can derive that in this setting the graph satisfies
(

n

k + 1

)
/χk ∈ O

(
kk
)
.

Therefore, the quantum algorithm can estimate the k-th approximate Betti number
in time

O
(
k2+k/2 + n3

)
.

On the other hand, the best known classical algorithm runs in time

O
(
nk+1/k2k

)
,

as the number of nonzero entries of the corresponding combinatorial Laplacian is at
least χk ≥ nk+1/k2k. In particular, if we let k scale with n in an appropriate way,
then the quantum algorithm achieves a superpolynomial speedup over the best known
classical method. For example, if we let the clique size scale as k ∼ log n, then the
quantum algorithm runs in time

2O(logn log logn),

whereas the best known classical algorithm runs in time

2O((logn)2),

giving rise to a superpolynomial quantum speedup. Note that the graphs in the
previous two settings are rather edge-dense (which occurs in topological data analysis
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if the grouping-scale ϵ approaches the maximum distance between two datapoints),
and it is unknown whether better classical algorithms are possible in this regime.

Next, we construct a family of graphs where (i) the Betti numbers are large, (ii)
the clique-density is high, and (iii) the spectral gaps the combinatorial Laplacian
are sufficiently large. Due to properties (i)-(iii) this family of graphs provides a
great example of a family of graphs on which the quantum algorithm outperforms
its classical counterpart. Let K(m, k) be the k-partite complete graph, where each
partition contains m vertices. That is, K(m, k) consists of k clusters, each with m
vertices; there are no edges within clusters, but all edges between clusters are included.
NoteK(m, 1) is a collection ofm points with no edges. K(m, k) gives a useful example
of a clique complex with a high Betti number [13]. It also has a Laplacian with a
large spectral gap.

Figure 3.2: The graph K(5, 6).

Proposition 8. The (k − 1)th Betti number of the clique complex of K(m, k) is

βk−1 = (m− 1)k. (3.6)

Proposition 9. The combinatorial Laplacian ∆G
k−1 = (∂Gk−1)

†∂Gk−1 + ∂Gk (∂Gk )† of the
clique complex of K(m, k) has spectral gap

λmin = m. (3.7)

We prove these in A.3 using techniques from simplicial homology. A further useful
fact is that

|Clk(K(m, k))| = mk. (3.8)

Standard classical approaches need to at least store a vector of this length, so we can
give a classical complexity Tc of estimating normalized Betti numbers

Tc ∼ ek lnm. (3.9)
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As a first approximation for the quantum cost Tq, we use the formula

T (G, k, r, δ) = 3π|E| ln(1/δ)
r

√ (
n
k

)

βG
k−1

. (3.10)

and consider just the square root factor and |E|. Stirling’s approximation gives
(
n
k

)
∼(

m1+1/m

m−1

)n
, and Proposition 8 gives βk−1 = (m−1)n/m, giving a quantum complexity

scaling as

Tq ∼ |E|
(

m1+1/m

(m− 1)1+1/m

)n/2

∼ n2e(k/2)(1+1/m). (3.11)

Therefore, for constant m, there is a polynomial speedup by a 2 lnm root (ignoring
n2 and the 1/m term). Alternatively, taking k constant, the above formulae give

Tc = O(nk), (3.12)

Tq = O(n2). (3.13)

Then there is a polynomial speedup by a k/2 root. To obtain a superpolynomial
speedup, m can be taken to increase close to linear in n, but k can be taken to also
increase with n. Close to the best result is obtained for k = c ln2 n with some constant
c. Then the logs of the complexities are approximately

lnTc ∼ c ln3 n, (3.14)

lnTq ∼ 2 lnn+ (c/2) ln2 n. (3.15)

That implies a speedup by a 2 lnn root, which is superpolynomial.
This is still not an exponential speedup, but as far as the graph is concerned this is

the best speedup that could be obtained from this type of approach. This is because,
with k constant, the quantum complexity ignoring the |E| factor is O(1). The Betti
number is already scaling the same as

(
n
k

)
, but the overhead from |E| means that the

speedup is not exponential.
As also discussed in Section 2.2.2, besides clique-density another important graph

parameter that dictates the runtimes of specialized algorithms for uniform clique
sampling is the so-called arboricity. The arboricity of a graph is equivalent (up to a
factor 1/2) to the maximum average degree of a subgraph. For a graph with n vertices
and arboricity α, near-optimal classical algorithms sample a k-clique uniformly at
random in time [77]

Õ
(
kk ·max

{(
(nα)k/2

χk

) 1
k−1

, min
{
nα,

nαk−1

χk

}})
. (3.16)

By also considering the algorithm of [77] (i.e., instead of rejection sampling or
Grover’s algorithm) we strictly expand the family of graphs for which the quantum
algorithm achieves a superpolynomial speedup for abne. In particular, there exists a
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family of graphs for which the algorithm of [77] is superpolynomially more efficient9
than Grover’s algorithm and rejection sampling for the problem of uniform clique
sampling. An example of such a family is as follows: consider the n-vertex graphs
consisting of n/r cliques of size r (for simplicity we assume that n is a multiple
of r), where each r-clique is fully-connected with d other r-cliques (i.e., all edges
between the 2r vertices are present). In other words, consider a d-regular graph on
n/r vertices, and replace each vertex with an r-clique and fully-connect all r-cliques
that were connected according to the d-regular graph we started with. Now if we
set d, r = log n and k = log log n, then the number of k-cliques (and thus also the
runtime of the best known classical algorithm for abne) scales like log(n)

log log(n).
Moreover, the clique-density (and thus also the runtime of rejection sampling and
Grover’s algorithm) scales like nlog log(n). Finally, the runtime of the algorithm of [77]
scales like log log(n)

log log(n). In conclusion, for these graphs the algorithm of [77]
is superpolynomially more efficient than rejection sampling and Grover’s algorithm
for the problem of uniform clique sampling. Moreover, for these graphs the quantum
algorithm for abne achieves a superpolynomial speedup over the best-known classical
algorithm for abne, but only if one uses the algorithm of [77] (i.e., this speedup goes
away if one uses rejection sampling or Grover’s algorithm). We again remark that we
are dealing with special types of graphs, and it is unknown whether better classical
algorithms are possible in this regime.

3.3 Quantum speedups beyond Betti numbers
In the previous section we provided evidence that the computational problems tackled
by the quantum algorithm for Betti number estimation are likely hard for classical
computers. Even though we fell short of showing that the topological data analysis
problem of estimating (approximate) Betti number is classically intractable, we did
provide evidence that the quantum algorithmic methods that underlie the quantum
algorithm for Betti number estimation could give rise to a potential source of practical
quantum advantage. In this section we demonstrate this by discussing extensions of
the quantum-algorithmic methods behind the algorithm for Betti number estimation
that go beyond Betti numbers. In particular, we provide efficient quantum algorithms
for numerical rank estimation (an important problem in machine learning and data
analysis) and spectral entropy estimation (which can be used to compare complex
networks), together with complexity-theoretic evidence of their classical hardness.

3.3.1 Numerical rank estimation
In this section we identify a practically important application of the problem of es-
timating the number of small eigenvalues (which we called llsd). Specifically, we
consider the problem of numerical rank estimation. The numerical rank of a matrix
H ∈ C2n×2n is the number of eigenvalues that lie above some given threshold b, i.e.,

9We say that a runtime t1(n) is superpolynomially more efficient than a runtime t2(n) if
log t2(n)/ log t1(n) → ∞ when n → ∞.
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it is defined as

rH(b) =
1

2n

∑

k : λk>b

1,

where λ1 ≤ · · · ≤ λ2n−1 denote the eigenvalues of H. By the rank-nullity theorem we
have that

rH(b) = 1−NH(0, b),

which shows that we can estimate the numerical rank using low-lying spectral density
estimation and that the error scaling is the same.

Many machine learning and data analysis applications deal with high-dimensional
matrices whose relevant information lies in a low-dimensional subspace. To be spe-
cific, it is a standard assumption that the input matrix is the result of adding small
perturbations (e.g., noise in the data) to a low-rank matrix. This small perturbation
turns the input matrix into a high-rank matrix, that can be well approximated by a
low-rank matrix. Techniques such as principle component analysis [111] and random-
ized low-rank approximations [99] are able exploit this property of the input matrix.
However, these techniques often require as input the dimension of this low-dimensional
subspace, which is often unknown. This is where numerical rank estimation comes in,
as it can estimate the dimension of the relevant subspace by estimating the number of
eigenvalues that lie above the “noise-threshold”. In addition, being able to determine
whether the numerical rank of a matrix is large or small enables one to assert whether
the above low-rank approximation techniques is applicable at all, or not.

From Theorem 5 it directly follows that quantum computers achieve an expo-
nential speedup over classical computers for numerical rank estimation of matrices
specified via sparse access (unless the one clean qubit model can be efficiently simu-
lated on a classical computer). Still, it is also interesting to consider settings where
the matrix is specified via a different input model. In the remainder of this section
we study two examples of different input models. Firstly, motivated by a more prac-
tical perspective we consider a seemingly weaker input model that is more closely
related to the input models that appear in classical data analysis settings. Secondly,
we consider a likely stronger input model that appears throughout quantum machine
learning literature, which is more informative from a complexity-theoretic perspective.

In typical (classical) applications, matrices are generally not specified via sparse
access. Here we consider an input model that is more closely related to what is
encountered in a typical classical setting. Specifically, we consider the case where a
sparse matrix A of size 2n × 2n is specified as a list of triples

{
(ik, jk, Aik,jk) | Aik,jk ̸= 0

}
,

which is sorted lexicographically by column and then row. Storing matrices in this
type of memory structure is very natural when dealing with matrices with a limited
number of nonzero entries (which we denote by nnz). Now, for the quantum analogue
we consider the same specification but we suppose that it is stored in a QRAM-type
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memory, only additionally allowing us to query it in superposition as follows:
∑

k

αk |k⟩ |0⟩ 7→
∑

k

αk |k⟩ |ik, jk, Aik,jk⟩ .

Since the list is sorted, and since A is sparse, we can still simulate column-wise
sparse access in O (log nnz) queries, essentially by using binary search. Therefore, if
A is Hermitian, then the quantum algorithm can estimate its numerical rank in time
O (poly (n, log nnz)). On the other hand, the best known classical algorithms run
in time O (nnz) [190, 59, 70, 124]. Consequently, the quantum algorithm achieves a
speedup over the best known classical algorithm if nnz is at least a high-enough degree
polynomial in n (and it achieves an exponential speedup if nnz is itself exponential).
For the case where A is not Hermitian, recall that we also need sparse access to A†.
For this issue we found no general method that can do so in time less than O (nnz),
without assuming a high sparsity. However, the high sparsity then exactly offsets any
potential quantum advantage in the full algorithm complexity.

Next, we consider a likely stronger input model which is widely-studied in the
quantum machine learning literature. Specifically, we study the quantum-accessible
data structure introduced in [118, 119], which can generate quantum states propor-
tional to the columns of the input matrix, together with a quantum state whose
amplitudes are proportional to the 2-norms of the columns. When the input matrix
is provided in this quantum-accessible data structure, the quantum-algorithmic meth-
ods of [85, 55] can be used to estimate its numerical rank in time O (poly(Amax, n)),
where Amax = maxi,j |Aij |.

The classical analogue of this quantum-accessible data structure is the sampling
and query access model introduced in [186], which brought forth the “dequantization”
methods discussed in [60]. At present it is not clear whether assuming sampling and
query access allows us to efficiently estimate the numerical rank using dequantizations,
or other methods. Here both possibilities are interesting. Firstly, if numerical rank
estimation remains equally hard with sampling and query access, then it shows that
quantum algorithms relying on the methods of LGZ have a chance of maintaining their
exponential advantage in more general scenarios. Secondly, if an efficient classical
algorithm for numerical rank estimation is possible with sampling and query access,
then this leads to new insights regarding the hardness of the one clean qubit model.
Recall that we have shown that estimating the numerical rank of matrices specified
via sparse access is DQC1-hard (in the sense that, if a classical algorithm could do so
efficiently given analogous access, then it can be used to efficiently solve all problems in
DQC1). Now for the sparse matrix case, the only difference between sparse access and
sampling and query access is that the latter allows one to sample from a distribution
whose probabilities are proportional to the 2-norms of the columns. Indeed, the other
part (i.e., sampling from distributions whose probabilities are proportional to the
squared entries of the columns) is straightforward when the matrix is specified via
sparse access. This implies that, if sampling and query access allows us to efficiently
estimate the numerical rank of sparse matrices, then producing samples according to
the 2-norms of the columns of a sparse matrix is DQC1-hard. This also holds for the
log-local Hamiltonian setting, so it would also follow that sampling from a distribution
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proportional to the 2-norms of the columns of log-local Hamiltonians is DQC1-hard.
We summarize this observation in the proposition below.

Proposition 10. Suppose there exists an efficient classical algorithm for numerical
rank estimation (or, equivalently llsd) for matrices provided by sampling and query
access. Then, sampling from a distribution whose probabilities are proportional to the
2-norms of the columns of a sparse Hermitian matrix is DQC1-hard (with respect to
Turing reductions).

3.3.2 Combinatorial Laplacians beyond Betti numbers
In the previous section we discussed a practical application of the quantum-algorithmic
methods behind the algorithm for Betti number estimation by using the same meth-
ods, but changing the family of input matrices (i.e., going beyond combinatorial
Laplacians). In this section we take a different approach, namely we again consider
the combinatorial Laplacians, but investigate applications beyond Betti number es-
timation (i.e., beyond estimating its nullity) relying on different algorithms than the
one for low-lying spectral density estimation. Moreover, we will again find regimes
where the same type of evidence of classical hardness can be provided, further mo-
tivating investigations into quantum algorithms that operate on the combinatorial
Laplacians.

The eigenvalues and eigenvectors of the combinatorial Laplacian have many inter-
esting graph-oriented applications beyond the applications in topological data anal-
ysis discussed in Section 2.2. The intuition behind this is that the combinatorial
Laplacian can be viewed as a generalization of the standard graph Laplacian. For
example, there exist generalizations of spectral clustering and label propagation (im-
portant techniques in machine learning that are used for dimensionality reduction
and classification) which utilize the eigenvalues and eigenvectors of the combinatorial
Laplacians [152]. Moreover, the eigenvalues of a normalized version of the combi-
natorial Laplacian convey information about the existence of circuits of cliques (i.e.,
ordered lists of adjacent cliques that cover the whole graph) and about the chromatic
number [105]. Lastly, Kirchhoff’s matrix tree theorem – which relates the eigenvalues
of the standard graph Laplacian to the number of spanning trees – turns out to have
a generalization to higher-order combinatorial Laplacians [75].

The specific problem that we study in this section is that of sampling from a dis-
tribution over the eigenvalues whose probabilities are proportional to the magnitude
of the eigenvalues. In particular, we give a quantum algorithm that efficiently samples
from an approximation of these distributions. Moreover, we show that sampling from
these distributions for arbitrary sparse Hermitian matrices is again as hard as simulat-
ing the one clean qubit model, which shows that it is classically intractable (unless the
one clean qubit model can be efficiently simulated on a classical computer). Finally,
we discuss how this quantum algorithm can speed up spectral entropy estimation,
which when applied to combinatorial Laplacians can be used to compare complex
networks.

We define the problem that we study in this section as follows.
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Sparse weighted eigenvalue sampling (SWES)
Input:
1) A sparse positive semidefinite matrix H ∈ C2n×2n , with ||H|| ≤ 1 and

tr{H}/2n ∈ O (poly(n)).
2) An estimation precision δ ∈ Ω (1/poly(n)).
3) A sampling error probability µ ∈ Ω (1/poly(n)).
Output: A sample drawn from a (δ, µ)-approximation of the distribution p(λj) =

λj/ tr{H}.

Using the subroutines of the quantum algorithm for Betti number estimation (i.e.,
Hamiltonian simulation and quantum phase estimation), we can efficiently sample
from an approximation of the distribution of swes defined above. In fact, we can
efficiently implement purified quantum query-access to p(λj) [84]. To be precise, we
can implement an approximation of the unitary UH (and its inverse) which acts as

UH |0⟩A |0⟩B = |ψH⟩ =
2n−1∑

j=0

√
p (λj) |ψj⟩A |ϕj⟩B , (3.17)

such that TrB (|ψH⟩ ⟨ψH |) = H/ tr{H}. Purified quantum query-access has been
shown to be more powerful than standard classical sampling access, as it can speedup
the postprocessing of the samples when trying to find out properties of the underlying
distribution [84].

We implement an approximation of the purified quantum-query access defined in
Eq. (3.17) as follows:

1. Prepare the following input state by taking a maximally entangled state (which
can always be expressed in the eigenbasis of H in one of its subsystems) and
adding two ancillary registers

|ψ⟩in =
1√
2n

2n−1∑

k=0

|ψk⟩ |ϕk⟩ ⊗ |0t⟩ ⊗ |0⟩flag ,

where {|ψk⟩}2
n−1

k=0 are orthonormal eigenvectors of H and {|ϕk⟩}2
n−1

k=0 is an or-
thonormal basis of C2n .

2. Use Hamiltonian simulation on H, and apply quantum phase estimation of the
realized unitary to the first register to prepare the state

1√
2n

2n−1∑

k=0

2t∑

j=0

αk,j |ψk⟩ |ϕk⟩ ⊗ |λ̃k,j⟩ ⊗ |0⟩flag

≈ 1√
N

2n−1∑

k=0

|ψk⟩ |ϕk⟩ ⊗ |λ̃k⟩ ⊗ |0⟩flag ,

where the λ̃k,j are t-bit strings, |αk,j |2 is close to 1 if and only if λk ≈ λ̃k,j , and
λ̃k denotes the best t-bit approximation of λk.
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3. Use controlled rotations to “imprint” the t-bit approximations of the eigenvalues
into the amplitudes of the flag-register to prepare the state

1√
2n

2n−1∑

k=0

2t∑

j=0

αk,j |ψk⟩ |ϕk⟩ ⊗ |λ̃k,j⟩

⊗
(√

λ̃k,j |0⟩flag +
√
1− λ̃k,j |1⟩flag

)

≈ 1√
2n

2n−1∑

k=0

|ψk⟩ |ϕk⟩ ⊗ |λ̃k⟩

⊗
(√

λ̃k |0⟩flag +
√

1− λ̃k |1⟩flag
)
.

4. Use fixed point amplitude amplification to amplify states whose flag-register is
in the state |0⟩ to prepare an approximation of the state

1√
Tr(H)

2n−1∑

k=0

2t∑

j=0

αk,j

√
λ̃k,j |ψk⟩ |ϕk⟩ ⊗ |λ̃k,j⟩ ⊗ |0⟩flag

≈ 1√
Tr(H)

2n−1∑

k=0

√
λ̃k |ψk⟩ |ϕk⟩ ⊗ |λ̃k⟩ ⊗ |0⟩flag .

5. Finally, uncompute and discard the eigenvalue- and flag-register to prepare the
state

|ψH⟩ =
1√

Tr(H)

2n−1∑

k=0

2t∑

j=0

αk,j

√
λ̃k,j |ψk⟩ |ϕk⟩

≈ 1√
Tr(H)

2n−1∑

k=0

√
λ̃k |ψk⟩ |ϕk⟩ .

Looking at the cost of the above algorithm, we note that Steps 2 and 3 can be
implemented up to polynomial precision in time O (poly(n)). Also, note that Step 4
can be implemented up to polynomial precision in time O

(√
2n/ tr{H}

)
, which

brings the total runtime to

O
(
poly(n) +

√
2n/ tr{H}

)
.

Besides being able to efficiently sample from an approximation of swes on a
quantum computer, we show that swes requires superpolynomial time on a classical
computer (unless the one clean qubit model can be efficiently simulated on a classical
computer). To be precise, we show that sampling from swes allows us to efficiently
estimate the normalized subtrace discussed in Section 3.2.2, which is known to be
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DQC1-hard [40]. We gather this in the following theorem, the proof of which can be
found in the Supplementary Material.

Theorem 11. swes is DQC1-hard. Moreover, swes with the input restricted to
log-local Hamiltonians remains DQC1-hard.

The above theorem motivates us to look for practical applications of swes, or
more specifically, of the purified quantum query-access described in Eq. (3.17). We
end this section by discussing such an application called spectral entropy estimation,
which when applied to combinatorial Laplacians can be used to compare complex
networks. The classical hardness of swes opens up another road towards practical
quantum advantage, as it could be that combinatorial Laplacians arising in complex
network analysis form a rich enough family for which swes remains classically hard
when restricted to them.

Spectral entropy estimation of the combinatorial Laplacian

Recently, several quantum information-inspired entropic measures for complex net-
work analysis have been proposed [34, 68]. One example of these are spectral entropies
of the combinatorial Laplacian, which measure the degree of overlapping of cliques
within the given complex network [155, 179, 134]. Specifically, it has been shown that
these entropic measures can be used to measure network centralization (i.e., how cen-
tral is the most central node in relation to all other nodes) [179], network regularity
(i.e., the difference in degrees among nodes) [155], and clique connectivity (i.e., the
overlaps between communities in the network) [134].

If λ0, . . . , λdG
k −1 denote the eigenvalues of a combinatorial Laplacian ∆G

k (i.e.,
dGk = dimHG

k ), then its spectral entropy is defined by

S(∆G
k ) = −

dG
k −1∑

j=0

p(λj) log(p(λj)), (3.18)

where we define p(λj) = λj/ (
∑

k λk). This spectral entropy coincides with the von
Neumann entropy of ∆G

k / tr
{
∆G

k

}
. Equivalently, it coincides with the Shannon en-

tropy of the distribution p(λj). Another entropy that is used in complex network
analysis is the α-Renyi spectral entropy, which is given by

Sα(∆
G
k ) =

1

1− α log




dk−1∑

j=0

p(λj)
α


 , (3.19)

where α ≥ 0 and α ̸= 1. The limit for α → 1 is the spectral entropy as defined in
Eq. (3.18).

To estimate the spectral entropy defined in Eq. (3.18), one can use techniques
from [11, 192] to classically postprocess samples from p(λj) that one obtains from
the quantum algorithm for swes described in the previous section. However, since
we can implement purified quantum query-access using the algorithm described in
the previous section, the postprocessing can be sped up quadratically using quantum
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methods [84]. This idea of speeding up the postprocessing of samples using quantum
methods also holds for the α-Renyi entropy defined in Eq. (3.19), where one can either
classically postprocess the samples [12], or use faster quantum methods [181].

Because we have shown that sampling from swes is DQC1-hard, the above ap-
proach to spectral entropy estimation can not be done efficiently on a classical com-
puter – i.e., it cannot be dequantized – when generalized to arbitrary sparse matrices
(unless the one clean qubit model can be efficiently simulated on a classical computer).
Moreover, as the α-Renyi entropy is the logarithm of the Schatten p-norm, and it is
known that estimating Schatten p-norms is DQC1-hard [51], we find that computing
α-Renyi entropy is classically intractable (again, unless the one clean qubit model can
be efficiently simulated on a classical computer).

3.4 Possibilities and challenges for implementations
As near-term quantum devices are still limited, it is crucial to make sure to use them
to their fullest extent when implementing a quantum algorithm. Near-term devices
are limited in size, gates are error prone, qubits decohere, and their architectures
are limited [160]. We are therefore interested in algorithms that require few gates
(to minimize the effect of decoherence and gate errors), that are not too demanding
regarding architecture, while achieving advantages with few qubits and being toler-
ant to noise (which will inevitably be present in the system regardless of the depth
and gate count). The quantum algorithms we consider use Hamiltonian simulation
and quantum phase estimation. Fortunately, both resource optimization [30] and
error-mitigation [187, 38, 78, 136, 147] for these routines are important topics for the
broadly investigated field of quantum algorithms for quantum chemistry and many-
body physics, and any progress achieved for those purposes can be readily applied.
Moreover, recent work has focused on reducing the depth of the quantum circuit re-
quired to implement the algorithm for (approximate) Betti number estimation [189].
In this section we will focus on the issues of size and noise. First, we investigate the
required number of qubits and we propose methods on how to reduce this. Based on
these methods, we provide an estimate of the number of qubits required to challenge
classical methods. Finally, we discuss issues regarding robustness of the algorithm to
noise in the quantum hardware.

To analyze the number of qubits required to implement Hamiltonian simulation of
a 2n × 2n-sized input matrix, we consider two possible scenarios: the input matrix is
either given to us as local terms, or it is specified via sparse access. If the input matrix
is given to us as local terms, then we can implement Hamiltonian simulation based on
the Trotter-Suzuki formula [129]. As this Hamiltonian simulation technique does not
require ancillary qubits (assuming the available gate set can implement each of the
Trotter steps without ancillary qubits) [51], we can implement it using only n qubits.
On the other hand, if the input matrix is specified via sparse access, then we have to
use more intricate Hamiltonian simulation techniques (e.g., based on quantum signal
processing [133]). The downside of these methods is that they require an ancillary
register to ‘load’ the queries to the sparse-access oracles onto. By having to add this
ancillary register, the total number of qubits required to implement these Hamiltonian
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simulation techniques becomes 2n+r+1, where r is the number of bits used to specify
the entries of the input matrix. In other words, sparse-access oracles more than double
the required number of qubits.

When possible it is therefore advantageous to avoid using sparse access when hav-
ing first proof-of-principle demonstrations of quantum advantage in mind. One way
of doing so is to add an extra precompilation step that finds a suitable decomposition
of the input matrix. In particular, one can trade-off the required number of ancilla
qubits for some amount of precompilation and some extra depth of the precompiled
circuit, in the following two ways. First, one could decompose the input matrix in
terms of a linear combination of unitaries, and use related techniques for Hamiltonian
simulation of such input matrices [32]. This brings the required number of qubits
down from 2n + r + 1 to n + log(m), where m is the number of terms in the linear
combination of unitaries. Secondly, one could decompose the input matrix in terms
of a sum of local Hamiltonians and use Hamiltonian simulation based on the Trotter-
Suzuki formula. This brings the required number of qubits down from 2n+r+1 to n.
Thus, both approaches can halve the number of required qubits, however, one has to
be careful as finding such decompositions may constitute a dominating overhead.

In case of Betti number estimation, we note that such precompilation is in fact
feasible and meaningful. This is due to the fact that in this case there is a direct
way to decompose input matrix (i.e., the combinatorial Laplacian) as a sum of Pauli-
strings in order to implement Hamiltonian simulation based on the Trotter-Suzuki
formula. Specifically, due to the close relationship between combinatorial Laplacians
and Hamiltonians of the fermion hardcore model (as described in Section 3.2.3) [48] we
can decompose the combinatorial Laplacian into a sum of Pauli-strings by applying
a fermion to qubit mapping such as the Jordan-Wigner or Bravyi-Kitaev transfor-
mations to Eq (3.4). Note however that this does not guarantee that Hamiltonian
simulation based on the Trotter-Suzuki formula will be efficient as the decomposition
might require exponentially many terms and the locality of the individual terms could
be large. As can be seen in Eq. (3.4), the number of terms in the decomposition scales
with the degree of the vertices in the complement of the graph. In particular, if the
graph is such that any vertex is connected to all other vertices except for a constant
number of them, then the number of terms in the decomposition scales polynomially.
As discussed in Section 3.2.4, these are exactly the type of graphs where the quan-
tum algorithm for Betti number estimation achieves a speedup over the best known
classical algorithms, since these types of graphs are clique-dense (i.e., they satisfy
Eq. (2.31)). The locality of the Pauli-strings in the decomposition can however not
be guaranteed to be small, but this fortunately has less effect on the depth of the
circuit. Finally, we remark that this decomposition also gives rise to a technique that
allows one to control the depth of the circuit required for the Hamiltonian simula-
tion. Namely, by dropping certain terms from the decomposition (e.g., terms with a
small coefficient) one could reduce the depth of the circuit required for Hamiltonian
simulation, while making sure to not perturb the matrix too much as to drastically
change the low-lying spectral density.

Next, we focus on the number of qubits required for the quantum phase estimation.
Standard quantum phase estimation requires an eigenvalue register of t qubits to
estimate the eigenvalues up to t-bits of precision (which consequently determines the
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threshold in low-lying spectral density estimation). Fortunately, much improvement
is possible in terms of the size of this eigenvalue register. First, as low-lying spectral
density is only concerned with whether the t-bit approximation of an eigenvalue is
zero or not, we can bring the size the of eigenvalue register down to log(t) by using
a counter [163]. Moreover, we can bring the size of this eigenvalue register down to
a single qubit at the expense of classical post-processing and qubit reinitialization
methods [74, 148, 180].

We can now give the brief estimate of the number of qubits needed for demonstra-
tions of quantum advantage (i.e., sizes needed to go beyond the best known classical
methods). The best known classical methods for low-lying spectral density estima-
tion, to our knowledge, are able to estimate the rank of a matrix in time linear in the
number of nonzero entries [190, 59, 70, 124]. These methods are at most quadratically
faster than exact diagonalization, which tends to hit a practical wall around matri-
ces of size 240. We therefore look at how many qubits are required to estimate the
low-lying spectral density below a threshold of about 10−9 (i.e., t ≈ log

(
109
)
< 30) of

matrices of size around 280 (i.e., n ≈ 80). In this case, the required number of qubits
for standard implementations is approximately

2n+ r + 1 + t ≈ 200.

If we precompile the input matrix through finding a decomposition in terms of local
Hamiltonians, this can be reduced to

n+ t ≈ 110.

This can be further reduced to n+log(t) by using a counter in the eigenvalue register.
Lastly, by using a single-qubit eigenvalue register (at the cost of classical postprocess-
ing and qubit reinitialization) we bring the number of required qubits in the optimal
case down to

n+ 1 ≈ 80,

which is tantalizingly close to what leading teams are expected to achieve in the
immediate future in terms of qubit numbers alone.

When it comes to the robustness to noise in the hardware, we need to consider
the type of algorithm that is being applied (i.e., how noise affects this algorithm
in general) together with the specifics of the application. The algorithm we con-
sider involves many iterations of Hamiltonian simulation and quantum phase estima-
tion, where we are interested in the expected value of a two outcome measurement
(designating the zero eigenvalues). As noted earlier, these routines are also crucial
for quantum algorithms for quantum chemistry and many-body physics, and con-
sequently, all error-mitigation methods developed for these purposes can be readily
applied [187, 38, 78, 136, 147]. However, as in quantum chemistry and many-body
physics one extracts the entire eigenvalues, as opposed to just the frequency of the
zero eigenvalue, the application we consider is less demanding. Additional robustness
properties van be inferred from the nature of the particular problem solved. For in-
stance, in machine learning and data analysis applications, the fact that the algorithm
serves the purpose of dealing with noise in the data might make noise in the hardware
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less detrimental compared to when solving more exact problems [73].
Unfortunately, this argument cannot be as readily applied to Betti number estima-

tion, as noise in the data does not correspond to small perturbations of the simulated
matrix (i.e., the combinatorial Laplacian), but rather to a completely different matrix
altogether. In turn, small perturbations of the simulated matrix do not corresponds
to any meaningful perturbation of the input data. However, we can still identify cer-
tain robust features by considering what perturbations of the combinatorial Laplacian
entail for the final output, i.e., the low-lying spectral density. Specifically, if the com-
binatorial Laplacian is perturbed by a small enough matrix (e.g., in terms of operator
norm or rank), then the low-lying spectral density remains largely unchanged as such
perturbations will not push the low-lying eigenvalues above the threshold. These set-
tings are often studied in the field of perturbation theory [114], which would allow us
to make these arguments completely formal. Moreover, as a random matrix is likely
of full rank [80], the perturbed combinatorial Laplacian is also likely of full rank,
indicating that in the noisy setting we should focus on approximate Betti number
estimation methods, as opposed to exact ones. Finally, there has been work veri-
fying the robustness of the quantum algorithm for Betti number estimation in an
experimental setting [106].
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