
Computational speedups and learning separations in
quantum machine learning
Gyurik, C.

Citation
Gyurik, C. (2024, April 4). Computational speedups and learning separations
in quantum machine learning. Retrieved from
https://hdl.handle.net/1887/3731364

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3731364

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3731364

Chapter 2

Background and definitions

In this chapter, we introduce the required background and definitions that will be
used throughout this thesis. We begin with an explanation of the basics of quantum
computing in Section 2.1. Following that, we delve into the basics of topological data
analysis in Section 2.2, which will serve as the underpinning for Chapter 3. Next, Sec-
tion 2.3 provides an in-depth look into structural risk minimization, a topic discussed
in Chapter 4. Subsequently, in Section 2.4, we introduce the field of reinforcement
learning, which will be central to our discussions in Chapter 5. Finally, in Section 2.5,
we explore the basics of computational learning theory, which we further study in
Chapter 6.

2.1 Quantum computing
In this section we will go over the basics of quantum computing. We will not cover all
aspects of quantum computing, for more details we refer to [145, 69]. We will assume
a basic understanding of linear algebra (for the required linear algebra see Appendix
A of [69]). First, we will introduce the fundamental way quantum mechanics can be
used to store, manipulate, and extract information. Next, in Section 2.1.1, we will
discuss how these fundamental building blocks can be brought together to become
quantum algorithms and we discuss two examples (i.e., quantum phase estimation and
Hamiltonian simulation). Afterwards, in Section 2.1.2, we will give an introduction
to complexity theory, and how quantum computing fits in that field. Finally, in
Section 2.1.3, we will discuss how quantum computing can be used to evaluate certain
families of linear classifiers (i.e., families of functions used in machine learning that
separate classes of data by drawing hyperplanes between them).

From bits to qubits

In classical computing, the basic units of information are bits (i.e., {0, 1}). On the
other hand, in quantum computing the basic units of information are qubits, which

6

are described by unit vectors |ψ⟩ ∈ C2, i.e.,

|ψ⟩ = α0 |0⟩+ α1 |1⟩ , (2.1)

where |α0|2 + |α1|2 = 1, |0⟩ = [1, 0]T , and |1⟩ = [0, 1]T . The normalization constraint
turns out to be important later on when we discuss how to extract classical information
from qubits through measurements. Analogous to the classical case, we typically
gather n qubits into a single register. Following the postulates of quantum mechanics,
an n-qubit register is described by a unit vector |ψ⟩ ∈

(
C2
)⊗n ≃ C2n , i.e.,

|ψ⟩ =
2n−1∑

i=0

αi |i⟩ , (2.2)

where
∑2n−1

i=0 |αi|2 = 1, and |i⟩ denotes the ith canonical basis vector (with zeroes
everywhere except the ith entry). More generally, if an n1-qubit register is in a state
|ψ⟩ ∈ C2n1 , and another n2-qubit register is in a state |ϕ⟩ ∈ C2n2 , then their joint
register is in the state |γ⟩ given by

|γ⟩ = |ψ⟩ ⊗ |ϕ⟩ ∈ C2n1 ⊗ C2n2
, (2.3)

which is often referred to as the composition postulate.

From classical to quantum circuits

In classical computing, when performing computations the units of information (i.e.,
bits) are typically manipulated using Boolean circuits1 that are build up from a ba-
sic set of logical gates. In fact, for any function manipulating bitstrings (i.e., so-
called Boolean functions) one can build a Boolean circuit using just the logic gate
set {AND, OR, NOT} that implements the given Boolean function. In the quantum set-
ting, Boolean functions are replaced by unitary transformations, Boolean circuits are
replaced by quantum circuits, and logic gates are replaced by quantum gates. Specif-
ically, instead of the logic gate set {AND, OR, NOT} one typically consider the quantum
gate set {X,S, T,H,CNOT}2, which that are linear transformations described by the

1or Turing machines, but since they are in some sense equivalent to Boolean circuits, we will stick
to the latter since it they are easier to translate to the quantum setting.

2There exists many different sets of quantum gates that are universal (two quantum gates can
even be enough), though for our purposes we simply fix this to be our quantum gate set. Moreover,
this set is “overcomplete” in the sense that the subset {CNOT, H, S, T} is already universal, but we
choose to introduce the X-gate anyways for future purposes.

7

matrices:

X =

(
0 1
1 0

)
, (2.4)

S =

(
1 0
0 i

)
, (2.5)

T =

(
1 0
0 eiπ/4

)
, (2.6)

H =
1√
2

(
1 −1
−1 1

)
, (2.7)

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (2.8)

Note that CNOT is a 2-qubit quantum gate, whereas the other quantum gates X, Y ,
Z and H act on a single qubit. Sometimes the quantum gate can have a dependence
on some parameter θ ∈ R, in which case they are refered to as paramaterized quantum
gates. For instance, one could consider the parameterized X-gate, which is described
by the matrix

X(θ) =

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
(2.9)

These quantum gates can be concatenated to build a quantum circuit. Here a quantum
circuit is a collection of wires (each representing a qubit) and quantum gates (to be
applied to the qubits) that one reads from left to right. If one of the quantum gates
has a free parameter, then the resulting circuit is often called a parameterized quantum
circuit. The single qubit gates are typically represented by boxes containing the letter
corresponding to the gate respective gate, whereas the CNOT has a different notation.
Specifically, the X-gate (and any other single qubit gate) is represented by

X

and the CNOT gate is represented by

•

Having fixed our notation for individual quantum gates, we can construct larger quan-
tum circuit that specify how to manipulate an n-qubit register by concatenating indi-
vidual quantum gates. For example, consider the 2-qubit quantum circuit in Figure 2.1
below.

We see that the circuit in Figure 2.1 first applies an H-gate to the first qubit, and
afterwards we apply a CNOT to the output state. More precisely, the circuit in

8

H •

Figure 2.1: An example of a quantum circuit

Figure 2.1 corresponds to the unitary transformation

|ψ⟩ 7→ U |ψ⟩ ,

where U is given by
U = CNOT · (H ⊗ I).

Another important quantum circuit is that of the quantum Fourier transform. For
the quantum Fourier transform the goal is to construct an n-qubit quantum circuit
Un that implements the unitary transformation

|j⟩ 7→
2n−1∑

k=0

e2πijk/2
n |k⟩ . (2.10)

By exploiting a clever rewriting of Eq. (2.10), it turns out that for any given n ∈ N
we can construct a quantum circuit Un consisting of O(poly(n)) quantum gates that
implements the map in Eq. (2.10). The quantum Fourier transform is a pivotal build-
ing block for many important quantum algorithms (such as quantum phase estima-
tion discussed in Section 2.1.1). For more details on the quantum Fourier transform
see [69, 145].

Measurements

Having discussed what the basic units of information are in quantum computing, and
how to manipulate them, all that remains is how to extract classical information after-
wards (i.e., extracting the output) through measurements. There are many different
ways in which one can measure qubits to extract classical information, but we will
focus on only two forms of measurements. First, we discuss what happens when we
measure in the computational basis. Suppose we are given some n-qubit quantum
state |ψ⟩ =∑2n−1

i=0 αi |i⟩, then if we measure this state in the computational basis, we
obtain the outcome i with probability |αi|2. Next, we discuss what happens when one
measures an observable, which is strictly more general than measuring in the compu-
tational basis. An n-qubit observable is an operator O ∈ C2n×2n such that O† = O
(i.e., it is Hermitian). The possible outcomes when measuring O are its eigenvalues
{λj}2

n−1
j=0 . When we measure the observable O on an n-qubit state |ψ⟩ we obtain

outcome λj with probability

| ⟨ϕj | ψ⟩ |2, (2.11)

9

where |ϕj⟩ denotes an eigenvector of O with eigenvalue λj , and ⟨v| := |v⟩†. Also, the
expectation value of O on an n-qubit state |ψ⟩ is given by

⟨ψ|O |ψ⟩ . (2.12)

Mixed states

Previously we have restricted ourselves to pure states (i.e., unit vectors), where we
are certain about the state our qubit register is in. However, there can sometimes be
uncertainty regarding the state of a qubit register in a classical sense. For example,
one could have a register that is in some state |ϕ⟩ with probability p, and it is in
some other state |ψ⟩ with probabilty 1− p. To model this, we consider mixed states,
which are probability distributions (i.e., “mixtures”) over pure states. Note that being
in a superposition between basis states is sometimes misrepresented as a case of
“uncertainty”, even though we know for certain the precise superposition the quantum
state is in. It is convenient to write down mixed states using density matrices, which
are positive semidefinite operators (i..e, all eigenvalues are nonnegative) with trace
1. In particular, suppose we know that our qubit register is in one of the states
|ψ1⟩ , . . . , |ψr⟩ each with a respective probability pj , then we write down this mixed
states as a density matrix

ρ =

r∑

j=1

pj |ψj⟩ ⟨ψj | . (2.13)

Following the conventions for pure states, we find that an n-qubit mixed state ρ
is manipulated by an n-qubit quantum circuit U as follows

ρ 7→ UρU†. (2.14)

Moreover, when measuring an observable O with orthonormal eigenvectors {|ψj⟩}2
n−1

j=0

and corresponding eigenvalues {λj}2
n−1

j=0 , the probability pj of outcome λj is given by

pj = Tr [|ψj⟩ ⟨ψj | ρ] (2.15)

and the expectation value ⟨O⟩ (i.e., the probabilistic expected value of the measure-
ment outcome) is given by

⟨O⟩ = Tr [Oρ] . (2.16)

2.1.1 Basics of quantum algorithms
Having discussed the basics of quantum computing, we are ready to define what
a quantum algorithm is. In short, a quantum algorithm is a routine that gets a
specification of an instance of a problem and efficiently (i.e., in time polynomial in
the instance size) constructs a quantum circuit and measurement. This quantum
circuit is then applied to the state |0n⟩, after which the measurement is preformed,
and based on the outcomes of the measurement the quantum algorithm decides its

10

output. In the remainder of this section we will discuss two concrete examples of
quantum algorithms: quantum phase estimation (QPE) and Hamiltonian simulation
(HS).

Quantum phase estimation

Quantum phase estimation is an important building block for the algorithms discussed
in Chapter 3. The input to the problem is an n-qubit unitary U and an eigenvector |ψ⟩
of U . The required output is the eigenphase of |ψ⟩ with respect to U , i.e., ϕ ∈ [0, 1)
such that

U |ψ⟩ = e2πiϕ |ψ⟩ .
As originally proposed by Kitaev [120] and put in a broader context by Cleve

et al. [64], given access to a black box capable of controlled-U2j operations for j =
1, . . . , n, we can construct a quantum circuit that uses O(poly(n)) single-qubit gates
together with O(poly(1/δ, 1/ϵ)) calls to the black box such that with probability at
least 1−ϵ measuring the output state will produce an estimate ϕ̃ such that |ϕ−ϕ̃| < δ.
Note that the use of black boxes suggests that quantum phase estimation by itself
is not a complete algorithm in its own right. Rather, one should think of it as a
kind of subroutine that, together with a realization of the unitary U (capable of
implementing the required black box) and a suitable quantum state |ψ⟩, can perform
interesting computational tasks.

To get some intuition how quantum phase estimation works, consider the case
where the eigenphase can be expressed as a n-bit string j (i.e., ϕ =

∑n
j=1 ji2

−i).
Then, quantum phase estimation works as follows

1. Start with |0n⟩ |ψ⟩.

2. Apply the layer of gates (H⊗n ⊗ I).

3. Use access to U to apply the map |j⟩ |ψ⟩ 7→ |j⟩U j |ψ⟩ = e2πiϕj |j⟩ |ψ⟩.

4. Apply the inverse quantum Fourier transform to the first n qubits.

5. Measure the first n qubits.

After Step 3., the first n qubits are in the state 1√
2n

∑2n−1
i=0 e2πiϕj |j⟩ which is the

same state obtained by applying the quantum Fourier transform to the state |ϕ⟩ =
|j1, . . . , jn⟩. Since the quantum Fourier transform is self-inverse, we find that after
Step 4. the first n qubits must be in the state |ϕ⟩ which when measured in the com-
putational basis will return ϕ. For more details on quantum phase estimation (e.g.,
what happens in the case when the eigenphase cannot be expressed as a bitstring) we
refer to [69, 145]. For our purposes, we highlight that quantum phase estimation can,
with probability at least 1 − ϵ, obtain an estimate of the eigenphase up to additive
error δ using O(poly(n)) single-qubit gates and O(poly(1/δ, 1/ϵ)) calls to the black
box controlled-U2j operations.

11

Hamiltonian Simulation

Hamiltonian simulation is another important building block for the algorithms dis-
cussed in Chapter 3. Here the input is a specification of a sparse Hermitian operator
H together with some time t ∈ R>0, and the goal is to construct a circuit U that
implements the unitary transformation eiHt. We call a 2n × 2n matrix sparse if at
most O (poly(n)) entries in each row are nonzero. A special class of sparse posi-
tive semidefinite matrices that we consider is the class of log-local Hamiltonians, i.e.,
n-qubit Hermitian operators that can be written as a sum

H =

m∑

j=1

Hj , (2.17)

where each Hj acts on at most O (log n) qubits and m ∈ O (poly(n)). We specify
the the input matrix H using either of the following two standard cases. First, the
input matrix can be specified in terms of sparse access. That is, the input matrix
H ∈ C2n×2n is specified by quantum circuits that let us query the values of its entries,
and the locations of the nonzero entries. More precisely, we assume that we are given
classical descriptions of O (poly(n))-sized quantum circuits that implement the oracles
OH and OH,loc, which map

OH : |i, j⟩ |0⟩ 7→ |i, j⟩ |Hi,j⟩ ,
OH,loc : |j, ℓ⟩ |0⟩ 7→ |j, ℓ⟩ |ν(j, ℓ)⟩ ,

where 0 ≤ i, j, ℓ ≤ 2n − 1, and ν(j, ℓ) ∈ {0, . . . , 2n − 1} denotes the location of the
ℓ-th nonzero entry of the j-th column of H. Secondly, for log-local Hamiltonians, we
also consider specifying the input matrix H by its local-terms {Hj} as in Eq. (2.17).
Note that any specification in terms of local-terms can be turned into a specification
in terms of a sparse access oracle.

Depending on the type of access you have to the input matrix H, different quan-
tum algorithms exist to turn this specification of H into a quantum circuit U that
implements the unitary transformation eiHt. If the access is in terms of the local-terms
in Eq. (2.17) (with respect to a family of local terms Hj that allow for Hamiltonian
simulation in an efficient way, such as the family of Pauli-strings), then one can use
Trotterization [129] to construct a quantum circuit U consisting of O(poly(n, 1/ϵ))
many two- and single-qubit quantum gates that satisfies

||eiHt − U ||2 < ϵ.

On the other hand, if the access is in terms of sparse access oracles then more advanced
methods such as [133] are required. These methods use sparse access to H to produce
a quantum circuit U of size O(poly(n, log(1/ϵ))) such that3

||U − eiHt||2 < ϵ.

3The runtime of certain more advanced methods also depend on the largest entry of H and its
sparsity, but we choose to omit these dependencies from the runtime since they are not relevant for
the purposes of Chapter 3

12

2.1.2 Quantum complexity theory
In the previous section we discussed how classical and quantum computers perform
computations in a fundamentally different way. In this section we will discuss some
of the consequences that this fundamentally different way of computing has on the
field of complexity theory. In short, complexity theory studies how much of a certain
resource is required to solve a given problem as a function of the instance size. We
will stick to an intuitive explanation of some classes of problems as categorized by
complexity theory, and for the formal definitions we refer to [23]. The problems that
one typically studies in complexity theory are so-called decision problems. In such
problems, one is given some x ∈ {0, 1}n and one is asked to decide whether the input
encoded by x satisfies a certain property. For instance, we could use x ∈ {0, 1}n to
encode a Boolean formula, and ask to decide whether x has any satisfying assignment
or not.

In complexity theory, the class P denotes all problems that are solvable by a
classical circuit that is allowed a number of gates that is at most polynomial in
the input length (with the caveat that there must exist an efficient procedure that
generates these circuits for a given input size). Additionally, the class BPP denotes
all problems that are solvable by a classical circuit that is allowed a number of gates
that is at most polynomial in the input length and is additionally allowed to use
some randomness (e.g., by providing it with a random number generator). One of the
questions studied in complexity theory is what additional problems one could solve
by allowing this additional internal randomness, if any such problems exist. This
question can be reformulated as asking whether or not BPP = P, which sparked the
study of derandomization techniques [57].

With the addition of quantum computing one can define a whole new family of
complexity classes. For instance, the class BQP denotes all problems that are solvable
by a quantum circuit that is allowed a number of quantum gates that is at most
polynomial in the input length. Another important question in complexity theory
is whether there exists problems that can be solved with polynomial-size quantum
circuits, but which cannot be solved with polynomial-size (randomized) classical cir-
cuits. This question can be reformulated as asking whether or not BPP = BQP.
Since quantum circuits can simulate any classical circuit (with a negligible increase
in circuit size), it holds that BPP ⊆ BQP. Even though it is not formally proven that
BPP ⊊ BPP (i.e., that BQP is strictly larger than BPP), it is it is still widely-believed
to be the case. For example, the problem of factoring lies in BQP due to the famous
Shor’s algorithm [176], but it is widely-believed to be outside of BPP.

If we allow ourselves to operate under the assumption that BQP ̸= BPP, then how
could one use complexity theory to argue that a certain problem is likely to exhibit
a (superpolynomial) quantum advantage? Intuitively, what we mean by a “quantum
advantage” is that the classical resources required to solve this problem drastically
outscale the quantum resources required to solve the problem. Under the assumption
that BQP ̸= BPP, one way to show that a problem exhibits a quantum advantage is to
show that it is among the hardest problems in BQP. More precisely, we would like to
show that if we could solve this problem using certain resources, then we could solve
any problem in BQP using comparable resources. In complexity theory, the above is

13

captured using the notion of reductions. In the broadest sense, we say that a problem
A is reducible to a problem B if an algorithm for solving B with a certain set of
resources (if it were to exist) can be turned into an algorithm for solving A that uses
a comparable amount of resources (e.g., both algorithms use polynomial-size circuits).
Now if any problem in a complexity class is reducible to a problem A, then we say
that A is hard for that class. If additionally A is also contained in that complexity
class, we say that A is complete for that class.

If we were to show that a given problem A is BQP-complete4, then this is solid
evidence that A exhibits a quantum advantage under the assumption that BPP ̸=
BQP. In particular, suppose we could solve A using a polynomial-size randomized
classical circuit (i.e., it is in BPP). Since A is among the hardest problems in BQP,
through the reductions we find that any other problem is BQP can also be solved
using the resources of BPP. This clearly contradicts the assumption that BPP ̸= BQP,
which establishes by contradiction that A is not in BPP. Moreover, since A was in
fact complete for BQP, we know that is in BQP and that it is thus solvable using a
polynomial-depth quantum circuit. Using a completeness-result to give evidence for
quantum advantage is not limited to the class BQP. In fact, any class that contains
problems in BQP that are widely-believed to be outside BPP would work for this
purpose. In Section 3.2.1, we discuss another example of a complexity class whose
completeness result provide evidence for quantum advantage called DQC1, and we use
it to argue that certain problems in topological data analysis (or machine learning
more general) are likely to exhibit a quantum advantage.

To end this section, we introduce two more complexity classes. In particular, we
introduce two classes of problems whose solutions are verifiable using a given amount
of resources. For instance, if our input x ∈ {0, 1}n encodes a Boolean formula, then
how much resources does it require to check whether a given assignment makes the
formula evaluate to 1? In the classical setting, the class NP denotes all problems
whose solutions are verifiable in time polynomial in the input length on a classical
computer. Note that deciding whether a Boolean formula has a satisfying assignment
is in NP, since the evaluation of the Boolean formula for a given assignment can
be done using in polynomial-time on a classical computer. In the quantum setting,
the class QMA denotes the set of problems whose solutions are verifiable in time
polynomial in the input length on a quantum computer. It is a long-standing open
question in complexity theory whether NP = P, i.e., whether problems whose solution
can be verified in polynomial-time on a classical computer can also be solved using
the same resources. However, it is widely-believed that P ⊊ NP, though there is no
proof (yet). Similarly, it is widely-believed that BQP ⊊ QMA, though also here there
is no proof (yet).

4Strictly speaking, when we say that problem is BQP-complete, we actually mean that it is
complete for the class PromiseBQP (the class BQP is not known to have any complete problems).
The difference between BQP and PromiseBQP is that in the latter one only needs to be correct on a
subset of instances (i.e., those that satisfy a certain “promise”).

14

2.1.3 Quantum linear classifiers
A fundamental family of classifiers (i.e., binary-valued functions) used throughout
machine learning are those constructed from linear functions. Specifically, they are
constructed from the family of real-valued functions on Rℓ

Flin =
{
fw(x) = ⟨w, x⟩ : w ∈ Rℓ

}
, (2.18)

where ⟨., .⟩ denotes an inner product on the input space Rℓ. These linear functions
are turned into classifiers by adding an offset and taking the sign, i.e., the classifiers
are given by

Clin =
{
cw,d(x) = sign

(
⟨w, x⟩ − d

)
: w ∈ Rℓ, d ∈ R

}
. (2.19)

While this family of classifiers is relatively limited (e.g., it cannot solve the well-
known XOR problem), it becomes powerful when introducing a feature map. Specifi-
cally, a feature map Φ : Rℓ → RN is used to (non-linearly) map the data to a (much)
higher-dimensional space – called the feature space – in order to make the data more
linearly-separable. We let C (Φ) = {c ◦ Φ | c ∈ C} denote the family of classifiers on
Rℓ obtained by combining a family of linear classifiers C ⊆ Clin on RN with a feature
map Φ. If the feature map is clear from the context we will omit it in the notation
and just write C. A well known example of a model based on linear classifiers is
the support vector machine (SVM), which aims to finds the hyperplane that attains
the maximal perpendicular distance to the two classes of points in the two distinct
half-spaces (assuming the feature map makes the data linearly separable, though one
could relax this using so-called soft-margin SVMs [66] in the non-separable case).

The linear-algebraic nature of linear classifiers makes them particularly well-suited
for quantum treatment. In the influential works of Havlíček et al. [103], and Schuld
& Killoran [168], the authors propose a model where the space of n-qubit Hermitian
operators – denoted Herm

(
C2n

)
– takes the role of the feature space. Note that

Herm
(
C2n

)
is a 4n-dimensional real vector space equipped with the Frobenius inner

product ⟨A,B⟩ = Tr
[
A†B

]
. Their feature map maps classical inputs x to n-qubit

density matrices Φ(x) := ρΦ(x) (i.e., positive semi-definite matrices of trace one).
Finally, the hyperplanes that separates the states ρΦ(x) corresponding to the different
classes are given by n-qubit observables. In short, the family of functions their model
uses is given by

Fqlin =
{
fO(x) = Tr [OρΦ(x)] : O ∈ Herm

(
C2n

)}
, (2.20)

and the family of classifiers – which we refer to as quantum linear classifiers – is given
by

Cqlin =
{
cO,d(x) = sign

(
Tr [OρΦ(x)]− d

)
: O ∈ Herm

(
C2n

)
, d ∈ R

}
. (2.21)

We can estimate fO(x) defined in Equation (2.20) by preparing the state ρΦ(x) and

15

measuring the observable O. In particular, approximating fO(x) up to additive er-
ror ϵ requires only O

(
1/ϵ2

)
samples. While the error creates a fuzzy region around

the decision boundary, this turns out to not cause major problems in practical set-
tings [31].

Using parameterized quantum circuits both the preparation of a quantum state
that encodes the classical input and the measurement of observables can be done effi-
ciently for certain feature maps and families of observables. We now briefly recap two
ways in which parameterized quantum circuits can be used to efficiently implement
a family of quantum linear classifiers, as originally proposed by Havlíček et al. [103],
and Schuld & Killoran [168]. Both ways use a parameterized quantum circuit to im-
plement the feature map. Specifically, let UΦ be a parameterized quantum circuit,
then we can use it to implement the feature map given by

Φ : x 7→ ρΦ(x) := |Φ(x)⟩ ⟨Φ(x)| , (2.22)

where |Φ(x)⟩ := UΦ(x) |0⟩⊗n. The key difference between the two approaches is which
observables they are able to implement (i.e., which separating hyperplanes they can
represent) and how the observables are actually measured (i.e., how the functions fO
are evaluated). An overview of how the two approaches implement quantum linear
classifiers can be found in Figure 2.2, and we discuss the main ideas behind the two
approaches below.

explicit classifier

implicit classifier

feature map

quadratic programming

Data 𝑥 Concatenate
circuits

SWAP-test,
Hadamard-test or
concatenate with

complex-conjugate

Figure 2.2: An overview of the explicit and implicit quantum linear classifiers defined
in Equations (2.24) and (2.25), respectively (adapted from [95]). Note that in the case
of the explicit classifier, a universal circuit W (θ) (specifying the eigenbasis) followed
by a computational basis measurement and universal postprocessing λ (specifying the
eigenvalues) allows one to measure any observable (albeit not efficiently with respect
to the number of qubits).

Explicit quantum linear classifier5 The observables measured in this approach
are implemented by first applying a parameterized quantum circuit W (θ), followed by
a computational basis measurement and postprocessing of the measurement outcome

5Also called the quantum variational classifier [103].

16

λ : [2n] → R. Upon closer investigation, one can derive that the corresponding
observable is given by

Oλ
θ =W †(θ) · diag

(
λ(0), λ(1), . . . , λ(2n − 1)

)
·W (θ). (2.23)

Examples of efficiently computable postprocessing functions λ include functions with
a polynomially small support (implemented using a lookup table), functions that
are efficiently computable from the input bitstring (e.g., the parity of the bitstring,
which is equivalent to measuring Z⊗n), or parameterized functions such as neural
networks. Note that the postprocessing function λ plays an important role in how the
measurement of the observable in Eq. (2.23) is physically realized. Altogether, this
efficiently implements the family of linear classifiers – which we refer to as explicit
quantum linear classifiers – given by

Cexplicit
qlin =

{
cOλ

θ ,d
(x) = sign

(
Tr
[
ρΦ(x)Oλ

θ

]
− d
)

: Oλ
θ as in Equation (2.23), d ∈ R

}
.

(2.24)

The power of this model lies in the efficient parameterization of the manifold (in-
side the 4n-dimensional vector space of Hermitian operators on C2n) realized by the
quantum feature map together with the parameterized separating hyperplanes that
can be attained by W (θ) and λ. Here also lies a restriction of the explicit quantum
linear classifier compared to standard linear classifiers, as in the latter all hyper-
planes are possible and in the former only the hyperplanes that lie in the manifold
parameterized by W (θ) and λ are possible. Furthermore, explicit quantum linear
classifiers can likely not be efficiently evaluated classically, as computing expectation
values Tr

[
ρΦ(x)Oλ

θ

]
is classically intractable for sufficiently complex feature maps

and observables [188, 41].

Implicit quantum linear classifier6 Another way to implement a linear classifier
is by using the so-called kernel trick [164]. In short, this trick involves expressing the
normal vector of the separating hyperplane, – i.e., the observable O in the case of
quantum linear classifiers – on a set of training examples D as a linear combination
of feature vectors, resulting in the expression

Oα =
∑

x′∈D
αx′ρΦ(x′) =

∑

x′∈D
αx′ |Φ(x′)⟩ ⟨Φ(x′)| .

Using this expression we can rewrite the corresponding quantum linear classifier as

cOα,d(x) = sign
(
Tr [ρΦ(x)Oα]− d

)
= sign

(∑

x′∈D
αx′Tr [ρΦ(x)ρΦ(x

′)]− d
)
.

These type of linear classifiers can also be efficiently realized using parameterized
quantum circuits. Using quantum protocols such as the SWAP-test or the Hadamard-

6Also called the quantum kernel estimator [103].

17

test, or by using the inverse of the circuit that implements the feature map UΦ(x)
−1,

it is possible to efficiently evaluate the overlaps Tr[ρΦ(x)ρΦ(x
′)] for the feature map

defined in Equation (2.22). Afterwards, the optimal parameters {αx′}x′∈D are ob-
tained on a classical computer, e.g., by solving a quadratic program. Altogether, this
allows us to efficiently implement the family of linear classifiers – which we refer to
as implicit quantum linear classifiers – given by

Cimplicit
qlin =

{
cOα,d(x) = sign

(
Tr [ρΦ(x)Oα]− d

)

: Oα =
∑

x′∈D
αx′ρΦ(x

′), α ∈ R|D|, d ∈ R
}
.

(2.25)

The power of this model comes from the fact that evaluating the overlaps Tr [ρΦ(x)ρΦ(x′)]
is likely classically intractable for sufficiently complex feature maps [103], demonstrat-
ing that classical computers can likely neither train nor evaluate this quantum linear
classifier efficiently. Moreover, from the well-known Representer theorem we know
any quantum linear classifier that is the minimizer of a loss functions that includes
regularization of the Frobenius norm of the observable can be expressed as an implicit
quantum linear classifier [165]. However, as we indicate later in Section 4.3, this does
not mean that we can forego explicit quantum linear classifiers entirely, as in the
explicit approach there are unique types of meaningful regularization for which there
is no straightforwards correspondence to the implicit approach.

2.2 Topological data analysis
Topological data analysis is a recent approach to data analysis that extracts robust
features from a dataset by inferring properties of the shape of the data. This is perhaps
best explained in analogy to a better-known method: much like how principal com-
ponent analysis extracts features (i.e., the singular values characterizing the spread
of the data in the directions of highest variance) that are invariant under translation
and rotation of the data, topological data analysis goes a step further and extract
features that are also invariant under bending and stretching of the data (i.e., by
inferring properties of its general shape). Because of this invariance of the extracted
features, topological data analysis techniques can be inherently more robust to noise
in the data.

The theory behind topological data analysis is fairly extensive, but most of it we
will not need for our purpose. Namely, we can set most of the topology aside and tackle
the issue in linear-algebraic terms, which are well-suited for quantum approaches. In
this section we introduce the relevant linear-algebraic concepts, and we briefly review
the quantum algorithm for topological data analysis of Lloyd, Garnerone and Zanardi
(LGZ) [130].

2.2.1 Betti numbers as features
In topological data analysis the dataset is typically a point cloud (i.e., a collection of
points in some ambient space) and the aim is to extract the shape of the underlying

18

data (i.e., the ‘source’ of these points). This is done by constructing a connected
object – called a simplicial complex – composed of points, lines, triangles and their
higher-dimensional counterparts, whose shape one can study. After constructing the
simplicial complex, features of the shape of the data – in particular, the number of
connected components, holes, voids and higher-dimensional counterparts – can be
extracted using linear-algebraic computations based on homology. An overview of
this procedure can be found in Figure 2.4.

Consider a dataset of points {xi}ni=1 embedded in some space equipped with a
distance function d (typically Rm equipped with the Euclidean distance). The con-
struction of the simplicial complex from this point cloud proceeds as follows. First,
one constructs a graph by connecting datapoints that are “close” to each other. This
is done by choosing a grouping scale ϵ (defining which points are considered “close”)
and connecting all datapoints that are within ϵ distance from each other. This yields
the graph G = ([n], Eϵ), with vertices [n] := {1, . . . , n} and edges

Eϵ = {(i, j) | d(xi, xj) ≤ ϵ}.

After having constructed this graph, one relates to it a particular kind of simplicial
complex called a clique complex, by associating its cliques (i.e., complete subgraphs)
with the building blocks of a simplicial complex1. That is, a 2-clique is considered
a line, a 3-clique a triangle, a 4-clique a tetrahedron, and (k + 1)-cliques the k-
dimensional counterparts2.

To fix the notation, let Clk(G) ⊂ {0, 1}n denote the set of (k + 1)-cliques in G –
where we encode a subset {i1, . . . , ik} ⊂ [n] as an n-bit string where the indices ik
specify the positions of the ones in the bitstring – and let χk := |Clk(G)| denote the
number of these cliques. Throughout this thesis, we will discuss everything in terms
of clique complexes, as this is sufficient for our purposes and allows us to use the more
familiar terminology of graph theory.

The constructed clique complex exhibits the features that we want to extract from
our dataset – i.e., the number of k-dimensional holes. For example, in Figure 2.3 we
see a clique complex where we can count three 1-dimensional holes. Interestingly,
counting these holes can be done more elegantly using linear algebra by employing
constructions from homology.

To extract these features using linear algebra, embed the clique complex into a
Hilbert spaceHG

k , by raising the set of bitstrings that specify (k+1)-cliques to labels of
orthonormal basis vectors. LetHk denote the Hilbert space spanned by computational
basis states with Hamming weight3 k + 1. Due to the way we encode cliques as
bitstrings, we have that HG

k is a subspace of Hk. Moreover, each Hk is an
(

n
k+1

)
-

dimensional subspace of the entire n-qubit Hilbert space C2n , and C2n ≃⊕n−1
k=−1Hk.

The next step towards extracting features using linear algebra involves studying
properties of the boundary maps ∂k : Hk → Hk−1, which are defined by linearly

1The resulting simplicial complex coincides with the Vietoris-Rips complex common in topological
data analysis literature [83].

2The shift in the indexing is due to different terminologies in graph theory and topology (e.g., in
graph theory a triangle is called a 3-clique, whereas in topology it is called a 2-simplex).

3The Hamming weight of a bitstring is the number of 1s in it.

19

Figure 2.3: Example of a clique complex with three 1-dimensional holes (adapted
from [83]). The number of these holes is equal to the first Betti number.

extending the action on the basis states given by

∂k |j⟩ :=
k∑

i=0

(−1)i |ĵ(i)⟩ , (2.26)

where ĵ(i) denotes the n-bit string of Hamming weight k that encodes the subset
obtained by removing the i-th element from the subset encoded by j (i.e., we set
the i-th one in the bitstring j to zero). By considering the restriction of ∂k to HG

k

– which we denote by ∂Gk – these boundary maps can encode the connectivities of
the graph G, in which case their image and kernel encode various properties of the
corresponding clique complex. Intuitively, these boundary maps map a (k+1)-clique
to a superposition (i.e., a linear combination) of all k-cliques that it contains, as seen
in Eq. (2.26).

These boundary maps allow one to extract features of the shape of a clique complex
by studying their images and kernels, and in particular their quotients. Specifically,
the quotient space

Hk(G) := ker ∂Gk /Im∂
G
k+1, (2.27)

which is called the k-th homology group, captures features of the shape of the under-
lying clique complex. The main feature is the k-th Betti number βG

k , which is defined
as the dimension of the k-th homology group, i.e.,

βG
k := dimHk(G).

20

By construction, the k-th Betti number is equal to the number of k-dimensional holes
in the clique complex.

The main problem in topological data analysis that we study in this thesis is the
computation of Betti numbers. To do so, we study the combinatorial Laplacians [76],
which are defined as

∆G
k =

(
∂Gk
)†
∂Gk + ∂Gk+1

(
∂Gk+1

)†
. (2.28)

These combinatorial Laplacians can be viewed as generalized (or rather, higher-order)
graph Laplacians in that they encode the connectivity between cliques in the graph
as opposed to encoding the connectivity between individual vertices. We study the
combinatorial Laplacians because the discrete version of the Hodge theorem [76] tells
us that

dimker
(
∆G

k

)
= βG

k , (2.29)

which is often used as a more convenient way to compute Betti numbers [81], partic-
ularly in the case of the quantum algorithm that we discuss in the next section.

In conclusion, if the clique complex is constructed from a point cloud according
to the construction discussed above, then computing these Betti numbers can be
viewed as a method to extract features of the shape of the data (specifically, the
number of holes are present at scale ϵ). By recording Betti numbers across varying
scales ϵ in a so-called barcode [83], one can discern which holes are “real” and which
are “noise”, resulting in feature extraction that is robust to noise in the data. Even
though barcodes are very important in topological data analysis, we will mostly focus
on the problem of estimating the number of holes at a given scale.

2.2.2 Quantum algorithm for Betti number estimation
The algorithm for Betti number estimation of Lloyd, Garnerone and Zanardi (LGZ) [130]
utilizes Hamiltonian simulation and phase estimation to estimate the dimension of the
kernel (i.e., the nullity) of the combinatorial Laplacian (which by Eq. (2.29) is equal
to the corresponding Betti number). After the initial algorithm of Lloyd et al. sev-
eral different improvements were made, focusing either on reducing the number of
T -gates [33], making it more amenable to NISQ requirements [189], or on exploit-
ing the quantum singular value transform and achieving an exponential saving in
the number of qubits [135]. To make our presentation self-contained, we review the
original quantum algorithm for Betti number estimation of Lloyd et al.

Estimating the nullity of a sparse Hermitian matrix can be achieved using some of
the most fundamental quantum-algorithmic primitives. Namely, using Hamiltonian
simulation and quantum phase estimation one can estimate the eigenvalues of the
Hermitian matrix, given that the eigenvector register starts out in an eigenstate.
Moreover, if instead the eigenvector register starts out in the maximally mixed state
(which can be thought of as a random choice of an eigenstate), then measurements
of the eigenvalue register produce approximations of eigenvalues, sampled uniformly
at random from the set of all eigenvalues. This routine is then repeated to estimate
the nullity by simply computing the frequency of zero eigenvalues (recall that the

21

Point cloud Graph Simplicial complex

Linear operators

Betti numbers, i.e., list of
number of holes, voids and
k-dimensional counterparts

Mesh at
grouping-scale ϵ

Identifying cliques
as simplices

Homology

Computing dimensions
of kernels

,

Figure 2.4: The pipeline of topological data analysis (adapted from [90]). First,
points within ϵ distance are connected to create a graph. Afterwards, cliques in this
graph are identified with simplices to create a simplicial complex. Next, homology is
used to construct linear operators that encode the topology. Finally, the dimensions
of the kernels of these operators are computed to obtain the Betti numbers (which
correspond to the number of holes).

dimension of the kernel is equal to the multiplicity of the zero eigenvalue). Note
that this procedure does not strictly speaking estimate the nullity, but rather the
number of small eigenvalues, where the threshold is determined by the precision of
the quantum phase estimation (see Section 2.2.2 for more details). The steps of the
quantum algorithm for Betti number estimation of LGZ are summarized in Figure 2.5.

In Step 1(a), Grover’s algorithm is used to prepare the uniform superposition over
HG

k , from which one can prepare the state ρGk by applying a CNOT gate to each
qubit of the uniform superposition into some ancilla qubits and tracing those out.
When given access to the adjacency matrix of G, one can check in O

(
k2
)

operations
whether a bitstring j ∈ {0, 1}n encodes a valid k-clique and mark them accordingly
in the application of Grover’s algorithm. By cleverly encoding Hamming weight k
strings we can avoid searching over all n-bit strings, which requires O (nk) additional
gates per round of Grover’s algorithm plus an additional one-time cost of O

(
n2k

)
[93].

Hence, the runtime of this first step is

O
(
n2k + nk3

√(
n

k + 1

)
/χk

)

where χk denotes the number of (k + 1)-cliques. This runtime is polynomial in the

22

Quantum algorithm for Betti number estimation

1. For i = 1, . . . ,M repeat:

(a) Prepare the state:

ρGk =
1

|dimHG
k |

∑

j∈Clk(G)

|j⟩ ⟨j| . (2.30)

(b) Apply quantum phase estimation to the unitary ei∆
G
k , with the eigen-

vector register starting out in the state ρGk .

(c) Measure the eigenvalue register to obtain an approximation λ̃i.

2. Output the frequency of zero eigenvalues:
∣∣∣{i | λ̃i = 0}

∣∣∣ /M .

Figure 2.5: Overview of the quantum algorithm of Lloyd, Garnerone and Zanardi
(LGZ) [130]

number of vertices n when
(

n

k + 1

)
/χk ∈ O (poly(n)) . (2.31)

Throughout this thesis we say that a graph is clique-dense if it satisfies Eq. (2.31).
Note that ρGk can of course also be directly prepared without the use of Grover’s
algorithm by using rejection sampling: choose a subset uniformly at random and
accept it if it encodes a valid clique. This is quadratically less efficient, however it
has advantages if one has near-term implementations in mind, as it is a completely
classical subroutine. As we will discuss in more detail in Section 2.2.2, this state
preparation procedure via Grover’s algorithm or uniform clique-sampling is a crucial
bottleneck in the quantum algorithm.

In Step 1(b), standard methods for Hamiltonian simulation of sparse Hermitian
matrices are used together with quantum phase estimation to produce approximations
of the eigenvalues of the simulated matrix. In the original algorithm, the matrix that
LGZ simulates (i.e., the matrix it applies Hamiltonian simulation on) in this step is

23

the Dirac operator, which is defined as

BG =




0 ∂G1 0 0(
∂G1
)†

0 ∂G2 0

0
(
∂G2
)†

0
. 0

...
...

.
...

...
...

...
. . . 0 ∂Gn−1

0 0 0 . . .
(
∂Gn−1

)†
0




and satisfies

B2
G =




∆G
0 0 . . . 0
0 ∆G

2 . . . 0
...

...
. . . 0

0 0 . . . ∆G
n−1


 . (2.32)

From Eq. (2.32) we gather that the probability of obtaining an approximation of
an eigenvalue that is equal to zero is proportional to the nullity of the combinatorial
Laplacian. Because BG is an n-sparse Hermitian matrix with entries 0,−1 and 1, to
which we can implement sparse access using O (n) gates, we can implement eiB using
Õ
(
n2
)

gates [133] (here Õ suppresses logarithmically growing factors).
We remark that it is also possible to simulate ∆G

k directly (as depicted in Fig-
ure 2.5). Namely, as ∆G

k is an n2-sparse Hermitian matrix whose entries are bounded
above by n, to which we can implement sparse access using O

(
n4
)

gates (e.g., see
Theorem 3.3.4 [86]), we can implement ei∆

G
k using Õ

(
n6
)

gates [133].
The disadvantage to directly simulating ∆G

k is that it requires more gates. How-
ever, the advantage is that the Hamiltonian simulation of ∆G

k requires fewer qubits
compared to the Hamiltonian simulation of BG, namely, log

(
n

k+1

)
qubits instead of n.

Moreover, when the graph is clique-dense one can bypass Step 1(a) by padding ∆G
k

with all-zero rows and columns and letting the eigenvector start out in the maximally
mixed state I/2n (see Section 3.1.1 for more details).

Let λmax denote the largest eigenvalue and let λmin denote the smallest nonzero
eigenvalue of ∆G

k . By scaling down the matrix one chooses to simulate (i.e., either
B or ∆G

k) by 1/λmax to avoid multiples of 2π, we can tell whether an eigenvalue
is equal to zero or not if the precision of the quantum phase estimation is at least
λmax/λmin. By the Gershgorin circle theorem (which states that λmax is bounded
above by the maximum sum of absolute values of the entries of a column or row)
we know that λmax ∈ O (n). For the general case not much is known in terms of
lower bounds on λmin. Nonetheless, even if we do not have such a lower bound, the
number of small eigenvalues (as opposed to zero eigenvalues) still conveys topological
information about the underlying graph (see Section 2.2.2 for more details). By
taking into account the cost of the quantum phase estimation [145], the total runtime
of Step 1(b) becomes Õ

(
n3/λmin

)
.

Finally, estimating βG
k / dimHG

k up to additive precision ϵ can be done using M ∈

24

O
(
ϵ−2
)

repetitions of Step 1(a) through 1(c). This brings the total cost of estimating
βG
k /dimHG

k up to additive precision ϵ to

Õ
((

nk3

√(
n

k + 1

)
/χk + n3/λmin

)
/ϵ2

)
.

In conclusion, the quantum algorithm for Betti number estimation runs in time
polynomial in n under two conditions. Firstly, the graph has to be clique-dense, i.e.,
it has to satisfy Eq. (2.31) (see Section 2.2.2 for more details). Secondly, the smallest
nonzero eigenvalue λmin has to scale at least inverse polynomial in n (see Section 2.2.2
for more details). If both these conditions are satisfied, then the quantum algorithm
for Betti number estimation achieves an exponential speedup over the best known
classical algorithms if the size of the combinatorial Laplacian – i.e., the number of
(k + 1)-cliques – scales exponentially in n (see Section 2.2.3 for more details).

Approximate Betti numbers

As mentioned in the previous section, the quantum algorithm for Betti number esti-
mation does not strictly speaking estimate the Betti number (i.e., the nullity of the
combinatorial Laplacian), but rather the number of small eigenvalues of the combi-
natorial Laplacian. This is because little is known in terms of lower bounds for the
smallest nonzero eigenvalue of combinatorial Laplacians, and hence it is unclear to
what precision one has to estimate the eigenvalues in the quantum phase estima-
tion. In any case, it is conjectured that for high-dimensional simplicial complexes
the smallest nonzero eigenvalue will generally be at least inverse polynomial in n [81],
which would imply that quantum phase estimation can in time O (poly(n)) determine
whether an eigenvalue is exactly equal to zero.

Even without knowing a lower bound on the smallest nonzero eigenvalue of the
combinatorial Laplacian, we can still perform quantum phase estimation up to some
fixed inverse polynomial precision. The quantum algorithm for Betti number esti-
mation then outputs an estimate of the number of eigenvalues of the combinatorial
Laplacian that lie below this precision threshold. Throughout this thesis we will refer
to this as approximate Betti numbers, which turn out to still convey information about
the underlying graph. For instance, Cheeger’s inequality – which relates the sparsest
cut of a graph to the smallest nonzero eigenvalues of its standard graph Laplacian –
turns out to have a higher-order generalization that utilizes the combinatorial Lapla-
cian [92]. Moreover, there are several other spectral properties of the combinatorial
Laplacian beyond the number of small eigenvalues that also convey topological infor-
mation about the underlying graph. Some of these spectral properties can also be
efficiently extracted using quantum algorithms (see Section 3.3.2 for more details).

Efficient state preparation

In Section 2.2.2 we saw that the quantum algorithm for Betti number estimation
can efficiently estimate approximate Betti numbers if the input graph satisfies certain
criteria. In particular, the graph has to be such that one can efficiently prepare the

25

maximally mixed state over all its cliques of a given size (i.e., the state in Eq. (2.30)
in Figure 2.5). In this section we highlight that this state preparation constitutes one
of the main bottlenecks in the quantum algorithm for Betti number estimation.

One way to prepare the maximally mixed state over all k-cliques of an n-vertex
graph is to sample k-cliques uniformly at random and feed them into the quantum
algorithm. For the quantum algorithm for Betti number estimation to run in time
sub-exponential in n, we have to be able to sample a k-clique uniformly at random
in time no(k). However, for general graphs finding a k-clique cannot be done in time
no(k) unless the exponential time hypothesis fails [56]. Nonetheless, for certain families
of graphs, uniform clique sampling can be done much more efficiently, e.g., in time
polynomial in n (in which case the quantum algorithm also runs in time polynomial
in n). In particular, the graph’s clique-density (i.e., probability that a uniformly
random subset of vertices is a clique), or the graph’s arboricity (which up to a factor
1/2 is equivalent to the maximum average degree of a subgraph) are important factors
that dictate the efficiency of uniform clique sampling algorithms. In Section 3.2.4 we
outline concrete families of graphs (based on their clique-density or arboricity) for
which the quantum algorithm achieves a (superpolynomial) speedup over classical
algorithms.

2.2.3 Classical algorithms for Betti number estimation
In this section we will closely investigate the state-of-the-art classical algorithms, to
analyze whether it is possible to strengthen the argument for quantum advantage
(or, to actually find an efficient classical algorithm) for the topological data analysis
problem. In particular, we will cover classical algorithms based on numerical linear
algebra or random walks and analyze the theoretical hurdles that, at least currently,
stymie them from performing equally as well as the quantum algorithm.

To the best of our knowledge, the best known classical algorithms for approximate
Betti number estimation is based on a numerical linear algebra algorithm for low-
lying spectral density estimation [190, 59, 70, 124]. These algorithms typically run
in time linear in the number of nonzero entries. Since combinatorial Laplacians are
n-sparse, the number of nonzero entries of the combinatorial Laplacian – and hence
also the runtime of the best known classical algorithm for approximate Betti number
estimation – scales as

O (n · χk) ∈ O
(
nk+1

)
.

Recall that the quantum algorithm for Betti number estimation can estimate ap-
proximate Betti numbers in time polynomial in n if we can efficiently prepare the max-
imally mixed state over the cliques of a given size (e.g., if it satisfies Eq. (2.31)). For
graphs that satisfy this condition, we conclude that the quantum algorithm for Betti
number estimation achieves an exponential speedup over the best known classical al-
gorithms if the size of the combinatorial Laplacian – i.e., the number of (k+1)-cliques
– scales exponential in n (which requires k to scale with n). For exponential speedups
for Betti number estimation, we also require that the smallest nonzero eigenvalue of
the combinatorial Laplacian scales at least inverse polynomially in n.

26

To investigate the actual hardness of approximate Betti number estimation, we
go one step further and discuss new possibilities for efficient classical algorithms. In
particular, we investigate potential classical algorithms that take into account the
specifics of the combinatorial Laplacian by using carefully designed random walks.
Firstly, there exists a classical random walk based algorithm that can approximate
the spectrum of the 0th combinatorial Laplacian (i.e., the ordinary graph Laplacian)
up to ϵ distance in the Wasserstein-1 metric in time O (exp(1/ϵ)) (i.e., independent of
the size of the graph) [65]. To generalize this to higher-order combinatorial Laplacians,
one would have to construct an efficiently implementable walk operator whose spectral
properties coincide with the higher-order combinatorial Laplacian. While potential
candidates for such higher-order walk operators have previously been studied [143,
154], relatively little is known about such higher-order walk operators. Note that such
a construction must take into account the specifics of the combinatorial Laplacian,
since if the construction would work for arbitrary sparse Hermitian matrices, then this
would lead to an efficient classical algorithm for llsd (which by Theorem 5 is widely-
believed to be impossible). Recently, Berry et al. [33] and Apers et al. [22] proposed
new classical algorithms for Betti number estimation based on random walks that
works best precisely in the regime where the quantum algorithm works best. However,
the scaling of these algorithm with respect to the spectral gap is exponentially worse
compared to the existing quantum algorithms. Thus, to obtain a quantum speedup,
we must ensure that the spectral gap of the combinatorial Laplacian is not too large
such that these classical algorithms become efficient.

2.3 Structural risk minimization
When looking for the optimal family of classifiers for a given learning problem, it is
important to carefully select the family’s complexity (also known as expressivity or
capacity). For instance, in the case of linear classifiers, it is important to select what
kind of hyperplanes one allows the classifier to use. Generally, the more complex
the family is, the lower the training errors will be. However, if the family becomes
overly complex, then it becomes more prone to worse generalization performance
(i.e., due to overfitting). Structural risk minimization is a concrete method that
balances this trade-off in order to obtain the best possible performance on unseen
examples. Specifically, structural risk minimization aims to saturate well-established
upper bounds on the expected error of the classifier that consist of the sum of two
inversely related terms: a training error term, and a complexity term penalizing more
complex models.

In statistical learning theory it is generally assumed that the data is sampled
according to some underlying probability distribution P on X × {−1,+1}. The goal
is to find a classifier that minimizes the probability that a random pair sampled
according to P is misclassified. That is, the goal is to find a classifier cf,d(x) =
sign(f(x)− d) that minimize the expected error given by

erP (cf,d) = Pr
(x,y)∼P

(
cf,d(x) ̸= y

)
. (2.33)

27

As one generally only has access to training examples D =
{
(xi, yi)

}m
i=1

that are
sampled according to the distribution P , it is not possible to compute erP directly.
Nonetheless, one can try to approximate Equation (2.33) using training errors such
as

êrD(cf,d) =
1

m

∣∣∣
{
i : cf,d(xi) ̸= yi

}∣∣∣, (2.34)

êrγD(cf,d) =
1

m

∣∣∣
{
i : yi ·

(
f(xi)− d

)
< γ

}∣∣∣, γ ∈ R≥0. (2.35)

Intuitively, êrD in Equation (2.34) represents the frequency of misclassified training
examples, and êrγD in Equation (2.35) represents the frequency of training examples
that are either misclassified or are “within margin γ from being misclassified”. In
particular, for γ = 0 both training error estimates are identical (i.e., êrD = êr0D).
When selecting the optimal classifiers from a given model one typically searches for
the classifier that minimizes the training error (in practice more elaborate and smooth
loss functions are used), which is referred to as empirical risk minimization. The
problem that structural risk minimization aims to tackle is how to optimally select a
model such that one will have some guarantee that the training error will be close to
the expected error.

Structural risk minimization uses expected error bounds – two of which we will
discuss shortly – that involve a training error term, and a complexity term that
penalizes more complex models. This complexity term usually scales with a certain
measure of the complexity of the family of classifiers. A well known example of such
a complexity measure is the Vapnik-Chervonenkis dimension.

Definition 1 (VC dimension [194]). Let C be a family of functions on X taking values
in {−1,+1}. We say that a set of points X = {x1, . . . , xm} ⊂ X is shattered by C if
for all y ∈ {−1,+1}m, there exists a classifier cy ∈ C that satisfies cy(xi) = yi. The
VC dimension of C defined as

VC
(
C
)
= max

{
m | ∃{x1, . . . , xm} ⊂ X that is shattered by C

}
.

Besides the VC dimension we also consider a complexity measure called the fat-
shattering dimension, which can be viewed as a generalization of the VC dimension
to real-valued functions. An important difference between the VC dimension and
the fat-shattering dimension is that the latter also takes into account the so-called
margins that the family of classifiers can achieve. Here the margin of a classifier
cf,d(x) = sign

(
f(x) − d

)
on a set of examples {xi}mi=1 is given by mini |f(xi) − d|.

Throughout the literature, this is often referred to as the functional margin.

Definition 2 (Fat-shattering dimension [117]). Let F be a family of real-valued func-
tions on X . We say that a set of points X = {x1, . . . , xm} ⊂ X is γ-shattered by F
if there exists an s ∈ Rm such that for all y ∈ {−1,+1}m, there exists a function

28

fy ∈ F satisfying

fy(xi)

{
≤ si − γ if yi = −1,
≥ si + γ if yi = +1.

The fat-shattering dimension of F is a function fatF : R→ Z≥0 that maps

fatF (γ) = max
{
m
∣∣ ∃{x1, . . . , xm} ⊂ X that is γ-shattered by F

}
.

We will now state two expected error bounds that can be used to perform struc-
tural risk minimization. These error bounds theoretically quantify how an increase in
model complexity (i.e., VC dimension or fat-shattering dimension) results in a worse
expected error (i.e., due to overfitting). First, we state the expected error bound that
involves the VC dimension.

Theorem 1 (Expected error bound using VC dimension [201]). Consider a set of
functions C on X taking values in {−1,+1}. Suppose D =

{
(xi, yi)

}m
i=1

is sampled
using m independent draws from P . Then, with probability at least 1−δ, the following
holds for all c ∈ C:

erP (c) ≤ êrD(c) + 62

√
k

m
+ 3

√
log(2/δ)

2m
(2.36)

where k = VC
(
C
)
.

Next, we state the expected error bound that involves the fat-shattering dimen-
sion. One possible advantage of using the fat-shattering dimension instead of the VC
dimension is that it can take into account the margin that the classifier achieves on
the training examples. This turns out to be useful since this margin can be used to
more precisely fine-tune the expected error bound.

Theorem 2 (Expected error bound using fat-shattering dimension [28]). Consider a
set of real-valued functions F on X . Suppose D =

{
(xi, yi)

}m
i=1

is sampled using m
independent draws from P . Then, with probability at least 1 − δ, the following holds
for all c(x) = sign

(
f(x)− d

)
with f ∈ F and d ∈ R:

erP (c) ≤ êrγD(c) +

√
2

m

(
k log(34em/k) log2(578m) + log(4/δ)

)
. (2.37)

where k = fatF (γ/16).

Remark(s). If the classifier can correctly classify all examples in D, then the optimal
choice of γ in the above theorem is the margin achieved on the examples in D, i.e.,
γ = minxi∈D

∣∣f(xi)− d
∣∣.

Generally, the more complex a family of classifiers is, the larger its generalization
errors are. This correlation between a family’s complexity and its generalization errors
is theoretically quantified in Theorems 1 and 2. Specifically, the more complex the
family is the larger its VC dimension will be, which strictly increases the second

29

term in Equation 2.36 that corresponds to the generalization error. Note that for the
fat-shattering dimension in Theorem 2 this is not as obvious. In particular, a more
complex model could achieve a larger margin γ, which actually decreases the second
term in Equation 2.37 that corresponds to the generalization error.

Theorems 1 and 2 establish that in order to minimize the expected error, we should
aim to minimize either of the sums on the right-hand side of Equations (2.36) or (2.37)
(depending on which complexity measure one wishes to focus on). Note that in both
cases the first term corresponds to a training error and the second term corresponds to
a complexity term that penalizes more complex models. Crucially, the effect that the
complexity measure of the family of classifiers has on these terms is inversely related.
Namely, a large complexity measure generally gives rise to smaller training errors,
but at the cost of a larger complexity term. Balancing this trade-off is precisely the
idea behind structural risk minimization. More precisely, structural risk minimiza-
tion selects a classifier that minimizes either of the expected error bounds stated in
Theorem 1 or 2, by selecting the classifier from a family whose complexity measure is
fine-tuned in order to balance both terms on the right-hand side of Equations (2.36)
or (2.37). Note that limiting the VC dimension and fat-shattering dimension does not
achieve the same theoretical guarantees on the generalization error, and it will gener-
ally give rise to different performances in practice (as also discussed Section 4.2). An
overview of the trade-off in the error bounds stated in Theorems 1 and 2 is depicted
in Figure 2.6.

Figure 2.6: Illustration of structural risk minimization taken from [139]. Increasing
the complexity causes the training error (blue) to decrease, while it increases the
complexity term (green). Structural risk minimization selects the classifier minimizing
the expected error bound in Eqs. (2.36) and (2.37) given by the sum of the training
error and the complexity term (red).

30

2.4 Reinforcement learning
In this section, we introduce the basic ideas of reinforcement learning (for a more in-
depth treatment we refer to [182]). Intuitively, in reinforcement learning the problem
is to learn from interactions to achieve a goal. The way this is generally modelled is
through the agent-environment interaction setup depicted in Figure 2.4. In this setup,
the learner takes the role of the agent which continually interacts with the environment
by performing actions. After every action from the agent, the environment responds
by presenting the agent with a new state, and some numerical value called the reward
that the agent tries to maximize over time.

Figure 2.7: The agent-environment interaction setup (taken from [182]).

More precisely, the agent and the environment interact with each other for a
number of discrete time steps t = 0, 1, 2, At every time step t, the agent is
presented with a state St from the environment, at which point it has to select an
action At, after which the environment updates its state to a new state St+1 that it
sends to the agent together with some reward Rt+1 Note that the actions the agent
can choose from can depend on the current state of the environment. The way an
action At causes the environment to change St → St+1 (together with the associated
reward Rt+1) is often modelled using a Markov Decision Process (MDP). We choose
not to discuss the MDP-setup in detail here, and instead provide a more high-level
overview of reinforcement learning (see [182] for more details).

Generally, the way the agent chooses its actions based on the state of the envi-
ronment is modelled by what is called its policy π(. | .). The agent’s policy maps
the current state to a probability distribution over all possible actions, and the agent
simply samples from it to selects its next step. More precisely, we let π(a | s) denote
the probability that the agent selects action At = a given that the current state of
the environment is St = s.

A standard way of training a reinforcement learning agent is through policy iter-
ation, which consists of two consecutive steps: policy evaluation and policy improve-
ment. First, in the policy evaluation step, the agent uses a policy to interact with

31

the environment and collect rewards for a given number of steps. Afterwards, in the
policy improvement step, the agent updates its policy based on the interactions it
had gained in the policy evaluation step. There are many different ways to perform
the policy improvement step, e.g., in state of the art deep-learning methods one often
uses Q-learning. In short, in Q-learning the agent trains a model (e.g., a deep neural
network) that learns what the expected rewards are for a given action in a given
state, and uses this to selects its next action. For more details on Q-learning or other
policy improvement methods see [182]. Next, we focus on a different method called
the policy gradient method, which we will use throughout Chapter 5.

In the policy gradient method, the agent is equipped with a differential policy
πθ, where θ ∈ Rℓ denote the differential parameters. For instance, πθ could be
implemented using a neural network, in which case the θ correspond to the weights of
the neural network. In Chapter 5 we show how one can use parameterized quantum
circuits to encode a differential policy, and how these policies are able to outperform
classical policies. The main idea behind policy-gradient methods is to use a scalar
performance measure J(θ), and to update the parameters using a gradient-ascent step

θt+1 = θt + α∇̂J(θ), (2.38)

where ∇̂J(θ) denotes a (stochastic) estimate of the gradient of J with respect to θ. In
our case, our performance measure J(θ) will be the value function of the initial state
of the environment with respect to the current policy vπθ

(s0). The value function
vπ(s) denotes the expected discounted rewards obtained by an agent following policy
π when starting in state s. More precisely, we set J(θ) = vπθ

(s0) where s0 denotes
the initial state of the environment and

vπθ
(s) = Eπθ

[∞∑

k=1

γkRt+k+1 | St = s

]
, (2.39)

where γ ∈ [0, 1) is some discount factor chosen beforehand. What remains is to find a
way to obtain a (stochastic) estimate of the gradient of vπθ

(s0) in order to implement
the update step in Eq. (2.38). A priori, when computing the gradient of vπθ

(s0),
we see that it depends on the effect of the policy on the state distribution of the
environment. But, since we do not know what the effect of the policy is on the state
distribution of the environment, how are we able to compute the gradient of vπθ

(s0)?
Fortunately, there is a nice theoretical answer to this question in the form of the policy
gradient theorem, which provides an analytic expression for the gradient of vπθ

(s0)
that does not involve the derivative of the state distribution of the environment.

For our purposes, we will stick to the vanilla version of the policy-gradient algo-
rithm called REINFORCE [182], as used throughout Chapter 5. In this setting, the
policy-gradient theorem tells us that

∇vπθ
(s0) = Eπ

[
Gt
∇πθ(At | St)

πθ(At | St)

]
, (2.40)

where Gt = γRt+1 + γ2Rt+2 + . . . is called the return. The expression on the right

32

hand side of Eq. (2.40) is exactly what we need, a quantity that we can sample
(i.e., it does not require us to know the state distribution of the environment) whose
expectation value is equal to the gradient. In other words, we can use the right hand
side of Eq. (2.40) to obtain a (stochastic) estimate of ∇vπθ

(s0). In particular, we can
let the agent interact with the environment for a given number of steps T and collect
the interactions

{(s0, a0, r1), (s1, a1, r2), . . . , (sT , aT , rT+1)}.
Next, we loop over each step in the interactions t = 0, . . . , T , and at each step t we
compute Gt =

∑T
k=t+1 γ

k−t−1rt, and we update the parameters

θ = θ + αγtGt∇
∇πθ(at | at)
πθ(at | at)

. (2.41)

This is all summarized in Algorithm 1 in Figure 5.1.2.

2.5 Computational learning theory
Quantum machine learning (QML) [35, 26] is a bustling field with the potential to
deliver quantum enhancements for practically relevant problems. An important goal
of the community is to find practically relevant learning problems for which one can
prove that quantum learners have an exponential advantage over classical learners.
In Chapter 6 of this thesis, we study how to achieve such exponential separations
between classical and quantum learners for problems with classical data in the efficient
probably approximately correct (PAC) learning framework. But before we do so,
we will first introduce the required background and definitions from computational
learning theory together with some more computational complexity theory.

2.5.1 Learning separations in the PAC learning framework
As already mentioned, we use the standard terminology of the efficient probably ap-
proximately correct (PAC) learning framework, and we focus on the supervised learn-
ing setting (for an overview of the generative modelling setting see [185]). In this
framework a learning problem is defined by a concept class C = {Cn}n∈N, where each
Cn is a set of concepts, which are functions from some input space Xn (in this thesis
we assume Xn is either {0, 1}n or Rn) to some label set Yn (in this thesis we assume
Yn is {0, 1}, with the exception of Section 6.1.3 where it is {0, 1}n)7. As input the
learning algorithm has access to a procedure EX(c,Dn) (sometimes called an example
oracle) that runs in unit time, and on each call returns a labeled example (x, c(x)),
where x ∈ Xn is drawn according to target distributions D = {Dn}n∈N. Finally, the
learning algorithm has associated to it a hypothesis class H = {Hn}n∈N, and its goal
is to output a hypothesis h ∈ Hn – which is another function from Xn to Yn– that
is in some sense “close” to the concept c ∈ Cn generating the examples (we will make
this more precise shortly).

7Since our focus is on the computational complexity of the learner, we choose to explicitly highlight
the relevance of the instance size n in our notation.

33

In the statistical version of the PAC learning framework the learning algorithm
has to identify (and/or evaluate) a good hypothesis using O (poly(n)) many queries
to EX(c,Dn), and the computational complexity (i.e., “runtime”) of the learning
algorithm is not considered. In this thesis however, we focus on the efficient PAC
learning framework, where the learning algorithm must output such a good hypothesis
in time O (poly(n)) (note that this also implies that the learning algorithm can only
use O (poly(n)) many queries to EX(c,Dn)). Moreover, in this thesis, we study
exponential separations specifically with respect to the time complexity of the learning
algorithms.

The PAC learning framework formalizes supervised learning. For instance, in the
learning scenario where one wants to detect a specific object in an image, the concepts
are defined to attain the value 1 when the object is present and 0 otherwise. More-
over, the oracle represents the set of training examples that is available in supervised
learning. We formally define efficient PAC learnability as follows.

Definition 3 (Efficient PAC learnability). A concept class C = {Cn}n∈N is efficiently
PAC learnable under target distributions D = {Dn}n∈N if there exists a hypothesis
class H = {Hn}n∈N and a (randomized) learning algorithm A with the following
property: for every c ∈ Cn, and for all 0 < ϵ < 1/2 and 0 < δ < 1/2, if A is given
access to EX(c,Dn) and ϵ and δ, then with probability at least 1 − δ, A outputs a
specification8 of some h ∈ Hn that satisfies

Prx∼Dn

[
h(x) ̸= c(x)

]
≤ ϵ.

Moreover, the learning algorithm A must run in time O(poly(n, 1/ϵ, 1/δ)).

In the above definition, the probability 1− δ is over the random examples drawn
from EX(c,Dn) and over the internal randomness of A. If the learning algorithm
is a polynomial-time classical algorithm (or, a quantum algorithm), we say that the
concept class is classically learnable (or, quantumly learnable, respectively). An im-
portant thing to note in the above definition is that the learner itself consists of two
parts: a hypothesis class, and a learning algorithm. More precisely, the learner con-
sists of a family of functions that it will use to approximate the concepts (i.e., the
hypothesis class), and of a way to select which function from this family is the best
approximation for a given concept (i.e., the learning algorithm). This is generally not
very different from how supervised learning is done in practice. For example, in deep
learning the hypothesis class consists of all functions realizable by a deep neural net-
work with some given architecture, and the learning algorithm uses gradient descent
to find the best hypothesis (i.e., the best assignment of weights).

To solve a given learning problem according to Definition 3, one thus needs to
construct a learner, which consists of both a learning algorithms as well as a hypothesis
class. Specifically, one is thus able to specifically tailor the hypothesis class to the
learning problem that one is trying to solve. Another way to define a learning problem
and how to solve it, would be to constrain the learner to only output hypotheses from

8The hypotheses (and concepts) are specified according to some enumeration R : ∪n∈N{0, 1}n →
∪nHn (or, ∪nCn) and by a “specification of h ∈ Hn” we mean a string σ ∈ {0, 1}∗ such that R(σ) = h
(see [116] for more details).

34

a given hypothesis class (which would then be part of the specification of the learning
problem). In this thesis, our main focus is on investigating the limitations of all
possible classical learners for a given task. To do so, we primarily focus on setting
where constructing the right hypothesis class is also part of the learning problem. Our
goal is to demonstrate separations that establish the inability of classical learners,
regardless of the hypotheses they use, to efficiently solve a learning problem that can
be solved by a quantum learner. Nonetheless, in certain cases, it is more natural
to consider the setting where the learner is constrained to output hypotheses from a
given hypothesis class. We explore this setting, along with an instance of it which is
called proper PAC learning, in Sections 2.5.1 and 6.3.3.

When one is able to specifically tailor the hypothesis class to a given learning
problem (as is the case in Definition 3), it turns out to be necessary to limit the
computational power of the hypotheses. Constraining the learning algorithm to run
in polynomial-time turns out to be pointless if one allows arbitrary superpolynomial-
time hypotheses. More precisely, if we allow superpolynomial-time hypotheses, then
any concept class that can be learned by a superpolynomial-time learning algorithm,
can also be learned by a polynomial-time learning algorithm (see Appendix D.1.1
for more details). Intuitively, this is because by tailoring the hypothesis class one
can “offload” the learning algorithm onto the evaluation of the hypotheses, which
makes any constraints on the learning algorithm pointless. This is different when we
constrain the learner to only be able to output hypotheses from a given hypothesis
class, in which case it can be meaningful and natural to consider hypotheses with
superpolynomial runtimes (see also Sections 2.5.1 and 6.3.3). Additionally, because
we are studying separations between classical and quantum learners, we make the
distinction whether the hypotheses are efficiently evaluatable classically or quantumly.

Definition 4 (Efficiently evaluatable hypothesis class). A hypothesis class H =
{Hn}n∈N is classically (quantumly) efficiently evaluatable if there exists a classi-
cal (respectively quantum) polynomial-time evaluation algorithm Aeval that on input
x ∈ Xn and a specification of a hypothesis h ∈ Hn, outputs Aeval(x, h) = h(x).

For example, the hypotheses could be specified by a polynomial-sized Boolean
circuit, in which case they are classically efficiently evaluatable. On the other hand,
the hypotheses could also be specified by polynomial-depth quantum circuits, in which
case they are quantumly efficiently evaluatable. If the family of quantum circuits
that make up the hypothesis class is BQP-complete, then the hypothesis class will be
quantumly efficiently evaluatable, but not classically efficiently evaluatable (assuming
BPP ̸= BQP). In this thesis we will drop the “efficiently” and simply call a hypothesis
class classically- or quantumly evaluatable.

Given the definitions above one may assume that there is only one way to define a
learning separation in the PAC learning framework. However, it is in fact more subtle,
and there are various definitions that each have operationally different meanings. In
particular, one needs to differentiate whether the learning algorithm is classical or
quantum, and whether the hypothesis class is classically- or quantumly- evaluatable.
As a result, we define four categories of learning problems: concept classes that are
either classically- or quantumly- learnable (i.e., whether the learning algorithm is
classical or quantum), using a classically- or quantumly- evaluatable hypothesis class.

35

We denote these categories by CC,CQ,QC, and QQ, where the first letter signifies
whether the concept class is classically- or quantumly- learnable , and the second letter
signifies whether the learner uses a classically- or quantumly- evaluatable hypothesis
class. These distinctions are not about the nature of the data (i.e., we only consider
the setting where the examples are classical) as it often occurs in literature, and even
on the Wikipedia-page on quantum machine learning.

Definition 5 (Categories of learning problem).

• Let CC denote the set of tuples
(
C,D

)
such that C is classically learnable under

target distributions D with a classically evaluatable hypothesis class.

• Let CQ denote the set of tuples
(
C,D

)
such that C is classically learnable under

target distributions D with a quantumly evaluatable hypothesis class.

• Let QC denote the set of tuples
(
C,D

)
such that C is quantumly learnable under

target distributions D with a classically evaluatable hypothesis class.

• Let QQ denote the set of tuples
(
C,D

)
such that C is quantumly efficiently

learnable under target distributions D with a quantumly evaluatable hypothesis
class.

We remark that our definitions do not (yet) talk about the computational tractabil-
ity of the concepts, the importance of which we will discuss in Section 2.5.2 and
throughout Sections 6.1 and 6.2. We now proceed with a few observations. Firstly,
since any classical algorithm can be simulated by a quantum algorithm it is clear
that CC ⊆ CQ, CC ⊆ QC, CC ⊆ QQ, CQ ⊆ QQ, and QC ⊆ QQ. Secondly, we make
the non-trivial observation that if the hypothesis class can use a quantum evaluation
algorithm (i.e., it is quantumly evaluatable), then it does not matter whether we
constrain the learning algorithm to be a classical- or a quantum- algorithm. More
precisely, as a first result we show that any learning problem that is quantumly learn-
able using a quantumly evaluatable hypothesis class is also classically learnable using
another quantumly evaluatable hypothesis class. This observation is summarized in
the lemma below, and we defer the proof to Appendix D.1.2.

Lemma 3. CQ = QQ.

The above lemma is analogous to why we constrain the hypotheses to be efficiently
evaluatable, in the sense that by changing the hypothesis class one can “offload” the
quantum learning algorithm onto the evaluation of the quantum hypotheses. We
reiterate that it is critical that one can change the hypothesis class when mapping
a learning problem in QQ to CQ. If the learner is constrained to output hypotheses
from a fixed hypothesis class, then such a collapse does not happen.

Having studied the relations between the categories learning problems, we can now
specify what it means for a learning problem to exhibit a separation between classical
and quantum learners.

Definition 6 (Learning separation). A learning problem L =
(
C,D

)
is said to exhibit

a

36

https://en.wikipedia.org/wiki/Quantum_machine_learning

• CC/QC separation if L ∈ QC and L ̸∈ CC.

• CC/QQ separation if L ∈ QQ and L ̸∈ CC.

Firstly, note that due to the previously listed inclusions any CC/QC separation
is also a CC/QQ separation. Secondly, note that by fully relying on the classical
intractability of concepts one can construct trivial learning separations that are less
about “learning” in an intuitive sense. More precisely, consider the separation exhib-
ited by the concept class C = {Cn}n∈N, where each Cn consists of a single concept that
is classically hard to evaluate on a fraction of inputs even in the presence of data, yet
it can be efficiently evaluated by a quantum algorithm. This singleton concept class
is clearly quantumly learnable using a quantumly evaluatable hypothesis class. Also,
it is not classically learnable using any classically evaluatable hypothesis class, since
this would violate the classical intractability of the concepts. However, note that the
quantum learner requires no data to learn the concept class, so it is hard to argue
that this is a genuine learning problem. We will discuss how to construct examples
of such concept classes in Sections 6.1.1 and 6.1.2.

Observation 1 (Trivial learning separation without data). Consider a family of
concept classes C = {Cn}n∈N, where each Cn = {cn} consists of a single concept that
is classically hard to evaluate on a fraction of inputs when given access to examples,
yet it can be efficiently evaluated by a quantum algorithm. Then, C exhibits a CC/QQ
separation which is quantum learnable without requiring data.

We want to emphasize that some concept classes are efficiently evaluatable on a
classical computer, yet they are not classically learnable. One such example is the
class of polynomially-sized logarithmic-depth Boolean circuits [116]. Moreover, in
Section 6.1.3, we provide an example of concept class which (assuming a plausible
but relatively unexplored hardness assumption) exhibits a CC/QC separation where
the concepts are efficiently evaluatable on a classical computer.

Learning separations with a fixed hypothesis class and proper PAC learn-
ing

In some practical settings, it can be natural to constrain the learner to only output
hypotheses from a fixed hypothesis class. To give a physics-motivated example, when
studying phases of matter one might want to identify what observable properties
characterize a phase. One can formulate this problem as finding a specification of
the correct hypothesis selected from a hypothesis class consisting of possible order
parameters. More precisely, we fix the hypotheses to be of a particular form, e.g.,
those that compute certain expectation values of ground states given a specification
of a Hamiltonian9. We further discuss this setting of characterizing phases of matter
in Section 6.3.3, where we also discuss Hamiltonian learning as a natural setting in
which the learner is constrained to output hypotheses from a fixed hypothesis class.

9Note the computation of these hypotheses can be QMA-hard, as it involves preparing ground
states. Nonetheless, we can still study whether a learner is able to identify which of these hypotheses
matches the data.

37

Recall that in the standard PAC learning framework discussed in the previous
section, the learner is free to output arbitrary hypotheses (barring tractability con-
straints discussed in Appendix D.1.1). It therefore fails to capture the setting where
one aims to characterize phases of matter, as the learner might output hypotheses
that are not order parameters, which will not allow one to identify physical properties
that characterize a phase. To remedy this, one could consider the setting where the
learner is constrained to output hypotheses from a fixed hypothesis class.

Definition 7 (Efficient PAC learnability with fixed hypothesis class). A concept class
C = {Cn}n∈N is efficiently PAC learnable with a fixed hypothesis class H = {Hn}n∈N
under target distributions D = {Dn}n∈N if there exists a (randomized) learning algo-
rithms A with the following property: for every c ∈ Cn, and for all 0 < ϵ < 1/2 and
0 < δ < 1/2, if A is given access to EX(c,Dn) and ϵ and δ, then with probability at
least 1− δ, A outputs a specification of some h ∈ Hn that satisfies

Prx∼Dn

[
h(x) ̸= c(x)

]
≤ ϵ.

Moreover, the learning algorithm A must run in time O(poly(n, 1/ϵ, 1/δ)).

In the above definition, the probability 1 − δ is over the random examples from
EX(c,Dn) and over the internal randomization of An. If the learning algorithm is
a polynomial-time classical algorithm (or, a quantum algorithm), we say that the
concept class is classically learnable with fixed hypothesis class (or, quantumly learn-
able with fixed hypothesis class, respectively). An example of learning with a fixed
hypothesis class is that of proper PAC learning. In proper PAC learning the learner
is constrained to only output hypothesis from the concept class it is trying to learn.

We emphasize again that if the learner is constrained to output hypotheses from
a fixed hypothesis class, then it is allowed and reasonable for the hypothesis class to
be (classically- or quantumly-) intractable. In particular, doing so will not trivialize
the definitions as it did in the standard PAC learning framework (see Appendix D.1)
as this requires one to be able to change the hypotheses.

In the setting where the learner is constrained to output hypotheses from a fixed
hypothesis class, it is relatively clear how to define a learning separation. In particular,
one only has to distinguish whether the learning algorithm is an efficient classical- or
quantum- algorithm, which we capture by defining the following categories of learning
problems.

Definition 8 (Categories of learning problem – fixed hypothesis class H).

• Let CH denote the set of tuples
(
C,D

)
such that C is classically learnable with

fixed hypothesis class H under target distributions D.

• Let QH denote the set of tuples
(
C,D

)
such that C is quantumly learnable with

fixed hypothesis class H under target distributions D.

We can now specify what it means for a learning problem to exhibit a separation
between classical and quantum learners in the setting where the learner is constrained
to output hypotheses from a fixed hypothesis class.

38

Definition 9 (Learning separation – fixed hypothesis class H).
A learning problem L =

(
C,D

)
∈ QH is said to exhibit a CH/QH separation if L ̸∈ CH.

In Sections 6.1.3 and 6.1.4, we provide examples of learning separations in the
setting where the learner is constrained to output hypotheses from a fixed hypothesis
class. Moreover, in Section 6.3.3, we further discuss the practical relevance of this
setting by discussing how it captures certain physics-motivated examples of learning
settings.

Identification versus Evaluation

An important difference in what exactly entails a learning task in practice is whether
the learner has to only identify a hypothesis that is close to the concept generating
the examples, or whether the learner also has to evaluate the hypothesis on unseen
examples later on. Moreover, these differences in tasks have implications for the role
of quantum computers in achieving separations. This difference in tasks is reflected
in two aspects within the definitions discussed in this section.

Firstly, this difference in tasks is reflected in the difference between CC/QQ and
CC/QC separations. In particular, it is reflected in the task that requires a quantum
computer (i.e., what task needs to be classically intractable yet efficient on a quan-
tum computer). On the one hand, for a CC/QC separation, one has to show that
only a quantum algorithm can identify how to label unseen examples using a classi-
cal algorithm. On the other hand, for a CC/QQ separation, one also needs to show
that only a quantum algorithm can evaluate the labels of unseen examples. In Sec-
tion 6.1.3, we provide an example of a CC/QC separation (contingent on a plausible
though relatively unexplored hardness assumption), where the classical hardness lies
in identifying an hypothesis matching the examples, since the concepts are efficiently
evaluatable classically.

Secondly, the difference in tasks is also reflected in the difference between the set-
ting where the learner is allowed to output arbitrary hypothesis, or whether it can
only output hypotheses from a fixed hypothesis class. In the arbitrary hypothesis
class setting, one has to demand that the hypotheses are efficiently evaluatable (i.e.,
see Appendix D.1), which allows the learner to efficiently evaluate the hypotheses on
unseen examples. In the fixed hypothesis class setting, the hypotheses need not be
efficiently evaluatable, and the learner is only required to identify the correct hypoth-
esis without having to evaluate it on unseen examples. In Sections 6.1.3 and 6.1.4,
we provide examples of separation in the setting where the learner is constrained to
output hypotheses from a fixed hypothesis class. Note that the classical hardness in
these separation lies identifying the hypotheses, as we do not require the learner to
evaluate the hypothesis on unseen examples afterwards.

2.5.2 Complexity theory
In this section we provide a short overview of the areas of complexity theory that we
will refer to when discussing separations in the PAC learning framework. In particular,
we focus on the computational hardness assumptions that one can leverage to establish
a learning separation.

39

We turn our attention to the definition of the PAC learning framework (see Defi-
nition 3) and make some observations that will be relevant later. First, we note that
the hypothesis that the learning algorithm outputs is only required to be correct with
probability ϵ over the target distribution. In complexity theory, this is related to the
notion of heuristic complexity classes (for more details see [37]). To define heuristic
complexity classes, we first need to incorporate the target distribution as a part of
the problem, which is done by considering distributional problems.

Definition 10 (Distributional problem [37]). A distributional problem is a tuple
(L,D), where L ⊆ {0, 1}∗ is a language10 and D = {Dn}n∈N is a family of dis-
tributions such that supp(Dn) ⊆ {0, 1}n.

A distributional problem at its core remains a decision problem, wherein the in-
puts follow a specific distribution. It is important not to confuse this with a sampling
problem, in which the goal is to generate samples from a designated distribution. Hav-
ing defined distributional problems, we now define the relevant heuristic complexity
classes.

Definition 11 (Heuristic complexity [37]). A distributional problem (L,D) is in
HeurBPP if there exists a polynomial-time randomized classical algorithm A11 such
that for all n and ϵ > 012:

Prx∼Dn

[
Pr
(
A(x, 0⌊1/ϵ⌋) = L(x)

)
≥ 2

3

]
≥ 1− ϵ, (2.42)

where the inner probability is taken over the internal randomization of A.
Analogously, we say that a distributional problem (L,D) is in HeurBQP if there

exists a polynomial-time quantum algorithm A that satisfies the property in Eq. (2.42).

A related and perhaps better known area of complexity theory is that of average-
case complexity. The main difference between average-case complexity and heuristic
complexity, is that in the latter one is allowed to err, whereas in the former one
can never err but is allowed to output “don’t know”. Note that an average-case
algorithm can always be converted into a heuristic algorithm by simply outputting
a random result instead of outputting “don’t know”. Similarly, if there is a way to
efficiently check if a solution is correct, any heuristic algorithm can be turned into
an average-case algorithm by outputting “don’t know” when the solution is incorrect.
Even though they are closely related, in the PAC learning framework one deals with
heuristic complexity.

While heuristic-hardness statements are not as common in quantum computing
literature, many cryptographic security assumptions (such as that of RSA and Diffie-
Hellman) are in fact examples of heuristic-hardness statements. These heuristic-
hardness statements are generally derived from worst-case to average-case reductions,

10Throughout this thesis, we also use an equivalent definition of a language L ⊆ {0, 1}∗ by instead
calling it a problem and defining it as a function L : {0, 1}∗ → {0, 1} such that L(x) = 1 if and only
if x ∈ L.

11More precisely, a Turing machine.
12Here 0⌊1/ϵ⌋ denotes the bitstring consisting of ⌊1/ϵ⌋ zeroes (i.e., it is a unary specification of the

precision ϵ).

40

which show that being correct with a certain probability over a specific input distri-
bution is at least as difficult as being correct on all inputs. Problems that admit a
worst- to average-case reduction are called random self-reducible (for a formal defini-
tion see [79]). It is worth noting that despite the term “average-case”, these reductions
can also yield heuristic hardness statements. Specifically, if one can efficiently check
whether a solution is correct, then a worst-case to average-case reduction also results
in a heuristic hardness statement when the worst-case is hard. For instance, a worst-
case to average-case reduction by Blum and Micali [36] demonstrates that for the
discrete logarithm problem being correct on any 1

2 + 1
poly(n) fraction of inputs is as

difficult as being correct for all inputs (notably, modular exponentiation allows for
efficient checking of the correctness of a discrete logarithm solution).

Finally, there is the notion of the example oracle. The fact that access to the exam-
ple oracle radically enhances what can be efficiently evaluated is related (though not
completely analogous, as we will explain below) to the notion of “advice” complexity
classes such as P/poly.

Definition 12 (Polynomial advice [24]). A problem L : {0, 1}∗ → {0, 1} is in P/poly
if there exists a polynomial-time classical algorithm A with the following property: for
every n there exists an advice bitstring αn ∈ {0, 1}poly(n) such that for all x ∈ {0, 1}n:

A(x, αn) = L(x). (2.43)

Analogously, we say that a problem L is in BQP/poly if there exists a polynomial-
time quantum algorithm A with the following property: for every n there exists an
advice bitstring αn ∈ {0, 1}poly(n) such that for all x ∈ {0, 1}n:

Pr
(
A(x, αn) = L(x)

)
≥ 2

3
, (2.44)

where the probability is taken over the internal randomization of A.

Equivalently, P/poly can also be defined as the class of problems that can be
solved by a non-uniform family of polynomial-size Boolean circuits. Specifically, for
each instance size, a polynomially-sized circuit that solves the problem exists, though
there does not need to be a polynomial-time algorithm that constructs these circuits
from the instance size. Since in the PAC learning framework we deal with randomized
learning algorithms one may want to consider BPP/poly instead, however by [15] we
have that BPP ⊆ P/poly, and so BPP/poly = P/poly. On the other hand, from the
perspective of the PAC learning framework, it is both natural and essential to allow
the algorithm that uses the advice to err on a fraction of inputs, which is captured
by the complexity class HeurP/poly.

Definition 13 (Heuristic complexity with polynomial advice). A distributional prob-
lem (L,D) is in HeurP/poly if there exists a polynomial-time classical algorithm A
with the following property: for every n and ϵ > 0 there exists an advice string
αn,ϵ ∈ {0, 1}poly(n,1/ϵ) such that:

Prx∼Dn

[
A(x, 0⌊1/ϵ⌋, αn,ϵ) = L(x)

]
≥ 1− ϵ. (2.45)

41

Analogously, we say that (L,D) is in HeurBQP/poly if there exists a polynomial-
time quantum algorithm A such that: for every n and ϵ > 0 there exists an advice
string αn,ϵ ∈ {0, 1}poly(n,1/ϵ) with the following property:

Prx∼Dn

[
Pr
(
A(x, 0⌊1/ϵ⌋, αn,ϵ) = L(x)

)
≥ 2

3

]
≥ 1− ϵ, (2.46)

where the inner probability is taken over the internal randomization of A.

Note that in the PAC learning framework, the advice that the learning algorithm
gets is of a specific form, namely that obtained through queries to the example oracle.
This is more closely related to the notion of “sampling advice” complexity classes such
as BPP/samp [109] defined below. In [109] it is shown that BPP/samp ⊆ P/poly, i.e.,
sampling advice is not more powerful than the standard notion of advice.

Definition 14 (Sampling advice [109]). A problem L : {0, 1}∗ → {0, 1} is in BPP/samp
if there exists polynomial-time classical randomized algorithms S and A such that for
every n:

• S generates random instances x ∈ {0, 1}n sampled from the distribution Dn.

• A receives as input T = {(xi, L(xi)) | xi ∼ Dn}poly(n)i=1 and satisfies for all
x ∈ {0, 1}n:

Pr
(
A(x, T) = L(x)

)
≥ 2

3
, (2.47)

where the probability is taken over the internal randomization of A and T .

Having related notions in the PAC learning framework to different areas of com-
plexity theory, we are now ready to determine what computational hardness assump-
tions one can leverage to establish that no classical learner is able to learn a given
concept class. More specifically, how hard must evaluating the concepts be for the con-
cept class to not be classically learnable? Since the learning algorithm is a randomized
algorithm that heuristically computes the concepts when provided with advice in the
form of samples from the example oracle, the existence of a polynomial-time learning
algorithm puts the concepts in a complexity class that we call HeurBPP/samp.

Definition 15. A distributional problem (L,D) is in HeurBPP/samp if there exists
classical randomized algorithms S and A such that for every n:

• S generates random instances x ∈ {0, 1}n sampled from the distribution Dn.

• A receives as input T = {(xi, L(xi)) | xi ∼ Dn}poly(n)i=1 and for every ϵ > 0
satisfies:

Prx∼Dn

[
Pr
(
A(x, 0⌊1/ϵ⌋, T) = L(x)

)
≥ 2

3

]
≥ 1− ϵ, (2.48)

where the inner probability is taken over the internal randomization of A and
T .

42

More precisely, if the concepts lie outside of HeurBPP/samp, then the concept
class is not classically learnable. We can connect the class HeurBPP/samp to other
complexity classes by adopting a proof strategy similar to that of [109] (we defer the
proof to Appendix D.1.3).

Lemma 4. HeurBPP/samp ⊆ HeurP/poly.

By the above lemma, we find that any problem not in HeurP/poly is also not in
HeurBPP/samp. Consequently, to show the non-learnability of a concept class, it is
sufficient to show that the concept class includes concepts that are not in HeurP/poly.

Having discussed the related notions from computational learning theory and com-
plexity theory, we are set to investigate how one establishes learning separations.
First, in Section 6.1, we will analyze how existing learning separations have used effi-
cient data generation, and we generalize this construction to (i) establish a learning
separation (contingent on a plausible though relatively unexplored hardness assump-
tion) with efficiently evaluatable concepts, and (ii) establish a learning separation
in the setting where the learner is constrained to output an hypothesis from a fixed
hypothesis class. Afterwards, in Section 6.2, we discuss the additional constructions
required to prove separations in tune with the folklore that quantum machine learning
is most likely to have it advantages when the data generated by a “genuine quantum
process”. For an overview of the learning separations discussed throughout this thesis
see Table 2.1.

First proposed Concepts based on Separation Complexity concepts
[126] Discrete logarithm CC/QQ ̸∈ BPP
[173] Discrete cube root CC/QC ∈ (P/poly) \ BPP

Section 6.1.3 Modular exponentiation CC/QC ∈ P
Section 6.1.4 Discrete cube root CH/QH ∈ P
Section 6.2.1 Quantum process CC/QQ ̸∈ HeurP/poly but ∈ BQP

Table 2.1: The learning separations discussed in Sections 6.1 and 6.2.

43

