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Chapter 1

Introduction

In this chapter, we provide an introduction to the topics discussed in this thesis.
We start by discussing the problem statement and research questions covered by this
thesis, which can be found in Section 1.1. Afterwards, in Section 1.2, we give a
detailed overview of the contributions of this thesis.

1.1 Problem statement and research questions
Quantum machine learning (QML) is a rapidly growing field that has brought forth
numerous proposals regarding ways for quantum computers to help analyze data.
Several of these proposals involve using quantum algorithms for linear algebra – most
notably Harrow, Hassidim and Lloyd’s matrix inversion algorithm [100] – to expo-
nentially speed up tasks in machine learning. Other proposals involve using param-
eterized quantum circuits [102, 167, 31] to identify novel quantum learning models
that are better suited to the limitations of near-term quantum computing, rather fo-
cussing on improving established classical methods. These QML proposals have all
been hailed as possible examples of quantum computing’s “killer application”: gen-
uinely and broadly useful quantum algorithms that (superpolynomially) outperform
their best known classical counterparts. In this thesis, we study several of these QML
proposals and we investigate whether and how they are able to provide (superpoly-
nomial) speedups over their classical counterparts, and how to get the best possible
performance out of these proposals. Specifically, the problem statement of this thesis
is:

Problem statement. Can we provide evidence that various QML proposals can
(superpolynomially) outperform their classical counterparts, and what methods can
we devise to attain their best possible performance?

The first QML proposal we study concerns quantum algorithms for topological
data analysis, as first introduced by Lloyd, Garnerone and Zanardi [130]. Specifically,
in Chapter 3, we study the potential for quantum algorithms to achieve superpolyno-
mial speedups for linear-algebraic problems in topological data analysis. An important
linear-algebraic problem that arises in topological data analysis is that of computing

1



so-called Betti numbers, which can be formulated as computing the dimension of the
kernel of a set of matrices whose entries encode the connectivity of cliques (i.e., com-
plete subgraphs) in a given graph. While Lloyd, Garnerone and Zanardi developed a
quantum algorithm that in certain regimes is able to solve this problem superpoly-
nomially faster than the best-known classical algorithm [130], it is unclear whether
this speedup will persist with the development of new classical algorithms. In par-
ticular, for several other linear-algebraic QML proposals the previously speculated
superpolynomial speedups were revealed to actually be at most polynomial speedups,
as exponentially faster classical algorithms were devised that operate under analogous
assumptions [186, 60] (an event called “dequantizations”). While polynomial speedups
have appeal on paper, an analysis involving near-term device properties revealed that
low-degree polynomial improvements are not expected to translate to real-world ad-
vantages due to various overheads [27]. Thus, finding superpolynomial speedups is
of great importance, especially in the early days of practical quantum computing.
Therefore, we examine the linear-algebraic QML algorithms for Betti numbers and
study whether speculated superpolynomial quantum speedups will not be lost due to
development of better classical algorithms.

Research question 1. Can the linear-algebraic QML algorithms for Betti numbers
maintain their speculated superpolynomial quantum speedups, even with the develop-
ment of better classical algorithms?

Next, we turn our focus to QML proposals that involve the use of parameterized
quantum circuits [102, 167, 31] to build genuinely new quantum machine learning
models. Specifically, in Chapter 4, we study how to optimally tune a family of these
new quantum machine learning models based on the principles of structural risk min-
imization. In the context of structural risk minimization, it is crucial to identify the
tunable aspects a model, i.e., hyperparameters, that impact both its performance
on training data and its generalization performance. An important part of this in-
vestigation involves characterizing complexity measures, such as the VC-dimension
or fat-shattering dimension, associated with these models and understanding how
hyperparameters influence these complexity measures. Consequently, we focus on
characterizing complexity measures of novel quantum learning models based in pa-
rameterized quantum circuits. In particular, we aim to identify the hyperparameters
that exert influence over these complexity measures, a critical step in effectively im-
plementing structural risk minimization.

Research question 2. Can we identify hyperparameters within novel quantum learn-
ing models based on parameterized quantum circuits that impact both complexity mea-
sures and performance on training data, as is crucial for the successful implementation
of structural risk minimization?

Afterwards, in Chapter 5, we study how these new quantum machine learning mod-
els based on parameterized quantum circuits [102, 167, 31] can be used in the field of
reinforcement learning. Reinforcement learning is a flavour of learning where one has
to learn through interacting with an environment and adjusting its behaviour based on
rewards obtained (i.e., there is no large amount of labeled data available). Arguably,
the largest impact quantum computing can have is by providing enhancements to the
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hardest learning problems. From this perspective, reinforcement learning stands out
as a field that can greatly benefit from a powerful hypothesis family. Nonetheless, the
true potential of near-term quantum approaches in reinforcement learning remains
very little explored. The few existing works [58, 131, 202, 110] have failed so far at
solving classical benchmarking tasks using PQCs and left open the question of their
ability to provide a learning advantage. Consequently, we focus on designing quantum
machine learning models based on parameterized quantum circuits that are on par
with the best classical models in standard benchmarking tasks, but also outperform
all classical models in certain other tasks.

Research question 3. How can new quantum machine learning models based on pa-
rameterized quantum circuits be effectively leveraged within the realm of reinforcement
learning? Specifically, can these quantum approaches demonstrate the potential to be
on par with classical models in standard benchmarking tasks and outperform them in
novel specific scenarios?

Finally, in Chapter 6, we tackle the challenge of identifying learning problems that
exhibit provable exponential speedup for quantum learning algorithms compared to
classical learning algorithms. The first thing we address is that there is no single
definition of what precisely constitutes a learning separation. In particular, when
trying to come up with a definition there are many choices to be made, and various
choices make sense depending on the particular settings. This ambiguity can lead to
conflating the task of learning in an intuitive sense with a purely computational task.
Moreover, we study existing learning separations [126, 173] and carefully delineate
where the classical hardness of learning lies and the types of learning separations
they achieve. Next, we set out to find new examples of learning separations where the
classical hardness lies more in learning in an intuitive sense rather than evaluating the
functions to be learned. Finally, we turn our attention to the folklore in the community
that states that quantum machine learning is most likely to have advantages when
the data is quantum-generated. However, it is not immediately clear how quantum-
generated data can give rise to learning separations. We address this question by
exploring the additional complexity-theoretic assumptions required to build such a
learning separation.

Research question 4. How can we identify learning problems that exhibit a prov-
able exponential speedup for quantum learning algorithms compared to their classical
counterparts, and can we confirm the validity of the folklore that quantum machine
learning excels when handling quantum-generated data?

1.2 List of contributions
• Chapter 3: We show that the linear-algebraic methods underlying the algo-

rithm of Lloyd et al. are “safe” against general dequantization approaches of the
type introduced in [186, 60], and that the corresponding computational problem
(i.e., a generalization of Betti numbers) is classically intractable under widely-
believed assumptions. Specifically, we show that a natural generalization of the
Betti number problem is hard for the complexity class DQC1 (see Section 3.2).
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Since the hard problems in DQC1 are widely-believed to require superpolyno-
mial time on a classical computer, this ensures that our generalization also
most likely requires superpolynomial time on a classical computer. This further
establishes the potential of these methods to be a source of useful quantum al-
gorithms with superpolynomial speedups over classical methods. We concretely
demonstrate the potential of these methods by connecting them to practical
problems in machine learning and complex network analysis (see Section 3.3).
Finally, we provide examples of instances that satisfy the requirements for the
quantum algorithm to be efficient, while making sure the best-known classical
algorithms are not efficient (see Section 3.2.4).

• Chapter 4: By exploiting a connection between the new quantum learning
models and certain established classical learning models (i.e., linear-classifiers)
we characterize some complexity measures of the new quantum learning models
(i.e., their VC- and fat-shattering dimension). Since these complexity measures
characterize the generalization performance of the machine learning model, our
results give rise to ways to fine-tune your model such that you perform well on
training data, while ensuring that the generalization performance remains good
enough (i.e., the principle of structural risk minimization).

• Chapter 5: We exhibit how to use quantum machine learning models based
on parameterized quantum circuits to solve problems in reinforcement learning
using the policy-gradient algorithm. Next, we build reinforcement learning set-
tings where we (i) can prove that the quantum learning model performs much
better than any classical learner, and (ii) can provide numerical evidence that
the quantum learning model performs much better than any deep neural net-
work based learner (i.e., the current classical state of the art).

• Chapter 6: We delve into the nuances of computational learning theory and
highlight how subtle variations in definitions lead to distinct requirements and
tasks for learners. Next, we examine existing learning problems demonstrating
provable quantum speedups [126, 173] and observe their reliance on the classical
complexity of evaluating the data-generating function rather than its identifica-
tion. To address this limitation, we present two novel learning scenarios where
the primary classical challenge lies in identifying the underlying function gen-
erating the data. Additionally, we explore computational hardness assumptions
that can be utilized to establish quantum speedups in situations where the data
is quantum-generated. This implies quantum advantages in various natural set-
tings such as condensed matter and high-energy physics.
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