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Chapter 1

Introduction

In this chapter, we provide an introduction to the topics discussed in this thesis.
We start by discussing the problem statement and research questions covered by this
thesis, which can be found in Section 1.1. Afterwards, in Section 1.2, we give a
detailed overview of the contributions of this thesis.

1.1 Problem statement and research questions
Quantum machine learning (QML) is a rapidly growing field that has brought forth
numerous proposals regarding ways for quantum computers to help analyze data.
Several of these proposals involve using quantum algorithms for linear algebra – most
notably Harrow, Hassidim and Lloyd’s matrix inversion algorithm [100] – to expo-
nentially speed up tasks in machine learning. Other proposals involve using param-
eterized quantum circuits [102, 167, 31] to identify novel quantum learning models
that are better suited to the limitations of near-term quantum computing, rather fo-
cussing on improving established classical methods. These QML proposals have all
been hailed as possible examples of quantum computing’s “killer application”: gen-
uinely and broadly useful quantum algorithms that (superpolynomially) outperform
their best known classical counterparts. In this thesis, we study several of these QML
proposals and we investigate whether and how they are able to provide (superpoly-
nomial) speedups over their classical counterparts, and how to get the best possible
performance out of these proposals. Specifically, the problem statement of this thesis
is:

Problem statement. Can we provide evidence that various QML proposals can
(superpolynomially) outperform their classical counterparts, and what methods can
we devise to attain their best possible performance?

The first QML proposal we study concerns quantum algorithms for topological
data analysis, as first introduced by Lloyd, Garnerone and Zanardi [130]. Specifically,
in Chapter 3, we study the potential for quantum algorithms to achieve superpolyno-
mial speedups for linear-algebraic problems in topological data analysis. An important
linear-algebraic problem that arises in topological data analysis is that of computing
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so-called Betti numbers, which can be formulated as computing the dimension of the
kernel of a set of matrices whose entries encode the connectivity of cliques (i.e., com-
plete subgraphs) in a given graph. While Lloyd, Garnerone and Zanardi developed a
quantum algorithm that in certain regimes is able to solve this problem superpoly-
nomially faster than the best-known classical algorithm [130], it is unclear whether
this speedup will persist with the development of new classical algorithms. In par-
ticular, for several other linear-algebraic QML proposals the previously speculated
superpolynomial speedups were revealed to actually be at most polynomial speedups,
as exponentially faster classical algorithms were devised that operate under analogous
assumptions [186, 60] (an event called “dequantizations”). While polynomial speedups
have appeal on paper, an analysis involving near-term device properties revealed that
low-degree polynomial improvements are not expected to translate to real-world ad-
vantages due to various overheads [27]. Thus, finding superpolynomial speedups is
of great importance, especially in the early days of practical quantum computing.
Therefore, we examine the linear-algebraic QML algorithms for Betti numbers and
study whether speculated superpolynomial quantum speedups will not be lost due to
development of better classical algorithms.

Research question 1. Can the linear-algebraic QML algorithms for Betti numbers
maintain their speculated superpolynomial quantum speedups, even with the develop-
ment of better classical algorithms?

Next, we turn our focus to QML proposals that involve the use of parameterized
quantum circuits [102, 167, 31] to build genuinely new quantum machine learning
models. Specifically, in Chapter 4, we study how to optimally tune a family of these
new quantum machine learning models based on the principles of structural risk min-
imization. In the context of structural risk minimization, it is crucial to identify the
tunable aspects a model, i.e., hyperparameters, that impact both its performance
on training data and its generalization performance. An important part of this in-
vestigation involves characterizing complexity measures, such as the VC-dimension
or fat-shattering dimension, associated with these models and understanding how
hyperparameters influence these complexity measures. Consequently, we focus on
characterizing complexity measures of novel quantum learning models based in pa-
rameterized quantum circuits. In particular, we aim to identify the hyperparameters
that exert influence over these complexity measures, a critical step in effectively im-
plementing structural risk minimization.

Research question 2. Can we identify hyperparameters within novel quantum learn-
ing models based on parameterized quantum circuits that impact both complexity mea-
sures and performance on training data, as is crucial for the successful implementation
of structural risk minimization?

Afterwards, in Chapter 5, we study how these new quantum machine learning mod-
els based on parameterized quantum circuits [102, 167, 31] can be used in the field of
reinforcement learning. Reinforcement learning is a flavour of learning where one has
to learn through interacting with an environment and adjusting its behaviour based on
rewards obtained (i.e., there is no large amount of labeled data available). Arguably,
the largest impact quantum computing can have is by providing enhancements to the
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hardest learning problems. From this perspective, reinforcement learning stands out
as a field that can greatly benefit from a powerful hypothesis family. Nonetheless, the
true potential of near-term quantum approaches in reinforcement learning remains
very little explored. The few existing works [58, 131, 202, 110] have failed so far at
solving classical benchmarking tasks using PQCs and left open the question of their
ability to provide a learning advantage. Consequently, we focus on designing quantum
machine learning models based on parameterized quantum circuits that are on par
with the best classical models in standard benchmarking tasks, but also outperform
all classical models in certain other tasks.

Research question 3. How can new quantum machine learning models based on pa-
rameterized quantum circuits be effectively leveraged within the realm of reinforcement
learning? Specifically, can these quantum approaches demonstrate the potential to be
on par with classical models in standard benchmarking tasks and outperform them in
novel specific scenarios?

Finally, in Chapter 6, we tackle the challenge of identifying learning problems that
exhibit provable exponential speedup for quantum learning algorithms compared to
classical learning algorithms. The first thing we address is that there is no single
definition of what precisely constitutes a learning separation. In particular, when
trying to come up with a definition there are many choices to be made, and various
choices make sense depending on the particular settings. This ambiguity can lead to
conflating the task of learning in an intuitive sense with a purely computational task.
Moreover, we study existing learning separations [126, 173] and carefully delineate
where the classical hardness of learning lies and the types of learning separations
they achieve. Next, we set out to find new examples of learning separations where the
classical hardness lies more in learning in an intuitive sense rather than evaluating the
functions to be learned. Finally, we turn our attention to the folklore in the community
that states that quantum machine learning is most likely to have advantages when
the data is quantum-generated. However, it is not immediately clear how quantum-
generated data can give rise to learning separations. We address this question by
exploring the additional complexity-theoretic assumptions required to build such a
learning separation.

Research question 4. How can we identify learning problems that exhibit a prov-
able exponential speedup for quantum learning algorithms compared to their classical
counterparts, and can we confirm the validity of the folklore that quantum machine
learning excels when handling quantum-generated data?

1.2 List of contributions
• Chapter 3: We show that the linear-algebraic methods underlying the algo-

rithm of Lloyd et al. are “safe” against general dequantization approaches of the
type introduced in [186, 60], and that the corresponding computational problem
(i.e., a generalization of Betti numbers) is classically intractable under widely-
believed assumptions. Specifically, we show that a natural generalization of the
Betti number problem is hard for the complexity class DQC1 (see Section 3.2).
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Since the hard problems in DQC1 are widely-believed to require superpolyno-
mial time on a classical computer, this ensures that our generalization also
most likely requires superpolynomial time on a classical computer. This further
establishes the potential of these methods to be a source of useful quantum al-
gorithms with superpolynomial speedups over classical methods. We concretely
demonstrate the potential of these methods by connecting them to practical
problems in machine learning and complex network analysis (see Section 3.3).
Finally, we provide examples of instances that satisfy the requirements for the
quantum algorithm to be efficient, while making sure the best-known classical
algorithms are not efficient (see Section 3.2.4).

• Chapter 4: By exploiting a connection between the new quantum learning
models and certain established classical learning models (i.e., linear-classifiers)
we characterize some complexity measures of the new quantum learning models
(i.e., their VC- and fat-shattering dimension). Since these complexity measures
characterize the generalization performance of the machine learning model, our
results give rise to ways to fine-tune your model such that you perform well on
training data, while ensuring that the generalization performance remains good
enough (i.e., the principle of structural risk minimization).

• Chapter 5: We exhibit how to use quantum machine learning models based
on parameterized quantum circuits to solve problems in reinforcement learning
using the policy-gradient algorithm. Next, we build reinforcement learning set-
tings where we (i) can prove that the quantum learning model performs much
better than any classical learner, and (ii) can provide numerical evidence that
the quantum learning model performs much better than any deep neural net-
work based learner (i.e., the current classical state of the art).

• Chapter 6: We delve into the nuances of computational learning theory and
highlight how subtle variations in definitions lead to distinct requirements and
tasks for learners. Next, we examine existing learning problems demonstrating
provable quantum speedups [126, 173] and observe their reliance on the classical
complexity of evaluating the data-generating function rather than its identifica-
tion. To address this limitation, we present two novel learning scenarios where
the primary classical challenge lies in identifying the underlying function gen-
erating the data. Additionally, we explore computational hardness assumptions
that can be utilized to establish quantum speedups in situations where the data
is quantum-generated. This implies quantum advantages in various natural set-
tings such as condensed matter and high-energy physics.
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Chapter 2

Background and definitions

In this chapter, we introduce the required background and definitions that will be
used throughout this thesis. We begin with an explanation of the basics of quantum
computing in Section 2.1. Following that, we delve into the basics of topological data
analysis in Section 2.2, which will serve as the underpinning for Chapter 3. Next, Sec-
tion 2.3 provides an in-depth look into structural risk minimization, a topic discussed
in Chapter 4. Subsequently, in Section 2.4, we introduce the field of reinforcement
learning, which will be central to our discussions in Chapter 5. Finally, in Section 2.5,
we explore the basics of computational learning theory, which we further study in
Chapter 6.

2.1 Quantum computing
In this section we will go over the basics of quantum computing. We will not cover all
aspects of quantum computing, for more details we refer to [145, 69]. We will assume
a basic understanding of linear algebra (for the required linear algebra see Appendix
A of [69]). First, we will introduce the fundamental way quantum mechanics can be
used to store, manipulate, and extract information. Next, in Section 2.1.1, we will
discuss how these fundamental building blocks can be brought together to become
quantum algorithms and we discuss two examples (i.e., quantum phase estimation and
Hamiltonian simulation). Afterwards, in Section 2.1.2, we will give an introduction
to complexity theory, and how quantum computing fits in that field. Finally, in
Section 2.1.3, we will discuss how quantum computing can be used to evaluate certain
families of linear classifiers (i.e., families of functions used in machine learning that
separate classes of data by drawing hyperplanes between them).

From bits to qubits

In classical computing, the basic units of information are bits (i.e., {0, 1}). On the
other hand, in quantum computing the basic units of information are qubits, which
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are described by unit vectors |ψ⟩ ∈ C2, i.e.,

|ψ⟩ = α0 |0⟩+ α1 |1⟩ , (2.1)

where |α0|2 + |α1|2 = 1, |0⟩ = [1, 0]T , and |1⟩ = [0, 1]T . The normalization constraint
turns out to be important later on when we discuss how to extract classical information
from qubits through measurements. Analogous to the classical case, we typically
gather n qubits into a single register. Following the postulates of quantum mechanics,
an n-qubit register is described by a unit vector |ψ⟩ ∈

(
C2
)⊗n ≃ C2n , i.e.,

|ψ⟩ =
2n−1∑

i=0

αi |i⟩ , (2.2)

where
∑2n−1

i=0 |αi|2 = 1, and |i⟩ denotes the ith canonical basis vector (with zeroes
everywhere except the ith entry). More generally, if an n1-qubit register is in a state
|ψ⟩ ∈ C2n1 , and another n2-qubit register is in a state |ϕ⟩ ∈ C2n2 , then their joint
register is in the state |γ⟩ given by

|γ⟩ = |ψ⟩ ⊗ |ϕ⟩ ∈ C2n1 ⊗ C2n2
, (2.3)

which is often referred to as the composition postulate.

From classical to quantum circuits

In classical computing, when performing computations the units of information (i.e.,
bits) are typically manipulated using Boolean circuits1 that are build up from a ba-
sic set of logical gates. In fact, for any function manipulating bitstrings (i.e., so-
called Boolean functions) one can build a Boolean circuit using just the logic gate
set {AND, OR, NOT} that implements the given Boolean function. In the quantum set-
ting, Boolean functions are replaced by unitary transformations, Boolean circuits are
replaced by quantum circuits, and logic gates are replaced by quantum gates. Specif-
ically, instead of the logic gate set {AND, OR, NOT} one typically consider the quantum
gate set {X,S, T,H,CNOT}2, which that are linear transformations described by the

1or Turing machines, but since they are in some sense equivalent to Boolean circuits, we will stick
to the latter since it they are easier to translate to the quantum setting.

2There exists many different sets of quantum gates that are universal (two quantum gates can
even be enough), though for our purposes we simply fix this to be our quantum gate set. Moreover,
this set is “overcomplete” in the sense that the subset {CNOT, H, S, T} is already universal, but we
choose to introduce the X-gate anyways for future purposes.
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matrices:

X =

(
0 1
1 0

)
, (2.4)

S =

(
1 0
0 i

)
, (2.5)

T =

(
1 0
0 eiπ/4

)
, (2.6)

H =
1√
2

(
1 −1
−1 1

)
, (2.7)

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (2.8)

Note that CNOT is a 2-qubit quantum gate, whereas the other quantum gates X, Y ,
Z and H act on a single qubit. Sometimes the quantum gate can have a dependence
on some parameter θ ∈ R, in which case they are refered to as paramaterized quantum
gates. For instance, one could consider the parameterized X-gate, which is described
by the matrix

X(θ) =

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
(2.9)

These quantum gates can be concatenated to build a quantum circuit. Here a quantum
circuit is a collection of wires (each representing a qubit) and quantum gates (to be
applied to the qubits) that one reads from left to right. If one of the quantum gates
has a free parameter, then the resulting circuit is often called a parameterized quantum
circuit. The single qubit gates are typically represented by boxes containing the letter
corresponding to the gate respective gate, whereas the CNOT has a different notation.
Specifically, the X-gate (and any other single qubit gate) is represented by

X

and the CNOT gate is represented by

•

Having fixed our notation for individual quantum gates, we can construct larger quan-
tum circuit that specify how to manipulate an n-qubit register by concatenating indi-
vidual quantum gates. For example, consider the 2-qubit quantum circuit in Figure 2.1
below.

We see that the circuit in Figure 2.1 first applies an H-gate to the first qubit, and
afterwards we apply a CNOT to the output state. More precisely, the circuit in
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H •

Figure 2.1: An example of a quantum circuit

Figure 2.1 corresponds to the unitary transformation

|ψ⟩ 7→ U |ψ⟩ ,

where U is given by
U = CNOT · (H ⊗ I).

Another important quantum circuit is that of the quantum Fourier transform. For
the quantum Fourier transform the goal is to construct an n-qubit quantum circuit
Un that implements the unitary transformation

|j⟩ 7→
2n−1∑

k=0

e2πijk/2
n |k⟩ . (2.10)

By exploiting a clever rewriting of Eq. (2.10), it turns out that for any given n ∈ N
we can construct a quantum circuit Un consisting of O(poly(n)) quantum gates that
implements the map in Eq. (2.10). The quantum Fourier transform is a pivotal build-
ing block for many important quantum algorithms (such as quantum phase estima-
tion discussed in Section 2.1.1). For more details on the quantum Fourier transform
see [69, 145].

Measurements

Having discussed what the basic units of information are in quantum computing, and
how to manipulate them, all that remains is how to extract classical information after-
wards (i.e., extracting the output) through measurements. There are many different
ways in which one can measure qubits to extract classical information, but we will
focus on only two forms of measurements. First, we discuss what happens when we
measure in the computational basis. Suppose we are given some n-qubit quantum
state |ψ⟩ =∑2n−1

i=0 αi |i⟩, then if we measure this state in the computational basis, we
obtain the outcome i with probability |αi|2. Next, we discuss what happens when one
measures an observable, which is strictly more general than measuring in the compu-
tational basis. An n-qubit observable is an operator O ∈ C2n×2n such that O† = O
(i.e., it is Hermitian). The possible outcomes when measuring O are its eigenvalues
{λj}2

n−1
j=0 . When we measure the observable O on an n-qubit state |ψ⟩ we obtain

outcome λj with probability

| ⟨ϕj | ψ⟩ |2, (2.11)
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where |ϕj⟩ denotes an eigenvector of O with eigenvalue λj , and ⟨v| := |v⟩†. Also, the
expectation value of O on an n-qubit state |ψ⟩ is given by

⟨ψ|O |ψ⟩ . (2.12)

Mixed states

Previously we have restricted ourselves to pure states (i.e., unit vectors), where we
are certain about the state our qubit register is in. However, there can sometimes be
uncertainty regarding the state of a qubit register in a classical sense. For example,
one could have a register that is in some state |ϕ⟩ with probability p, and it is in
some other state |ψ⟩ with probabilty 1− p. To model this, we consider mixed states,
which are probability distributions (i.e., “mixtures”) over pure states. Note that being
in a superposition between basis states is sometimes misrepresented as a case of
“uncertainty”, even though we know for certain the precise superposition the quantum
state is in. It is convenient to write down mixed states using density matrices, which
are positive semidefinite operators (i..e, all eigenvalues are nonnegative) with trace
1. In particular, suppose we know that our qubit register is in one of the states
|ψ1⟩ , . . . , |ψr⟩ each with a respective probability pj , then we write down this mixed
states as a density matrix

ρ =

r∑

j=1

pj |ψj⟩ ⟨ψj | . (2.13)

Following the conventions for pure states, we find that an n-qubit mixed state ρ
is manipulated by an n-qubit quantum circuit U as follows

ρ 7→ UρU†. (2.14)

Moreover, when measuring an observable O with orthonormal eigenvectors {|ψj⟩}2
n−1

j=0

and corresponding eigenvalues {λj}2
n−1

j=0 , the probability pj of outcome λj is given by

pj = Tr [|ψj⟩ ⟨ψj | ρ] (2.15)

and the expectation value ⟨O⟩ (i.e., the probabilistic expected value of the measure-
ment outcome) is given by

⟨O⟩ = Tr [Oρ] . (2.16)

2.1.1 Basics of quantum algorithms
Having discussed the basics of quantum computing, we are ready to define what
a quantum algorithm is. In short, a quantum algorithm is a routine that gets a
specification of an instance of a problem and efficiently (i.e., in time polynomial in
the instance size) constructs a quantum circuit and measurement. This quantum
circuit is then applied to the state |0n⟩, after which the measurement is preformed,
and based on the outcomes of the measurement the quantum algorithm decides its
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output. In the remainder of this section we will discuss two concrete examples of
quantum algorithms: quantum phase estimation (QPE) and Hamiltonian simulation
(HS).

Quantum phase estimation

Quantum phase estimation is an important building block for the algorithms discussed
in Chapter 3. The input to the problem is an n-qubit unitary U and an eigenvector |ψ⟩
of U . The required output is the eigenphase of |ψ⟩ with respect to U , i.e., ϕ ∈ [0, 1)
such that

U |ψ⟩ = e2πiϕ |ψ⟩ .
As originally proposed by Kitaev [120] and put in a broader context by Cleve

et al. [64], given access to a black box capable of controlled-U2j operations for j =
1, . . . , n, we can construct a quantum circuit that uses O(poly(n)) single-qubit gates
together with O(poly(1/δ, 1/ϵ)) calls to the black box such that with probability at
least 1−ϵ measuring the output state will produce an estimate ϕ̃ such that |ϕ−ϕ̃| < δ.
Note that the use of black boxes suggests that quantum phase estimation by itself
is not a complete algorithm in its own right. Rather, one should think of it as a
kind of subroutine that, together with a realization of the unitary U (capable of
implementing the required black box) and a suitable quantum state |ψ⟩, can perform
interesting computational tasks.

To get some intuition how quantum phase estimation works, consider the case
where the eigenphase can be expressed as a n-bit string j (i.e., ϕ =

∑n
j=1 ji2

−i).
Then, quantum phase estimation works as follows

1. Start with |0n⟩ |ψ⟩.

2. Apply the layer of gates (H⊗n ⊗ I).

3. Use access to U to apply the map |j⟩ |ψ⟩ 7→ |j⟩U j |ψ⟩ = e2πiϕj |j⟩ |ψ⟩.

4. Apply the inverse quantum Fourier transform to the first n qubits.

5. Measure the first n qubits.

After Step 3., the first n qubits are in the state 1√
2n

∑2n−1
i=0 e2πiϕj |j⟩ which is the

same state obtained by applying the quantum Fourier transform to the state |ϕ⟩ =
|j1, . . . , jn⟩. Since the quantum Fourier transform is self-inverse, we find that after
Step 4. the first n qubits must be in the state |ϕ⟩ which when measured in the com-
putational basis will return ϕ. For more details on quantum phase estimation (e.g.,
what happens in the case when the eigenphase cannot be expressed as a bitstring) we
refer to [69, 145]. For our purposes, we highlight that quantum phase estimation can,
with probability at least 1 − ϵ, obtain an estimate of the eigenphase up to additive
error δ using O(poly(n)) single-qubit gates and O(poly(1/δ, 1/ϵ)) calls to the black
box controlled-U2j operations.
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Hamiltonian Simulation

Hamiltonian simulation is another important building block for the algorithms dis-
cussed in Chapter 3. Here the input is a specification of a sparse Hermitian operator
H together with some time t ∈ R>0, and the goal is to construct a circuit U that
implements the unitary transformation eiHt. We call a 2n × 2n matrix sparse if at
most O (poly(n)) entries in each row are nonzero. A special class of sparse posi-
tive semidefinite matrices that we consider is the class of log-local Hamiltonians, i.e.,
n-qubit Hermitian operators that can be written as a sum

H =

m∑

j=1

Hj , (2.17)

where each Hj acts on at most O (log n) qubits and m ∈ O (poly(n)). We specify
the the input matrix H using either of the following two standard cases. First, the
input matrix can be specified in terms of sparse access. That is, the input matrix
H ∈ C2n×2n is specified by quantum circuits that let us query the values of its entries,
and the locations of the nonzero entries. More precisely, we assume that we are given
classical descriptions of O (poly(n))-sized quantum circuits that implement the oracles
OH and OH,loc, which map

OH : |i, j⟩ |0⟩ 7→ |i, j⟩ |Hi,j⟩ ,
OH,loc : |j, ℓ⟩ |0⟩ 7→ |j, ℓ⟩ |ν(j, ℓ)⟩ ,

where 0 ≤ i, j, ℓ ≤ 2n − 1, and ν(j, ℓ) ∈ {0, . . . , 2n − 1} denotes the location of the
ℓ-th nonzero entry of the j-th column of H. Secondly, for log-local Hamiltonians, we
also consider specifying the input matrix H by its local-terms {Hj} as in Eq. (2.17).
Note that any specification in terms of local-terms can be turned into a specification
in terms of a sparse access oracle.

Depending on the type of access you have to the input matrix H, different quan-
tum algorithms exist to turn this specification of H into a quantum circuit U that
implements the unitary transformation eiHt. If the access is in terms of the local-terms
in Eq. (2.17) (with respect to a family of local terms Hj that allow for Hamiltonian
simulation in an efficient way, such as the family of Pauli-strings), then one can use
Trotterization [129] to construct a quantum circuit U consisting of O(poly(n, 1/ϵ))
many two- and single-qubit quantum gates that satisfies

||eiHt − U ||2 < ϵ.

On the other hand, if the access is in terms of sparse access oracles then more advanced
methods such as [133] are required. These methods use sparse access to H to produce
a quantum circuit U of size O(poly(n, log(1/ϵ))) such that3

||U − eiHt||2 < ϵ.

3The runtime of certain more advanced methods also depend on the largest entry of H and its
sparsity, but we choose to omit these dependencies from the runtime since they are not relevant for
the purposes of Chapter 3
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2.1.2 Quantum complexity theory
In the previous section we discussed how classical and quantum computers perform
computations in a fundamentally different way. In this section we will discuss some
of the consequences that this fundamentally different way of computing has on the
field of complexity theory. In short, complexity theory studies how much of a certain
resource is required to solve a given problem as a function of the instance size. We
will stick to an intuitive explanation of some classes of problems as categorized by
complexity theory, and for the formal definitions we refer to [23]. The problems that
one typically studies in complexity theory are so-called decision problems. In such
problems, one is given some x ∈ {0, 1}n and one is asked to decide whether the input
encoded by x satisfies a certain property. For instance, we could use x ∈ {0, 1}n to
encode a Boolean formula, and ask to decide whether x has any satisfying assignment
or not.

In complexity theory, the class P denotes all problems that are solvable by a
classical circuit that is allowed a number of gates that is at most polynomial in
the input length (with the caveat that there must exist an efficient procedure that
generates these circuits for a given input size). Additionally, the class BPP denotes
all problems that are solvable by a classical circuit that is allowed a number of gates
that is at most polynomial in the input length and is additionally allowed to use
some randomness (e.g., by providing it with a random number generator). One of the
questions studied in complexity theory is what additional problems one could solve
by allowing this additional internal randomness, if any such problems exist. This
question can be reformulated as asking whether or not BPP = P, which sparked the
study of derandomization techniques [57].

With the addition of quantum computing one can define a whole new family of
complexity classes. For instance, the class BQP denotes all problems that are solvable
by a quantum circuit that is allowed a number of quantum gates that is at most
polynomial in the input length. Another important question in complexity theory
is whether there exists problems that can be solved with polynomial-size quantum
circuits, but which cannot be solved with polynomial-size (randomized) classical cir-
cuits. This question can be reformulated as asking whether or not BPP = BQP.
Since quantum circuits can simulate any classical circuit (with a negligible increase
in circuit size), it holds that BPP ⊆ BQP. Even though it is not formally proven that
BPP ⊊ BPP (i.e., that BQP is strictly larger than BPP), it is it is still widely-believed
to be the case. For example, the problem of factoring lies in BQP due to the famous
Shor’s algorithm [176], but it is widely-believed to be outside of BPP.

If we allow ourselves to operate under the assumption that BQP ̸= BPP, then how
could one use complexity theory to argue that a certain problem is likely to exhibit
a (superpolynomial) quantum advantage? Intuitively, what we mean by a “quantum
advantage” is that the classical resources required to solve this problem drastically
outscale the quantum resources required to solve the problem. Under the assumption
that BQP ̸= BPP, one way to show that a problem exhibits a quantum advantage is to
show that it is among the hardest problems in BQP. More precisely, we would like to
show that if we could solve this problem using certain resources, then we could solve
any problem in BQP using comparable resources. In complexity theory, the above is
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captured using the notion of reductions. In the broadest sense, we say that a problem
A is reducible to a problem B if an algorithm for solving B with a certain set of
resources (if it were to exist) can be turned into an algorithm for solving A that uses
a comparable amount of resources (e.g., both algorithms use polynomial-size circuits).
Now if any problem in a complexity class is reducible to a problem A, then we say
that A is hard for that class. If additionally A is also contained in that complexity
class, we say that A is complete for that class.

If we were to show that a given problem A is BQP-complete4, then this is solid
evidence that A exhibits a quantum advantage under the assumption that BPP ̸=
BQP. In particular, suppose we could solve A using a polynomial-size randomized
classical circuit (i.e., it is in BPP). Since A is among the hardest problems in BQP,
through the reductions we find that any other problem is BQP can also be solved
using the resources of BPP. This clearly contradicts the assumption that BPP ̸= BQP,
which establishes by contradiction that A is not in BPP. Moreover, since A was in
fact complete for BQP, we know that is in BQP and that it is thus solvable using a
polynomial-depth quantum circuit. Using a completeness-result to give evidence for
quantum advantage is not limited to the class BQP. In fact, any class that contains
problems in BQP that are widely-believed to be outside BPP would work for this
purpose. In Section 3.2.1, we discuss another example of a complexity class whose
completeness result provide evidence for quantum advantage called DQC1, and we use
it to argue that certain problems in topological data analysis (or machine learning
more general) are likely to exhibit a quantum advantage.

To end this section, we introduce two more complexity classes. In particular, we
introduce two classes of problems whose solutions are verifiable using a given amount
of resources. For instance, if our input x ∈ {0, 1}n encodes a Boolean formula, then
how much resources does it require to check whether a given assignment makes the
formula evaluate to 1? In the classical setting, the class NP denotes all problems
whose solutions are verifiable in time polynomial in the input length on a classical
computer. Note that deciding whether a Boolean formula has a satisfying assignment
is in NP, since the evaluation of the Boolean formula for a given assignment can
be done using in polynomial-time on a classical computer. In the quantum setting,
the class QMA denotes the set of problems whose solutions are verifiable in time
polynomial in the input length on a quantum computer. It is a long-standing open
question in complexity theory whether NP = P, i.e., whether problems whose solution
can be verified in polynomial-time on a classical computer can also be solved using
the same resources. However, it is widely-believed that P ⊊ NP, though there is no
proof (yet). Similarly, it is widely-believed that BQP ⊊ QMA, though also here there
is no proof (yet).

4Strictly speaking, when we say that problem is BQP-complete, we actually mean that it is
complete for the class PromiseBQP (the class BQP is not known to have any complete problems).
The difference between BQP and PromiseBQP is that in the latter one only needs to be correct on a
subset of instances (i.e., those that satisfy a certain “promise”).
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2.1.3 Quantum linear classifiers
A fundamental family of classifiers (i.e., binary-valued functions) used throughout
machine learning are those constructed from linear functions. Specifically, they are
constructed from the family of real-valued functions on Rℓ

Flin =
{
fw(x) = ⟨w, x⟩ : w ∈ Rℓ

}
, (2.18)

where ⟨., .⟩ denotes an inner product on the input space Rℓ. These linear functions
are turned into classifiers by adding an offset and taking the sign, i.e., the classifiers
are given by

Clin =
{
cw,d(x) = sign

(
⟨w, x⟩ − d

)
: w ∈ Rℓ, d ∈ R

}
. (2.19)

While this family of classifiers is relatively limited (e.g., it cannot solve the well-
known XOR problem), it becomes powerful when introducing a feature map. Specifi-
cally, a feature map Φ : Rℓ → RN is used to (non-linearly) map the data to a (much)
higher-dimensional space – called the feature space – in order to make the data more
linearly-separable. We let C (Φ) = {c ◦ Φ | c ∈ C} denote the family of classifiers on
Rℓ obtained by combining a family of linear classifiers C ⊆ Clin on RN with a feature
map Φ. If the feature map is clear from the context we will omit it in the notation
and just write C. A well known example of a model based on linear classifiers is
the support vector machine (SVM), which aims to finds the hyperplane that attains
the maximal perpendicular distance to the two classes of points in the two distinct
half-spaces (assuming the feature map makes the data linearly separable, though one
could relax this using so-called soft-margin SVMs [66] in the non-separable case).

The linear-algebraic nature of linear classifiers makes them particularly well-suited
for quantum treatment. In the influential works of Havlíček et al. [103], and Schuld
& Killoran [168], the authors propose a model where the space of n-qubit Hermitian
operators – denoted Herm

(
C2n

)
– takes the role of the feature space. Note that

Herm
(
C2n

)
is a 4n-dimensional real vector space equipped with the Frobenius inner

product ⟨A,B⟩ = Tr
[
A†B

]
. Their feature map maps classical inputs x to n-qubit

density matrices Φ(x) := ρΦ(x) (i.e., positive semi-definite matrices of trace one).
Finally, the hyperplanes that separates the states ρΦ(x) corresponding to the different
classes are given by n-qubit observables. In short, the family of functions their model
uses is given by

Fqlin =
{
fO(x) = Tr [OρΦ(x)] : O ∈ Herm

(
C2n

)}
, (2.20)

and the family of classifiers – which we refer to as quantum linear classifiers – is given
by

Cqlin =
{
cO,d(x) = sign

(
Tr [OρΦ(x)]− d

)
: O ∈ Herm

(
C2n

)
, d ∈ R

}
. (2.21)

We can estimate fO(x) defined in Equation (2.20) by preparing the state ρΦ(x) and
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measuring the observable O. In particular, approximating fO(x) up to additive er-
ror ϵ requires only O

(
1/ϵ2

)
samples. While the error creates a fuzzy region around

the decision boundary, this turns out to not cause major problems in practical set-
tings [31].

Using parameterized quantum circuits both the preparation of a quantum state
that encodes the classical input and the measurement of observables can be done effi-
ciently for certain feature maps and families of observables. We now briefly recap two
ways in which parameterized quantum circuits can be used to efficiently implement
a family of quantum linear classifiers, as originally proposed by Havlíček et al. [103],
and Schuld & Killoran [168]. Both ways use a parameterized quantum circuit to im-
plement the feature map. Specifically, let UΦ be a parameterized quantum circuit,
then we can use it to implement the feature map given by

Φ : x 7→ ρΦ(x) := |Φ(x)⟩ ⟨Φ(x)| , (2.22)

where |Φ(x)⟩ := UΦ(x) |0⟩⊗n. The key difference between the two approaches is which
observables they are able to implement (i.e., which separating hyperplanes they can
represent) and how the observables are actually measured (i.e., how the functions fO
are evaluated). An overview of how the two approaches implement quantum linear
classifiers can be found in Figure 2.2, and we discuss the main ideas behind the two
approaches below.

explicit classifier

implicit classifier

feature map

quadratic programming

Data 𝑥 Concatenate
circuits

SWAP-test, 
Hadamard-test or 
concatenate with 

complex-conjugate

Figure 2.2: An overview of the explicit and implicit quantum linear classifiers defined
in Equations (2.24) and (2.25), respectively (adapted from [95]). Note that in the case
of the explicit classifier, a universal circuit W (θ) (specifying the eigenbasis) followed
by a computational basis measurement and universal postprocessing λ (specifying the
eigenvalues) allows one to measure any observable (albeit not efficiently with respect
to the number of qubits).

Explicit quantum linear classifier5 The observables measured in this approach
are implemented by first applying a parameterized quantum circuit W (θ), followed by
a computational basis measurement and postprocessing of the measurement outcome

5Also called the quantum variational classifier [103].
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λ : [2n] → R. Upon closer investigation, one can derive that the corresponding
observable is given by

Oλ
θ =W †(θ) · diag

(
λ(0), λ(1), . . . , λ(2n − 1)

)
·W (θ). (2.23)

Examples of efficiently computable postprocessing functions λ include functions with
a polynomially small support (implemented using a lookup table), functions that
are efficiently computable from the input bitstring (e.g., the parity of the bitstring,
which is equivalent to measuring Z⊗n), or parameterized functions such as neural
networks. Note that the postprocessing function λ plays an important role in how the
measurement of the observable in Eq. (2.23) is physically realized. Altogether, this
efficiently implements the family of linear classifiers – which we refer to as explicit
quantum linear classifiers – given by

Cexplicit
qlin =

{
cOλ

θ ,d
(x) = sign

(
Tr
[
ρΦ(x)Oλ

θ

]
− d
)

: Oλ
θ as in Equation (2.23), d ∈ R

}
.

(2.24)

The power of this model lies in the efficient parameterization of the manifold (in-
side the 4n-dimensional vector space of Hermitian operators on C2n) realized by the
quantum feature map together with the parameterized separating hyperplanes that
can be attained by W (θ) and λ. Here also lies a restriction of the explicit quantum
linear classifier compared to standard linear classifiers, as in the latter all hyper-
planes are possible and in the former only the hyperplanes that lie in the manifold
parameterized by W (θ) and λ are possible. Furthermore, explicit quantum linear
classifiers can likely not be efficiently evaluated classically, as computing expectation
values Tr

[
ρΦ(x)Oλ

θ

]
is classically intractable for sufficiently complex feature maps

and observables [188, 41].

Implicit quantum linear classifier6 Another way to implement a linear classifier
is by using the so-called kernel trick [164]. In short, this trick involves expressing the
normal vector of the separating hyperplane, – i.e., the observable O in the case of
quantum linear classifiers – on a set of training examples D as a linear combination
of feature vectors, resulting in the expression

Oα =
∑

x′∈D
αx′ρΦ(x′) =

∑

x′∈D
αx′ |Φ(x′)⟩ ⟨Φ(x′)| .

Using this expression we can rewrite the corresponding quantum linear classifier as

cOα,d(x) = sign
(
Tr [ρΦ(x)Oα]− d

)
= sign

( ∑

x′∈D
αx′Tr [ρΦ(x)ρΦ(x

′)]− d
)
.

These type of linear classifiers can also be efficiently realized using parameterized
quantum circuits. Using quantum protocols such as the SWAP-test or the Hadamard-

6Also called the quantum kernel estimator [103].
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test, or by using the inverse of the circuit that implements the feature map UΦ(x)
−1,

it is possible to efficiently evaluate the overlaps Tr[ρΦ(x)ρΦ(x
′)] for the feature map

defined in Equation (2.22). Afterwards, the optimal parameters {αx′}x′∈D are ob-
tained on a classical computer, e.g., by solving a quadratic program. Altogether, this
allows us to efficiently implement the family of linear classifiers – which we refer to
as implicit quantum linear classifiers – given by

Cimplicit
qlin =

{
cOα,d(x) = sign

(
Tr [ρΦ(x)Oα]− d

)

: Oα =
∑

x′∈D
αx′ρΦ(x

′), α ∈ R|D|, d ∈ R
}
.

(2.25)

The power of this model comes from the fact that evaluating the overlaps Tr [ρΦ(x)ρΦ(x′)]
is likely classically intractable for sufficiently complex feature maps [103], demonstrat-
ing that classical computers can likely neither train nor evaluate this quantum linear
classifier efficiently. Moreover, from the well-known Representer theorem we know
any quantum linear classifier that is the minimizer of a loss functions that includes
regularization of the Frobenius norm of the observable can be expressed as an implicit
quantum linear classifier [165]. However, as we indicate later in Section 4.3, this does
not mean that we can forego explicit quantum linear classifiers entirely, as in the
explicit approach there are unique types of meaningful regularization for which there
is no straightforwards correspondence to the implicit approach.

2.2 Topological data analysis
Topological data analysis is a recent approach to data analysis that extracts robust
features from a dataset by inferring properties of the shape of the data. This is perhaps
best explained in analogy to a better-known method: much like how principal com-
ponent analysis extracts features (i.e., the singular values characterizing the spread
of the data in the directions of highest variance) that are invariant under translation
and rotation of the data, topological data analysis goes a step further and extract
features that are also invariant under bending and stretching of the data (i.e., by
inferring properties of its general shape). Because of this invariance of the extracted
features, topological data analysis techniques can be inherently more robust to noise
in the data.

The theory behind topological data analysis is fairly extensive, but most of it we
will not need for our purpose. Namely, we can set most of the topology aside and tackle
the issue in linear-algebraic terms, which are well-suited for quantum approaches. In
this section we introduce the relevant linear-algebraic concepts, and we briefly review
the quantum algorithm for topological data analysis of Lloyd, Garnerone and Zanardi
(LGZ) [130].

2.2.1 Betti numbers as features
In topological data analysis the dataset is typically a point cloud (i.e., a collection of
points in some ambient space) and the aim is to extract the shape of the underlying
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data (i.e., the ‘source’ of these points). This is done by constructing a connected
object – called a simplicial complex – composed of points, lines, triangles and their
higher-dimensional counterparts, whose shape one can study. After constructing the
simplicial complex, features of the shape of the data – in particular, the number of
connected components, holes, voids and higher-dimensional counterparts – can be
extracted using linear-algebraic computations based on homology. An overview of
this procedure can be found in Figure 2.4.

Consider a dataset of points {xi}ni=1 embedded in some space equipped with a
distance function d (typically Rm equipped with the Euclidean distance). The con-
struction of the simplicial complex from this point cloud proceeds as follows. First,
one constructs a graph by connecting datapoints that are “close” to each other. This
is done by choosing a grouping scale ϵ (defining which points are considered “close”)
and connecting all datapoints that are within ϵ distance from each other. This yields
the graph G = ([n], Eϵ), with vertices [n] := {1, . . . , n} and edges

Eϵ = {(i, j) | d(xi, xj) ≤ ϵ}.

After having constructed this graph, one relates to it a particular kind of simplicial
complex called a clique complex, by associating its cliques (i.e., complete subgraphs)
with the building blocks of a simplicial complex1. That is, a 2-clique is considered
a line, a 3-clique a triangle, a 4-clique a tetrahedron, and (k + 1)-cliques the k-
dimensional counterparts2.

To fix the notation, let Clk(G) ⊂ {0, 1}n denote the set of (k + 1)-cliques in G –
where we encode a subset {i1, . . . , ik} ⊂ [n] as an n-bit string where the indices ik
specify the positions of the ones in the bitstring – and let χk := |Clk(G)| denote the
number of these cliques. Throughout this thesis, we will discuss everything in terms
of clique complexes, as this is sufficient for our purposes and allows us to use the more
familiar terminology of graph theory.

The constructed clique complex exhibits the features that we want to extract from
our dataset – i.e., the number of k-dimensional holes. For example, in Figure 2.3 we
see a clique complex where we can count three 1-dimensional holes. Interestingly,
counting these holes can be done more elegantly using linear algebra by employing
constructions from homology.

To extract these features using linear algebra, embed the clique complex into a
Hilbert spaceHG

k , by raising the set of bitstrings that specify (k+1)-cliques to labels of
orthonormal basis vectors. LetHk denote the Hilbert space spanned by computational
basis states with Hamming weight3 k + 1. Due to the way we encode cliques as
bitstrings, we have that HG

k is a subspace of Hk. Moreover, each Hk is an
(

n
k+1

)
-

dimensional subspace of the entire n-qubit Hilbert space C2n , and C2n ≃⊕n−1
k=−1Hk.

The next step towards extracting features using linear algebra involves studying
properties of the boundary maps ∂k : Hk → Hk−1, which are defined by linearly

1The resulting simplicial complex coincides with the Vietoris-Rips complex common in topological
data analysis literature [83].

2The shift in the indexing is due to different terminologies in graph theory and topology (e.g., in
graph theory a triangle is called a 3-clique, whereas in topology it is called a 2-simplex).

3The Hamming weight of a bitstring is the number of 1s in it.
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Figure 2.3: Example of a clique complex with three 1-dimensional holes (adapted
from [83]). The number of these holes is equal to the first Betti number.

extending the action on the basis states given by

∂k |j⟩ :=
k∑

i=0

(−1)i |ĵ(i)⟩ , (2.26)

where ĵ(i) denotes the n-bit string of Hamming weight k that encodes the subset
obtained by removing the i-th element from the subset encoded by j (i.e., we set
the i-th one in the bitstring j to zero). By considering the restriction of ∂k to HG

k

– which we denote by ∂Gk – these boundary maps can encode the connectivities of
the graph G, in which case their image and kernel encode various properties of the
corresponding clique complex. Intuitively, these boundary maps map a (k+1)-clique
to a superposition (i.e., a linear combination) of all k-cliques that it contains, as seen
in Eq. (2.26).

These boundary maps allow one to extract features of the shape of a clique complex
by studying their images and kernels, and in particular their quotients. Specifically,
the quotient space

Hk(G) := ker ∂Gk /Im∂
G
k+1, (2.27)

which is called the k-th homology group, captures features of the shape of the under-
lying clique complex. The main feature is the k-th Betti number βG

k , which is defined
as the dimension of the k-th homology group, i.e.,

βG
k := dimHk(G).
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By construction, the k-th Betti number is equal to the number of k-dimensional holes
in the clique complex.

The main problem in topological data analysis that we study in this thesis is the
computation of Betti numbers. To do so, we study the combinatorial Laplacians [76],
which are defined as

∆G
k =

(
∂Gk
)†
∂Gk + ∂Gk+1

(
∂Gk+1

)†
. (2.28)

These combinatorial Laplacians can be viewed as generalized (or rather, higher-order)
graph Laplacians in that they encode the connectivity between cliques in the graph
as opposed to encoding the connectivity between individual vertices. We study the
combinatorial Laplacians because the discrete version of the Hodge theorem [76] tells
us that

dimker
(
∆G

k

)
= βG

k , (2.29)

which is often used as a more convenient way to compute Betti numbers [81], partic-
ularly in the case of the quantum algorithm that we discuss in the next section.

In conclusion, if the clique complex is constructed from a point cloud according
to the construction discussed above, then computing these Betti numbers can be
viewed as a method to extract features of the shape of the data (specifically, the
number of holes are present at scale ϵ). By recording Betti numbers across varying
scales ϵ in a so-called barcode [83], one can discern which holes are “real” and which
are “noise”, resulting in feature extraction that is robust to noise in the data. Even
though barcodes are very important in topological data analysis, we will mostly focus
on the problem of estimating the number of holes at a given scale.

2.2.2 Quantum algorithm for Betti number estimation
The algorithm for Betti number estimation of Lloyd, Garnerone and Zanardi (LGZ) [130]
utilizes Hamiltonian simulation and phase estimation to estimate the dimension of the
kernel (i.e., the nullity) of the combinatorial Laplacian (which by Eq. (2.29) is equal
to the corresponding Betti number). After the initial algorithm of Lloyd et al. sev-
eral different improvements were made, focusing either on reducing the number of
T -gates [33], making it more amenable to NISQ requirements [189], or on exploit-
ing the quantum singular value transform and achieving an exponential saving in
the number of qubits [135]. To make our presentation self-contained, we review the
original quantum algorithm for Betti number estimation of Lloyd et al.

Estimating the nullity of a sparse Hermitian matrix can be achieved using some of
the most fundamental quantum-algorithmic primitives. Namely, using Hamiltonian
simulation and quantum phase estimation one can estimate the eigenvalues of the
Hermitian matrix, given that the eigenvector register starts out in an eigenstate.
Moreover, if instead the eigenvector register starts out in the maximally mixed state
(which can be thought of as a random choice of an eigenstate), then measurements
of the eigenvalue register produce approximations of eigenvalues, sampled uniformly
at random from the set of all eigenvalues. This routine is then repeated to estimate
the nullity by simply computing the frequency of zero eigenvalues (recall that the
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number of holes, voids and 
k-dimensional counterparts

Mesh at 
grouping-scale ϵ
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Figure 2.4: The pipeline of topological data analysis (adapted from [90]). First,
points within ϵ distance are connected to create a graph. Afterwards, cliques in this
graph are identified with simplices to create a simplicial complex. Next, homology is
used to construct linear operators that encode the topology. Finally, the dimensions
of the kernels of these operators are computed to obtain the Betti numbers (which
correspond to the number of holes).

dimension of the kernel is equal to the multiplicity of the zero eigenvalue). Note
that this procedure does not strictly speaking estimate the nullity, but rather the
number of small eigenvalues, where the threshold is determined by the precision of
the quantum phase estimation (see Section 2.2.2 for more details). The steps of the
quantum algorithm for Betti number estimation of LGZ are summarized in Figure 2.5.

In Step 1(a), Grover’s algorithm is used to prepare the uniform superposition over
HG

k , from which one can prepare the state ρGk by applying a CNOT gate to each
qubit of the uniform superposition into some ancilla qubits and tracing those out.
When given access to the adjacency matrix of G, one can check in O

(
k2
)

operations
whether a bitstring j ∈ {0, 1}n encodes a valid k-clique and mark them accordingly
in the application of Grover’s algorithm. By cleverly encoding Hamming weight k
strings we can avoid searching over all n-bit strings, which requires O (nk) additional
gates per round of Grover’s algorithm plus an additional one-time cost of O

(
n2k

)
[93].

Hence, the runtime of this first step is

O
(
n2k + nk3

√(
n

k + 1

)
/χk

)

where χk denotes the number of (k + 1)-cliques. This runtime is polynomial in the
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Quantum algorithm for Betti number estimation

1. For i = 1, . . . ,M repeat:

(a) Prepare the state:

ρGk =
1

|dimHG
k |

∑

j∈Clk(G)

|j⟩ ⟨j| . (2.30)

(b) Apply quantum phase estimation to the unitary ei∆
G
k , with the eigen-

vector register starting out in the state ρGk .

(c) Measure the eigenvalue register to obtain an approximation λ̃i.

2. Output the frequency of zero eigenvalues:
∣∣∣{i | λ̃i = 0}

∣∣∣ /M .

Figure 2.5: Overview of the quantum algorithm of Lloyd, Garnerone and Zanardi
(LGZ) [130]

number of vertices n when
(

n

k + 1

)
/χk ∈ O (poly(n)) . (2.31)

Throughout this thesis we say that a graph is clique-dense if it satisfies Eq. (2.31).
Note that ρGk can of course also be directly prepared without the use of Grover’s
algorithm by using rejection sampling: choose a subset uniformly at random and
accept it if it encodes a valid clique. This is quadratically less efficient, however it
has advantages if one has near-term implementations in mind, as it is a completely
classical subroutine. As we will discuss in more detail in Section 2.2.2, this state
preparation procedure via Grover’s algorithm or uniform clique-sampling is a crucial
bottleneck in the quantum algorithm.

In Step 1(b), standard methods for Hamiltonian simulation of sparse Hermitian
matrices are used together with quantum phase estimation to produce approximations
of the eigenvalues of the simulated matrix. In the original algorithm, the matrix that
LGZ simulates (i.e., the matrix it applies Hamiltonian simulation on) in this step is
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the Dirac operator, which is defined as

BG =




0 ∂G1 0 . . . . . . 0(
∂G1
)†

0 ∂G2 . . . . . . 0

0
(
∂G2
)†

0
. . . . . . 0

...
...

. . . . . . . . .
...

...
...

...
. . . 0 ∂Gn−1

0 0 0 . . .
(
∂Gn−1

)†
0




and satisfies

B2
G =




∆G
0 0 . . . 0
0 ∆G

2 . . . 0
...

...
. . . 0

0 0 . . . ∆G
n−1


 . (2.32)

From Eq. (2.32) we gather that the probability of obtaining an approximation of
an eigenvalue that is equal to zero is proportional to the nullity of the combinatorial
Laplacian. Because BG is an n-sparse Hermitian matrix with entries 0,−1 and 1, to
which we can implement sparse access using O (n) gates, we can implement eiB using
Õ
(
n2
)

gates [133] (here Õ suppresses logarithmically growing factors).
We remark that it is also possible to simulate ∆G

k directly (as depicted in Fig-
ure 2.5). Namely, as ∆G

k is an n2-sparse Hermitian matrix whose entries are bounded
above by n, to which we can implement sparse access using O

(
n4
)

gates (e.g., see
Theorem 3.3.4 [86]), we can implement ei∆

G
k using Õ

(
n6
)

gates [133].
The disadvantage to directly simulating ∆G

k is that it requires more gates. How-
ever, the advantage is that the Hamiltonian simulation of ∆G

k requires fewer qubits
compared to the Hamiltonian simulation of BG, namely, log

(
n

k+1

)
qubits instead of n.

Moreover, when the graph is clique-dense one can bypass Step 1(a) by padding ∆G
k

with all-zero rows and columns and letting the eigenvector start out in the maximally
mixed state I/2n (see Section 3.1.1 for more details).

Let λmax denote the largest eigenvalue and let λmin denote the smallest nonzero
eigenvalue of ∆G

k . By scaling down the matrix one chooses to simulate (i.e., either
B or ∆G

k ) by 1/λmax to avoid multiples of 2π, we can tell whether an eigenvalue
is equal to zero or not if the precision of the quantum phase estimation is at least
λmax/λmin. By the Gershgorin circle theorem (which states that λmax is bounded
above by the maximum sum of absolute values of the entries of a column or row)
we know that λmax ∈ O (n). For the general case not much is known in terms of
lower bounds on λmin. Nonetheless, even if we do not have such a lower bound, the
number of small eigenvalues (as opposed to zero eigenvalues) still conveys topological
information about the underlying graph (see Section 2.2.2 for more details). By
taking into account the cost of the quantum phase estimation [145], the total runtime
of Step 1(b) becomes Õ

(
n3/λmin

)
.

Finally, estimating βG
k / dimHG

k up to additive precision ϵ can be done using M ∈
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O
(
ϵ−2
)

repetitions of Step 1(a) through 1(c). This brings the total cost of estimating
βG
k /dimHG

k up to additive precision ϵ to

Õ
((

nk3

√(
n

k + 1

)
/χk + n3/λmin

)
/ϵ2

)
.

In conclusion, the quantum algorithm for Betti number estimation runs in time
polynomial in n under two conditions. Firstly, the graph has to be clique-dense, i.e.,
it has to satisfy Eq. (2.31) (see Section 2.2.2 for more details). Secondly, the smallest
nonzero eigenvalue λmin has to scale at least inverse polynomial in n (see Section 2.2.2
for more details). If both these conditions are satisfied, then the quantum algorithm
for Betti number estimation achieves an exponential speedup over the best known
classical algorithms if the size of the combinatorial Laplacian – i.e., the number of
(k + 1)-cliques – scales exponentially in n (see Section 2.2.3 for more details).

Approximate Betti numbers

As mentioned in the previous section, the quantum algorithm for Betti number esti-
mation does not strictly speaking estimate the Betti number (i.e., the nullity of the
combinatorial Laplacian), but rather the number of small eigenvalues of the combi-
natorial Laplacian. This is because little is known in terms of lower bounds for the
smallest nonzero eigenvalue of combinatorial Laplacians, and hence it is unclear to
what precision one has to estimate the eigenvalues in the quantum phase estima-
tion. In any case, it is conjectured that for high-dimensional simplicial complexes
the smallest nonzero eigenvalue will generally be at least inverse polynomial in n [81],
which would imply that quantum phase estimation can in time O (poly(n)) determine
whether an eigenvalue is exactly equal to zero.

Even without knowing a lower bound on the smallest nonzero eigenvalue of the
combinatorial Laplacian, we can still perform quantum phase estimation up to some
fixed inverse polynomial precision. The quantum algorithm for Betti number esti-
mation then outputs an estimate of the number of eigenvalues of the combinatorial
Laplacian that lie below this precision threshold. Throughout this thesis we will refer
to this as approximate Betti numbers, which turn out to still convey information about
the underlying graph. For instance, Cheeger’s inequality – which relates the sparsest
cut of a graph to the smallest nonzero eigenvalues of its standard graph Laplacian –
turns out to have a higher-order generalization that utilizes the combinatorial Lapla-
cian [92]. Moreover, there are several other spectral properties of the combinatorial
Laplacian beyond the number of small eigenvalues that also convey topological infor-
mation about the underlying graph. Some of these spectral properties can also be
efficiently extracted using quantum algorithms (see Section 3.3.2 for more details).

Efficient state preparation

In Section 2.2.2 we saw that the quantum algorithm for Betti number estimation
can efficiently estimate approximate Betti numbers if the input graph satisfies certain
criteria. In particular, the graph has to be such that one can efficiently prepare the
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maximally mixed state over all its cliques of a given size (i.e., the state in Eq. (2.30)
in Figure 2.5). In this section we highlight that this state preparation constitutes one
of the main bottlenecks in the quantum algorithm for Betti number estimation.

One way to prepare the maximally mixed state over all k-cliques of an n-vertex
graph is to sample k-cliques uniformly at random and feed them into the quantum
algorithm. For the quantum algorithm for Betti number estimation to run in time
sub-exponential in n, we have to be able to sample a k-clique uniformly at random
in time no(k). However, for general graphs finding a k-clique cannot be done in time
no(k) unless the exponential time hypothesis fails [56]. Nonetheless, for certain families
of graphs, uniform clique sampling can be done much more efficiently, e.g., in time
polynomial in n (in which case the quantum algorithm also runs in time polynomial
in n). In particular, the graph’s clique-density (i.e., probability that a uniformly
random subset of vertices is a clique), or the graph’s arboricity (which up to a factor
1/2 is equivalent to the maximum average degree of a subgraph) are important factors
that dictate the efficiency of uniform clique sampling algorithms. In Section 3.2.4 we
outline concrete families of graphs (based on their clique-density or arboricity) for
which the quantum algorithm achieves a (superpolynomial) speedup over classical
algorithms.

2.2.3 Classical algorithms for Betti number estimation
In this section we will closely investigate the state-of-the-art classical algorithms, to
analyze whether it is possible to strengthen the argument for quantum advantage
(or, to actually find an efficient classical algorithm) for the topological data analysis
problem. In particular, we will cover classical algorithms based on numerical linear
algebra or random walks and analyze the theoretical hurdles that, at least currently,
stymie them from performing equally as well as the quantum algorithm.

To the best of our knowledge, the best known classical algorithms for approximate
Betti number estimation is based on a numerical linear algebra algorithm for low-
lying spectral density estimation [190, 59, 70, 124]. These algorithms typically run
in time linear in the number of nonzero entries. Since combinatorial Laplacians are
n-sparse, the number of nonzero entries of the combinatorial Laplacian – and hence
also the runtime of the best known classical algorithm for approximate Betti number
estimation – scales as

O (n · χk) ∈ O
(
nk+1

)
.

Recall that the quantum algorithm for Betti number estimation can estimate ap-
proximate Betti numbers in time polynomial in n if we can efficiently prepare the max-
imally mixed state over the cliques of a given size (e.g., if it satisfies Eq. (2.31)). For
graphs that satisfy this condition, we conclude that the quantum algorithm for Betti
number estimation achieves an exponential speedup over the best known classical al-
gorithms if the size of the combinatorial Laplacian – i.e., the number of (k+1)-cliques
– scales exponential in n (which requires k to scale with n). For exponential speedups
for Betti number estimation, we also require that the smallest nonzero eigenvalue of
the combinatorial Laplacian scales at least inverse polynomially in n.
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To investigate the actual hardness of approximate Betti number estimation, we
go one step further and discuss new possibilities for efficient classical algorithms. In
particular, we investigate potential classical algorithms that take into account the
specifics of the combinatorial Laplacian by using carefully designed random walks.
Firstly, there exists a classical random walk based algorithm that can approximate
the spectrum of the 0th combinatorial Laplacian (i.e., the ordinary graph Laplacian)
up to ϵ distance in the Wasserstein-1 metric in time O (exp(1/ϵ)) (i.e., independent of
the size of the graph) [65]. To generalize this to higher-order combinatorial Laplacians,
one would have to construct an efficiently implementable walk operator whose spectral
properties coincide with the higher-order combinatorial Laplacian. While potential
candidates for such higher-order walk operators have previously been studied [143,
154], relatively little is known about such higher-order walk operators. Note that such
a construction must take into account the specifics of the combinatorial Laplacian,
since if the construction would work for arbitrary sparse Hermitian matrices, then this
would lead to an efficient classical algorithm for llsd (which by Theorem 5 is widely-
believed to be impossible). Recently, Berry et al. [33] and Apers et al. [22] proposed
new classical algorithms for Betti number estimation based on random walks that
works best precisely in the regime where the quantum algorithm works best. However,
the scaling of these algorithm with respect to the spectral gap is exponentially worse
compared to the existing quantum algorithms. Thus, to obtain a quantum speedup,
we must ensure that the spectral gap of the combinatorial Laplacian is not too large
such that these classical algorithms become efficient.

2.3 Structural risk minimization
When looking for the optimal family of classifiers for a given learning problem, it is
important to carefully select the family’s complexity (also known as expressivity or
capacity). For instance, in the case of linear classifiers, it is important to select what
kind of hyperplanes one allows the classifier to use. Generally, the more complex
the family is, the lower the training errors will be. However, if the family becomes
overly complex, then it becomes more prone to worse generalization performance
(i.e., due to overfitting). Structural risk minimization is a concrete method that
balances this trade-off in order to obtain the best possible performance on unseen
examples. Specifically, structural risk minimization aims to saturate well-established
upper bounds on the expected error of the classifier that consist of the sum of two
inversely related terms: a training error term, and a complexity term penalizing more
complex models.

In statistical learning theory it is generally assumed that the data is sampled
according to some underlying probability distribution P on X × {−1,+1}. The goal
is to find a classifier that minimizes the probability that a random pair sampled
according to P is misclassified. That is, the goal is to find a classifier cf,d(x) =
sign(f(x)− d) that minimize the expected error given by

erP (cf,d) = Pr
(x,y)∼P

(
cf,d(x) ̸= y

)
. (2.33)
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As one generally only has access to training examples D =
{
(xi, yi)

}m
i=1

that are
sampled according to the distribution P , it is not possible to compute erP directly.
Nonetheless, one can try to approximate Equation (2.33) using training errors such
as

êrD(cf,d) =
1

m

∣∣∣
{
i : cf,d(xi) ̸= yi

}∣∣∣, (2.34)

êrγD(cf,d) =
1

m

∣∣∣
{
i : yi ·

(
f(xi)− d

)
< γ

}∣∣∣, γ ∈ R≥0. (2.35)

Intuitively, êrD in Equation (2.34) represents the frequency of misclassified training
examples, and êrγD in Equation (2.35) represents the frequency of training examples
that are either misclassified or are “within margin γ from being misclassified”. In
particular, for γ = 0 both training error estimates are identical (i.e., êrD = êr0D).
When selecting the optimal classifiers from a given model one typically searches for
the classifier that minimizes the training error (in practice more elaborate and smooth
loss functions are used), which is referred to as empirical risk minimization. The
problem that structural risk minimization aims to tackle is how to optimally select a
model such that one will have some guarantee that the training error will be close to
the expected error.

Structural risk minimization uses expected error bounds – two of which we will
discuss shortly – that involve a training error term, and a complexity term that
penalizes more complex models. This complexity term usually scales with a certain
measure of the complexity of the family of classifiers. A well known example of such
a complexity measure is the Vapnik-Chervonenkis dimension.

Definition 1 (VC dimension [194]). Let C be a family of functions on X taking values
in {−1,+1}. We say that a set of points X = {x1, . . . , xm} ⊂ X is shattered by C if
for all y ∈ {−1,+1}m, there exists a classifier cy ∈ C that satisfies cy(xi) = yi. The
VC dimension of C defined as

VC
(
C
)
= max

{
m | ∃{x1, . . . , xm} ⊂ X that is shattered by C

}
.

Besides the VC dimension we also consider a complexity measure called the fat-
shattering dimension, which can be viewed as a generalization of the VC dimension
to real-valued functions. An important difference between the VC dimension and
the fat-shattering dimension is that the latter also takes into account the so-called
margins that the family of classifiers can achieve. Here the margin of a classifier
cf,d(x) = sign

(
f(x) − d

)
on a set of examples {xi}mi=1 is given by mini |f(xi) − d|.

Throughout the literature, this is often referred to as the functional margin.

Definition 2 (Fat-shattering dimension [117]). Let F be a family of real-valued func-
tions on X . We say that a set of points X = {x1, . . . , xm} ⊂ X is γ-shattered by F
if there exists an s ∈ Rm such that for all y ∈ {−1,+1}m, there exists a function
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fy ∈ F satisfying

fy(xi)

{
≤ si − γ if yi = −1,
≥ si + γ if yi = +1.

The fat-shattering dimension of F is a function fatF : R→ Z≥0 that maps

fatF (γ) = max
{
m
∣∣ ∃{x1, . . . , xm} ⊂ X that is γ-shattered by F

}
.

We will now state two expected error bounds that can be used to perform struc-
tural risk minimization. These error bounds theoretically quantify how an increase in
model complexity (i.e., VC dimension or fat-shattering dimension) results in a worse
expected error (i.e., due to overfitting). First, we state the expected error bound that
involves the VC dimension.

Theorem 1 (Expected error bound using VC dimension [201]). Consider a set of
functions C on X taking values in {−1,+1}. Suppose D =

{
(xi, yi)

}m
i=1

is sampled
using m independent draws from P . Then, with probability at least 1−δ, the following
holds for all c ∈ C:

erP (c) ≤ êrD(c) + 62

√
k

m
+ 3

√
log(2/δ)

2m
(2.36)

where k = VC
(
C
)
.

Next, we state the expected error bound that involves the fat-shattering dimen-
sion. One possible advantage of using the fat-shattering dimension instead of the VC
dimension is that it can take into account the margin that the classifier achieves on
the training examples. This turns out to be useful since this margin can be used to
more precisely fine-tune the expected error bound.

Theorem 2 (Expected error bound using fat-shattering dimension [28]). Consider a
set of real-valued functions F on X . Suppose D =

{
(xi, yi)

}m
i=1

is sampled using m
independent draws from P . Then, with probability at least 1 − δ, the following holds
for all c(x) = sign

(
f(x)− d

)
with f ∈ F and d ∈ R:

erP (c) ≤ êrγD(c) +

√
2

m

(
k log(34em/k) log2(578m) + log(4/δ)

)
. (2.37)

where k = fatF (γ/16).

Remark(s). If the classifier can correctly classify all examples in D, then the optimal
choice of γ in the above theorem is the margin achieved on the examples in D, i.e.,
γ = minxi∈D

∣∣f(xi)− d
∣∣.

Generally, the more complex a family of classifiers is, the larger its generalization
errors are. This correlation between a family’s complexity and its generalization errors
is theoretically quantified in Theorems 1 and 2. Specifically, the more complex the
family is the larger its VC dimension will be, which strictly increases the second
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term in Equation 2.36 that corresponds to the generalization error. Note that for the
fat-shattering dimension in Theorem 2 this is not as obvious. In particular, a more
complex model could achieve a larger margin γ, which actually decreases the second
term in Equation 2.37 that corresponds to the generalization error.

Theorems 1 and 2 establish that in order to minimize the expected error, we should
aim to minimize either of the sums on the right-hand side of Equations (2.36) or (2.37)
(depending on which complexity measure one wishes to focus on). Note that in both
cases the first term corresponds to a training error and the second term corresponds to
a complexity term that penalizes more complex models. Crucially, the effect that the
complexity measure of the family of classifiers has on these terms is inversely related.
Namely, a large complexity measure generally gives rise to smaller training errors,
but at the cost of a larger complexity term. Balancing this trade-off is precisely the
idea behind structural risk minimization. More precisely, structural risk minimiza-
tion selects a classifier that minimizes either of the expected error bounds stated in
Theorem 1 or 2, by selecting the classifier from a family whose complexity measure is
fine-tuned in order to balance both terms on the right-hand side of Equations (2.36)
or (2.37). Note that limiting the VC dimension and fat-shattering dimension does not
achieve the same theoretical guarantees on the generalization error, and it will gener-
ally give rise to different performances in practice (as also discussed Section 4.2). An
overview of the trade-off in the error bounds stated in Theorems 1 and 2 is depicted
in Figure 2.6.

Figure 2.6: Illustration of structural risk minimization taken from [139]. Increasing
the complexity causes the training error (blue) to decrease, while it increases the
complexity term (green). Structural risk minimization selects the classifier minimizing
the expected error bound in Eqs. (2.36) and (2.37) given by the sum of the training
error and the complexity term (red).
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2.4 Reinforcement learning
In this section, we introduce the basic ideas of reinforcement learning (for a more in-
depth treatment we refer to [182]). Intuitively, in reinforcement learning the problem
is to learn from interactions to achieve a goal. The way this is generally modelled is
through the agent-environment interaction setup depicted in Figure 2.4. In this setup,
the learner takes the role of the agent which continually interacts with the environment
by performing actions. After every action from the agent, the environment responds
by presenting the agent with a new state, and some numerical value called the reward
that the agent tries to maximize over time.

Figure 2.7: The agent-environment interaction setup (taken from [182]).

More precisely, the agent and the environment interact with each other for a
number of discrete time steps t = 0, 1, 2, . . . . At every time step t, the agent is
presented with a state St from the environment, at which point it has to select an
action At, after which the environment updates its state to a new state St+1 that it
sends to the agent together with some reward Rt+1 Note that the actions the agent
can choose from can depend on the current state of the environment. The way an
action At causes the environment to change St → St+1 (together with the associated
reward Rt+1) is often modelled using a Markov Decision Process (MDP). We choose
not to discuss the MDP-setup in detail here, and instead provide a more high-level
overview of reinforcement learning (see [182] for more details).

Generally, the way the agent chooses its actions based on the state of the envi-
ronment is modelled by what is called its policy π(. | .). The agent’s policy maps
the current state to a probability distribution over all possible actions, and the agent
simply samples from it to selects its next step. More precisely, we let π(a | s) denote
the probability that the agent selects action At = a given that the current state of
the environment is St = s.

A standard way of training a reinforcement learning agent is through policy iter-
ation, which consists of two consecutive steps: policy evaluation and policy improve-
ment. First, in the policy evaluation step, the agent uses a policy to interact with
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the environment and collect rewards for a given number of steps. Afterwards, in the
policy improvement step, the agent updates its policy based on the interactions it
had gained in the policy evaluation step. There are many different ways to perform
the policy improvement step, e.g., in state of the art deep-learning methods one often
uses Q-learning. In short, in Q-learning the agent trains a model (e.g., a deep neural
network) that learns what the expected rewards are for a given action in a given
state, and uses this to selects its next action. For more details on Q-learning or other
policy improvement methods see [182]. Next, we focus on a different method called
the policy gradient method, which we will use throughout Chapter 5.

In the policy gradient method, the agent is equipped with a differential policy
πθ, where θ ∈ Rℓ denote the differential parameters. For instance, πθ could be
implemented using a neural network, in which case the θ correspond to the weights of
the neural network. In Chapter 5 we show how one can use parameterized quantum
circuits to encode a differential policy, and how these policies are able to outperform
classical policies. The main idea behind policy-gradient methods is to use a scalar
performance measure J(θ), and to update the parameters using a gradient-ascent step

θt+1 = θt + α∇̂J(θ), (2.38)

where ∇̂J(θ) denotes a (stochastic) estimate of the gradient of J with respect to θ. In
our case, our performance measure J(θ) will be the value function of the initial state
of the environment with respect to the current policy vπθ

(s0). The value function
vπ(s) denotes the expected discounted rewards obtained by an agent following policy
π when starting in state s. More precisely, we set J(θ) = vπθ

(s0) where s0 denotes
the initial state of the environment and

vπθ
(s) = Eπθ

[ ∞∑

k=1

γkRt+k+1 | St = s

]
, (2.39)

where γ ∈ [0, 1) is some discount factor chosen beforehand. What remains is to find a
way to obtain a (stochastic) estimate of the gradient of vπθ

(s0) in order to implement
the update step in Eq. (2.38). A priori, when computing the gradient of vπθ

(s0),
we see that it depends on the effect of the policy on the state distribution of the
environment. But, since we do not know what the effect of the policy is on the state
distribution of the environment, how are we able to compute the gradient of vπθ

(s0)?
Fortunately, there is a nice theoretical answer to this question in the form of the policy
gradient theorem, which provides an analytic expression for the gradient of vπθ

(s0)
that does not involve the derivative of the state distribution of the environment.

For our purposes, we will stick to the vanilla version of the policy-gradient algo-
rithm called REINFORCE [182], as used throughout Chapter 5. In this setting, the
policy-gradient theorem tells us that

∇vπθ
(s0) = Eπ

[
Gt
∇πθ(At | St)

πθ(At | St)

]
, (2.40)

where Gt = γRt+1 + γ2Rt+2 + . . . is called the return. The expression on the right
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hand side of Eq. (2.40) is exactly what we need, a quantity that we can sample
(i.e., it does not require us to know the state distribution of the environment) whose
expectation value is equal to the gradient. In other words, we can use the right hand
side of Eq. (2.40) to obtain a (stochastic) estimate of ∇vπθ

(s0). In particular, we can
let the agent interact with the environment for a given number of steps T and collect
the interactions

{(s0, a0, r1), (s1, a1, r2), . . . , (sT , aT , rT+1)}.
Next, we loop over each step in the interactions t = 0, . . . , T , and at each step t we
compute Gt =

∑T
k=t+1 γ

k−t−1rt, and we update the parameters

θ = θ + αγtGt∇
∇πθ(at | at)
πθ(at | at)

. (2.41)

This is all summarized in Algorithm 1 in Figure 5.1.2.

2.5 Computational learning theory
Quantum machine learning (QML) [35, 26] is a bustling field with the potential to
deliver quantum enhancements for practically relevant problems. An important goal
of the community is to find practically relevant learning problems for which one can
prove that quantum learners have an exponential advantage over classical learners.
In Chapter 6 of this thesis, we study how to achieve such exponential separations
between classical and quantum learners for problems with classical data in the efficient
probably approximately correct (PAC) learning framework. But before we do so,
we will first introduce the required background and definitions from computational
learning theory together with some more computational complexity theory.

2.5.1 Learning separations in the PAC learning framework
As already mentioned, we use the standard terminology of the efficient probably ap-
proximately correct (PAC) learning framework, and we focus on the supervised learn-
ing setting (for an overview of the generative modelling setting see [185]). In this
framework a learning problem is defined by a concept class C = {Cn}n∈N, where each
Cn is a set of concepts, which are functions from some input space Xn (in this thesis
we assume Xn is either {0, 1}n or Rn) to some label set Yn (in this thesis we assume
Yn is {0, 1}, with the exception of Section 6.1.3 where it is {0, 1}n)7. As input the
learning algorithm has access to a procedure EX(c,Dn) (sometimes called an example
oracle) that runs in unit time, and on each call returns a labeled example (x, c(x)),
where x ∈ Xn is drawn according to target distributions D = {Dn}n∈N. Finally, the
learning algorithm has associated to it a hypothesis class H = {Hn}n∈N, and its goal
is to output a hypothesis h ∈ Hn – which is another function from Xn to Yn– that
is in some sense “close” to the concept c ∈ Cn generating the examples (we will make
this more precise shortly).

7Since our focus is on the computational complexity of the learner, we choose to explicitly highlight
the relevance of the instance size n in our notation.
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In the statistical version of the PAC learning framework the learning algorithm
has to identify (and/or evaluate) a good hypothesis using O (poly(n)) many queries
to EX(c,Dn), and the computational complexity (i.e., “runtime”) of the learning
algorithm is not considered. In this thesis however, we focus on the efficient PAC
learning framework, where the learning algorithm must output such a good hypothesis
in time O (poly(n)) (note that this also implies that the learning algorithm can only
use O (poly(n)) many queries to EX(c,Dn)). Moreover, in this thesis, we study
exponential separations specifically with respect to the time complexity of the learning
algorithms.

The PAC learning framework formalizes supervised learning. For instance, in the
learning scenario where one wants to detect a specific object in an image, the concepts
are defined to attain the value 1 when the object is present and 0 otherwise. More-
over, the oracle represents the set of training examples that is available in supervised
learning. We formally define efficient PAC learnability as follows.

Definition 3 (Efficient PAC learnability). A concept class C = {Cn}n∈N is efficiently
PAC learnable under target distributions D = {Dn}n∈N if there exists a hypothesis
class H = {Hn}n∈N and a (randomized) learning algorithm A with the following
property: for every c ∈ Cn, and for all 0 < ϵ < 1/2 and 0 < δ < 1/2, if A is given
access to EX(c,Dn) and ϵ and δ, then with probability at least 1 − δ, A outputs a
specification8 of some h ∈ Hn that satisfies

Prx∼Dn

[
h(x) ̸= c(x)

]
≤ ϵ.

Moreover, the learning algorithm A must run in time O(poly(n, 1/ϵ, 1/δ)).

In the above definition, the probability 1− δ is over the random examples drawn
from EX(c,Dn) and over the internal randomness of A. If the learning algorithm
is a polynomial-time classical algorithm (or, a quantum algorithm), we say that the
concept class is classically learnable (or, quantumly learnable, respectively). An im-
portant thing to note in the above definition is that the learner itself consists of two
parts: a hypothesis class, and a learning algorithm. More precisely, the learner con-
sists of a family of functions that it will use to approximate the concepts (i.e., the
hypothesis class), and of a way to select which function from this family is the best
approximation for a given concept (i.e., the learning algorithm). This is generally not
very different from how supervised learning is done in practice. For example, in deep
learning the hypothesis class consists of all functions realizable by a deep neural net-
work with some given architecture, and the learning algorithm uses gradient descent
to find the best hypothesis (i.e., the best assignment of weights).

To solve a given learning problem according to Definition 3, one thus needs to
construct a learner, which consists of both a learning algorithms as well as a hypothesis
class. Specifically, one is thus able to specifically tailor the hypothesis class to the
learning problem that one is trying to solve. Another way to define a learning problem
and how to solve it, would be to constrain the learner to only output hypotheses from

8The hypotheses (and concepts) are specified according to some enumeration R : ∪n∈N{0, 1}n →
∪nHn (or, ∪nCn) and by a “specification of h ∈ Hn” we mean a string σ ∈ {0, 1}∗ such that R(σ) = h
(see [116] for more details).
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a given hypothesis class (which would then be part of the specification of the learning
problem). In this thesis, our main focus is on investigating the limitations of all
possible classical learners for a given task. To do so, we primarily focus on setting
where constructing the right hypothesis class is also part of the learning problem. Our
goal is to demonstrate separations that establish the inability of classical learners,
regardless of the hypotheses they use, to efficiently solve a learning problem that can
be solved by a quantum learner. Nonetheless, in certain cases, it is more natural
to consider the setting where the learner is constrained to output hypotheses from a
given hypothesis class. We explore this setting, along with an instance of it which is
called proper PAC learning, in Sections 2.5.1 and 6.3.3.

When one is able to specifically tailor the hypothesis class to a given learning
problem (as is the case in Definition 3), it turns out to be necessary to limit the
computational power of the hypotheses. Constraining the learning algorithm to run
in polynomial-time turns out to be pointless if one allows arbitrary superpolynomial-
time hypotheses. More precisely, if we allow superpolynomial-time hypotheses, then
any concept class that can be learned by a superpolynomial-time learning algorithm,
can also be learned by a polynomial-time learning algorithm (see Appendix D.1.1
for more details). Intuitively, this is because by tailoring the hypothesis class one
can “offload” the learning algorithm onto the evaluation of the hypotheses, which
makes any constraints on the learning algorithm pointless. This is different when we
constrain the learner to only be able to output hypotheses from a given hypothesis
class, in which case it can be meaningful and natural to consider hypotheses with
superpolynomial runtimes (see also Sections 2.5.1 and 6.3.3). Additionally, because
we are studying separations between classical and quantum learners, we make the
distinction whether the hypotheses are efficiently evaluatable classically or quantumly.

Definition 4 (Efficiently evaluatable hypothesis class). A hypothesis class H =
{Hn}n∈N is classically (quantumly) efficiently evaluatable if there exists a classi-
cal (respectively quantum) polynomial-time evaluation algorithm Aeval that on input
x ∈ Xn and a specification of a hypothesis h ∈ Hn, outputs Aeval(x, h) = h(x).

For example, the hypotheses could be specified by a polynomial-sized Boolean
circuit, in which case they are classically efficiently evaluatable. On the other hand,
the hypotheses could also be specified by polynomial-depth quantum circuits, in which
case they are quantumly efficiently evaluatable. If the family of quantum circuits
that make up the hypothesis class is BQP-complete, then the hypothesis class will be
quantumly efficiently evaluatable, but not classically efficiently evaluatable (assuming
BPP ̸= BQP). In this thesis we will drop the “efficiently” and simply call a hypothesis
class classically- or quantumly evaluatable.

Given the definitions above one may assume that there is only one way to define a
learning separation in the PAC learning framework. However, it is in fact more subtle,
and there are various definitions that each have operationally different meanings. In
particular, one needs to differentiate whether the learning algorithm is classical or
quantum, and whether the hypothesis class is classically- or quantumly- evaluatable.
As a result, we define four categories of learning problems: concept classes that are
either classically- or quantumly- learnable (i.e., whether the learning algorithm is
classical or quantum), using a classically- or quantumly- evaluatable hypothesis class.
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We denote these categories by CC,CQ,QC, and QQ, where the first letter signifies
whether the concept class is classically- or quantumly- learnable , and the second letter
signifies whether the learner uses a classically- or quantumly- evaluatable hypothesis
class. These distinctions are not about the nature of the data (i.e., we only consider
the setting where the examples are classical) as it often occurs in literature, and even
on the Wikipedia-page on quantum machine learning.

Definition 5 (Categories of learning problem).

• Let CC denote the set of tuples
(
C,D

)
such that C is classically learnable under

target distributions D with a classically evaluatable hypothesis class.

• Let CQ denote the set of tuples
(
C,D

)
such that C is classically learnable under

target distributions D with a quantumly evaluatable hypothesis class.

• Let QC denote the set of tuples
(
C,D

)
such that C is quantumly learnable under

target distributions D with a classically evaluatable hypothesis class.

• Let QQ denote the set of tuples
(
C,D

)
such that C is quantumly efficiently

learnable under target distributions D with a quantumly evaluatable hypothesis
class.

We remark that our definitions do not (yet) talk about the computational tractabil-
ity of the concepts, the importance of which we will discuss in Section 2.5.2 and
throughout Sections 6.1 and 6.2. We now proceed with a few observations. Firstly,
since any classical algorithm can be simulated by a quantum algorithm it is clear
that CC ⊆ CQ, CC ⊆ QC, CC ⊆ QQ, CQ ⊆ QQ, and QC ⊆ QQ. Secondly, we make
the non-trivial observation that if the hypothesis class can use a quantum evaluation
algorithm (i.e., it is quantumly evaluatable), then it does not matter whether we
constrain the learning algorithm to be a classical- or a quantum- algorithm. More
precisely, as a first result we show that any learning problem that is quantumly learn-
able using a quantumly evaluatable hypothesis class is also classically learnable using
another quantumly evaluatable hypothesis class. This observation is summarized in
the lemma below, and we defer the proof to Appendix D.1.2.

Lemma 3. CQ = QQ.

The above lemma is analogous to why we constrain the hypotheses to be efficiently
evaluatable, in the sense that by changing the hypothesis class one can “offload” the
quantum learning algorithm onto the evaluation of the quantum hypotheses. We
reiterate that it is critical that one can change the hypothesis class when mapping
a learning problem in QQ to CQ. If the learner is constrained to output hypotheses
from a fixed hypothesis class, then such a collapse does not happen.

Having studied the relations between the categories learning problems, we can now
specify what it means for a learning problem to exhibit a separation between classical
and quantum learners.

Definition 6 (Learning separation). A learning problem L =
(
C,D

)
is said to exhibit

a
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• CC/QC separation if L ∈ QC and L ̸∈ CC.

• CC/QQ separation if L ∈ QQ and L ̸∈ CC.

Firstly, note that due to the previously listed inclusions any CC/QC separation
is also a CC/QQ separation. Secondly, note that by fully relying on the classical
intractability of concepts one can construct trivial learning separations that are less
about “learning” in an intuitive sense. More precisely, consider the separation exhib-
ited by the concept class C = {Cn}n∈N, where each Cn consists of a single concept that
is classically hard to evaluate on a fraction of inputs even in the presence of data, yet
it can be efficiently evaluated by a quantum algorithm. This singleton concept class
is clearly quantumly learnable using a quantumly evaluatable hypothesis class. Also,
it is not classically learnable using any classically evaluatable hypothesis class, since
this would violate the classical intractability of the concepts. However, note that the
quantum learner requires no data to learn the concept class, so it is hard to argue
that this is a genuine learning problem. We will discuss how to construct examples
of such concept classes in Sections 6.1.1 and 6.1.2.

Observation 1 (Trivial learning separation without data). Consider a family of
concept classes C = {Cn}n∈N, where each Cn = {cn} consists of a single concept that
is classically hard to evaluate on a fraction of inputs when given access to examples,
yet it can be efficiently evaluated by a quantum algorithm. Then, C exhibits a CC/QQ
separation which is quantum learnable without requiring data.

We want to emphasize that some concept classes are efficiently evaluatable on a
classical computer, yet they are not classically learnable. One such example is the
class of polynomially-sized logarithmic-depth Boolean circuits [116]. Moreover, in
Section 6.1.3, we provide an example of concept class which (assuming a plausible
but relatively unexplored hardness assumption) exhibits a CC/QC separation where
the concepts are efficiently evaluatable on a classical computer.

Learning separations with a fixed hypothesis class and proper PAC learn-
ing

In some practical settings, it can be natural to constrain the learner to only output
hypotheses from a fixed hypothesis class. To give a physics-motivated example, when
studying phases of matter one might want to identify what observable properties
characterize a phase. One can formulate this problem as finding a specification of
the correct hypothesis selected from a hypothesis class consisting of possible order
parameters. More precisely, we fix the hypotheses to be of a particular form, e.g.,
those that compute certain expectation values of ground states given a specification
of a Hamiltonian9. We further discuss this setting of characterizing phases of matter
in Section 6.3.3, where we also discuss Hamiltonian learning as a natural setting in
which the learner is constrained to output hypotheses from a fixed hypothesis class.

9Note the computation of these hypotheses can be QMA-hard, as it involves preparing ground
states. Nonetheless, we can still study whether a learner is able to identify which of these hypotheses
matches the data.
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Recall that in the standard PAC learning framework discussed in the previous
section, the learner is free to output arbitrary hypotheses (barring tractability con-
straints discussed in Appendix D.1.1). It therefore fails to capture the setting where
one aims to characterize phases of matter, as the learner might output hypotheses
that are not order parameters, which will not allow one to identify physical properties
that characterize a phase. To remedy this, one could consider the setting where the
learner is constrained to output hypotheses from a fixed hypothesis class.

Definition 7 (Efficient PAC learnability with fixed hypothesis class). A concept class
C = {Cn}n∈N is efficiently PAC learnable with a fixed hypothesis class H = {Hn}n∈N
under target distributions D = {Dn}n∈N if there exists a (randomized) learning algo-
rithms A with the following property: for every c ∈ Cn, and for all 0 < ϵ < 1/2 and
0 < δ < 1/2, if A is given access to EX(c,Dn) and ϵ and δ, then with probability at
least 1− δ, A outputs a specification of some h ∈ Hn that satisfies

Prx∼Dn

[
h(x) ̸= c(x)

]
≤ ϵ.

Moreover, the learning algorithm A must run in time O(poly(n, 1/ϵ, 1/δ)).

In the above definition, the probability 1 − δ is over the random examples from
EX(c,Dn) and over the internal randomization of An. If the learning algorithm is
a polynomial-time classical algorithm (or, a quantum algorithm), we say that the
concept class is classically learnable with fixed hypothesis class (or, quantumly learn-
able with fixed hypothesis class, respectively). An example of learning with a fixed
hypothesis class is that of proper PAC learning. In proper PAC learning the learner
is constrained to only output hypothesis from the concept class it is trying to learn.

We emphasize again that if the learner is constrained to output hypotheses from
a fixed hypothesis class, then it is allowed and reasonable for the hypothesis class to
be (classically- or quantumly-) intractable. In particular, doing so will not trivialize
the definitions as it did in the standard PAC learning framework (see Appendix D.1)
as this requires one to be able to change the hypotheses.

In the setting where the learner is constrained to output hypotheses from a fixed
hypothesis class, it is relatively clear how to define a learning separation. In particular,
one only has to distinguish whether the learning algorithm is an efficient classical- or
quantum- algorithm, which we capture by defining the following categories of learning
problems.

Definition 8 (Categories of learning problem – fixed hypothesis class H).

• Let CH denote the set of tuples
(
C,D

)
such that C is classically learnable with

fixed hypothesis class H under target distributions D.

• Let QH denote the set of tuples
(
C,D

)
such that C is quantumly learnable with

fixed hypothesis class H under target distributions D.

We can now specify what it means for a learning problem to exhibit a separation
between classical and quantum learners in the setting where the learner is constrained
to output hypotheses from a fixed hypothesis class.
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Definition 9 (Learning separation – fixed hypothesis class H).
A learning problem L =

(
C,D

)
∈ QH is said to exhibit a CH/QH separation if L ̸∈ CH.

In Sections 6.1.3 and 6.1.4, we provide examples of learning separations in the
setting where the learner is constrained to output hypotheses from a fixed hypothesis
class. Moreover, in Section 6.3.3, we further discuss the practical relevance of this
setting by discussing how it captures certain physics-motivated examples of learning
settings.

Identification versus Evaluation

An important difference in what exactly entails a learning task in practice is whether
the learner has to only identify a hypothesis that is close to the concept generating
the examples, or whether the learner also has to evaluate the hypothesis on unseen
examples later on. Moreover, these differences in tasks have implications for the role
of quantum computers in achieving separations. This difference in tasks is reflected
in two aspects within the definitions discussed in this section.

Firstly, this difference in tasks is reflected in the difference between CC/QQ and
CC/QC separations. In particular, it is reflected in the task that requires a quantum
computer (i.e., what task needs to be classically intractable yet efficient on a quan-
tum computer). On the one hand, for a CC/QC separation, one has to show that
only a quantum algorithm can identify how to label unseen examples using a classi-
cal algorithm. On the other hand, for a CC/QQ separation, one also needs to show
that only a quantum algorithm can evaluate the labels of unseen examples. In Sec-
tion 6.1.3, we provide an example of a CC/QC separation (contingent on a plausible
though relatively unexplored hardness assumption), where the classical hardness lies
in identifying an hypothesis matching the examples, since the concepts are efficiently
evaluatable classically.

Secondly, the difference in tasks is also reflected in the difference between the set-
ting where the learner is allowed to output arbitrary hypothesis, or whether it can
only output hypotheses from a fixed hypothesis class. In the arbitrary hypothesis
class setting, one has to demand that the hypotheses are efficiently evaluatable (i.e.,
see Appendix D.1), which allows the learner to efficiently evaluate the hypotheses on
unseen examples. In the fixed hypothesis class setting, the hypotheses need not be
efficiently evaluatable, and the learner is only required to identify the correct hypoth-
esis without having to evaluate it on unseen examples. In Sections 6.1.3 and 6.1.4,
we provide examples of separation in the setting where the learner is constrained to
output hypotheses from a fixed hypothesis class. Note that the classical hardness in
these separation lies identifying the hypotheses, as we do not require the learner to
evaluate the hypothesis on unseen examples afterwards.

2.5.2 Complexity theory
In this section we provide a short overview of the areas of complexity theory that we
will refer to when discussing separations in the PAC learning framework. In particular,
we focus on the computational hardness assumptions that one can leverage to establish
a learning separation.

39



We turn our attention to the definition of the PAC learning framework (see Defi-
nition 3) and make some observations that will be relevant later. First, we note that
the hypothesis that the learning algorithm outputs is only required to be correct with
probability ϵ over the target distribution. In complexity theory, this is related to the
notion of heuristic complexity classes (for more details see [37]). To define heuristic
complexity classes, we first need to incorporate the target distribution as a part of
the problem, which is done by considering distributional problems.

Definition 10 (Distributional problem [37]). A distributional problem is a tuple
(L,D), where L ⊆ {0, 1}∗ is a language10 and D = {Dn}n∈N is a family of dis-
tributions such that supp(Dn) ⊆ {0, 1}n.

A distributional problem at its core remains a decision problem, wherein the in-
puts follow a specific distribution. It is important not to confuse this with a sampling
problem, in which the goal is to generate samples from a designated distribution. Hav-
ing defined distributional problems, we now define the relevant heuristic complexity
classes.

Definition 11 (Heuristic complexity [37]). A distributional problem (L,D) is in
HeurBPP if there exists a polynomial-time randomized classical algorithm A11 such
that for all n and ϵ > 012:

Prx∼Dn

[
Pr
(
A(x, 0⌊1/ϵ⌋) = L(x)

)
≥ 2

3

]
≥ 1− ϵ, (2.42)

where the inner probability is taken over the internal randomization of A.
Analogously, we say that a distributional problem (L,D) is in HeurBQP if there

exists a polynomial-time quantum algorithm A that satisfies the property in Eq. (2.42).

A related and perhaps better known area of complexity theory is that of average-
case complexity. The main difference between average-case complexity and heuristic
complexity, is that in the latter one is allowed to err, whereas in the former one
can never err but is allowed to output “don’t know”. Note that an average-case
algorithm can always be converted into a heuristic algorithm by simply outputting
a random result instead of outputting “don’t know”. Similarly, if there is a way to
efficiently check if a solution is correct, any heuristic algorithm can be turned into
an average-case algorithm by outputting “don’t know” when the solution is incorrect.
Even though they are closely related, in the PAC learning framework one deals with
heuristic complexity.

While heuristic-hardness statements are not as common in quantum computing
literature, many cryptographic security assumptions (such as that of RSA and Diffie-
Hellman) are in fact examples of heuristic-hardness statements. These heuristic-
hardness statements are generally derived from worst-case to average-case reductions,

10Throughout this thesis, we also use an equivalent definition of a language L ⊆ {0, 1}∗ by instead
calling it a problem and defining it as a function L : {0, 1}∗ → {0, 1} such that L(x) = 1 if and only
if x ∈ L.

11More precisely, a Turing machine.
12Here 0⌊1/ϵ⌋ denotes the bitstring consisting of ⌊1/ϵ⌋ zeroes (i.e., it is a unary specification of the

precision ϵ).
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which show that being correct with a certain probability over a specific input distri-
bution is at least as difficult as being correct on all inputs. Problems that admit a
worst- to average-case reduction are called random self-reducible (for a formal defini-
tion see [79]). It is worth noting that despite the term “average-case”, these reductions
can also yield heuristic hardness statements. Specifically, if one can efficiently check
whether a solution is correct, then a worst-case to average-case reduction also results
in a heuristic hardness statement when the worst-case is hard. For instance, a worst-
case to average-case reduction by Blum and Micali [36] demonstrates that for the
discrete logarithm problem being correct on any 1

2 + 1
poly(n) fraction of inputs is as

difficult as being correct for all inputs (notably, modular exponentiation allows for
efficient checking of the correctness of a discrete logarithm solution).

Finally, there is the notion of the example oracle. The fact that access to the exam-
ple oracle radically enhances what can be efficiently evaluated is related (though not
completely analogous, as we will explain below) to the notion of “advice” complexity
classes such as P/poly.

Definition 12 (Polynomial advice [24]). A problem L : {0, 1}∗ → {0, 1} is in P/poly
if there exists a polynomial-time classical algorithm A with the following property: for
every n there exists an advice bitstring αn ∈ {0, 1}poly(n) such that for all x ∈ {0, 1}n:

A(x, αn) = L(x). (2.43)

Analogously, we say that a problem L is in BQP/poly if there exists a polynomial-
time quantum algorithm A with the following property: for every n there exists an
advice bitstring αn ∈ {0, 1}poly(n) such that for all x ∈ {0, 1}n:

Pr
(
A(x, αn) = L(x)

)
≥ 2

3
, (2.44)

where the probability is taken over the internal randomization of A.

Equivalently, P/poly can also be defined as the class of problems that can be
solved by a non-uniform family of polynomial-size Boolean circuits. Specifically, for
each instance size, a polynomially-sized circuit that solves the problem exists, though
there does not need to be a polynomial-time algorithm that constructs these circuits
from the instance size. Since in the PAC learning framework we deal with randomized
learning algorithms one may want to consider BPP/poly instead, however by [15] we
have that BPP ⊆ P/poly, and so BPP/poly = P/poly. On the other hand, from the
perspective of the PAC learning framework, it is both natural and essential to allow
the algorithm that uses the advice to err on a fraction of inputs, which is captured
by the complexity class HeurP/poly.

Definition 13 (Heuristic complexity with polynomial advice). A distributional prob-
lem (L,D) is in HeurP/poly if there exists a polynomial-time classical algorithm A
with the following property: for every n and ϵ > 0 there exists an advice string
αn,ϵ ∈ {0, 1}poly(n,1/ϵ) such that:

Prx∼Dn

[
A(x, 0⌊1/ϵ⌋, αn,ϵ) = L(x)

]
≥ 1− ϵ. (2.45)
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Analogously, we say that (L,D) is in HeurBQP/poly if there exists a polynomial-
time quantum algorithm A such that: for every n and ϵ > 0 there exists an advice
string αn,ϵ ∈ {0, 1}poly(n,1/ϵ) with the following property:

Prx∼Dn

[
Pr
(
A(x, 0⌊1/ϵ⌋, αn,ϵ) = L(x)

)
≥ 2

3

]
≥ 1− ϵ, (2.46)

where the inner probability is taken over the internal randomization of A.

Note that in the PAC learning framework, the advice that the learning algorithm
gets is of a specific form, namely that obtained through queries to the example oracle.
This is more closely related to the notion of “sampling advice” complexity classes such
as BPP/samp [109] defined below. In [109] it is shown that BPP/samp ⊆ P/poly, i.e.,
sampling advice is not more powerful than the standard notion of advice.

Definition 14 (Sampling advice [109]). A problem L : {0, 1}∗ → {0, 1} is in BPP/samp
if there exists polynomial-time classical randomized algorithms S and A such that for
every n:

• S generates random instances x ∈ {0, 1}n sampled from the distribution Dn.

• A receives as input T = {(xi, L(xi)) | xi ∼ Dn}poly(n)i=1 and satisfies for all
x ∈ {0, 1}n:

Pr
(
A(x, T ) = L(x)

)
≥ 2

3
, (2.47)

where the probability is taken over the internal randomization of A and T .

Having related notions in the PAC learning framework to different areas of com-
plexity theory, we are now ready to determine what computational hardness assump-
tions one can leverage to establish that no classical learner is able to learn a given
concept class. More specifically, how hard must evaluating the concepts be for the con-
cept class to not be classically learnable? Since the learning algorithm is a randomized
algorithm that heuristically computes the concepts when provided with advice in the
form of samples from the example oracle, the existence of a polynomial-time learning
algorithm puts the concepts in a complexity class that we call HeurBPP/samp.

Definition 15. A distributional problem (L,D) is in HeurBPP/samp if there exists
classical randomized algorithms S and A such that for every n:

• S generates random instances x ∈ {0, 1}n sampled from the distribution Dn.

• A receives as input T = {(xi, L(xi)) | xi ∼ Dn}poly(n)i=1 and for every ϵ > 0
satisfies:

Prx∼Dn

[
Pr
(
A(x, 0⌊1/ϵ⌋, T ) = L(x)

)
≥ 2

3

]
≥ 1− ϵ, (2.48)

where the inner probability is taken over the internal randomization of A and
T .
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More precisely, if the concepts lie outside of HeurBPP/samp, then the concept
class is not classically learnable. We can connect the class HeurBPP/samp to other
complexity classes by adopting a proof strategy similar to that of [109] (we defer the
proof to Appendix D.1.3).

Lemma 4. HeurBPP/samp ⊆ HeurP/poly.

By the above lemma, we find that any problem not in HeurP/poly is also not in
HeurBPP/samp. Consequently, to show the non-learnability of a concept class, it is
sufficient to show that the concept class includes concepts that are not in HeurP/poly.

Having discussed the related notions from computational learning theory and com-
plexity theory, we are set to investigate how one establishes learning separations.
First, in Section 6.1, we will analyze how existing learning separations have used effi-
cient data generation, and we generalize this construction to (i) establish a learning
separation (contingent on a plausible though relatively unexplored hardness assump-
tion) with efficiently evaluatable concepts, and (ii) establish a learning separation
in the setting where the learner is constrained to output an hypothesis from a fixed
hypothesis class. Afterwards, in Section 6.2, we discuss the additional constructions
required to prove separations in tune with the folklore that quantum machine learning
is most likely to have it advantages when the data generated by a “genuine quantum
process”. For an overview of the learning separations discussed throughout this thesis
see Table 2.1.

First proposed Concepts based on Separation Complexity concepts
[126] Discrete logarithm CC/QQ ̸∈ BPP
[173] Discrete cube root CC/QC ∈ (P/poly) \ BPP

Section 6.1.3 Modular exponentiation CC/QC ∈ P
Section 6.1.4 Discrete cube root CH/QH ∈ P
Section 6.2.1 Quantum process CC/QQ ̸∈ HeurP/poly but ∈ BQP

Table 2.1: The learning separations discussed in Sections 6.1 and 6.2.
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Chapter 3

Towards quantum advantage via
topological data analysis

In this chapter we discuss the advantages that the quantum algorithm for Betti num-
ber estimation can achieve over classical algorithms. Firstly, in Section 3.1, we for-
mally define the computational problems that the quantum algorithm for Betti num-
ber estimation can (efficiently) solve. In particular, it is clear that the techniques
used in the quantum algorithm for Betti number estimation can also be used to esti-
mate the number of small eigenvalues of arbitrary sparse Hermitian matrix, not just
of combinatorial Laplacians. We take this as the starting point to define our natural
generalization, which is called low-lying spectral density estimation (a version of which
was also studied by Brandão [40]). Next, in Section 3.2, we show that this general-
ization is DQC1-hard, which suggests that the quantum-algorithmic methods behind
the quantum algorithm for Betti number estimation may be a source of exponential
separation between quantum and classical computers. We also discuss how to poten-
tially close the gap between the topological data analysis problem of Betti number
estimation and its generalization, which would show that the topological data anal-
ysis problem is itself classically intractable. Setting aside the complexity theory, in
Section 2.2.3 we discuss the state-of-the-art classical algorithms for Betti number esti-
mation and compare them with the quantum algorithms for Betti number estimation.
We also discuss promising approaches for developing novel more efficient classical al-
gorithms that take into account the specifics of the combinatorial Laplacian and we
clearly delineate the theoretical hurdles that, at least currently, stymie such classical
approaches. After discussing the strengths and weaknesses of the classical algorithms,
we identify graphs for which the quantum algorithm can achieve (superpolynomial)
speedups over the best known classical algorithms in Section 3.2.4.

3.1 Problem definitions
In this section we formally define the computational problems whose hardness we will
study. We begin by defining the problems that capture the key steps of the quantum
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algorithm for Betti number estimation. Afterwards, we define the problems related
to topological data analysis that the quantum algorithm for Betti number estimation
aims to solve. We end this section by discussing the precise relationships between
these problems.

The input matrices that we consider are sparse positive semidefinite matrices. We
call a 2n × 2n positive semidefinite matrix sparse if at most O (poly(n)) entries in
each row are nonzero. A special class of sparse positive semidefinite matrices that we
consider is the class of log-local Hamiltonians, i.e., n-qubit Hamiltonians that can be
written as a sum

H =

m∑

j=1

Hj , (3.1)

where each Hj acts on at most O (log n) qubits and we assume that m ∈ O (poly(n)).
Our problems take as input a specification of a sparse positive semidefinite matrix,

and we consider the following two standard cases. First, we consider the case where
the input matrix is specified in terms of sparse access. That is, the input matrix
H ∈ C2n×2n is specified by quantum circuits that let us query the values of its
entries, and the locations of the nonzero entries. More precisely, we assume that we
are given classical descriptions of O (poly(n))-sized quantum circuits that implement
the oracles OH and OH,loc, which map

OH : |i, j⟩ |0⟩ 7→ |i, j⟩ |Hi,j⟩ ,
OH,loc : |j, ℓ⟩ |0⟩ 7→ |j, ℓ⟩ |ν(j, ℓ)⟩ ,

where 0 ≤ i, j, ℓ ≤ 2n − 1, and ν(j, ℓ) ∈ {0, . . . , 2n − 1} denotes the location of the
ℓ-th nonzero entry of the j-th column of H. Secondly, for log-local Hamiltonians, we
also consider specifying the input matrix H by its local-terms {Hj} as in Eq. (3.1).

In order to define the problem of generating approximations of eigenvalues that
are sampled uniformly at random, we fix a suitable notion of an approximation of a
probability distribution. In particular, this notion needs to take into account that the
algorithm may err on both the estimation of the eigenvalue, and on the probability
with which it provides such an estimation. For this we use the following definition
presented in [200]. Let p be some probability distribution over the eigenvalues of a pos-
itive semidefinite matrix H ∈ C2n×2n . That is, sampling according to p will output an
eigenvalue λk with probability p(λk), and

∑2n−1
k=0 p(λk) = 1. In this context, a prob-

ability distribution q with finite support Yq ⊂ R is said to be an (δ, µ)-approximation
of p if it satisfies

∑

y∈Yq : |y−λk|<δ

q(y) ≥ (1− µ)p(λk), ∀k ∈ {0, . . . , 2n−1}.

Intuitively, this means that if we draw a sample according to q, then this sample
will be δ-close to an eigenvalue λk with probability at least (1− µ)p(λk)1 Using this

1This definition captures the distribution generated by quantum phase estimation: the eigenvector
is chosen according to the distribution p specified by the input state, and the output is δ-close to
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definition, we define the problem of generating approximations of eigenvalues that are
sampled uniformly at random from the set of all eigenvalues as follows.

Sparse uniform eigenvalue sampling (SUES)2
Input:
1) A sparse positive semidefinite matrix H ∈ C2n×2n , with ||H|| ≤ poly(n).
2) An estimation precision δ ∈ Ω (1/poly(n)).
3) An error probability µ ∈ Ω (1/poly(n)).
Output: A sample drawn according to a (δ, µ)-approximation of the uniform

distribution over the eigenvalues of H.
In the quantum algorithm for Betti number estimation, samples from sues are used

to estimate the number of eigenvalues of the combinatorial Laplacian that are close to
zero. Clearly, this same idea can be used to estimate the number of eigenvalues that
lie in some given interval for arbitrary sparse positive semidefinite matrices. This is
called the eigenvalue count [40], which for a positive semidefinite matrix H ∈ C2n×2n

and eigenvalue thresholds a, b ∈ R≥0 is given by

NH(a, b) =
1

2n

∑

k : a≤λk≤b

1,

where λ0 ≤ · · · ≤ λ2n−1 denote the eigenvalues ofH. For a threshold b ∈ Ω (1/poly(n)),
we shall refer to the quantity NH(0, b) as low-lying spectral density. This precisely
captures our notion of the number of eigenvalues close to zero as discussed before.
We define the problem of estimating the low-lying spectral density as follows.
Low-lying spectral density estimation (LLSD)3

Input:
1) A sparse positive semidefinite matrix H ∈ C2n×2n , with ||H|| ≤ poly(n).
2) A threshold b ∈ Ω (1/poly(n)).
3) Precision parameters δ, ϵ ∈ Ω (1/poly(n)).
4) A success probability µ > 1/2.
Output: An estimate χ ∈ [0, 1] that, with probability at least µ, satisfies

NH (0, b)− ϵ ≤ χ ≤ NH(0, b+ δ) + ϵ.

To provide some intuition behind this definition, note that it is supposed to pre-
cisely capture the problem that is solved by repeatedly sampling from sues and
computing the frequency of the eigenvalues that lie below the given threshold. We
therefore require the precision parameter δ due to the imprecisions in the quantum
phase estimation algorithm. Moreover, the precision parameter ϵ is necessary due to
the sampling error we incur by estimating a probability by a relative frequency.

Now that we have formally defined the problems that capture the key steps of the

the corresponding eigenvalue with probability at least (1− µ).
2In view of noisy quantum computers, it is interesting to consider distributions that are close

to these (δ, µ)-approximation in total variation distance. Sampling such distributions can be less
demanding, however, the precise hardness remains to be analyzed.

3The exact version of this problem is closely related to #P [45].
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quantum algorithm for Betti number estimation, we define the problems related to
topological data analysis that they allow us to solve. For these problems we consider
the adjacency matrix of the graph to be the input, as this is usually the input to the
quantum algorithm for Betti number estimation. We define the problem of estimating
Betti numbers as follows.
Betti number estimation (BNE)4
Input:
1) The adjacency matrix of a graph G = ([n], E).
2) An integer 0 ≤ k ≤ n− 1.
3) A precision parameter ϵ ∈ Ω (1/poly(n)).
4) A success probability µ > 1/2.
Output: An estimate χ ∈ [0, 1] that, with probability at least µ, satisfies

∣∣∣∣χ−
βG
k

dimHG
k

∣∣∣∣ ≤ ϵ.

As discussed in Section 2.2.2, the quantum algorithm for Betti number estimation
does not precisely solve the above problem. Namely, due to the lack of knowledge
regarding lower bounds on the smallest nonzero eigenvalue of the combinatorial Lapla-
cian, we are not always able to estimate the number of eigenvalues that are exactly
equal to zero. Nonetheless, the quantum algorithm for Betti number estimation is
still able to estimate the number of eigenvalues of the combinatorial Laplacian that
are close to zero, which we called approximate Betti numbers. We define the problem
of estimating approximate Betti numbers as follows.

Approximate Betti number estimation (ABNE)
Input:
1) The adjacency matrix of a graph G = ([n], E).
2) An integer 0 ≤ k ≤ n− 1.
3) Precision parameters δ, ϵ ∈ Ω (1/poly(n)).
4) A success probability µ > 1/2.
Output: An estimate χ ∈ [0, 1] that, with probability at least µ, satisfies

βG
k

dimHG
k

− ϵ ≤ χ ≤ N∆G
k
(0, δ) + ϵ.

We are now set to outline the problem that the quantum algorithm for Betti
number estimation can efficiently solve. As discussed in Section 2.2.2, the quantum
algorithm for Betti number estimation can efficiently solve abne, but only in certain
regimes. In particular, one has to be able to efficiently prepare the maximally mixed
state over all cliques of a given size from the adjacency matrix of the graph. As
mentioned in Section 2.2.2, the efficiency of this state preparation depends on the
graph’s clique-density (i.e., probability that a uniformly random subset of vertices
is a clique), or the graph’s arboricity (which up to a factor 1/2 is equivalent to the

4The exact version of this problem is NP-hard [14]
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maximum average degree of a subgraph). In short, the problem that the quantum
algorithm for Betti number estimation can efficiently solve is a restriction of abne,
where one is promised that the input graph is such that one can efficiently prepare the
maximally mixed state over all cliques of a given size from the adjacency matrix (e.g., if
the graph is sufficiently clique-dense or if it has a sufficiently bounded arboricity). We
discuss this in more detail in Section 3.2.4, where we outline sufficient conditions on
the graph’s clique-density or arboricity that allow the quantum algorithm to efficiently
solve abne.

Next, we will study the complexity of llsd as it is a generalization of the problem
that the quantum algorithm for Betti number estimation efficiently solves. Namely,
as we will show in the following section, we can use llsd to directly solve the problem
that the quantum algorithm for Betti number estimation efficiently solves. Note that
the input to the quantum algorithm for Betti number estimation is the adjacency
matrix, and not the combinatorial Laplacian. Therefore, in order to use llsd to solve
the problem that the quantum algorithm for Betti number estimation efficiently solves,
one first has to construct the appropriate input to llsd. As it is computationally too
expensive to enumerate all cliques in your graph, we cannot take the straightforward
approach of first computing the combinatorial Laplacian to construct the desired
input to llsd. Fortunately, we can still use llsd to efficiently solve the problem that
the quantum algorithm for Betti number estimation efficiently solves by simulating
sparse access to a matrix that is obtained by padding the combinatorial Laplacian
with all-zeros columns and rows (see Section 3.1.1 for more details).

3.1.1 Relationships between the problems
In the previous section we have formally defined the computational problems whose
complexity we will study. In this section we examine the reductions between llsd
and the problems related to topological data analysis in order to elucidate the precise
relationships. An overview of the reductions can be found in Figure 3.1.

First, we discuss the relationship between llsd and abne. It is clear that llsd
with a combinatorial Laplacian as input produces a solution to the corresponding
instance of abne. It is also clear that llsd can be used to solve abne if given
the input of abne (i.e, the adjacency matrix), we can efficiently implement sparse
access to a matrix such that an estimate of its low-lying spectral density allows us to
recover an estimate of the low-lying spectral density of the combinatorial Laplacian.
Interestingly, it turns out that we can do so if the input graph is clique-dense (i.e.,
in precisely the regime that is efficiently solvable by the quantum algorithm for Betti
number estimation). Namely, we can efficiently implement sparse access to the

(
n

k+1

)
×(

n
k+1

)
-sized matrix ΓG

k whose columns and rows are indexed by (k + 1)-subsets of
vertices, and whose entries are given by

(
ΓG
k

)
i,j

=

{
(∆G

k )i,j if i and j are (k + 1)-cliques,
0 otherwise.

(3.2)

In other words, the entries of the columns and rows that correspond to (k+1)-cliques
are equal to the corresponding entries of the combinatorial Laplacian, and all other
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entries are equal to zero. After subtracting the extra nullity caused by adding the(
n

k+1

)
− χk all-zeros columns and rows, and renormalizing the eigenvalue count by a

factor
(

n
k+1

)
/χk, the low-lying spectral density of this ΓG

k is equal to the low-lying
spectral density of the combinatorial Laplacian. In equation form, we have that

N∆G
k
(0, b) =

(
n

k+1

)

χk
NΓG

k
(0, b)−

(
n

k+1

)
− χk

χk
. (3.3)

From Eq. (3.3), it is clear that an estimate of NΓG
k
(0, b) up to additive inverse polyno-

mial precision allows us to obtain an estimate of N∆G
k
(0, b) up to additive inverse

polynomial precision, assuming indeed that the graph is clique-dense – i.e., that
χk/

(
n

k+1

)
∈ Ω (1/poly(n)). Note that this also requires us to have an estimate of

χk/
(

n
k+1

)
. Since the graph is clique-dense, it suffices to estimate χk/

(
n

k+1

)
up to ad-

ditive inverse polynomial precision. An estimate of χk/
(

n
k+1

)
up to additive error ϵ

can be obtained by drawing O(ϵ−2) many k-subsets of vertices uniformly at random,
and computing the fraction of these subsets that constitute an actual k-clique.

We emphasize that the above reduction works in precisely the regime where the
quantum algorithm for Betti number estimation can efficiently solve abne. In other
words, llsd can be used to directly solve the problem that the quantum algorithm
for Betti number estimation can efficiently solve. In this regard, llsd is indeed a
generalization of the problem that the quantum algorithm for Betti number estimation
can efficiently solve.

Finally, let us discuss the reductions between abne and bne. It is clear that bne
is reducible to abne if the size of the smallest nonzero eigenvalue of the combinatorial
Laplacian is at least inverse polynomial in n. The reverse direction is unclear, as for
bne the threshold on the eigenvalues is fixed to be exactly zero. A possible approach
would be to first project the eigenvalues that lie below the given threshold to zero
and then count the zero eigenvalues. However, using techniques inspired by ideas
from [85, 121], we have only been able to project these eigenvalues close to zero, as
opposed to exactly equal to zero, and we are not aware of any way to circumvent this.

3.2 Classical intractability of llsd

To show that quantum computers have an advantage over classical computers in topo-
logical data analysis, one would have to show that Betti number estimation requires
exponential time on a classical computer. In this section we study the classical hard-
ness of the problem efficiently solved by the quantum algorithm for Betti number
estimation. In particular, we show that the natural generalization of this problem
(which we called low-lying spectral density estimation) is classically intractable under
widely-believed complexity-theoretic assumptions by showing that it is hard for the
one clean qubit model of computation. Afterwards, we discuss how to potentially
close the gap between the classical intractability of low-lying spectral density and
(approximate) Betti number estimation in order to show that the topological data
analysis problem is itself classically intractable.
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LLSD

ABNE

BNE

SUES

LGZ

DQC1

Figure 3.1: Overview of the relations between the problems (octagons), algorithm
(rectangle) and complexity class (ellipse) studied in this thesis. A C−→ B stand for: “A
can efficiently solve B if condition C holds”. The algorithm studied is that by Lloyd,
Garnerone and Zanardi (LGZ) as described in Figure 2.5. The problems are sparse
uniform eigenvalue sampling (sues), low-lying spectral density estimation (llsd),
approximate Betti number estimation (abne), and Betti number estimation (bne) as
defined in Section 3.1 The class DQC1 is defined in Section 3.2.1.
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3.2.1 The one clean qubit model of computation
In the next section we will show that the complexity of the problems defined in Sec-
tion 3.1 are closely related to the one clean qubit model of quantum computation [122].
In this model we are given a quantum register that is initialized in a state consisting
of a single ‘clean’ qubit in the state |0⟩, and n − 1 qubits in the maximally mixed
state. We can then apply any polynomially-sized quantum circuit to this register, and
measure only the first qubit in the computational basis. Following [122], we will refer
to the complexity class of problems that can be solved in polynomial time using this
model of computation as DQC1 – “deterministic quantum computation with a single
clean qubit”.

We will refer to a problem as DQC1-hard if any problem in DQC1 can be reduced
to it under polynomial time truth-table reductions. That is, a problem L is DQC1-
hard if we can solve any problem in DQC1 using polynomially many nonadaptive
queries to an oracle for L, together with polynomial time preprocessing of the inputs
and postprocessing of the outcomes. Technically, instead of containing the problem
of estimating a given quantity up to additive inverse polynomial precision, DQC1
contains the decision problem of deciding whether this quantity is greater than 1/2+σ
or less than 1/2 − σ, where σ is some inverse polynomial gap. However, as the
estimation versions of these problems are straightforwardly reduced to their decision
version using binary search, we will bypass this point from now on and only consider
the problems of estimating a given quantity up to inverse polynomial precision [178].

It is widely believed that the one clean qubit model of computation is more pow-
erful than classical computation. For instance, estimating quantities that are sup-
posedly hard to estimate classically, such as the normalized trace of a unitary matrix
corresponding to a polynomial-depth quantum circuit and the evaluation of a Jones
polynomial at a root of unity, turn out to be complete problems for DQC1 [178].
Moreover, it has been shown that classical computers cannot efficiently sample from
the output distribution of the one clean qubit model up to constant total variation
distance error, provided that some complexity theoretic conjectures hold [141, 142].

3.2.2 Hardness of llsd for the one clean qubit model
Recall that in order to show that quantum computers have an advantage over classical
computers in topological data analysis, one would have to show that the problem that
the quantum algorithm for Betti number estimation can efficiently solve is hard for
classical computers. In Section 3.1, we pointed out that the problem that the quantum
algorithm for Betti number estimation can efficiently solve is a restriction of abne to
clique-dense graphs (i.e., graphs which satisfy Eq. (2.31)). Moreover, we showed in
Section 3.1.1 that llsd is a generalization of this version of abne. This motivates us
to study the classical hardness of llsd. In this section we present our results, which
show that the complexity of llsd is intimately related to the one clean qubit model.

Our first and main result is that llsd is hard for the class DQC15, even when
the input is restricted to log-local Hamiltonians. As the one clean qubit model of

5Throughout this section we mean DQC1-hardness with respect to Turing reductions. We believe
that our approach could be modified to a Karp reduction, but since this reduction is not vital for
our claim, we leave this question open for future work.
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computation is widely believed to be more powerful than classical computation, this
shows that llsd is likely hard for classical computers. We discuss the implications of
this result on the classical hardness of the problem that the quantum algorithm for
Betti number estimation can efficiently solve in Section 3.2.3.

Theorem 5. llsd is DQC1-hard. Moreover, llsd with the input restricted to log-local
Hamiltonians remains DQC1-hard.

We now give a sketch of our proof of the above theorem, the complete proof can
be found in Appendix A.1. The main idea behind the proof is to show that we can use
llsd to estimate a quantity similar to a normalized subtrace – or more precisely, a
normalized sum of eigenvalues below a given threshold – which has been shown to be
DQC1-hard by Brandão [40]. We estimate this normalized subtrace by constructing a
histogram approximation of the low-lying eigenvalues, and afterwards computing the
mean of this histogram. To construct this histogram, we use llsd to estimate the
number of eigenvalues that lie in each bin. To avoid double counting of eigenvalues
due to imprecisions around the thresholds of the bins, we subtract the output of llsd
with the eigenvalue threshold set to the lower-threshold of the bin from the output of
llsd with the eigenvalue threshold set to the upper-threshold of the bin. By doing
so, we obtain an estimate of the number of eigenvalues within the bin, and misplace
eigenvalues by at most one bin.

Our second result shows that the complexity of llsd is more closely related to
DQC1 than just hardness. Namely, we point out that if the input to llsd is restricted
to log-local Hamiltonians (or more generally, any type of Hamiltonian that allows for
efficient Hamiltonian simulation using O (log(n)) ancilla qubits), then it can be solved
using the one-clean qubit model. From this it follows that llsd is DQC1-complete
if the input is restricted to log-local Hamiltonians. The main idea behind why we
can solve these instances of llsd using the one clean qubit model is that the one-
clean qubit model can simulate having access to up to O (log(n)) pure qubits [178].
These pure qubits allow for Hamiltonian simulation techniques based on the Trotter-
Suzuki formula [129] and for quantum phase estimation up to the required precision.
We summarize this in the following theorem, the proof of which can be found in
Appendix A.2.

Theorem 6. llsd with the input restricted to log-local Hamiltonians is DQC1-complete.

As an added result, we find that the complexity of sues with the input restricted
to log-local Hamiltonians is also closely related to DQC1. The complexity of this
instance sues was stated as an open problem by Wocjan and Zhang [200]. Moreover,
we believe that it is interesting to study the complexity of sues, as this problem can
potentially find practical applications beyond both llsd and Betti number estimation.
We remark that sues with the input restricted to log-local Hamiltonians was already
shown to be DQC1-hard by Brandão [40]. Here we point out that the complexity of
this instance of sues is more closely related to the one clean qubit model than just
hardness, as it can also be solved using DQC1logn circuits, that is, DQC1 circuits where
we are allowed to measure logarithmically many of the qubits in the computational
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basis at the end (to read out the encoding of the eigenvalue). The proof of the
following proposition can be found in Appendix A.2.

Proposition 7. sues with the input restricted to log-local Hamiltonians can be solved
in polynomial time by the one clean qubit model with logarithmically many qubits
measured at the end.

3.2.3 Closing the gap for classical intractability of abne
The results discussed in the previous section are not sufficient to conclude that abne
and bne are hard for classical computers, because for these problems the family of
input matrices is restricted to combinatorial Laplacians. Nonetheless, because llsd
is a generalization of the problem that the quantum algorithm for Betti number esti-
mation can efficiently solve, our result shows that – aside from the matter regarding
the restriction to combinatorial Laplacians – the quantum algorithm for Betti number
estimation solves a classically intractable problem which in some cases captures inter-
esting information concerning an underlying graph. Moreover, our result eliminates
the possibility of certain routes for dequantization, namely those that are oblivious
to the particular structure of the input matrix, which in particular eliminates the
approaches of Tang et al. [60].

The open question regarding the classical hardness of abne and the problem that
the quantum algorithm for Betti number estimation can efficiently solve is whether
llsd remains classically hard when restricted to combinatorial Laplacians of arbi-
trary or clique-dense graphs, respectively. Even though these restrictions on the in-
put seem quite stringent, note that our result shows that llsd is already DQC1-hard
for the restricted family of log-local Hamiltonians obtained from Kitaev’s circuit-to-
Hamiltonian construction6. Moreover, there exists a family of combinatorial Lapla-
cians that can encode DQC1-hard Hamiltonians, but not all of those are combinatorial
Laplacians of clique complexes [48]. One way we tried to close this gap was by in-
vestigating whether we could encode Hamiltonians obtained from Kitaev’s circuit-to-
Hamiltonian construction into combinatorial Laplacians of sufficiently large graphs.
While indeed various matrices related to quantum gates can be found as submatrices
of combinatorial Laplacians, we did not succeed in finding an explicit embedding. In
our view, this remains a promising way of showing that llsd remains classically hard
when restricted to combinatorial Laplacians (if indeed this claim is true at all).

Besides the above approach based on the Kitaev circuit-to-Hamiltonian construc-
tion, there are many other constructions that could potentially be used to show that
llsd remains classically hard when restricted to combinatorial Laplacians (again, if
indeed this claim is true at all). In particular, there are several constructions used to
prove QMA-hardness of the ground-state energy problem for certain families of Hamil-
tonians (i.e., deciding if the smallest eigenvalue lies above or below some thresholds)7.
All of these constructions typically take as input a (verification) circuit and produce
a Hamiltonian that has a small eigenvalue if and only if there exists a quantum state
(also called a witness) that makes the circuit accept (i.e., if on this input it is more

6In [51, 40] and our case it is unclear whether this holds for k-local Hamiltonians with constant
k, as the standard constructions of these local Hamiltonians involve a clock register that is too large.

7For an overview of circuit-to-Hamiltonian constructions see [39].
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likely to output 1 on the first qubit). A special property of the Kitaev construc-
tion is that for every input to the circuit, there exists a state whose energy with
respect to the corresponding Hamiltonian is close to the acceptance probability of the
circuit (i.e., not just that there exists small eigenvalue if and only if there exists a
state that makes the circuit accept). This property allowed Brandão to prove that
normalized sub-trace estimation for these Hamiltonians is DQC1-hard [40], which is
at the core of our proof of DQC1-hardness of llsd. Hence, a promising approach
to show DQC1-hardness of llsd for a family of Hamiltonians is to look at exist-
ing circuit-to-Hamiltonian constructions used to prove QMA-hardness of versions of
the ground-state energy problem and investigate whether they also have this special
property that the Kitaev construction has (or to see if they can be equipped with
it). This is particularly interesting for the constructions used to show QMA-hardness
of the Bose-Hubbard model [61], or the Fermi-Hubbard model [149]. The reason for
this is that both of these Hamiltonians exhibit similarities to the Hamiltonian of the
hardcore fermion model, which is equal to the combinatorial Laplacian of a clique
complex [48]. Specifically, the Hamiltonian HG of the fermion hardcore model on a
graph G = ([n], E) is given by

HG =
∑

(i,j)∈E

Piaia
†
jPj +

∑

i∈V

Pi, (3.4)

where Pi =
∏

(i,j)∈E(I − nj), ai denotes the fermionic annihilation operator, and nj
denotes the fermionic number operator [48]. For this Hamiltonian HG it holds that

HG =

n−1⊕

k=0

∆Ḡ
k , (3.5)

where Ḡ denotes the complement graph of G, and ∆G
k denotes the k-th combinatorial

Laplacian. Continuing along these lines, the authors of [67] established a circuit-to-
Hamiltonian mapping onto combinatorial Laplacians that allowed them to show that
deciding whether a Betti number is zero or not is QMA1

8-hard (though it has not yet
lead to DQC1-hardness of abne).

Finally, instead of trying to show that the family of combinatorial Laplacians is
sufficiently rich, we could also generalize this family of matrices while still remaining
relevant to topological data analysis. For example, one could consider generalizations
of combinatorial Laplacians, such as weighted combinatorial Laplacians [105] or per-
sistent combinatorial Laplacians [195], and show that these generalized families are
sufficiently rich as to contain DQC1-hard instances. Besides all the approaches dis-
cussed above, other routes such as proving classical hardness of llsd when restricted
to other sets of matrices such as {0,±1}-matrices, or by going through the discrete
structures related to Tutte and Jones polynomials [16, 178] could all be possible as
well.

The open questions regarding the classical hardness of bne are the same as those
regarding the classical hardness of abne, except that there is one additional open

8QMA1 is the one-sided error version of QMA.
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question. Namely, assuming that abne is classically hard, the remaining open ques-
tion regarding the classical hardness of bne is whether estimating the number of
eigenvalues exactly equal to zero is at least as hard as estimating the number of
eigenvalues below a given inverse polynomially small threshold. This question was
already addressed in Section 3.1.1 when we examined the reductions between abne
and bne. As discussed there, one approach would be to project the eigenvalues below
the given threshold to zero, and afterwards count only the zero eigenvalues.

Regardless, even if llsd does not remain classically hard when restricted to
combinatorial Laplacians, we can envision practical generalizations of the quantum-
algorithmic methods used by the algorithm for Betti number estimation that go be-
yond Betti numbers, as we will discuss in more detail in Section 3.3. Specifically,
in Section 3.3 we provide efficient quantum algorithms for two concrete examples of
such practical generalizations, together with complexity-theoretic evidence of their
classical hardness. The first example we discuss is numerical rank estimation, an
important problem in machine learning, data analysis and many other applications.
The second example is spectral entropy estimation, which can be used as a tool in
complex network analysis.

3.2.4 Graphs with quantum speedup
In Section 2.2.2, we outlined criteria that the graph has to satisfy in order for the
quantum algorithm to be able to efficiently estimate (approximate) Betti numbers.
Specifically, the graph has to be such that one can efficiently prepare the input state
in Eq. (2.30), e.g., by sampling uniformly at random from cliques of a given size.
Afterwards, in Section 2.2.3, we discussed the best known classical algorithms and we
outlined the regimes in which they require superpolynomial runtimes. In this section
we put these two considerations together and we concretely characterize families of
graphs for which the quantum algorithm achieves either a high-degree polynomial,
or even a superpolynomial speedup over the best known classical algorithm. In par-
ticular, we identify families of graphs for which the quantum algorithm is efficient
and for which the best known classical algorithms are unable to achieve competitive
runtimes.

As discussed in Section 2.2.2, one way to efficiently prepare the input state is to
use Grover’s algorithm or rejection sampling to sample uniformly at random from
cliques of a given size. Recall that for this to be efficient the graph has to be clique
dense, i.e., it has to satisfy Eq. (2.31). To identify a family a clique-dense graphs,
let us consider clique sizes k ≥ 3, let γ > k−2

2(k−1) be a constant, and consider any
graph on n vertices with at least γn2 edges. Suppose we want to estimate the k-th
approximate Betti number of this graph, where k and the precision parameters are
constant. The quantum algorithm for Betti number estimation can do so in time

Õ
(√

nk+1/χk + n3
)
,

where χk denotes the number of (k+1)-cliques. Having chosen the graph the way we
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did, the clique density theorem [162] now directly guarantees that our graph satisfies

χk ∈ Ω(nk+1),

which is a phenomenon known as “supersaturation”. In particular, this implies that
our graph is clique-dense and that the quantum algorithm for Betti number estimation
estimates the required approximate Betti number in time

Õ
(
n3
)
.

Moreover, as discussed in Section 2.2.3, the best known classical algorithm requires
time

O
(
nk+1

)
,

as the number of nonzero entries of the corresponding combinatorial Laplacian is at
least χk. We conclude that in these instances the quantum algorithm for Betti number
estimation achieves a (k−2)-degree polynomial speedup over the best known classical
methods, which for large enough k might allow for runtime advantages on prospective
fault-tolerant computers, even when all overheads are accounted for [27].

We can push the above separation between the best known classical algorithm and
the quantum algorithm even further. Consider the same setting as above, but with γ =
k−1
k and we allow k to scale with n. Using a result of Moon and Moser [140, 132, 191],

we can derive that in this setting the graph satisfies
(

n

k + 1

)
/χk ∈ O

(
kk
)
.

Therefore, the quantum algorithm can estimate the k-th approximate Betti number
in time

O
(
k2+k/2 + n3

)
.

On the other hand, the best known classical algorithm runs in time

O
(
nk+1/k2k

)
,

as the number of nonzero entries of the corresponding combinatorial Laplacian is at
least χk ≥ nk+1/k2k. In particular, if we let k scale with n in an appropriate way,
then the quantum algorithm achieves a superpolynomial speedup over the best known
classical method. For example, if we let the clique size scale as k ∼ log n, then the
quantum algorithm runs in time

2O(logn log logn),

whereas the best known classical algorithm runs in time

2O((logn)2),

giving rise to a superpolynomial quantum speedup. Note that the graphs in the
previous two settings are rather edge-dense (which occurs in topological data analysis
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if the grouping-scale ϵ approaches the maximum distance between two datapoints),
and it is unknown whether better classical algorithms are possible in this regime.

Next, we construct a family of graphs where (i) the Betti numbers are large, (ii)
the clique-density is high, and (iii) the spectral gaps the combinatorial Laplacian
are sufficiently large. Due to properties (i)-(iii) this family of graphs provides a
great example of a family of graphs on which the quantum algorithm outperforms
its classical counterpart. Let K(m, k) be the k-partite complete graph, where each
partition contains m vertices. That is, K(m, k) consists of k clusters, each with m
vertices; there are no edges within clusters, but all edges between clusters are included.
NoteK(m, 1) is a collection ofm points with no edges. K(m, k) gives a useful example
of a clique complex with a high Betti number [13]. It also has a Laplacian with a
large spectral gap.

Figure 3.2: The graph K(5, 6).

Proposition 8. The (k − 1)th Betti number of the clique complex of K(m, k) is

βk−1 = (m− 1)k. (3.6)

Proposition 9. The combinatorial Laplacian ∆G
k−1 = (∂Gk−1)

†∂Gk−1 + ∂Gk (∂Gk )† of the
clique complex of K(m, k) has spectral gap

λmin = m. (3.7)

We prove these in A.3 using techniques from simplicial homology. A further useful
fact is that

|Clk(K(m, k))| = mk. (3.8)

Standard classical approaches need to at least store a vector of this length, so we can
give a classical complexity Tc of estimating normalized Betti numbers

Tc ∼ ek lnm. (3.9)
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As a first approximation for the quantum cost Tq, we use the formula

T (G, k, r, δ) = 3π|E| ln(1/δ)
r

√ (
n
k

)

βG
k−1

. (3.10)

and consider just the square root factor and |E|. Stirling’s approximation gives
(
n
k

)
∼(

m1+1/m

m−1

)n
, and Proposition 8 gives βk−1 = (m−1)n/m, giving a quantum complexity

scaling as

Tq ∼ |E|
(

m1+1/m

(m− 1)1+1/m

)n/2

∼ n2e(k/2)(1+1/m). (3.11)

Therefore, for constant m, there is a polynomial speedup by a 2 lnm root (ignoring
n2 and the 1/m term). Alternatively, taking k constant, the above formulae give

Tc = O(nk), (3.12)

Tq = O(n2). (3.13)

Then there is a polynomial speedup by a k/2 root. To obtain a superpolynomial
speedup, m can be taken to increase close to linear in n, but k can be taken to also
increase with n. Close to the best result is obtained for k = c ln2 n with some constant
c. Then the logs of the complexities are approximately

lnTc ∼ c ln3 n, (3.14)

lnTq ∼ 2 lnn+ (c/2) ln2 n. (3.15)

That implies a speedup by a 2 lnn root, which is superpolynomial.
This is still not an exponential speedup, but as far as the graph is concerned this is

the best speedup that could be obtained from this type of approach. This is because,
with k constant, the quantum complexity ignoring the |E| factor is O(1). The Betti
number is already scaling the same as

(
n
k

)
, but the overhead from |E| means that the

speedup is not exponential.
As also discussed in Section 2.2.2, besides clique-density another important graph

parameter that dictates the runtimes of specialized algorithms for uniform clique
sampling is the so-called arboricity. The arboricity of a graph is equivalent (up to a
factor 1/2) to the maximum average degree of a subgraph. For a graph with n vertices
and arboricity α, near-optimal classical algorithms sample a k-clique uniformly at
random in time [77]

Õ
(
kk ·max

{(
(nα)k/2

χk

) 1
k−1

, min
{
nα,

nαk−1

χk

}})
. (3.16)

By also considering the algorithm of [77] (i.e., instead of rejection sampling or
Grover’s algorithm) we strictly expand the family of graphs for which the quantum
algorithm achieves a superpolynomial speedup for abne. In particular, there exists a
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family of graphs for which the algorithm of [77] is superpolynomially more efficient9
than Grover’s algorithm and rejection sampling for the problem of uniform clique
sampling. An example of such a family is as follows: consider the n-vertex graphs
consisting of n/r cliques of size r (for simplicity we assume that n is a multiple
of r), where each r-clique is fully-connected with d other r-cliques (i.e., all edges
between the 2r vertices are present). In other words, consider a d-regular graph on
n/r vertices, and replace each vertex with an r-clique and fully-connect all r-cliques
that were connected according to the d-regular graph we started with. Now if we
set d, r = log n and k = log log n, then the number of k-cliques (and thus also the
runtime of the best known classical algorithm for abne) scales like log(n)

log log(n).
Moreover, the clique-density (and thus also the runtime of rejection sampling and
Grover’s algorithm) scales like nlog log(n). Finally, the runtime of the algorithm of [77]
scales like log log(n)

log log(n). In conclusion, for these graphs the algorithm of [77]
is superpolynomially more efficient than rejection sampling and Grover’s algorithm
for the problem of uniform clique sampling. Moreover, for these graphs the quantum
algorithm for abne achieves a superpolynomial speedup over the best-known classical
algorithm for abne, but only if one uses the algorithm of [77] (i.e., this speedup goes
away if one uses rejection sampling or Grover’s algorithm). We again remark that we
are dealing with special types of graphs, and it is unknown whether better classical
algorithms are possible in this regime.

3.3 Quantum speedups beyond Betti numbers
In the previous section we provided evidence that the computational problems tackled
by the quantum algorithm for Betti number estimation are likely hard for classical
computers. Even though we fell short of showing that the topological data analysis
problem of estimating (approximate) Betti number is classically intractable, we did
provide evidence that the quantum algorithmic methods that underlie the quantum
algorithm for Betti number estimation could give rise to a potential source of practical
quantum advantage. In this section we demonstrate this by discussing extensions of
the quantum-algorithmic methods behind the algorithm for Betti number estimation
that go beyond Betti numbers. In particular, we provide efficient quantum algorithms
for numerical rank estimation (an important problem in machine learning and data
analysis) and spectral entropy estimation (which can be used to compare complex
networks), together with complexity-theoretic evidence of their classical hardness.

3.3.1 Numerical rank estimation
In this section we identify a practically important application of the problem of es-
timating the number of small eigenvalues (which we called llsd). Specifically, we
consider the problem of numerical rank estimation. The numerical rank of a matrix
H ∈ C2n×2n is the number of eigenvalues that lie above some given threshold b, i.e.,

9We say that a runtime t1(n) is superpolynomially more efficient than a runtime t2(n) if
log t2(n)/ log t1(n) → ∞ when n → ∞.
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it is defined as

rH(b) =
1

2n

∑

k : λk>b

1,

where λ1 ≤ · · · ≤ λ2n−1 denote the eigenvalues of H. By the rank-nullity theorem we
have that

rH(b) = 1−NH(0, b),

which shows that we can estimate the numerical rank using low-lying spectral density
estimation and that the error scaling is the same.

Many machine learning and data analysis applications deal with high-dimensional
matrices whose relevant information lies in a low-dimensional subspace. To be spe-
cific, it is a standard assumption that the input matrix is the result of adding small
perturbations (e.g., noise in the data) to a low-rank matrix. This small perturbation
turns the input matrix into a high-rank matrix, that can be well approximated by a
low-rank matrix. Techniques such as principle component analysis [111] and random-
ized low-rank approximations [99] are able exploit this property of the input matrix.
However, these techniques often require as input the dimension of this low-dimensional
subspace, which is often unknown. This is where numerical rank estimation comes in,
as it can estimate the dimension of the relevant subspace by estimating the number of
eigenvalues that lie above the “noise-threshold”. In addition, being able to determine
whether the numerical rank of a matrix is large or small enables one to assert whether
the above low-rank approximation techniques is applicable at all, or not.

From Theorem 5 it directly follows that quantum computers achieve an expo-
nential speedup over classical computers for numerical rank estimation of matrices
specified via sparse access (unless the one clean qubit model can be efficiently simu-
lated on a classical computer). Still, it is also interesting to consider settings where
the matrix is specified via a different input model. In the remainder of this section
we study two examples of different input models. Firstly, motivated by a more prac-
tical perspective we consider a seemingly weaker input model that is more closely
related to the input models that appear in classical data analysis settings. Secondly,
we consider a likely stronger input model that appears throughout quantum machine
learning literature, which is more informative from a complexity-theoretic perspective.

In typical (classical) applications, matrices are generally not specified via sparse
access. Here we consider an input model that is more closely related to what is
encountered in a typical classical setting. Specifically, we consider the case where a
sparse matrix A of size 2n × 2n is specified as a list of triples

{
(ik, jk, Aik,jk) | Aik,jk ̸= 0

}
,

which is sorted lexicographically by column and then row. Storing matrices in this
type of memory structure is very natural when dealing with matrices with a limited
number of nonzero entries (which we denote by nnz). Now, for the quantum analogue
we consider the same specification but we suppose that it is stored in a QRAM-type
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memory, only additionally allowing us to query it in superposition as follows:
∑

k

αk |k⟩ |0⟩ 7→
∑

k

αk |k⟩ |ik, jk, Aik,jk⟩ .

Since the list is sorted, and since A is sparse, we can still simulate column-wise
sparse access in O (log nnz) queries, essentially by using binary search. Therefore, if
A is Hermitian, then the quantum algorithm can estimate its numerical rank in time
O (poly (n, log nnz)). On the other hand, the best known classical algorithms run
in time O (nnz) [190, 59, 70, 124]. Consequently, the quantum algorithm achieves a
speedup over the best known classical algorithm if nnz is at least a high-enough degree
polynomial in n (and it achieves an exponential speedup if nnz is itself exponential).
For the case where A is not Hermitian, recall that we also need sparse access to A†.
For this issue we found no general method that can do so in time less than O (nnz),
without assuming a high sparsity. However, the high sparsity then exactly offsets any
potential quantum advantage in the full algorithm complexity.

Next, we consider a likely stronger input model which is widely-studied in the
quantum machine learning literature. Specifically, we study the quantum-accessible
data structure introduced in [118, 119], which can generate quantum states propor-
tional to the columns of the input matrix, together with a quantum state whose
amplitudes are proportional to the 2-norms of the columns. When the input matrix
is provided in this quantum-accessible data structure, the quantum-algorithmic meth-
ods of [85, 55] can be used to estimate its numerical rank in time O (poly(Amax, n)),
where Amax = maxi,j |Aij |.

The classical analogue of this quantum-accessible data structure is the sampling
and query access model introduced in [186], which brought forth the “dequantization”
methods discussed in [60]. At present it is not clear whether assuming sampling and
query access allows us to efficiently estimate the numerical rank using dequantizations,
or other methods. Here both possibilities are interesting. Firstly, if numerical rank
estimation remains equally hard with sampling and query access, then it shows that
quantum algorithms relying on the methods of LGZ have a chance of maintaining their
exponential advantage in more general scenarios. Secondly, if an efficient classical
algorithm for numerical rank estimation is possible with sampling and query access,
then this leads to new insights regarding the hardness of the one clean qubit model.
Recall that we have shown that estimating the numerical rank of matrices specified
via sparse access is DQC1-hard (in the sense that, if a classical algorithm could do so
efficiently given analogous access, then it can be used to efficiently solve all problems in
DQC1). Now for the sparse matrix case, the only difference between sparse access and
sampling and query access is that the latter allows one to sample from a distribution
whose probabilities are proportional to the 2-norms of the columns. Indeed, the other
part (i.e., sampling from distributions whose probabilities are proportional to the
squared entries of the columns) is straightforward when the matrix is specified via
sparse access. This implies that, if sampling and query access allows us to efficiently
estimate the numerical rank of sparse matrices, then producing samples according to
the 2-norms of the columns of a sparse matrix is DQC1-hard. This also holds for the
log-local Hamiltonian setting, so it would also follow that sampling from a distribution
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proportional to the 2-norms of the columns of log-local Hamiltonians is DQC1-hard.
We summarize this observation in the proposition below.

Proposition 10. Suppose there exists an efficient classical algorithm for numerical
rank estimation (or, equivalently llsd) for matrices provided by sampling and query
access. Then, sampling from a distribution whose probabilities are proportional to the
2-norms of the columns of a sparse Hermitian matrix is DQC1-hard (with respect to
Turing reductions).

3.3.2 Combinatorial Laplacians beyond Betti numbers
In the previous section we discussed a practical application of the quantum-algorithmic
methods behind the algorithm for Betti number estimation by using the same meth-
ods, but changing the family of input matrices (i.e., going beyond combinatorial
Laplacians). In this section we take a different approach, namely we again consider
the combinatorial Laplacians, but investigate applications beyond Betti number es-
timation (i.e., beyond estimating its nullity) relying on different algorithms than the
one for low-lying spectral density estimation. Moreover, we will again find regimes
where the same type of evidence of classical hardness can be provided, further mo-
tivating investigations into quantum algorithms that operate on the combinatorial
Laplacians.

The eigenvalues and eigenvectors of the combinatorial Laplacian have many inter-
esting graph-oriented applications beyond the applications in topological data anal-
ysis discussed in Section 2.2. The intuition behind this is that the combinatorial
Laplacian can be viewed as a generalization of the standard graph Laplacian. For
example, there exist generalizations of spectral clustering and label propagation (im-
portant techniques in machine learning that are used for dimensionality reduction
and classification) which utilize the eigenvalues and eigenvectors of the combinatorial
Laplacians [152]. Moreover, the eigenvalues of a normalized version of the combi-
natorial Laplacian convey information about the existence of circuits of cliques (i.e.,
ordered lists of adjacent cliques that cover the whole graph) and about the chromatic
number [105]. Lastly, Kirchhoff’s matrix tree theorem – which relates the eigenvalues
of the standard graph Laplacian to the number of spanning trees – turns out to have
a generalization to higher-order combinatorial Laplacians [75].

The specific problem that we study in this section is that of sampling from a dis-
tribution over the eigenvalues whose probabilities are proportional to the magnitude
of the eigenvalues. In particular, we give a quantum algorithm that efficiently samples
from an approximation of these distributions. Moreover, we show that sampling from
these distributions for arbitrary sparse Hermitian matrices is again as hard as simulat-
ing the one clean qubit model, which shows that it is classically intractable (unless the
one clean qubit model can be efficiently simulated on a classical computer). Finally,
we discuss how this quantum algorithm can speed up spectral entropy estimation,
which when applied to combinatorial Laplacians can be used to compare complex
networks.

We define the problem that we study in this section as follows.
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Sparse weighted eigenvalue sampling (SWES)
Input:
1) A sparse positive semidefinite matrix H ∈ C2n×2n , with ||H|| ≤ 1 and

tr{H}/2n ∈ O (poly(n)).
2) An estimation precision δ ∈ Ω (1/poly(n)).
3) A sampling error probability µ ∈ Ω (1/poly(n)).
Output: A sample drawn from a (δ, µ)-approximation of the distribution p(λj) =

λj/ tr{H}.

Using the subroutines of the quantum algorithm for Betti number estimation (i.e.,
Hamiltonian simulation and quantum phase estimation), we can efficiently sample
from an approximation of the distribution of swes defined above. In fact, we can
efficiently implement purified quantum query-access to p(λj) [84]. To be precise, we
can implement an approximation of the unitary UH (and its inverse) which acts as

UH |0⟩A |0⟩B = |ψH⟩ =
2n−1∑

j=0

√
p (λj) |ψj⟩A |ϕj⟩B , (3.17)

such that TrB (|ψH⟩ ⟨ψH |) = H/ tr{H}. Purified quantum query-access has been
shown to be more powerful than standard classical sampling access, as it can speedup
the postprocessing of the samples when trying to find out properties of the underlying
distribution [84].

We implement an approximation of the purified quantum-query access defined in
Eq. (3.17) as follows:

1. Prepare the following input state by taking a maximally entangled state (which
can always be expressed in the eigenbasis of H in one of its subsystems) and
adding two ancillary registers

|ψ⟩in =
1√
2n

2n−1∑

k=0

|ψk⟩ |ϕk⟩ ⊗ |0t⟩ ⊗ |0⟩flag ,

where {|ψk⟩}2
n−1

k=0 are orthonormal eigenvectors of H and {|ϕk⟩}2
n−1

k=0 is an or-
thonormal basis of C2n .

2. Use Hamiltonian simulation on H, and apply quantum phase estimation of the
realized unitary to the first register to prepare the state

1√
2n

2n−1∑

k=0

2t∑

j=0

αk,j |ψk⟩ |ϕk⟩ ⊗ |λ̃k,j⟩ ⊗ |0⟩flag

≈ 1√
N

2n−1∑

k=0

|ψk⟩ |ϕk⟩ ⊗ |λ̃k⟩ ⊗ |0⟩flag ,

where the λ̃k,j are t-bit strings, |αk,j |2 is close to 1 if and only if λk ≈ λ̃k,j , and
λ̃k denotes the best t-bit approximation of λk.
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3. Use controlled rotations to “imprint” the t-bit approximations of the eigenvalues
into the amplitudes of the flag-register to prepare the state

1√
2n

2n−1∑

k=0

2t∑

j=0

αk,j |ψk⟩ |ϕk⟩ ⊗ |λ̃k,j⟩

⊗
(√

λ̃k,j |0⟩flag +
√
1− λ̃k,j |1⟩flag

)

≈ 1√
2n

2n−1∑

k=0

|ψk⟩ |ϕk⟩ ⊗ |λ̃k⟩

⊗
(√

λ̃k |0⟩flag +
√

1− λ̃k |1⟩flag
)
.

4. Use fixed point amplitude amplification to amplify states whose flag-register is
in the state |0⟩ to prepare an approximation of the state

1√
Tr(H)

2n−1∑

k=0

2t∑

j=0

αk,j

√
λ̃k,j |ψk⟩ |ϕk⟩ ⊗ |λ̃k,j⟩ ⊗ |0⟩flag

≈ 1√
Tr(H)

2n−1∑

k=0

√
λ̃k |ψk⟩ |ϕk⟩ ⊗ |λ̃k⟩ ⊗ |0⟩flag .

5. Finally, uncompute and discard the eigenvalue- and flag-register to prepare the
state

|ψH⟩ =
1√

Tr(H)

2n−1∑

k=0

2t∑

j=0

αk,j

√
λ̃k,j |ψk⟩ |ϕk⟩

≈ 1√
Tr(H)

2n−1∑

k=0

√
λ̃k |ψk⟩ |ϕk⟩ .

Looking at the cost of the above algorithm, we note that Steps 2 and 3 can be
implemented up to polynomial precision in time O (poly(n)). Also, note that Step 4
can be implemented up to polynomial precision in time O

(√
2n/ tr{H}

)
, which

brings the total runtime to

O
(
poly(n) +

√
2n/ tr{H}

)
.

Besides being able to efficiently sample from an approximation of swes on a
quantum computer, we show that swes requires superpolynomial time on a classical
computer (unless the one clean qubit model can be efficiently simulated on a classical
computer). To be precise, we show that sampling from swes allows us to efficiently
estimate the normalized subtrace discussed in Section 3.2.2, which is known to be
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DQC1-hard [40]. We gather this in the following theorem, the proof of which can be
found in the Supplementary Material.

Theorem 11. swes is DQC1-hard. Moreover, swes with the input restricted to
log-local Hamiltonians remains DQC1-hard.

The above theorem motivates us to look for practical applications of swes, or
more specifically, of the purified quantum query-access described in Eq. (3.17). We
end this section by discussing such an application called spectral entropy estimation,
which when applied to combinatorial Laplacians can be used to compare complex
networks. The classical hardness of swes opens up another road towards practical
quantum advantage, as it could be that combinatorial Laplacians arising in complex
network analysis form a rich enough family for which swes remains classically hard
when restricted to them.

Spectral entropy estimation of the combinatorial Laplacian

Recently, several quantum information-inspired entropic measures for complex net-
work analysis have been proposed [34, 68]. One example of these are spectral entropies
of the combinatorial Laplacian, which measure the degree of overlapping of cliques
within the given complex network [155, 179, 134]. Specifically, it has been shown that
these entropic measures can be used to measure network centralization (i.e., how cen-
tral is the most central node in relation to all other nodes) [179], network regularity
(i.e., the difference in degrees among nodes) [155], and clique connectivity (i.e., the
overlaps between communities in the network) [134].

If λ0, . . . , λdG
k −1 denote the eigenvalues of a combinatorial Laplacian ∆G

k (i.e.,
dGk = dimHG

k ), then its spectral entropy is defined by

S(∆G
k ) = −

dG
k −1∑

j=0

p(λj) log(p(λj)), (3.18)

where we define p(λj) = λj/ (
∑

k λk). This spectral entropy coincides with the von
Neumann entropy of ∆G

k / tr
{
∆G

k

}
. Equivalently, it coincides with the Shannon en-

tropy of the distribution p(λj). Another entropy that is used in complex network
analysis is the α-Renyi spectral entropy, which is given by

Sα(∆
G
k ) =

1

1− α log




dk−1∑

j=0

p(λj)
α


 , (3.19)

where α ≥ 0 and α ̸= 1. The limit for α → 1 is the spectral entropy as defined in
Eq. (3.18).

To estimate the spectral entropy defined in Eq. (3.18), one can use techniques
from [11, 192] to classically postprocess samples from p(λj) that one obtains from
the quantum algorithm for swes described in the previous section. However, since
we can implement purified quantum query-access using the algorithm described in
the previous section, the postprocessing can be sped up quadratically using quantum
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methods [84]. This idea of speeding up the postprocessing of samples using quantum
methods also holds for the α-Renyi entropy defined in Eq. (3.19), where one can either
classically postprocess the samples [12], or use faster quantum methods [181].

Because we have shown that sampling from swes is DQC1-hard, the above ap-
proach to spectral entropy estimation can not be done efficiently on a classical com-
puter – i.e., it cannot be dequantized – when generalized to arbitrary sparse matrices
(unless the one clean qubit model can be efficiently simulated on a classical computer).
Moreover, as the α-Renyi entropy is the logarithm of the Schatten p-norm, and it is
known that estimating Schatten p-norms is DQC1-hard [51], we find that computing
α-Renyi entropy is classically intractable (again, unless the one clean qubit model can
be efficiently simulated on a classical computer).

3.4 Possibilities and challenges for implementations
As near-term quantum devices are still limited, it is crucial to make sure to use them
to their fullest extent when implementing a quantum algorithm. Near-term devices
are limited in size, gates are error prone, qubits decohere, and their architectures
are limited [160]. We are therefore interested in algorithms that require few gates
(to minimize the effect of decoherence and gate errors), that are not too demanding
regarding architecture, while achieving advantages with few qubits and being toler-
ant to noise (which will inevitably be present in the system regardless of the depth
and gate count). The quantum algorithms we consider use Hamiltonian simulation
and quantum phase estimation. Fortunately, both resource optimization [30] and
error-mitigation [187, 38, 78, 136, 147] for these routines are important topics for the
broadly investigated field of quantum algorithms for quantum chemistry and many-
body physics, and any progress achieved for those purposes can be readily applied.
Moreover, recent work has focused on reducing the depth of the quantum circuit re-
quired to implement the algorithm for (approximate) Betti number estimation [189].
In this section we will focus on the issues of size and noise. First, we investigate the
required number of qubits and we propose methods on how to reduce this. Based on
these methods, we provide an estimate of the number of qubits required to challenge
classical methods. Finally, we discuss issues regarding robustness of the algorithm to
noise in the quantum hardware.

To analyze the number of qubits required to implement Hamiltonian simulation of
a 2n × 2n-sized input matrix, we consider two possible scenarios: the input matrix is
either given to us as local terms, or it is specified via sparse access. If the input matrix
is given to us as local terms, then we can implement Hamiltonian simulation based on
the Trotter-Suzuki formula [129]. As this Hamiltonian simulation technique does not
require ancillary qubits (assuming the available gate set can implement each of the
Trotter steps without ancillary qubits) [51], we can implement it using only n qubits.
On the other hand, if the input matrix is specified via sparse access, then we have to
use more intricate Hamiltonian simulation techniques (e.g., based on quantum signal
processing [133]). The downside of these methods is that they require an ancillary
register to ‘load’ the queries to the sparse-access oracles onto. By having to add this
ancillary register, the total number of qubits required to implement these Hamiltonian
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simulation techniques becomes 2n+r+1, where r is the number of bits used to specify
the entries of the input matrix. In other words, sparse-access oracles more than double
the required number of qubits.

When possible it is therefore advantageous to avoid using sparse access when hav-
ing first proof-of-principle demonstrations of quantum advantage in mind. One way
of doing so is to add an extra precompilation step that finds a suitable decomposition
of the input matrix. In particular, one can trade-off the required number of ancilla
qubits for some amount of precompilation and some extra depth of the precompiled
circuit, in the following two ways. First, one could decompose the input matrix in
terms of a linear combination of unitaries, and use related techniques for Hamiltonian
simulation of such input matrices [32]. This brings the required number of qubits
down from 2n + r + 1 to n + log(m), where m is the number of terms in the linear
combination of unitaries. Secondly, one could decompose the input matrix in terms
of a sum of local Hamiltonians and use Hamiltonian simulation based on the Trotter-
Suzuki formula. This brings the required number of qubits down from 2n+r+1 to n.
Thus, both approaches can halve the number of required qubits, however, one has to
be careful as finding such decompositions may constitute a dominating overhead.

In case of Betti number estimation, we note that such precompilation is in fact
feasible and meaningful. This is due to the fact that in this case there is a direct
way to decompose input matrix (i.e., the combinatorial Laplacian) as a sum of Pauli-
strings in order to implement Hamiltonian simulation based on the Trotter-Suzuki
formula. Specifically, due to the close relationship between combinatorial Laplacians
and Hamiltonians of the fermion hardcore model (as described in Section 3.2.3) [48] we
can decompose the combinatorial Laplacian into a sum of Pauli-strings by applying
a fermion to qubit mapping such as the Jordan-Wigner or Bravyi-Kitaev transfor-
mations to Eq (3.4). Note however that this does not guarantee that Hamiltonian
simulation based on the Trotter-Suzuki formula will be efficient as the decomposition
might require exponentially many terms and the locality of the individual terms could
be large. As can be seen in Eq. (3.4), the number of terms in the decomposition scales
with the degree of the vertices in the complement of the graph. In particular, if the
graph is such that any vertex is connected to all other vertices except for a constant
number of them, then the number of terms in the decomposition scales polynomially.
As discussed in Section 3.2.4, these are exactly the type of graphs where the quan-
tum algorithm for Betti number estimation achieves a speedup over the best known
classical algorithms, since these types of graphs are clique-dense (i.e., they satisfy
Eq. (2.31)). The locality of the Pauli-strings in the decomposition can however not
be guaranteed to be small, but this fortunately has less effect on the depth of the
circuit. Finally, we remark that this decomposition also gives rise to a technique that
allows one to control the depth of the circuit required for the Hamiltonian simula-
tion. Namely, by dropping certain terms from the decomposition (e.g., terms with a
small coefficient) one could reduce the depth of the circuit required for Hamiltonian
simulation, while making sure to not perturb the matrix too much as to drastically
change the low-lying spectral density.

Next, we focus on the number of qubits required for the quantum phase estimation.
Standard quantum phase estimation requires an eigenvalue register of t qubits to
estimate the eigenvalues up to t-bits of precision (which consequently determines the
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threshold in low-lying spectral density estimation). Fortunately, much improvement
is possible in terms of the size of this eigenvalue register. First, as low-lying spectral
density is only concerned with whether the t-bit approximation of an eigenvalue is
zero or not, we can bring the size the of eigenvalue register down to log(t) by using
a counter [163]. Moreover, we can bring the size of this eigenvalue register down to
a single qubit at the expense of classical post-processing and qubit reinitialization
methods [74, 148, 180].

We can now give the brief estimate of the number of qubits needed for demonstra-
tions of quantum advantage (i.e., sizes needed to go beyond the best known classical
methods). The best known classical methods for low-lying spectral density estima-
tion, to our knowledge, are able to estimate the rank of a matrix in time linear in the
number of nonzero entries [190, 59, 70, 124]. These methods are at most quadratically
faster than exact diagonalization, which tends to hit a practical wall around matri-
ces of size 240. We therefore look at how many qubits are required to estimate the
low-lying spectral density below a threshold of about 10−9 (i.e., t ≈ log

(
109
)
< 30) of

matrices of size around 280 (i.e., n ≈ 80). In this case, the required number of qubits
for standard implementations is approximately

2n+ r + 1 + t ≈ 200.

If we precompile the input matrix through finding a decomposition in terms of local
Hamiltonians, this can be reduced to

n+ t ≈ 110.

This can be further reduced to n+log(t) by using a counter in the eigenvalue register.
Lastly, by using a single-qubit eigenvalue register (at the cost of classical postprocess-
ing and qubit reinitialization) we bring the number of required qubits in the optimal
case down to

n+ 1 ≈ 80,

which is tantalizingly close to what leading teams are expected to achieve in the
immediate future in terms of qubit numbers alone.

When it comes to the robustness to noise in the hardware, we need to consider
the type of algorithm that is being applied (i.e., how noise affects this algorithm
in general) together with the specifics of the application. The algorithm we con-
sider involves many iterations of Hamiltonian simulation and quantum phase estima-
tion, where we are interested in the expected value of a two outcome measurement
(designating the zero eigenvalues). As noted earlier, these routines are also crucial
for quantum algorithms for quantum chemistry and many-body physics, and con-
sequently, all error-mitigation methods developed for these purposes can be readily
applied [187, 38, 78, 136, 147]. However, as in quantum chemistry and many-body
physics one extracts the entire eigenvalues, as opposed to just the frequency of the
zero eigenvalue, the application we consider is less demanding. Additional robustness
properties van be inferred from the nature of the particular problem solved. For in-
stance, in machine learning and data analysis applications, the fact that the algorithm
serves the purpose of dealing with noise in the data might make noise in the hardware
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less detrimental compared to when solving more exact problems [73].
Unfortunately, this argument cannot be as readily applied to Betti number estima-

tion, as noise in the data does not correspond to small perturbations of the simulated
matrix (i.e., the combinatorial Laplacian), but rather to a completely different matrix
altogether. In turn, small perturbations of the simulated matrix do not corresponds
to any meaningful perturbation of the input data. However, we can still identify cer-
tain robust features by considering what perturbations of the combinatorial Laplacian
entail for the final output, i.e., the low-lying spectral density. Specifically, if the com-
binatorial Laplacian is perturbed by a small enough matrix (e.g., in terms of operator
norm or rank), then the low-lying spectral density remains largely unchanged as such
perturbations will not push the low-lying eigenvalues above the threshold. These set-
tings are often studied in the field of perturbation theory [114], which would allow us
to make these arguments completely formal. Moreover, as a random matrix is likely
of full rank [80], the perturbed combinatorial Laplacian is also likely of full rank,
indicating that in the noisy setting we should focus on approximate Betti number
estimation methods, as opposed to exact ones. Finally, there has been work veri-
fying the robustness of the quantum algorithm for Betti number estimation in an
experimental setting [106].
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Chapter 4

Structural risk minimization for
quantum linear classifiers

In this chapter we theoretically analyze and quantify the influence that model parame-
ters of quantum linear classifiers have on the trade-off in structural risk minimization.
We first analyze the effect that model parameters have on the complexity term (i.e.,
the green line in Figure 2.6) and afterwards we analyze their effect on the training
error (i.e., the blue line in Figure 2.6). Specifically, in Section 4.1 we analyze the
complexity term by establishing analytic upper bounds on complexity measures (i.e.,
the VC dimension and fat-shattering dimension) of quantum linear classifiers. In Sec-
tion 4.2 we study the influence that model parameters which influence the established
complexity measure bounds have on the training error term. Finally, in Section 4.3,
we discuss how to implement structural risk minimization of quantum linear classifiers
based on the obtained results.

4.1 Complexity of quantum linear classifiers
In this section we determine the two complexity measures defined in the previous
section – i.e., the fat-shattering dimension and VC dimension – for families of quantum
linear classifiers. As a result, we identify model parameters that allow us to control
the complexity term in the expected error bounds of Theorems 1 and 2. These
bounds upper bound the expected error by a sum of a training error and a complexity
term that we would like to trade-off to achieve the best possible bound. Using the
model parameters that we identify, we can balance this trade-off to construct the best
possible model. In short, these model parameters can be used to balance the trade-off
considered by structural risk minimization, as depicted in Figure 2.6. Throughout this
section we fix the feature map to be the one defined Equation (2.22) and we allow
our separating hyperplanes to come from a family of observables O ⊆ Herm

(
C2n

)

(e.g., the family of observables implementable using either the explicit or implicit
realization of quantum linear classifiers). Our goal is to determine analytical upper
bounds on complexity measures of the resulting family of quantum linear classifiers.
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First, we show that the VC dimension of a family of quantum linear classifiers is
upper bounded by the dimension of the span of the observables that it uses. This in
turn is upper bounded by the square of the dimension of the space upon which the
observables act nontrivially. We remark that while the VC dimension of quantum
linear classifiers also has a clear dependence on the feature map, we chose to focus on
the observables because the resulting upper bounds give rise to more explicit guidelines
on how to tune the quantum model to perform structural risk minimization (as we
discuss in more detail in Section 4.3). We defer the proof to Appendix B.1.1.

Proposition 12. Let O ⊆ Herm
(
C2n

)
be a family of n-qubit observables with r =

dim
(∑

O∈O ImO
)
1. Then, the VC dimension of

COqlin =
{
c(x) = sign

(
Tr [OρΦ(x)]− d

) ∣∣ O ∈ O, d ∈ R
}

(4.1)

satisfies

VC
(
COqlin

)
≤ dim

(
Span

(
O
))

+ 1 ≤ r2 + 1. (4.2)

Remark(s). The quantity r in the above proposition is related to the ranks of the
observables. Specifically, note that for any two observables O,O′ ∈ Herm

(
C2n

)
we

have that

dim
(
ImO + ImO′) = rank

(
O
)
+ rank

(
O′)− dim

(
ImO ∩ ImO′).

The above proposition implies the (essentially obvious) result that VC dimension
of a family of implicit quantum linear classifiers is upper bounded by the number of
training examples (i.e., the operators {ρΦ(x)}x∈D span a subspace of dimension at
most

∣∣D
∣∣). We are however more interested in the application of the above proposition

to explicit quantum linear classifiers. In this case, we choose to focus on the upper
bound r2 + 1 because it has interpretational advantages as to what parts of the
model one has to tune from the perspective of structural risk minimization (i.e.,
recall from Section 2.3 that one way to perform structural risk minimization is to
tune the VC dimension). Moreover, in the case of explicit quantum linear classifiers,
the bound r2 + 1 is only quadratically worse than the bound dim

(
Span

(
O
))

+ 1. To
see this, we consider a family of explicit quantum linear classifiers with observables
Oexplicit =

{
Oλ

θ

}
, where

Oλ
θ =W †(θ) · diag

(
λ(0), . . . , λ(2n − 1)

)
·W (θ)

and we denote W (θ) |i⟩ = |ψi(θ)⟩. Next, suppose that λ(j) = 0 for all j > L and
1Here

∑
denotes the sum of vector spaces and ImO denotes the image (or column space) of the

operator O.
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define

H = SpanC

{
|ψ0(θ)⟩ , . . . , |ψL(θ)⟩ : θ ∈ Rm

}
, (4.3)

V = SpanR

{ L∑

i=0

λ(i) |ψi(θ)⟩ ⟨ψi(θ)| : θ ∈ Rm
}
, (4.4)

Then, Proposition 12 states that

VC
(
COexplicit

qlin

)
≤ dim

(
V
)
+ 1 ≤ dim(H)2 + 1.

Now, by the following lemma, we indeed find that the bound r2 + 1 is only quadrat-
ically worse than the bound dim

(
Span

(
O
))

+ 1. We again defer the proof to App-
pendix B.1.1.

Lemma 13. The vector spaces defined in Eq. (4.3) and Eq. (4.4) satisfy2

dim(H) ≤ dim(V ) ≤ dim(H)2.

Therefore, if we sufficiently limit r = dim(H), then this also limits dim
(
Span

(
O
))

=

dim(V ). Moreover, even though dim
(
Span

(
O
))

+ 1 can provide a tighter bound, it
can still be advantageous to study the bound r2+1 because it might have interpreta-
tional advantages. Specifically, it might be easier to construct cases of ansatze where
the latter bound allows us to identify a controlable hyperparameter that controls the
VC dimension (as we discuss in more detail in Section 4.3).

Note that the quantity r defined in the above proposition, depends on both the
structure of the ansatz W as well as the post-processing function λ. One way to
potentially limit r is by varying the rank of the final measurement (i.e., the value L
defined above). However, for several ansatzes in literature, having either a low-rank or
a high-rank final measurement will not make a difference in terms of the VC dimension
bound r2 + 13. To see this, consider an ansatz consisting of a single layer of parame-
terized X-rotations on all qubits, where each rotation is given a separate parameter.
Already for this simple ansatz even the first columns {⊗n

i=1Xi(θi) |0⟩ | θ ∈ [0, 2π)n}
span the entire n-qubit Hilbert space. In particular, the above proposition gives the
same VC dimension upper bound for the cases where the final measurement is of
rank L = 1, and where it is of full rank L = 2n (i.e., we have no guarantee that
limiting L limits the VC dimension). This motivates us to design ansatzes for which
subsets of columns do not span the entire Hilbert space when varying the variational
parameter θ. On the other hand, to exploit the bound dim

(
Span

(
O
))

+ 1 one needs
to consider the span of the projectors onto the first L columns in the vector space
of Hermitian operators. This quantity can be slightly less intuitive than the span of
the first L columns in the n-qubit Hilbert space, and in Section 4.3 we show that this

2Note that there exists ansatzes for which the inequalities are strict, i.e., dim(H) < dim(V ) <
dim(H)2 (e.g., see the first example discussed in Section 4.3).

3The relationship between the quantity r and the ranks of the observable can be made explicit
by considering the overlaps between the images of the observables. A more detailed explanation of
this can be found in Appendix B.1.2.
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latter quantity can already be used to affirm the effectiveness of certain regulariza-
tion techniques. Specifically, in Section 4.3 we discuss examples of ansatzes for which
subsets of columns do not span the entire Hilbert space when varying the variational
parameter, and we explain how they allow for structural risk minimization by limiting
the rank of the final measurement.

Next, we show that the fat-shattering dimension of a family of quantum linear
classifiers is related to the Frobenius norm of the observables that it uses. In particu-
lar, we show that we can control the fat-shattering dimension of a family of quantum
linear classifiers by limiting the Frobenius norm of its observables. We defer the
proof to Appendix B.1.3, where we also discuss the implications of this result in the
probably approximately correct (PAC) learning framework.

Proposition 14. Let O ⊆ Herm
(
C2n

)
be a family of n-qubit observables with η =

maxO∈O ∥O∥F . Then, the fat-shattering dimension of

FO
qlin =

{
fO,d(x) = Tr [OρΦ(x)]− d

∣∣ O ∈ O, d ∈ R
}

(4.5)

is upper bounded by

fatFO
qlin

(γ) ≤ O
(
η2

γ2

)
. (4.6)

Remark(s). The upper bound in the above proposition matches the result discussed
in [127]. This was derived independently by one of the authors of [95] in [193], and
we include it here for completeness.

The above proposition shows that the fat-shattering dimension of a family of ex-

plicit quantum linear classifiers can be controlled by limiting ||Oλ
θ ||F =

√∑2n

i=1 λ(i)
2.

In particular, it shows that the selection of the postprocessing function λ is impor-
tant when tuning the complexity of the family of classifiers. Furthermore, the above
proposition shows that the fat-shattering dimension of a family of implicit quantum
linear classifiers can be controlled by limiting ||Oα||F ≤ ||α||1. It is important to note
that the Frobenius norm itself does not fully characterize the generalization perfor-
mance of a family of quantum linear classifiers. Specifically, plugging Theorem 14 into
Proposition 2 we find that the generalization performance bounds depend on both the
Frobenius norm as well as the functional margin on training examples4. Therefore, to
optimize the generalization performance bounds one has to minimize the Frobenius
norm, while ensuring the functional margin on training examples stays large. Note
that one way to achieve this is by maximizing the so-called geometric margin, which
on a set of example {xi} is given by mini

∣∣Tr [OρΦ(xi)]− d
∣∣/||O||F .

4Recall that the functional margin of cf,d(x) = sign
(
f(x) − d

)
on a set of examples {xi} is

mini |f(xi)− d|.
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4.2 Expressivity of quantum linear classifiers
Having established that the quantity r defined in Proposition 12 and the Frobenius
norms of the observables influence the complexity of the family of quantum linear
classifiers (i.e., the green line in Figure 2.6), we will now study the influence of these
parameters on the training errors that the classifiers can achieve (i.e., the blue line in
Figure 2.6). First, we study the influence of these model parameters on the ability of
the classifiers to correctly classify certain sets of examples. Afterwards, we study the
influence of these model parameters on the margins that the classifiers can achieve.

Recall from the previous section that the VC dimension of certain families of
quantum linear classifiers depends on the rank of the observables that it uses. For
instance, if the observables are such that their images are (largely) overlapping, then
the quantity r defined in Proposition 12 can be controlled by limiting the ranks of all
observables. In Section 4.3 we use this observation to construct ansatzes for which the
VC dimension bound can be tuned by varying the rank of the observable measured
on the output of the circuit. Since the VC dimension is only concerned with whether
an example is correctly classified (and not what margin it achieves), we choose to
investigate the influence of the rank on being able to correctly classify certain sets
of examples. In particular, we show that any set of examples that can be correctly
classified using a low-rank observable, can also be correctly classified using a high-
rank observable. Moreover, we also show that there exist sets of examples that can
only be correctly classified using observables of at least a certain rank. We defer the
proof to Appendix B.2.1.

Proposition 15. Let C(r)qlin denote the family of quantum linear classifiers correspond-
ing to observables of exactly rank r, that is,

C(r)qlin =
{
c(ρ) = sign

(
Tr [Oρ]− d

) ∣∣ O ∈ Herm
(
C2n

)
, rank

(
O
)
= r, d ∈ R

}
(4.7)

Then, the following statements hold:

(i) For every finite set of examples D that is correctly classified by a quantum linear
classifier c ∈ C(k)qlin with 0 < k < 2n, there exists a quantum linear classifier

c ∈ C(r)qlin with r > k that also correctly classifies D.

(ii) There exists a finite set of examples that can be correctly classified by a classifier
c ∈ C(r)qlin, but which no classifier c′ ∈ C(k)qlin with k < r can classify correctly.

Note that in the above proposition we define our classifiers in such a way that
high-rank classifiers do not subsume low-rank classifiers. In particular, the family of
observables that C(r)qlin and C(k)qlin use are completely disjoint for k ̸= r. The construction
behind the proof of the above proposition is inspired by tomography of observables.
Specifically, we construct a protocol that queries a quantum linear classifier and based
on the assigned labels checks whether the underlying observable is approximately
equal to a fixed target observable of a certain rank. In particular, we can use this
to test whether the underlying observable is really of a given rank, as no low-rank
observable can agree with a high-rank observable on the assigned labels during this
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protocol. Note that if we could query the expectation values of the observable, then
tomography would be straightforward. However, the classifier only outputs the sign of
the expectation value, which introduces a technical problem that we circumvent. Our
protocol could be generalized to a more complete tomographic-protocol which uses
queries to a quantum linear classifier in order to find the spectrum of the underlying
observable.

Next, we investigate the effect that limitations of the rank of the observables
used by a family of quantum linear classifier have on its ability to implement certain
families of standard linear classifiers. In particular, assuming that the feature map
is bounded (i.e., all feature vectors have finite norm), then the following proposition
establishes the following chain of inclusions:

Clin on R2n ⊆ C(≤1)
qlin on n+ 1 qubits ⊆ . . . (4.8)

⊆ C(≤r)
qlin on n+ 1 qubits ⊆ · · · ⊆ Clin on R4n , (4.9)

where C(≤r)
qlin denotes the family of quantum linear classifiers using observables of rank

at most r. Note that C(≤r)
qlin ⊊ C(≤r+1)

qlin is strict due to Proposition 15. We defer the
proof to Appendix B.2.2.

Proposition 16. Let Clin(Φ) denote the family of linear classifiers that is equipped
with a feature map Φ. Also, let C(≤r)

qlin (Φ′) denote the family of quantum linear clas-
sifiers that uses observables of rank at most r and which is equipped with a quantum
feature map Φ′. Then, the following statements hold:

(i) For every feature map Φ : Rℓ → RN with supx∈Rℓ ||Φ(x)|| = M < ∞, there
exists a feature map Φ′ : Rℓ → RN+1 such that ||Φ′(x)|| = 1 for all x ∈ Rℓ and
the families of linear classifiers satisfy Clin(Φ) ⊆ Clin(Φ′).

(ii) For every feature map Φ : Rℓ → RN with ||Φ(x)|| = 1 for all x ∈ Rℓ, there exists
a quantum feature map Φ′ : Rℓ → Herm

(
C2n

)
that uses n = ⌈logN + 1⌉ + 1

qubits such that the families of linear classifiers satisfy Clin(Φ) ⊆ C(≤1)
qlin (Φ′).

(iii) For every quantum feature map Φ : Rℓ → Herm
(
C2n

)
, there exists a classical

feature map Φ′ : Rℓ → R4n such that the families of linear classifiers satisfy
Cqlin(Φ) = Clin(Φ′).

Recall from the previous section that the fat-shattering dimension of a family of
linear classifiers depends on the Frobenius norm of the observables that is uses. In the
following proposition we show that tuning the Frobenius norm changes the margins
that the model can achieve, which gives rise to better generalization performance (as
discussed in Section 2.3). In particular, we show that there exist sets of examples that
can only be classified with a certain margin by a classifier that uses an observable of
at least a certain Frobenius norm. We defer the proof to Appendix B.2.3.
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Proposition 17. Let C(η)qlin denote the family of quantum linear classifiers correspond-
ing to all n-qubit observables of Frobenius norm η, that is,

C(η)qlin =
{
c(ρ) = sign

(
Tr [Oρ]− d

) ∣∣ O ∈ Herm
(
C2n

)
with ||O||F = η, d ∈ R

}
.

(4.10)

Then, for every η ∈ R>0 and 0 < m ≤ 2n there exists a set of m examples consisting
of binary labeled n-qubit pure states that satisfies the following two conditions:

(i) There exists a classifier c ∈ C(η)qlin that correctly classifies all examples with margin
η/
√
m.

(ii) No classifier c′ ∈ C(η
′)

qlin with η′ < η can classify all examples correctly with margin
≥ η/√m.

In conclusion, in Proposition 12 we showed that in certain cases the rank of the ob-
servables control the model’s complexity (e.g., if the observables have overlapping im-
ages), and in Proposition 15 we showed that the rank also controls the model’s ability
to achieve small training errors. Moreover, in Proposition 17 we similarly showed that
the Frobenius norm not only controls the model’s complexity (see Proposition 14),
but that it also controls the model’s ability to achieve large functional margins. How-
ever, note that tuning each model parameter achieves a different objective. Namely,
increasing the rank of the observable increases the ability to correctly classify sets
of examples, whereas increasing the Frobenius norm of the observable increases the
margins that it can achieve. For example, one can increase the Frobenius norm of
an observable by multiplying it with a positive scalar which increases the margin it
achieves, but in order to correctly classify the sets of examples discussed in Proposi-
tion 15 one actually has to increase the rank of the observable.

4.3 Structural risk minimization in practice
Having established how certain model parameters of quantum linear classifiers in-
fluence both the model’s complexity and its ability to achieve small training errors,
we now discuss how to use these results to implement structural risk minimization
of quantum linear classifiers in practice. In particular, we will discuss a common
approach to structural risk minimization called regularization. In short, what regu-
larization entails is instead of minimizing only the training error Etrain, one simulta-
neously minimizes an extra term h(ω), where h is a function that takes larger values
for model parameters ω that correspond to more complex models. In this section, we
discuss different types of regularization (i.e., different choices of the function h) that
can be performed in the context of quantum linear classifiers based on the results of
the previous section. These types of regularization help improve the performance of
quantum linear classifiers in practice, without putting more stringent requirements
on the quantum hardware and are thus NISQ-suitable.

To illustrate how Proposition 12 can be used to implement structural risk mini-
mization in the explicit approach, consider the setting where we have a parameterized
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quantum circuit W (θ) (with θ ∈ Rp) followed by a fixed measurement that projects
onto the first ℓ computational basis states. To use the bound r2 + 1 from Proposi-
tion 12 one has to compute the quantity

dimC

(
SpanC

{
|ψi(θ)⟩ : i = 1, . . . ℓ, θ ∈ Rp

})
, (4.11)

where |ψi(θ)⟩ denotes the ith column ofW (θ). To use the other bound dim
(
Span

(
O
))
+

1 from Proposition 12 one has to compute the quantity

dimR

(
SpanR

{ ℓ∑

i=1

|ψi(θ)⟩ ⟨ψi(θ)| : θ ∈ Rp
})
, (4.12)

Although both are of course possible, in some cases it is slightly easier to see how the
quantity in Eq. (4.11) scales with respect to ℓ. Specifically, utilizing the quantity in
Eq. (4.11) already leads to interesting ansatze that allow for structural risk minimiza-
tion by limiting ℓ. As discussed below Proposition 12, setting ℓ to be either large or
small will not influence the upper bound on the VC dimension independently of the
structure of the parameterized quantum circuit ansatz W . The proposition therefore
motivates the design of ansatzes whose first ℓ columns define a manifold when vary-
ing the variational parameter that is contained in a relatively low-dimensional linear
subspace. Specifically, in this case Proposition 12 results in nontrivial bounds on the
VC dimension that we aim to control by varying ℓ. We now give three examples of
ansatzes that allow one to control the upper bound on the VC dimension by varying ℓ.
In particular, these ansatzes allow structural risk minimization to be implemented by
regularizing with respect to the rank of the final measurement.

Example 1 For the first example, split up the qubits up in a “control register” of
size c and a “target register” of size t (i.e., n = t + c). Next, let C−Ui(θi) denote
the controlled gate that applies the t-qubit parameterized unitary Ui(θi) to the target
register if the control register is in the state |i⟩. Finally, consider the ansatz

W (θ) =
[
C−U2c(θ2c)

]
· . . . ·

[
C−U1(θ1)

]
.5

Note that the matrix of W (θ) is given by the block matrix

W (θ) =




U1(θ1)
U2(θ2)

. . .
U2c(θ2c)


 .

For this choice of ansatz, if the final measurement projects onto ℓ = m2t (m < 2c)
computational basis states, then by Proposition 12 the VC dimension is at most
ℓ2 + 1. Note that t is a controllable hyperparameter that can be used to tune the

5We can control the depth of W (θ) by either limiting the size of the control register or by simply
dropping some of the controlled parameterized unitaries (i.e., setting Ui(θi) = I).
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VC dimension. In particular, we can set it such that the resulting VC dimension is
not exponential in n. Let us now consider the other bound dim

(
Span

(
O
))

+ 1 from
Proposition 12. For this choice of ansatz, computing the quantity in Eq. (4.12) is also
straightforward due to the block structure of the unitary. Moreover, for this choice
of ansatz the inequalities in Lemma 13 are strict, which shows why being able to
compute the quantity in Eq. (4.11) does not always imply that we can also compute
the quantity in Eq. (4.12) (i.e., one is not simply the square of the other).

Example 2 For the second example, consider an ansatz that is composed of pa-
rameterized gates of the form U(θ) = eiθP for some Pauli string P ∈ {X,Y, Z, I}⊗n.
Specifically, consider the ansatz

W (θ) = eiθdPd · . . . · eiθ1P1 .

By the bound r2+1 from Proposition 12, for this choice of ansatz if the final measure-
ment projects onto ℓ computational basis states the VC dimension is at most r2 + 1,
where r = ℓ · 2d. This bound is obtained by computing the quantity in Eq. (4.11),
which can be done by noting that a column of the unitary U(θ) spans a subspace of
dimension at most 2 when varying the variational parameter θ. Moreover, subsequent
layers of U(θ) will only increase the dimension of the span of a column by at most a
factor 2. Thus, when applying U(θ) a total of d times, the dimension of the span of
any ℓ columns of W (θ) is at most r = ℓ · 2d. Also in this construction we note that
d is a controllable hyperparameter that can be used to tune the VC dimension. In
particular, we can set it such that the resulting VC dimension is not exponential in
n. For this particular choice of ansatze, computing the quantity in Eq. (4.12) might
also be possible, but it is a bit more involved and not necessary for our main goal
of establishing that ℓ controls the VC dimension. In particular, one might be able
to compute the quantity in Eq. (4.12), but the bound r2 + 1 from Proposition 12
already suffices to establish that ℓ is a tunable hyperparameter that controls the VC
dimension.

Example 3 For the third example, we use symmetry considerations as a tool to
control the VC dimension. First, partition the n-qubit register into disjoint subsets
I1, . . . , Ik of size |Ij | = mj (i.e.,

∑
j mj = n). Next, consider “permutation-symmetry

preserving” parameterized unitaries on these partitions, which are defined as

S+
Ij
(θ) = e

iθ
∑

i∈Ij
Pi , and S⊗

Ij
(θ) = e

iθ
∏

i∈Ij
Pi ,

where we have say Pi = Xi, Pi = Yi, Pi = Zi or Pi = I for all i ∈ Ij (i.e., the
same operator acting on all qubits in the partition Ij). Note that if we apply these
operators to a permutation invariant state on the mj-qubits in the jth partition, then
it remains permutation invariant (independent of θ). From these symmetric param-
eterized unitaries we construct parameterized layers U(θ1, . . . , θk) =

∏k
j=1 S

+/⊗
Ij

(θj),
from which we construct the ansatz as

W (θ) = U(θd1 , . . . , θ
d
k) · · · · · U(θ11, . . . , θ

1
k), θ ∈ [0, 1π)dk.
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By the bound r2+1 from Proposition 12, for this choice of ansatz if the final measure-
ment projects onto ℓ computational basis states the VC dimension is at most r2 + 1,
where

r = ℓ ·
k∏

j=1

(mj + 1).

This bound is obtained by computing the quantity in Eq. (4.11), which can be done
by noting that if we apply a layer U to an n-qubit state that is invariant under
permutations that only permute qubits within each partition, then it remains invariant
under these permutations (i.e., independent of the choice of θ). In other words,
the first column of W (θ) is always contained in the space of n-qubit states that
are invariant under permutations that only permute qubits within each partition.
Next, note that the dimension of the space of n-qubit states that are invariant under
permutations that only permute qubits within each partition is equal to

∏k
j=1(mj+1).

Finally, note that any other column of W (θ) spans a space whose dimension is at most
that of the first column of W (θ) when varying θ. Thus, any ℓ columns of W (θ) span
a space of dimension is most r = ℓ ·∏k

j=1(mj + 1) when varying θ. Equivalent to
the example above, for this particular choice of ansatze, computing the quantity in
Eq. (4.12) might also be possible, but it is again a bit more involved and not necessary
for our main goal of establishing that ℓ controls the VC dimension. In particular, one
might be able to compute the quantity in Eq. (4.12), but the bound r2 + 1 from
Proposition 12 again already suffices to establish that ℓ is a tunable hyperparameter
that controls the VC dimension.

In all of the above cases we see that we can control the upper bound on the VC
dimension by varying the rank of the final measurement ℓ. It is worth noting that
in these cases the regularized explicit quantum linear classifiers will generally give
rise to a different model then the implicit approach without any theoretical guarantee
regarding which will do better, because the standard relationship between the two
models [165] will not hold anymore (i.e., the regularized explicit model does not
necessarily correspond to a kernel method anymore).

Secondly, recall that by tuning the Frobenius norms of the observables used by
a quantum linear classifier, we can balance the trade-off between its fat-shattering
dimension and its ability to achieve large margins. In particular, this shows that we
can implement structural risk minimization of quantum linear classifiers with respect
to the fat-shattering dimension by regularizing the Frobenius norms of the observ-
ables. Again, it is important to note that the Frobenius norm itself does not fully
characterize the generalization performance, since one also has to take into account
the functional margin on training examples. In particular, to optimize the general-
ization performance one has to minimize the Frobenius norm, while ensuring that the
functional margin on training examples stays large. As mentioned earlier, one way to
achieve this is by maximizing the geometric margin, which on a set of examples {xi}
is given by mini

∣∣Tr [OρΦ(xi)]−d
∣∣/||O||F . As before, for explicit quantum linear clas-

sifiers, we can estimate the Frobenius norm by sampling random computational basis
states and computing the average of the postprocessing function λ on them in order to

estimate ||Oλ
θ ||F =

√∑2n

i=1 λ(i)
2 (note that in some cases the Frobenius norm can be
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computed more directly). On the other hand, for implicit quantum linear classifiers,
we can regularize the Frobenius norm by bounding ||α||1 as ||Oα||F ≤ ||α||1. However,
if the weights are obtained by solving the usual quadratic program [103, 168], then the
resulting observable is already (optimally) regularized with respect to the Frobenius
norm [165].

Besides the types of regularization for which we have established theoretical evi-
dence of the effect on structural risk minimization, there are also other types of reg-
ularization that are important to consider. For instance, for explicit quantum linear
classifiers, one could regularize the angles of the parameterized quantum circuit [153].
Theoretically analyzing the effect that regularizing the angles of the parameterized
quantum circuit has on structural risk minimization would constitute an interest-
ing direction for future research. Another example is regularizing circuit parameters
such as depth, width and number of gates for which certain theoretical results are
known [46, 52]. Finally, it turns out that one can also regularize quantum linear
classifiers by running the circuits under varying levels of noise [47]. For these kinds
of regularization the relationships between the regularized explicit and regularized
implicit quantum linear classifiers are still to be investigated.
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Chapter 5

Parametrized quantum policies
for reinforcement learning

In this chapter, we demonstrate the potential of policies based on parameterized quan-
tum circuits (PQCs) in solving classical reinforcement learning (RL) environments.
Firstly, in Section 5.1 we first propose new model constructions and describe their
learning algorithms. Next, in Section 5.2 we show numerically the influence of design
choices on their learning performance. Finally, in Section 5.3, inspired by the classifi-
cation task of Havliček et al. [104], conjectured to be classically hard by the authors,
we construct analogous RL environments where we show an empirical learning advan-
tage of our PQC policies over standard DNN policies used in deep RL. Moreover, we
also construct RL environments with a provable gap in performance between a family
of PQC policies and any efficient classical learner.

5.1 Parametrized quantum policies
In this section, we give a detailed construction of our parametrized quantum policies
and describe their associated training algorithms.

5.1.1 The raw-PQC and softmax-PQC policies
At the core of our parametrized quantum policies is a PQC defined by a unitary
U(s,θ) that acts on a fixed n-qubit state (e.g., |0⊗n⟩). This unitary encodes an
input state s ∈ Rd and is parametrized by a trainable vector θ. Although different
choices of PQCs are possible, throughout our numerical experiments (Sec. 5.2 and
5.3.2), we consider so-called hardware-efficient PQCs [113] with an alternating-layered
architecture [157, 170]. This architecture is depicted in Fig. 5.1 and essentially consists
in an alternation of Denc encoding unitaries Uenc (composed of single-qubit rotations
Rz, Ry) and Denc + 1 variational unitaries Uvar (composed of single-qubit rotations
Rz, Ry and entangling Ctrl-Z gates ).
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Uvar(ϕ0) Uenc(s,λ0)

|0⟩0 H Rz(ϕ0,0) Ry(ϕ0,2) • Ry(λ0,0s0) Rz(λ0,2s0)
Uvar(ϕ1)

|0⟩1 H Rz(ϕ0,1) Ry(ϕ0,3) • Ry(λ0,1s1) Rz(λ0,3s1)

Figure 5.1: PQC architecture for n = 2 qubits and depth Denc = 1. This
architecture is composed of alternating layers of encoding unitaries Uenc(s,λi) taking
as input a state vector s = (s0, . . . , sd−1) and scaling parameters λi (part of a vector
λ ∈ R|λ| of dimension |λ|), and variational unitaries Uvar(ϕi) taking as input rotation
angles ϕi (part of a vector ϕ ∈ [0, 2π]|ϕ| of dimension |ϕ|).

For any given PQC, we define two families of policies, differing in how the fi-
nal quantum states |ψs,θ⟩ = U(s,θ) |0⊗n⟩ are used. In the raw-PQC model, we
exploit the probabilistic nature of quantum measurements to define an RL policy.
For |A| available actions to the RL agent, we partition H in |A| disjoint subspaces
(e.g., spanned by computational basis states) and associate a projection Pa to each of
these subspaces. Using the projections Pa, we define our raw-PQC policy πθ(a|s) =
⟨Pa⟩s,θ. A limitation of this policy family however is that it does not have a directly
adjustable “greediness” (i.e., a control parameter that makes the policy more concen-
trated around certain actions). This consideration arises naturally in an RL context
where an agent’s policy needs to shift from an exploratory behavior (i.e., close to
uniform distribution) to a more exploitative behavior (i.e., a peaked distribution).
To remedy this limitation, we define the softmax-PQC model, that applies an ad-
justable softmaxβ non-linear activation function on the expectation values ⟨Pa⟩s,θ
measured on |ψs,θ⟩. Since the softmax function normalizes any real-valued input, we
can generalize the projections Pa to be arbitrary Hermitian operators Oa. We also
generalize these observables one step further by assigning them trainable weights.
The two models are formally defined below.

Definition 16 (raw- and softmax-PQC). Given a PQC acting on n qubits, taking
as input a state s ∈ Rd, rotation angles ϕ ∈ [0, 2π]|ϕ| and scaling parameters λ ∈ R|λ|,
such that its corresponding unitary U(s,ϕ,λ) produces the quantum state |ψs,ϕ,λ⟩ =
U(s,ϕ,λ) |0⊗n⟩, we define its associated raw-PQC policy as:

πθ(a|s) = ⟨Pa⟩s,θ (5.1)

where ⟨Pa⟩s,θ = ⟨ψs,ϕ,λ|Pa|ψs,ϕ,λ⟩ is the expectation value of a projection Pa associ-
ated to action a, such that

∑
a Pa = I and PaPa′ = δa,a′ . θ = (ϕ,λ) constitute all of

its trainable parameters.
Using the same PQC, we also define a softmax-PQC policy as:

πθ(a|s) =
eβ⟨Oa⟩s,θ

∑
a′ e

β⟨Oa′ ⟩s,θ
(5.2)

where ⟨Oa⟩s,θ = ⟨ψs,ϕ,λ|
∑

i wa,iHa,i|ψs,ϕ,λ⟩ is the expectation value of the weighted
Hermitian operators Ha,i associated to action a, β ∈ R is an inverse-temperature
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parameter and θ = (ϕ,λ,w).

Note that we adopt here a very general definition for the observables Oa of our
softmax-PQC policies. As we discuss in more detail in Appendix C.3, very ex-
pressive trainable observables can in some extreme cases take over all training of the
PQC parameters ϕ,λ and render the role of the PQC in learning trivial. However,
in practice, as well as in our numerical experiments, we only consider very restricted
observables Oa =

∑
i wa,iHa,i, where Ha,i are (tensor products of) Pauli matrices

or high-rank projections on computational basis states, which do not allow for these
extreme scenarios.

In our PQC construction, we include trainable scaling parameters λ, used in every
encoding gate to re-scale its input components. This modification to the standard
data encoding in PQCs comes in light of recent considerations on the structure of
PQC functions [166]. These additional parameters allow to represent functions with
a wider and richer spectrum of frequencies, and hence provide shallow PQCs with
more expressive power.

5.1.2 Learning algorithm
In order to analyze the properties of our PQC policies without the interference of other
learning mechanisms [198], we train these policies using the basic Monte Carlo policy
gradient algorithm REINFORCE [183, 199] (see Alg. 1). This algorithm consists in
evaluating Monte Carlo estimates of the value function Vπθ

(s0) = Eπθ

[∑H−1
t=0 γtrt

]
,

γ ∈ [0, 1], using batches of interactions with the environment, and updating the policy
parameters θ via a gradient ascent on Vπθ

(s0). The resulting updates (see line 8 of
Alg. 1) involve the gradient of the log-policy ∇θ log πθ(a|s), which we therefore need
to compute for our policies. We describe this computation in the following lemma.

Lemma 18. Given a softmax-PQC policy πθ, the gradient of its logarithm is given
by:

∇θ log πθ(a|s) = β
(
∇θ ⟨Oa⟩s,θ −

∑
a′
πθ(a

′|s)∇θ ⟨Oa′⟩s,θ
)
. (5.3)

Partial derivatives with respect to observable weights are trivially given by ∂wa,i⟨Oa⟩s,θ =
⟨ψs,ϕ,λ|Ha,i|ψs,ϕ,λ⟩ (see Def. 16), while derivatives with respect to rotation angles
∂ϕi
⟨Oa⟩s,θ and scaling parameters1 ∂λi

⟨Oa⟩s,θ can be estimated via the parameter-
shift rule [137, 166]:

∂i ⟨Oa⟩s,θ =
1

2

(
⟨Oa⟩s,θ+π

2 ei
− ⟨Oa⟩s,θ−π

2 ei

)
, (5.4)

i.e., using the difference of two expectation values ⟨Oa⟩s,θ′ with a single angle shifted
by ±π

2 .
For a raw-PQC policy πθ, we have instead:

∇θ log πθ(a|s) = ∇θ ⟨Pa⟩s,θ / ⟨Pa⟩s,θ (5.5)
1Note that the parameters λ do not act as rotation angles. To compute the derivatives

∂λi,j
⟨Oa⟩s,θ , one should compute derivatives w.r.t. sjλi,j instead and apply the chain rule:

∂λi,j
⟨Oa⟩s,θ = sj∂sjλi,j

⟨Oa⟩s,θ .
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Algorithm 1: REINFORCE with PQC policies and value-
function baselines
Input: a PQC policy πθ from Def. 16; a value-function

approximator Ṽω
1 Initialize parameters θ and ω;
2 while True do
3 Generate N episodes {(s0, a0, r1, . . . , sH−1, aH−1, rH)}i

following πθ;
4 for episode i in batch do
5 Compute the returns Gi,t ←

∑H−t
t′=1 γ

t′r
(i)
t+t′ ;

6 Compute the gradients ∇θ log πθ(a
(i)
t |s(i)t ) using

Lemma 18;

7 Fit
{
Ṽω(s

(i)
t )
}
i,t

to the returns {Gi,t}i,t;
8 Compute

∆θ =
1

N

N∑
i=1

H−1∑
t=0
∇θ log πθ(a

(i)
t |s(i)t )

(
Gi,t − Ṽω(s(i)t )

)
;

9 Update θ ← θ + α∆θ;

where the partial derivatives ∂ϕi
⟨Pa⟩s,θ and ∂λi

⟨Pa⟩s,θ can be estimated similarly to
above.

In some of our environments, we additionally rely on a linear value-function base-
line to reduce the variance of the Monte Carlo estimates [91]. We choose it to be
identical to that of Ref. [71].

5.1.3 Efficient policy sampling and policy-gradient evaluation
A natural consideration when it comes to the implementation of our PQC policies is
whether one can efficiently (in the number of executions of the PQC on a quantum
computer) sample and train them.

By design, sampling from our raw-PQC policies can be done with a single exe-
cution (and measurement) of the PQC: the projective measurement corresponding to
the observable O =

∑
a aPa naturally samples a basis state associated to action a with

probability ⟨Pa⟩s,θ. However, as Eq. (5.5) indicates, in order to train these policies
using REINFORCE, one is nonetheless required to estimate the expectation values
⟨Pa⟩s,θ, along with the gradients ∇θ ⟨Pa⟩s,θ. Fortunately, these quantities can be es-
timated efficiently up to some additive error ε, using only O(ε−2) repeated executions
and measurements on a quantum computer.

In the case of our softmax-PQC policies, it is less clear whether similar noisy
estimates ⟨Õa⟩s,θ of the expectation values ⟨Oa⟩s,θ are sufficient to evaluate policies
of the form of Eq. (5.2). We show however that, using these noisy estimates, we can
compute a policy π̃θ that produces samples close to that of the true policy πθ. We
state our result formally in the following lemma, proven in Appendix C.2.
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Lemma 19. For a softmax-PQC policy πθ defined by a unitary U(s,θ) and observ-
ables Oa, call ⟨Õa⟩s,θ approximations of the true expectation values ⟨Oa⟩s,θ with at
most ε additive error. Then the approximate policy π̃θ = softmaxβ(⟨Õa⟩s,θ) has total
variation distance O(βε) to πθ = softmaxβ(⟨Oa⟩s,θ). Since expectation values can be
efficiently estimated to additive error on a quantum computer, this implies efficient
approximate sampling from πθ.

We also obtain a similar result for the log-policy gradient of softmax-PQCs (see
Lemma 18), that we show can be efficiently estimated to additive error in ℓ∞-norm
(see Appendix C.2 for a proof).

5.2 Performance comparison in benchmarking envi-
ronments

In the previous section, we have introduced our quantum policies and described several
of our design choices. We defined the raw-PQC and softmax-PQC models and
introduced two original features for PQCs: trainable observables at their output and
trainable scaling parameters for their input. In this section, we evaluate the influence
of these design choices on learning performance through numerical simulations. We
consider three classical benchmarking environments from the OpenAI Gym library
[43]: CartPole, MountainCar and Acrobot. All three have continuous state spaces and
discrete action spaces (see Appendix C.4 for their specifications). Moreover, simple
NN-policies, as well as simple closed-form policies, are known to perform very well
in these environments [151], which makes them an excellent test-bed to benchmark
PQC policies.

5.2.1 raw-PQC v.s. softmax-PQC
In our first set of experiments, presented in Fig. 5.2, we evaluate the general per-
formance of our proposed policies. The aim of these experiments is twofold: first,
to showcase that quantum policies based on shallow PQCs and acting on very few
qubits can be trained to good performance in our selected environments; second, to
test the advantage of softmax-PQC policies over raw-PQC policies that we con-
jectured in the Sec. 5.1.1. To assess these claims, we take a similar approach for each
of our benchmarking environments, in which we evaluate the average learning perfor-
mance of 20 raw-PQC and 20 softmax-PQC agents. Apart from the PQC depth,
the shared hyperparameters of these two models were jointly picked as to give the
best overall performance for both; the hyperparameters specific to each model were
optimized independently. As for the PQC depth Denc, the latter was chosen as the
minimum depth for which near-optimal performance was observed for either model.
The simulation results confirm both our hypotheses: quantum policies can achieve
good performance on the three benchmarking tasks that we consider, and we can
see a clear separation between the performance of softmax-PQC and raw-PQC
agents.
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Figure 5.2: Numerical evidence of the advantage of softmax-PQC over
raw-PQC in benchmarking environments. The learning curves (20 agents
per curve) of randomly-initialized softmax-PQC agents (green curves) and raw-
PQC agents (red curves) in OpenAI Gym environments: CartPole-v1, MountainCar-
v0, and Acrobot-v1. Each curve is temporally averaged with a time window of 10
episodes. All agents have been trained using the REINFORCE algorithm (see Alg.
1), with value-function baselines for the MountainCar and Acrobot environments.
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Figure 5.3: Influence of the model architecture for softmax-PQC agents.
The blue curves in each plot correspond to the learning curves from Fig. 5.2 and are
taken as a reference. Other curves highlight the influence of individual hyperparam-
eters. For raw-PQC agents, see Appendix C.5.
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5.2.2 Influence of architectural choices
The results of the previous subsection however do not indicate whether other design
choices we have made in Sec. 5.1.1 had an influence on the performance of our quantum
agents. To address this, we run a second set of experiments, presented in Fig. 5.3.
In these simulations, we evaluate the average performance of our softmax-PQC
agents after modifying one of three design choices: we either increment the depth
of the PQC (until no significant increase in performance is observed), fix the input-
scaling parameters λ to 1, or fix the observable weights w to 1. By comparing the
performance of these agents with that of the agents from Fig. 5.2, we can make the
following observations:

• Influence of depth: Increasing the depth of the PQC generally improves (not
strictly) the performance of the agents. Note that the maximum depth we tested
was Denc = 10.

• Influence of scaling parameters λ: We observe that training these scaling
parameters in general benefits the learning performance of our PQC policies, likely
due to their increased expressivity.

• Influence of trainable observable weights w: our final consideration relates to
the importance of having a policy with “trainable greediness” in RL scenarios. For
this, we consider softmax-PQC agents with fixed observables βOa throughout
training. We observe that this has the general effect of decreasing the performance
and/or the speed of convergence of the agents. We also see that policies with fixed
high β (or equivalently, a large observable norm β∥Oa∥) tend to have a poor learning
performance, likely due to their lack of exploration in the RL environments.

Finally, note that all the numerical simulations performed here did not include any
source of noise in the PQC evaluations. It would be an interesting research direc-
tion to assess the influence of (simulated or hardware-induced) noise on the learning
performance of PQC agents.

5.3 Quantum advantage of PQC agents in RL envi-
ronments

The proof-of-concept experiments of the previous section show that our PQC agents
can learn in basic classical environments, where they achieve comparable performance
to standard DNN policies. This observation naturally raises the question of whether
there exist RL environments where PQC policies can provide a learning advantage over
standard classical policies. In this section, we answer this question in the affirmative
by constructing: a) environments with a provable separation in learning performance
between quantum and any classical (polynomial-time) learners, and b) environments
where our PQC policies of Sec. 5.1 show an empirical learning advantage over standard
DNN policies.
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5.3.1 Quantum advantage of PQC agents over classical agents
In this subsection, we construct RL environments with theoretical guarantees of sep-
aration between quantum and classical learning agents. These constructions are pre-
dominantly based on the recent work of Liu et al. [128], which defines a classification
task out of the discrete logarithm problem (DLP), i.e., the problem solved in the sem-
inal work of Shor [177]. In broad strokes, this task can be viewed as an encryption
of an easy-to-learn problem. For an “un-encrypted” version, one defines a labeling fs
of integers between 0 and p − 2 (for a large prime p), where the integers are labeled
positively if and only if they lie in the segment [s, s + (p − 3)/2] (mod p − 1). Since
this labeling is linearly separable, the concept class {fs}s is then easy to learn. To
make it hard, the input integers x (now between 1 and p−1) are first encrypted using
modular exponentiation, i.e., the secure operation performed in the Diffie–Hellman
key exchange protocol. In the encrypted problem, the logarithm of the input integer
logg(x) (for a generator g of Z∗

p, see Appendix C.6) hence determines the label of
x. Without the ability to decrypt by solving DLP, which is widely believed to be
classically intractable, the numbers appear randomly labeled. Moreover, Liu et al.
show that achieving non-trivial labeling accuracy 1/2 + 1/poly(n) (for n = log(p),
i.e., slightly better than random guessing) with a classical polynomial-time algorithm
using poly(n) examples would lead to an efficient classical algorithm that solves DLP
[128]. In contrast, the same authors construct a family of quantum learners based
on Shor’s algorithm, that can achieve a labeling accuracy larger than 0.99 with high
probability.

SL-DLP Our objective is to show that analogous separations between classical and
quantum learners can be established for RL environments, in terms of their attain-
able value functions. We start by pointing out that supervised learning (SL) tasks
(and so the classification problem of Liu et al.) can be trivially embedded into RL
environments [72]: for a given concept fs, the states x are datapoints, an action a is
an agent’s guess on the label of x, an immediate reward specifies if it was correct (i.e.,
fs(x) = a), and subsequent states are chosen uniformly at random. In such settings,
the value function is trivially related to the testing accuracy of the SL problem, yield-
ing a direct reduction of the separation result of Liu et al. [128] to an RL setting. We
call this family of environments SL-DLP.

Cliffwalk-DLP In the SL-DLP construction, we made the environment fully ran-
dom in order to simulate the process of obtaining i.i.d. samples in an SL setting. It
is an interesting question whether similar results can be obtained for environments
that are less random, and endowed with temporal structure, which is characteristic
of RL. In our second family of environments (Cliffwalk-DLP), we supplement the SL-
DLP construction with next-state transitions inspired by the textbook “cliff walking”
environment of Sutton & Barto [183]: all states are ordered in a chain and some
actions of the agent can lead to immediate episode termination. We keep however
stochasticity in the environment by allowing next states to be uniformly sampled,
with a certain probability δ (common in RL to ensure that an agent is not simply
memorizing a correct sequence of actions). This allows us to show that, as long as
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sufficient randomness is provided, we still have a simple classical-quantum separation.

Deterministic-DLP In the two families constructed above, each environment in-
stance provided the randomness needed for a reduction from the SL problem. This
brings us to the question of whether separations are also possible for fully determin-
istic environments. In this case, it is clear that for any given environment, there
exists an efficient classical agent which performs perfectly over any polynomial hori-
zon (a lookup-table will do). However, we show in our third family of environments
(Deterministic-DLP) that a separation can still be attained by moving the randomness
to the choice of the environment itself: assuming an efficient classical agent is success-
ful in most of exponentially-many randomly generated (but otherwise deterministic)
environments, implies the existence of a classical efficient algorithm for DLP.

We summarize our results in the following theorem, detailed and proven in Ap-
pendices C.7 through C.9.

Theorem 20. There exist families of reinforcement learning environments which are:
i) fully random (i.e., subsequent states are independent from the previous state and
action); ii) partially random (i.e., the previous moves determine subsequent states,
except with a probability δ at least 0.86 where they are chosen uniformly at random),
and iii) fully deterministic; such that there exists a separation in the value functions
achievable by a given quantum polynomial-time agent and any classical polynomial-
time agent. Specifically, the value of the initial state for the quantum agent Vq(s0) is
ε−close to the optimal value function (for a chosen ε, and with probability above 2/3).
Further, if there exists a classical efficient learning agent that achieves a value Vc(s0)
better than Vrand(s0)+ε

′ (for a chosen ε′, and with probability above 0.845), then there
exists a classical efficient algorithm to solve DLP. Finally, we have Vq(s0) − Vc(s0)
larger than some constant, which depends on the details of the environment.

The remaining point we need to address here is that the learning agents obtained
from the methods of Liu et al. do not rely on PQCs but rather support vector ma-
chines (SVMs) based on quantum kernels [104, 169]. Nonetheless, using a connection
between these quantum SVMs and PQCs [169], we construct PQC policies which are
as powerful in solving the DLP environments as the agents obtained from the meth-
ods of Liu et al. (even under similar noise considerations). We state our result in the
following informal theorem, that we re-state formally, along with the details of our
construction in Appendices C.10 and C.11.

Theorem 21 (informal version). Using a training set of size polynomial in n = log(p)
and a number of (noisy) quantum circuit evaluations also polynomial in n, we can
train a PQC classifier on the DLP task of Liu et al. of size n that achieves a testing
accuracy arbitrarily close to optimal, with high probability. This PQC classifier can in
turn be used to construct close-to-optimal quantum agents in our DLP environments,
as prescribed by Theorem 20.

5.3.2 Quantum advantage of PQC agents over DNN agents
While the DLP environments establish a proof of the learning advantage PQC policies
can have in theory, these environments remain extremely contrived and artificial.
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Figure 5.4: Numerical evidence of the advantage of PQC policies over DNN
policies in PQC-generated environments. (a) Labeling function and training
data used for both RL environments. The data labels (red for +1 label and blue for
−1 label) are generated using a raw-PQC of depth Denc = 4 with a margin ∆ = 0.3
(white areas). The training samples are uniformly sampled from the blue and red
regions, and arrows indicate the rewarded path of the cliffwalk environment. (b) and
(c) The learning curves (20 agents per curve) of randomly-initialized softmax-PQC
agents and DNN agents in RL environments where input states are (b) uniformly
sampled from the dataset and (c) follow cliffwalk dynamics. Each curve is temporally
averaged with a time window of 10 episodes.

They are based on algebraic properties that agents must explicitly decrypt in order
to perform well. Instead, we would like to consider environments that are less tailored
to a specific decryption function, which would allow more general agents to learn. To
do this, we take inspiration from the work of Havlíček et al. [104], who, in order
to test their PQC classifiers, define a learning task generated by similar quantum
circuits.

PQC-generated environments

We generate our RL environments out of random raw-PQCs. To do so, we start
by uniformly sampling a raw-PQC that uses the alternating-layer architecture of
Fig. 5.1 for n = 2 qubits and depth Denc = 4. We use this raw-PQC to generate
a labeling function f(s) by assigning a label +1 to the datapoints s in [0, 2π]2 for
which ⟨ZZ⟩s,θ ≥ 0 and a label −1 otherwise. We create a dataset S of 10 datapoints
per label by uniformly sampling points in [0, 2π]2 for which | ⟨ZZ⟩s,θ | ≥ ∆

2 = 0.15.
This dataset allows us to define two RL environments, similar to the SL-DLP and
Cliffwalk-DLP environments of Sec. 5.3.1:

• SL-PQC: this degenerate RL environment encodes a classification task in an
episodic RL environment: at each interaction step of a 20-step episode, a sam-
ple state s is uniformly sampled from the dataset S, the agent assigns a label
a = ±1 to it and receives a reward δf(s),a = ±1.

• Cliffwalk-PQC: this environment essentially adds a temporal structure to SL-
PQC: each episode starts from a fixed state s0 ∈ S, and if an agent assigns the
correct label to a state si, 0 ≤ i ≤ 19, it moves to a fixed state si+1 and receives a
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+1 reward, otherwise the episode is instantly terminated and the agent gets a −1
reward. Reaching s20 also causes termination.

Performance comparison

Having defined our PQC-generated environments, we now evaluate the performance of
softmax-PQC and DNN policies in these tasks. The particular models we consider
are softmax-PQCs with PQCs sampled from the same family as that of the raw-
PQCs generating the environments (but with re-initialized parameters θ), and DNNs
using Rectified Linear Units (ReLUs) in their hidden layers. In our hyperparameter
search, we evaluated the performance of DNNs with a wide range of depths (number of
hidden layers between 2 to 10) and widths (number of units per hidden layer between
8 and 64), and kept the architecture with the best average performance (depth 4,
width 16).

Despite this hyperparametrization, we find (see Fig. 5.4, and Fig. C.4 in Ap-
pendix C.5 for different environment instances) that the performance of DNN poli-
cies on these tasks remains limited compared to that of softmax-PQCs, that learn
close-to-optimal policies on both tasks. Moreover, we observe that the separation in
performance gets boosted by the cliffwalk temporal structure. This is likely do to the
increased complexity of this task, as, in order to move farther in the cliffwalk, the
policy family should allow learning new labels without “forgetting” the labels of earlier
states. In these particular case studies, the softmax-PQC policies exhibited suffi-
cient flexibility in this sense, whereas the DNNs we considered did not (see Appendix
C.5 for a visualization of these policies). Note that these results do not reflect the dif-
ficulty of our tasks at the sizes we consider (a look-up table would perform optimally)
but rather highlight the inefficacy of these DNNs at learning PQC functions.
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Chapter 6

Exponential separations
between classical and quantum
learners

In this chapter we address the challenge of finding learning settings where quantum
learners can achieve a provable exponential speedup over classical learners in the
efficient probably approximately correct (PAC) framework.

First, in Section 6.1, we discuss known learning separations that rely on efficient
data generation [126, 173], and we provide a fine-grained analysis of where the classical
hardness of learning stems from. While discussing these learning separations, we find
that the ones available in literature largely rely on the classical hardness of evaluating
the function generating the data on unseen points, as opposed to the hardness of
identifying it. We elaborate how the identification problem can be what is needed in
practice, and we address this gap by proving two new learning separations where the
classical hardness primarily lies in identifying the function generating the data (see
Theorems 24 and 25).

Afterwards, in Section 6.2, we show how leveraging stronger complexity-theoretic
assumptions can lead to learning separations where the data is generated by a genuine
quantum process. Our main contribution is Theorem 26, which outlines a method
of establishing learning separations from BQP-complete functions. We also provide
two lemmas, Lemmas 27 and 28, which introduce natural assumptions under which
the criteria in Theorem 26 are satisfied. Finally, in Section 6.2.1, we show how
Theorem 26 can be used to build learning separations from problems in quantum
many-body physics.

To connect our work to some of the related results in the field [107, 109, 146, 97],
we discuss selected topics related to learning separations with classical data. In Sec-
tion 6.3.1 we discuss the milestone work of Huang et al. [107] and how their classical
machine learning methods based on the classical shadow framework relate to learning
separations with quantum-generated data (i.e., those from Theorem 26). In particular,
we highlight their limitations by constructing a family of Hamiltonians whose ground
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state properties cannot be predicted based on cryptographic assumptions (see Theo-
rem 30). In Section 6.3.2 we discuss a specific example (i.e., evaluating parameterized
quantum circuits) that exemplifies how access to data radically enhances what is effi-
ciently evaluated classically. In Section 6.3.3 we discuss how two physically-motivated
problems (i.e., Hamiltonian learning, and identifying order parameters and phases of
matter) naturally fit in a learning setting where the learner is constrained to output
a hypothesis from a fixed hypothesis class.

6.1 Learning separations with efficient data genera-
tion

A commonality between the learning separations of [126, 173] is that the proof of
classical non-learnability relies on the fact that the examples can be efficiently gen-
erated classically (i.e., the example oracle can be efficiently simulated classically)1.
This is crucial, since it ensures that access to the example oracle does not enhance
what a classical learner can evaluate relative to a conventional (non-learning) classical
algorithm. This then allows one to directly deduce classical non-learnability from a
complexity-theoretic hardness assumption related to the concepts, since the existence
of an efficient classical learner would imply the existence of an efficient classical al-
gorithm. A similar observation was made by the authors of [156] (which came out
after our initial observation [94]), where they also study the problem of distribution-
independent learning separations.

In this section we study the learning separations of [126, 173], and we characterize
them with respect to the type of learning separation they achieve (as discussed in
Section 2.5.1), and the kind of hardness assumptions they leverage to obtain classical
non-learnability (as discussed in Section 2.5.2). Firstly, in Section 6.1.1, we discuss the
CC/QQ separation of the discrete logarithm concept class of [126], whose concepts are
believed to be classically intractable, no matter how they are specified. Secondly, in
Section 6.1.2, we discuss the CC/QC separation of the cube root concept class of [116,
173], whose concepts are specified in a way that makes them classically intractable,
though when specified in a different way they become classically efficient (i.e., the
concepts are “obfuscated” versions of classically efficient functions).

While discussing the learning separations of [126, 173], we notice that their proofs
largely rely on the classical difficulty of evaluating the hypotheses on unseen exam-
ples, rather than the difficulty of identifying a hypothesis that is close to the concept
generating the examples. To complement these works, we present two new examples
of learning separations where the classical hardness lies in identifying the concept
that is generating the examples. Specifically, in Section 6.1.3, we provide an exam-
ple of a CC/QC separation (contingent on a plausible though relatively unexplored
hardness assumption) where the concepts are classically efficiently evaluatable, mak-
ing it impossible for the classical hardness to come from evaluating them on unseen
examples. Afterwards, in Section 6.1.4, we provide an example of a separation in the
setting where the learner is constrained to output hypotheses from a fixed hypothesis

1The notion of efficiently generatable examples is closely related to the notion of random verifia-
bility [25].
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class, in which case the learner is only required to identify the concept generating the
examples, therefore also eliminating the possibility that the classical hardness comes
from evaluating them on unseen examples2.

6.1.1 A learning separation based on a worst-case to average-
case reduction

In this section we discuss the discrete logarithm concept class studied in [126]. In
this work, the authors prove that the discrete logarithm concept class defined below
exhibits a CC/QQ separation.

Definition 17 (Discrete logarithm concept class [126]). Fix an n-bit prime number
p and a generator a of Z∗

p (i.e., the multiplicative group of integers modulo p). We
define the discrete logarithm concept class as CDL

n = {ci}i∈Z∗
p
, where

ci(x) =

{
1, if loga x ∈ [i, i+ p−3

2 ],

0, otherwise.
(6.1)

Remark(s). Here loga x denotes the discrete logarithm of x with respect to the gen-
erator a. That is, the discrete logarithm loga x is the smallest positive integer ℓ such
that aℓ ≡ x mod p.

To see why the examples are efficiently generatable for the discrete logarithm class,
first note that the examples are of the form

(x, ci(x)) = (ay, fi(y)) , (6.2)

where y ∈ {1, . . . , p− 1} is the unique integer such that x ≡ ay mod p, and we let

fi(y) =

{
1, if y ∈ [i, i+ p−3

2 ],

0, otherwise.
(6.3)

Secondly, note that y 7→ ay mod p is a bijection from {1, . . . , p − 1} to Z∗
p, which

implies that sampling x ∈ Z∗
p uniformly at random is equivalent to sampling y ∈

{0, . . . , p − 1} uniformly at random and computing x = ay mod p. By combining
this observation with Eq. (6.2), one finds that one can efficiently generate examples of
the discrete logarithm concept ci under the uniform distribution over Z∗

p by sampling
y ∈ {1, . . . , p− 1} uniformly at random, and computing (ay, fi(y)).

The hardness assumption that one can leverage to obtain classical non-learnability
is that the discrete logarithm is classically intractable (i.e., not in BPP)3. Namely,

2We remark that the concept class of Section 6.1.3 also exhibits a separation in the setting the
learner is constrained to output a hypothesis from a fixed hypothesis class. However, we choose to
present it as a CC/QC separation to highlight that such separations are still possible if the concepts
are classically efficiently evaluatable. Moreover, we still include the separation in the setting the
learner is constrained to output a hypothesis from a fixed hypothesis class of Section 6.1.4, because
it is not contingent on a relatively unexplored hardness assumption.

3For some sequence of primes {pn}n∈N, where |pn| = n and given n one can efficiently con-
struct pn.
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in [36] it is shown that computing the most-significant bit of the discrete logarithm
on any 1

2 + 1
poly(n) fraction of inputs is at least as hard as computing the discrete

logarithm on all inputs. Using the terminology of Section 2.5.2, if one assumes that
the discrete logarithm is classically intractable (i.e., not in BPP), then the concepts
c0 ∈ CDL

n lie outside of HeurBPP. In conclusion, to obtain the classical non-learnability
it is sufficient to assume that the discrete logarithm is classically intractable.

We remark that one could obtain a similar learning separation for the singleton
concept class C′n = {c} for any choice of c ∈ CDL

n . This singleton concept class is
quantum learnable without requiring use of the example oracle (i.e. without requiring
any data), and one could thus argue that it is not a genuine learning problem anymore
(i.e., similar to Observation 1).

Having discussed classical non-learnability, one still needs to ensure quantum
learnability. To this end, the authors of [126] show that a general-purpose quantum
learning algorithm (i.e., a quantum kernel method) can efficiently learn the discrete
logarithm concept class under the uniform distribution. We summarize the result
of [126] discussed in this section in the following theorem.

Theorem 22 ([126]). LDLP =
(
{CDLP

n }n∈N, {DU
n }n∈N) exhibits a CC/QQ separation,

where DU
n denotes the uniform distribution over Z∗

p.

The hypothesis class the authors of [126] use is quantumly evaluatable, and to
the best of our knowledge it is unknown whether the discrete logarithm concepts
are quantumly learnable using a classically evaluatable hypothesis class (which would
imply a CC/QC separation).

6.1.2 A learning separation based on obfuscation
The cube root concept class was first studied in [116], and the fact that this concept
class exhibits a CC/QC separation was first observed in [173], albeit using different
terminology. We note that there exist many similar concept classes based on public-
key cryptosystems such as the RSA cryptosystem that exhibit CC/QC separations
(see [115]). Recall that for CC/QC separations the hypothesis class has to be classically
evaluatable, so the role of the quantum computer is only to identify which hypothesis
is close to the concept that is generating the examples.

Definition 18 (Cube root concept class [116]). Fix an n-bit integer N = pq4, where
p and q are two ⌊n/2⌋-bit primes such that gcd

(
3, (p− 1)(q − 1)

)
= 1. We define the

cube root concept class as CDCR
n = {ci}i∈[n], with

ci(x) = bin(f−1
N (x), i),

where bin(y, i) denotes the ith bit of the binary representation of y, and the function
f−1
N is the inverse of fN (x) = x3 mod N defined on Z∗

N (i.e., the multiplicative group
of integers modulo N).

Remark(s). By requiring that p and q satisfy gcd
(
3, (p− 1)(q − 1)

)
= 1, we ensure

that f−1
N exists.

4Throughout this chapter, the integer N is known to the learner beforehand but p and q are not.
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To see why the examples are efficiently generatable for the cube root concept class,
first note that the examples are of the form

(x, ci(x)) =
(
y3,bin(y, i)

)
, (6.4)

where y ∈ Z∗
N is the unique element such that x ≡ y3 mod N . Secondly, note that

fN (x) = x3 mod N is a bijection from Z∗
N to itself, which implies that sampling

x ∈ Z∗
N uniformly at random is equivalent to sampling y ∈ Z∗

N uniformly at random
and computing x = y3 mod N . By combining this observation with Eq. (6.4), one
finds that one can efficiently generate examples of the cube root concept ci under the
uniform distribution over Z∗

N by first sampling y ∈ Z∗
N uniformly at random, and then

computing y3 mod N together with the ith bit of the binary representation of y.
The hardness assumption that one can leverage to obtain classical non-learnability

is what we will call the Discrete Cube Root Assumption (DCRA), which states that
computing f−1

N is classically intractable (i.e., not in BPP)5. Namely, in [17, 87] it is
shown that computing the least-significant bit of f−1

N on any 1
2 + 1

poly(n) fraction of
inputs is at least as hard as computing entire binary representation of f−1

N (x) on all
inputs. Using the terminology of Section 2.5.2, if one assumes that computing f−1

N

is classically intractable (i.e., not in BPP), then the concepts cn ∈ CDCR
n lie outside

of HeurBPP. In conclusion, analogous to the discrete logarithm concept class, to
obtain the classical non-learnability it is sufficient to assume that computing f−1

N is
classically intractable.

We remark that also in this case one could obtain a similar learning separation
for the singleton concept class C′n = {cn} for the concept cn ∈ CDCR

n . This singleton
concept class is quantum learnable without requiring the example oracle (i.e. without
requiring any data), and one could thus argue that it is not a genuine learning problem
anymore (i.e., similar to Observation 1).

However, there is a significant distinction between the learning separations for the
discrete logarithm concept class and the cube root concept class that is worth high-
lighting: the latter is quantumly learnable using a classically evaluatable hypothesis
class. To see why this is the case, it is important to note that f−1

N is of the form

f−1
N (y) = yd

∗
mod N, (6.5)

for some d∗ that only depends on N6. The function f−1
N is a type of “trap-door

function” in that if one is also given d∗, then computing f−1
N suddenly becomes classi-

cally tractable. In other words, there exist polynomially-sized Boolean circuits which
evaluate this function, whereas for the discrete logarithm we do not know whether
such circuits exist. In this example we thus see the relevance of how the concepts
are specified. The specifications “f−1

N where f(x) = x3” and “f−1
N = xd

∗
” refer to

the same functions, yet computing them is in one case classically tractable, and in
the other case it is classically intractable (under the DCRA). The ideas of concealing
(easy) functions in difficult descriptions is reminiscent of the term “obfuscation” in

5For some sequence of moduli {Ni}i∈N, where |Ni| = i and given i one can efficiently construct Ni.
6In cryptographic terms, d∗ is the private decryption key corresponding to the public encryption

key e = 3 and public modulus N in the RSA cryptosystem.
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computer science, and we will use this term in this context as well. Specifically, we
say that the specification “f−1

N where f(x) = x3” is an obfuscation of the specification
“f−1

N = xd
∗
”. Using the terminology of Section 2.5.2, this establishes that the problem

of evaluating the concepts actually lies inside P/poly (where the advice string – i.e.,
d∗ – is used to “de-obfuscate” the function).

With regards to quantum learnability, in [173] the authors note that using Shor’s
algorithm a quantum learning algorithm can efficiently compute d∗ following the stan-
dard attack on the RSA cryptosystem. The cube root concept class is thus quantumly
learnable using the classically evaluatable hypothesis class

{
fd,i(x) = bin(xd mod N, i)

∣∣ d ∈ [N ], i ∈ [n]
}
, (6.6)

Another feature of the cube root concept class which warrants a comment is that
even though computing d∗ does not require access to the example oracle (recall that
N is known beforehand), we still have to learn the bit of xd

∗
that is generating the

examples, which does require access to the example oracle (i.e., it requires data). We
summarize the results regarding the separation of the cube root concept class in the
following theorem.

Theorem 23 ([173, 116]). LDCR =
(
{CDCR

n }n∈N, {DU
n }n∈N) exhibits a CC/QC sepa-

ration, where DU
n denotes the uniform distribution over Z∗

N .

6.1.3 A learning separation with efficiently evaluatable con-
cepts

In this section we establish a learning separation (contingent on a plausible though
relatively unexplored hardness assumption) where the concepts do not just admit
polynomial-sized Boolean circuits, but are also given in a representation which is
efficiently evaluatable on a classical computer. For this concept class, the hardness of
learning then cannot stem from the hardness of evaluating the concepts, and it thus
lies in identifying which specific concept is generating the examples. To the best of
our knowledge, no such separation was given in the literature before. The concept
class that satisfies all of the above is the modular exponentiation concept class defined
as follows.

Definition 19 (Modular exponentiation concept class). Let N = pq be an n-bit 2c-
integer as defined in Definition 20 with gcd

(
3, (p − 1)(q − 1)

)
= 1. We define the

modular exponentiation concept class as

Cmodexp
n =

{
cd

∣∣∣ d = 1, . . . , (p− 1)(q − 1) and gcd(d, (p− 1)(q − 1) = 1
}
,

where

cd : Z∗
N → Z∗

N , cd(x) = xd mod N, (6.7)

and Z∗
N denotes the multiplicative group of integers modulo N .
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Remark(s). The concepts are not binary-valued, and it is an open question whether
and how the separation can be translated to also hold for binary-valued concepts.

Definition 20 (2c-integer). An n-bit integer N = pq is a 2c-integer if p and q are
two ⌊n/2⌋-bit primes such that:

(i) There exists a constant c (i.e., independent of n) such that 2c ∤ (p− 1)(q − 1).

(ii) There exists a constant c′ (i.e., independent of n) such that gcd(p−1, q−1) = 2c
′
.

We show that the above concept class is not classically learnable under the as-
sumption that computing f−1

N is classically intractable (i.e., not in BPP) when we
restrict N to be a 2c integer. We will refer to this assumption as the 2c-discrete cube
root assumption (2c-DCRA). First, note that the modular exponentiation concept
class contains the cube root function f−1

N discussed in the previous section (though
this time it is not “obfuscated”). Moreover, using the construction from the previous
section we can efficiently generate examples (y, f−1

N (y)), for y ∈ Z∗
N uniformly at

random. If we put these examples into an efficient classical learning algorithm for
the modular exponentiation concept class, it would with high probability identify a
classically efficiently evaluatable hypothesis that agrees with f−1

N on a 1− 1
poly(n) frac-

tion of inputs. Analogous to the previous section, by the worst-case to average-case
reduction of [17, 87] this directly violates the 2c-DCRA.

We note that by imposing that N is a 2c-integer might cause the 2c-DCRA to
no longer hold, since there could be an efficient classical algorithm for these specific
2c-integer moduli. However, since 2c-integers are generally not considered to be un-
secure or “weak” moduli for the RSA cryptosystem, and since recently factored RSA
numbers7 are all essentially 2c-integers, it is plausible that the 2c-DCRA still holds
(see Appendix D.2.1 for more details).

To show that the modular exponentiation concept class is quantumly learnable,
we use a combination of the quantum algorithm for order-finding and the quantum
algorithm for the discrete logarithm [176]. The key observation is that an example
(x, xd mod N) specifies a congruence relation d ≡ a mod r, where r denotes the
multiplicative order of x ∈ Z∗

N , and a denotes the discrete logarithm of xd in the
subgroup generated by x (i.e., the smallest positive integer ℓ such that xℓ ≡ xd

mod N). Next, using the fact that N is a 2c-number, we show that a polynomial
number of these congruences suffices to recover d with high probability. We summarize
the learning separation of the modular exponentiation concepts in Theorem 24, and
defer the proof to Appendix D.2.

Theorem 24. If the 2c-DCRA holds, then the learning problem

Lmodexp =
(
{Cmodexp

n }n∈N, {DU
n }n∈N)

exhibits a CC/QC separation, where DU
n denotes the uniform distribution over Z∗

N .

In conclusion, the modular exponentiation concept class exhibits a CC/QC sep-
aration (assuming the 2c-DCRA hold), where the concepts are classically efficiently

7https://en.wikipedia.org/wiki/RSA_numbers
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evaluatable. Since the concepts are classically efficiently evaluatable, one could argue
that the classical hardness lies in identifying rather than evaluating a hypothesis that
is close to the concept generating the examples. We remark that for the modular
exponentation concept class, it is not possible to restrict the concept class and obtain
a similar learning separation where a quantum learner does not require any data (i.e.,
similar to Observation 1). In fact, since the concepts are efficiently evaluatable, any
polynomially-sized subset of concepts is classically learnable since one can simply do
a brute-force search to find the concept that best matches the data.

In the next section, we present an example of a separation in the setting where
the learner is constrained to only output hypotheses from a fixed hypothesis class.
Since the learner is not required to evaluate the concepts on unseen examples, it can
be argued that in this case the classical hardness also lies in identifying rather than
evaluating the concept generating the examples.

6.1.4 A learning separation with a fixed hypothesis class
In this section we establish a separation in the setting where the learner is constrained
to only output hypotheses from a fixed hypothesis class. Recall that in this setting the
learner is not required to be able to evaluate the concepts, so the hardness of learning
must stem from the hardness of identifying the hypothesis that is close to the concept
generating the data. The main differences compared to the modular exponentiation
concept class are that the concepts discussed in this section are binary-valued and that
it is unknown whether they exhibit a separation in the setting where the learner is free
to output arbitrary hypotheses. The concept class we discuss in this section is defined
below, and it is a modification of the cube root concept class from Definition 18.

Definition 21 (Cube root identification concept class). Fix an n-bit integer N = pq,
where p and q are two ⌊n/2⌋-bit primes such that gcd

(
3, (p − 1)(q − 1)

)
= 1. We

define the cube root identification concept class as CDCRI
n = {cm}m∈Z∗

N
, with

cm(x) = bin(m3 mod N, int(x1 : · · · : x⌊logn⌋)),

where bin(y, k) denotes the kth bit of the binary representation of y, and int(x1 : · · · :
x⌊logn⌋) is the integer encoded by the first ⌊log n⌋-bits of x ∈ {0, 1}n.

We show that the cube root identification concept class is not classically learnable
with a fixed hypothesis class under the Discrete Cube Root Assumption (DCRA)
discussed in Section 6.1.2. To show that the existence of an efficient classical learner
violates the DCRA, we let e ∈ Z∗

N and show we how an efficient classical learner can
efficiently compute m = f−1

N (e). First, we generate examples (x,bin(e, k)), where
k = int(x1 : · · · : x⌊logn⌋). When plugging these examples into an efficient classical
learner it will with high probability identify an m′ such that (m′)3 ≡ m mod N .
Since x 7→ x3 mod N is a bijection on Z∗

N we find that m = m′, and thus conclude
that an efficient classical learner can indeed efficiently compute the solution to our
discrete cube root instance.

To establish that the cube root identification concept class is quantumly proper
learnable, we first note that using O(poly(n)) examples of a concept cm under the
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uniform distribution we can with high probability reconstruct the full binary repre-
sentation of m3. Next, since N is known we can use Shor’s algorithm [176] to compute
d such that (m3)d ≡ m mod N , which allows us to correctly identify the concept cm.
Note that the quantum learner needs access to the data to obtain a full reconstruc-
tion of the binary representation of m3. We summarize the learning separation of
the cube root identification concept class in Theorem 25, and we defer the proof to
Appendix D.3.

Theorem 25. LDCRI =
(
{CDCRI

n }n∈N, {DU
n }n∈N) exhibits a CH/QH separation, where

H = CDCRI and DU
n denotes the uniform distribution over Z∗

N .

In conclusion, the cube root identification concept class exhibits a separation in
the setting where the learner is constrained to only output hypotheses from a fixed
hypothesis class. In fact, this is a separation in the proper efficient PAC learning
framework, since the hypothesis class is the same as the concept class. Since in this
setting it is not required to evaluate the concepts on unseen examples, the classical
hardness has to lie in identifying rather than evaluating the concept generating the
examples. We remark that for the cube root identification concept class it is not
possible to obtain a similar learning separation for a singleton concept class where a
learner does not require any data (see also Observation 1).

6.2 Learning separations without efficient data gen-
eration

In the quantum machine learning community there is an often-mentioned conjecture
that quantum machine learning is most likely to have its advantages for data that
is generated by a “genuine quantum process”1. We understand this to mean that
the concepts generating the data are BQP-complete or perhaps DQC1-complete. It
is worth noting that if concepts in BQP or DQC1 that are not in BPP are already
considered a “genuine quantum process”, then the discrete logarithm concept class
discussed in Section 6.1.1 suffices. However, we aim to investigate learning separations
beyond these concepts, i.e., where the concepts are BQP-complete.

A natural question that arises is, given a family of BQP-complete concepts, what
additional assumptions are sufficient to prove that these concepts exhibit a learning
separation? In Section 6.1, we discussed proofs of learning separations that were
predicated on the data being efficiently generatable by a classical device. However,
since there is no reason to believe that a family of BQP-complete concepts allow for
efficient data generation, we will need to adopt a different proof-strategy.

To ensure quantum learnability of a family of BQP-complete concepts {Cn}n∈N, we
can simply limit the size of each concept class Cn to be no more than a polynomial in n.
When the size of the concept class is polynomial, a quantum learner can iterate over
all concepts and identify the concept that best matches the examples from the oracle.
In more technical terms, a quantum learner can efficiently perform empirical risk

1Recently, there have been notable developments that have yielded contrasting conclusions. For
instance, in [107], surprisingly complex physics problems are efficiently learned by classical learners.
We will briefly discuss this in Section 6.3.1.
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minimization through brute-force fitting. From standard results in learning theory
(e.g., Corollary 2.3 in [174]), it follows that this method results in a learner that
satisfies the conditions of the PAC learning framework.

As discussed in Section 2.5.2, assuming that the concepts are not in HeurP/poly is
sufficient to ensure that the concept class is not classically learnable. Intuitively, this
is because if the concepts were classically learnable, the examples could be used to
construct an advice string that, together with an efficient classical learning algorithm,
would put the concepts in HeurP/poly. By combining this with our approach to ensure
quantum learnability, we can show that if there exists a family of polynomially-sized
concept classes consisting of BQP-complete concepts that are not in HeurP/poly, then
this family of concept classes exhibits a CC/QQ separation. Moreover, in Section 6.2.1
we discuss how several of these separations can be build around data that is generated
by a “genuine quantum process”. The following theorem summarizes our findings, and
we defer the proof to Appendix D.4.

Theorem 26. Consider a family of concept classes {Cn}n∈N and distributions {Dn}n∈N
such that

Quantum learnability:

(a) Every cn ∈ Cn can be evaluated quantumly in time O (poly(n)).

(b) There exists a polynomial p such that for every n ∈ N we have

|Cn| ≤ p(n).

Classical non-learnability:

(c) There exists a family {cn}n∈N, where cn ∈ Cn, such that

({cn}n∈N, {Dn}n∈N) ̸∈ HeurP/poly.

Then, L = ({Cn}n∈N, {Dn}n∈N) exhibits a CC/QQ learning separation.

At face value, it may not be clear whether there exist concept classes that satisfy
both conditions (a) and (c), since condition (a) puts the concepts in BQP and it may
not be clear how large HeurP/poly is relative to BQP. Notably, it is known that if the
discrete logarithm is not in BPP, then it is also not in HeurP under certain distribu-
tions. Additionally, it is widely believed that a polynomial amount of advice does not
significantly improve the computational complexity of solving the discrete logarithm
problem. Hence, it is plausible to imagine the existence of problems L ∈ BQP for
which there is a distribution D such that (L,D) ̸∈ HeurP/poly. Moreover, it is inter-
esting to observe that if there exists a single L ∈ BQP that is not in HeurP/poly under
some distribution, then for every BQP-complete problem there exists a distribution
under which it is not in HeurP/poly. We summarize this in the lemma below, and we
defer the proof to Appendix D.4.1.
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Lemma 27. If there exists a (L,D) ̸∈ HeurP/poly with L ∈ BQP, then for every
L′ ∈ BQP-complete2 there exists a family of distributions D′ = {D′

n}n∈N such that
(L′,D′) ̸∈ HeurP/poly.

In summary, to obtain a learning separation for data generated by a “genuine
quantum process”, it is sufficient to have a single problem L ∈ BQP that lies out-
side HeurP/poly under some distribution. An example of such a problem is the dis-
crete logarithm. However, the resulting distribution under which the BQP-complete
problem lies outside of HeurP/poly is artificial as it comes from explicitly encoding
the discrete logarithm into the learning problem through the reduction to the BQP-
complete problem. Besides the discrete logarithm, little is known about the heuristic
hardness of problems in BQP (especially those that are considered “genuinely quan-
tum”). Therefore, the question arises as to what additional properties are required
for a BQP-complete problem to lie outside HeurP/poly under some distribution. We
show that a worst-case to average-case reduction combined with the assumption that
BQP ̸⊆ P/poly is sufficient for this purpose. While the question of BQP ̸⊆ P/poly
remains open, we proceed under this assumption based on its implications for cryp-
tography. Specifically, if BQP ⊆ P/poly, then problems like the discrete logarithm
would be in P/poly, which would break cryptographic systems assumed to be secure3.
Under the assumption that BQP ̸⊆ P/poly, the only missing piece is that our prob-
lem L ∈ BQP that lies outside P/poly is random self-reducible with respect to some
distribution (i.e., it admits a worst-case to average case reduction as discussed in Sec-
tion 2.5.2). We summarize these findings in the lemma below, and we defer the proof
to Appendix D.4.2.

Lemma 28. If L ̸∈ P/poly and L is polynomially random self-reducible with respect
to some distribution D, then (L,D) ̸∈ HeurP/poly.

By combining Lemma 27 with Lemma 28, we obtain a set of assumptions that
result in provable learning separations for data that could be generated by a genuine
quantum process, as stated in Theorem 26 (see also Section 6.2.1). These assumptions
include the existence of a problem L ∈ BQP that is not in P/poly which is polynomially
random self-reducible with respect to some distribution.

Corollary 29. If there exists an L ∈ BQP such that L ̸∈ P/poly and it is random
self-reducible, then every BQP-complete problem gives rise to a CC/QQ separation.

Although establishing such learning separations is not straightforward, the criteria
listed in Lemma 27, Lemma 28 and Corollary 29 suggest some challenges that when
addressed lead to provable learning separations. In particular, they highlight the
need for further investigation into the heuristic hardness of problems in BQP from
the perspective of quantum machine learning.

2With respect to many-to-one reductions (as is the case for, e.g., quantum linear system solv-
ing [101]).

3In cryptography it is common to assume non-uniform adversaries (i.e., with computational re-
sources of P/poly), and even in this case most public-key cryptosystems such as RSA and Diffie-
Hellman are still assumed to be safe).
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Generative modeling To the authors it is not entirely clear precisely how strong
the assumption that BQP ̸⊆ P/poly is. It is worth noting though that for sampling
problems arguably more iron-clad assumptions, such as the non-collapse of the poly-
nomial hierarchy, could potentially lead to analogous conclusions. In particular, one
possibility is to use quantum supremacy arguments [10, 42] to establish learning sep-
arations in generative modeling, where the task is to learn a distribution instead of
a binary function. If the distribution to be learned is in SampBQP (i.e., sampling
problems solvable by a polynomial-time quantum algorithm), then for classical non-
learnability, the corresponding requirement is that not all SampBQP problems are
in SampBPP/poly (i.e., sampling problems solvable by a polynomial-time classical
algorithm with polynomial-sized advice)4. This is analogous to the supervised learn-
ing case, but for sampling problems we might have further evidence this is unlikely.
Specifically, as sketched by Aaronson in [9], if SampBQP ⊆ SampBPP/poly, then this
could cause the polynomial hierarchy to collapse. In other words, one could arguably
use these arguments to show that a family of distributions is not classically learnable,
under the assumption that the polynomial hierarchy does not collapse.

6.2.1 Learning separations from physical systems
Many quantum many-body problems are either BQP-complete or QMA-complete
when appropriately formalized, making them suitable for defining concepts that are
not classically learnable (recall that this also implies a learning separation, since quan-
tum learnability can be ensured by considering polynomially-sized concept classes).
To be more precise, recall that any problem in BQP that does not lie in HeurP/poly
with respect to some distribution can be used to construct a distribution under which
a hard quantum many-body problem defines a learning problem that is not classically
learnable (as shown by Theorem 26 and Lemma 27). However, the induced distri-
bution under which the physical system is not classically learnable is artificial, as it
is induced by a particular choice of reduction, and there is no evidence that these
induced distributions are relevant in practice.

Examples of physical systems For concreteness, let us discuss some examples.
There are many physical systems that are in some sense universal for quantum com-
puting, such as the Bose-Hubbard model [62], the antiferromagnetic Heisenberg and
antiferromagnetic XY model [159], the Fermi-Hubbard model [150], supersymmetric
systems [49], interacting bosons [197], and interacting fermions [125]. In particular,
each of these physical systems defines a family of Hamiltonians and, for several of
these Hamiltonian families, time-evolution is BQP-complete when appropriately for-
malized [96, 63]. That is, for several of these universal Hamiltonian families H(β),
where β denote the Hamiltonian parameters, we can define BQP-complete concepts

cH(β, t) = sign

(∣∣⟨0n|eiH(β)tZ1e
−iH(β)t|0n⟩

∣∣2 − 1

2

)
,

4For a formal definition of these complexity classes we refer to [10].
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where Z1 denotes the Pauli-Z operator on the first qubit and identity elsewhere.
Additionally, one could also use BQP-complete problems in high energy physics, such
as scattering in scalar quantum field theory [112].

As another example, we note that for any of the universal Hamiltonian families
the problem of finding the ground state energy is QMA-complete. That is, for any
universal Hamiltonian family H(β), where β denote the Hamiltonian parameters, we
can define QMA-complete concepts

cH(β) = sign

(
Tr [H(β) |ψH(β)⟩]− 1

2

)
,

where |ψH(β)⟩ denotes the ground state of H(β). Naturally, one worries that these
concepts are too hard to evaluate on a quantum computer, but there are a few
workarounds. Firstly, sometimes there is a natural special case of the problem that
is BQP-complete (e.g., the subset of Hamiltonians obtained through a circuit-to-
Hamiltonian mapping). Moreover, more generically it holds that any problem that is
QMA-complete has a restriction that is BQP-complete (i.e., take any BQP-complete
problem and consider the image of this problem under a many-to-one reduction). Fi-
nally, one could use recent results on the guided local Hamiltonian problem to relax
the QMA-complete problems and obtain a BQP-complete problem [196, 50, 82].

In short, by exploiting a reduction from a problem that is in BQP which under
a given distribution lies outside HeurP/poly onto a chosen BQP-complete problem
(as in Lemma 27), any physical system that is in some sense universal for quantum
computing can be used to construct a learning separation. Nonetheless, since the
reduction is implicitely used to construct the distribution under which the physical
system becomes not classically learnable, the distributions will be artificial and there
is no reason to believe these have any relevance in practice.

6.3 Connections to other works on (quantum) learn-
ing tasks

In this section we discuss other topics of relevance. First, in Section 6.3.1, we dis-
cuss the implications and limitations of the milestone work of Huang et al. [107] on
establishing learning separations from physical systems. Next, in Section 6.3.2, we
discuss how having access to data radically enhances what can be efficiently evaluated
by discussing the example of evaluating parameterized quantum circuits. Afterwards,
in Section 6.3.3, we discuss how two physically-motivated problems (i.e., Hamilto-
nian learning, and identifying order parameters for phases of matter) fit in the PAC
learning setting where the learner is constrained to output hypotheses from a fixed
hypothesis class.
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6.3.1 Provably efficient machine learning with classical shad-
ows

In the milestone work of Huang et al. [107], the authors design classical machine learn-
ing methods (in part built around the classical shadow paradigm) that can efficiently
learn quantum many-body problems. One of the problems studied in [107] is that of
predicting ground states of Hamiltonian. More precisely, for a family of Hamiltonians
H(x) with ground states ρH(x), one wants to predict the expectation value of some
observable O when measured on ρH(x). That is, one wants to efficiently learn to
evaluate the function

fH,O(x) = Tr [ρH(x)O] . (6.8)

One of the main things that [107] show is that given a polynomial number of data
points, one is able to efficiently evaluate the functions in Eq. (6.8) with a constant
expected error under certain criteria. Recall that in Section 6.2.1 we argued that
concepts based on physical systems can be used as a source of learning separations.
Since these concepts are of a similar form as the functions described in Eq. (6.8), one
might wonder how the results of Huang et al. relate.

Let us take a closer look at the requirements of the methods described in [107].
Firstly, the Hamiltonians H(x) must all be geometrically-local, and the observable
O must be a sum of polynomially many local observables O =

∑L
i=1Oi such that∑L

i=1 ||Oi|| is bounded by a constant. Additionally, the Hamiltonians H(x) must all
have a constant spectral gap (i.e., the difference between the smallest and the next
smallest eigenvalue) and they must depend smoothly on x (or more precisely, the
average gradient of the function in Eq. (6.8) must be bounded by a constant). One
might wonder what will happen if we relax the above requirements, while simultane-
ously maintaining the fact that a quantum computer would still be able to evaluate
the function in Eq. (6.8) (and hence build a learning separation around it based on
Theorem 26).

Two possible relaxations of the requirements are the absence of a constant spectral
gap (while maintaining an inverse polynomial spectral gap) and a reduced smooth-
ness dependency of the Hamiltonian family on x (i.e., compared to what is required
for the methods of [107]). It turns out that if one relaxes these requirements, then
under cryptographic assumptions the methods proposed by Huang et al. are no longer
capable of evaluating the function in Eq. (6.8) with constant expected error. More
precisely, any classical machine learning method that would still be able to evaluate
the function in Eq. (6.8) up to constant expected error under the relaxed assump-
tions would be able to solve DLP in P/poly, which contradicts certain cryptographic
assumptions. We provide a formal statement of this in the following theorem, the
proof of which is deferred to Appendix D.5.

Theorem 30. Suppose there exists a polynomial-time randomized classical algo-
rithm A with the following property: for every geometrically-local family of n-qubit
Hamiltonians H(x) there exist a dataset TH ∈ {0, 1}poly(n) such that for every sum
O =

∑L
i=1Oi of L ∈ O(poly(n)) many local observables with

∑L
i=1 ||Oi|| ≤ B for
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some constant B, the function

fH,O(x) = A(x,O, TH)

satisfies

Ex∼[−1,1]m

[ ∣∣fH,O(x)− fH,O(x)
∣∣
]
<

1

6
,

where fH,O(x) = Tr [ρH(x)O] and ρH(x) denotes the ground state of H(x). Then,
DLP ∈ P/poly.

In conclusion, Theorem 30 shows that any method similar to that of [107] can-
not learn to predict ground state properties of certain physical systems discussed in
Section 6.2.1. Moreover, there are a few subtle differences between the setup of [107]
and the one discussed in this thesis. Firstly, the classical shadow paradigm uses data
that is different from the PAC learning setting (i.e., the data does not correspond to
evaluations of the function it aims to predict). This distinction in setup makes the
approach of [107] more versatile, as their data can be utilized to evaluate multiple
different observables (moreover, their methods also work in the PAC setting). Sec-
ondly, the functions fH,O in Eq. (6.8) are real-valued, which differs from our setting
where we investigate functions that map onto a discrete label space. It is possible to
address this difference by applying a threshold function to fH,O after it is learned.
However, this thresholding introduces a mismatch in the types of data, as it would
involve using real-valued data to learn a function with discrete values (which is clearly
different from the PAC setting).

6.3.2 Power of data
In [109] the authors show how having access to data radically enhances what can
be efficiently evaluated. In this section we connect the ideas from their work to the
formalism we introduce in this thesis. Specifically, we will discuss a family of functions
inspired by [109] that from their description alone cannot be efficiently evaluated
classically, yet access to a few examples (i.e., evaluations of the function) allows them
to be efficiently evaluated classically. This highlights an important difference between
complexity-theoretic separations and learning separations, since in the latter one has
to deal with the learner having access to data when proving classical non-learnability.

Consider a polynomial-depth parameterized quantum circuit U(θ, ϕ⃗) – with two
types of parameters θ ∈ R parameterizing a single gate and ϕ⃗ ∈ Rℓ parameterizing
multiple other gates – that is universal in the sense that for every polynomial-depth
circuit V there exists parameters ϕ⃗∗ ∈ Rℓ such that

U(0, ϕ⃗∗) |0n⟩ = V |0n⟩ .

Moreover, assume the gates in U are of the form exp
(
− iθ

2 A
)
, with A2 = I (e.g., Z-

or X-rotations). By measuring the output of the circuit we define a family of single
parameter functions given by

fϕ⃗(θ) = ⟨0n|U(θ, ϕ⃗)†MU(θ, ϕ⃗) |0n⟩ .
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Following an argument similar to [109], due to the universality of the parameterized
quantum circuit no efficient randomized classical algorithm can take as input a ϕ⃗ ∈ Rℓ

and compute the function fϕ⃗ on a given point θ ∈ R up to constant error in time
O (poly(n)), unless BPP = BQP. Intuitively, one might thus think that the concept
class {fϕ⃗ | ϕ⃗ ∈ Rℓ} exhibits a separation between classical and quantum learners.
However, it turns out that the examples given to a classical learner radically enhance
what it can efficiently evaluate. In particular, given a few of evaluations of fϕ⃗ for some
fixed but arbitrary ϕ⃗ ∈ Rℓ, a classical learner is suddenly able to efficiently evaluate
the function. To see this, note that by [144] one can write the functions as

fϕ⃗(θ) = α cos(θ − β) + γ, for α, β, γ ∈ R,

where the coefficients α, β and γ are all independent of θ (but they do depend on
ϕ⃗). From this we can see that any three distinct examples

{(
θi, fϕ⃗(θi)

)}3
i=1

uniquely
determine fϕ⃗(θ) and one can simply fit α, β and γ to these three examples to learn how
to evaluate fϕ⃗ on unseen points. We would like to point that the BQP-hard problem in
question is not evaluating fϕ⃗ for a fixed ϕ⃗ ∈ Rℓ, but rather evaluating fϕ⃗ when ϕ⃗ ∈ Rℓ

is part of the input. This approach can be generalized to settings with more than one
free parameter θ, by using the fact that expectation values of parameterized quantum
circuits can be written as a Fourier series [171]. Specifically, when the number of
frequencies appearing in the Fourier series is polynomial, then a polynomial number
of examples suffices to fit the Fourier series and learn how to evaluate the expectation
value of the quantum circuits for an arbitrary choice of parameters.

As discussed in Section 6.1, one way to deal with the fact that data can radi-
cally enhance what can be efficiently evaluated is to ensure that the data itself is
efficiently generatable. However, for the concepts discussed above, the examples are
such that only a quantum computer can generate them efficiently. In other words,
these functions exemplify how hard to generate data can radically enhance what a
classical learner can efficiently evaluate. As discussed in Section 6.1, another way to
deal with the fact that data can radically enhance what can be efficiently evaluated is
to ensure that the concepts lie outside of HeurP/poly. However, for the case discussed
above, every fϕ⃗ corresponds to a function in HeurP/poly, since the coefficients α, β
and γ suffice as the advice. Finally, we note that for certain circuits one could have
exponentially many terms in the Fourier series [54, 53], in which case it is unclear
how to classically learn them.

6.3.3 Physically-motivated PAC learning settings with fixed
hypothesis classes

Throughout this thesis we mainly focused on the setting where the learner is allowed
to output arbibtrary hypotheses (barring that they have to be tractable as discussed
in Appendix D.1.1). However, we want to highlight that setting where the learner is
constrained to only be able to output hypothesis from a fixed hypothesis class is also
relevant from a practical perspective. In particular, in this section discuss how two
well-studied problems (i.e., Hamiltonian learning, and identifying order parameters
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for phases of matter) fit in this setting. Recall that in this setting, it is allowed and
reasonable for the hypothesis class to be classically- or quantumly- intractable.

Hamiltonian learning In Hamiltonian learning one is given measurement data
from a quantum experiment, and the goal is to recover the Hamiltonian that best
matches the data. Throughout the literature, various different types of measure-
ment data have been considered. For example, it could be measurement data from
ground states, (non-zero temperature) thermal sates, or time-evolved states. In our
case, the data will be measurement data from time-evolved states and we formu-
late Hamiltonian learning in terms of a hypothesis class as follows. First, we fix a
(polynomially-sized) set of Hermitian operators {Hℓ}Lℓ=1. Next, we consider a family
of Hamiltonians {Hβ}β∈RL , where

Hβ =

L∑

ℓ=1

βℓHℓ. (6.9)

Finally, we define the hypothesis class HHL = {hβ}β∈RL , with concepts defined as

hβ(z, t) = sign
(
Tr
[
U†(t)ρzU(t)Oz

])
, U(t) = eitHβ . (6.10)

Here z describes the experimental setup, specifying the starting state (that will evolve
under Hβ for time t) and the observable measured at the end. A natural specification
of the concepts that a learner could output are the parameters β. In particular, in
Hamiltonian learning we are only concerned with identifying which concept generated
the data (i.e., what is the specification of the underlying Hamiltonian), as opposed to
finding a hypothesis that closely matches the data. In other words, the problem of
Hamiltonian learning can naturally be formulated as PAC learning setting where the
learner is constrained to only be able to output hypotheses described in Eq. (6.10).

With respect to learning separations, one might think that the above setting is a
good candidate to exhibit a CHHL/QHHL separation, since the hypotheses are classi-
cally intractable and quantumly efficient to evaluate (assuming BPP ̸= BQP). More-
over, according to the folklore, quantum learners are most likely to have its advantages
for data that is “quantum-generated”, which certainly seems to be the case here. How-
ever, recall that in the setting where the learner is constrained to output hypotheses
from a fixed hypothesis class the task is not to evaluate, but rather to identify the
concept generating the examples. Therefore, the arguments we used throughout this
thesis do not directly apply. In fact, it turns out that classical learners can efficiently
identify the parameters of the Hamiltonian generating the data in many natural set-
tings [20, 98, 108], eliminating the possibility of a CHHL/QHHL separation.

Order parameters and phases of matter When studying phases of matter one
might want to identify what physical properties characterize the phase. One can
formulate this problem as finding a specification of the correct hypothesis selected
from a hypothesis class consisting of possible order parameters. In particular, we fix
the hypotheses Horder = {hα} to be of a very special form, which compute certain
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expectation values of ground states given a specification of a Hamiltonian. That is,
we formally define the hypotheses as

hα(β) = sign (Tr [Oαρβ ]) , (6.11)

where ρβ denotes the ground state of some Hamiltonian specified by β (e.g., using
the parameterization in Eq. (6.9)), and α specifies an observable Oα drawn from a
set of observables that are deemed potential candidates for the order parameter that
characterize the phase. In this setting, one might not necessarily want to evaluate
the hypotheses, as they might require one to prepare the ground state, which is
generally intractable (even for a quantum computer). However, one might still want
to identify the observable Oα that correctly characterizes the phase of the physical
system specified by β (i.e., the corresponding order parameter). In other words, the
problem of identifying order parameters naturally fits in the PAC learning setting
where the learner is constrained to only be able to output hypotheses described in
Eq. (6.11).

As in the case of Hamiltonian learning, one might think that the above concepts
are good candidates to exhibit a CHorder/QHorder separation, since the hypotheses are
classically intractable and quantumly efficient to evaluate (assuming BPP ̸= BQP).
In fact, according to the folklore, quantum learners are most likely to have advantages
for data that is “quantum-generated”, which certainly seems to also be the case here.
However, as already mentioned, in the setting where the learner is constrained to
output hypotheses from a fixed hypothesis class the goal is only to identify the correct
hypothesis, and it is therefore not enough to just have concepts that are classically
intractable. We remark that the methods of [107] also apply to phase classification,
but they are more aimed at the PAC learning setting where the learner can output
arbitrary hypotheses (i.e., the main goal is to predict the phase of a given physical
system). In particular, their methods do not directly allow one to obtain a physically-
meaningful description of the order-parameter, which is the main goal in the setting
where the learner is constrained to output hypotheses from a fixed hypothesis class
(which is related to the popular theme of “explainability” in machine learning).

In conclusion, while there has been progress in studying separations in the setting
where the learner is constrained to output hypotheses from a fixed hypothesis class,
there is still much to be discovered. Note that if the hypothesis class is BQP-complete
in the sense that it can perform arbitrary quantum computation, then a collapse
similar to Lemma 3 happens and no separations are possible. All in all, we have yet
to find an example of a learning setting where the data is generated by a genuine
quantum process and where it is necessary to use a quantum algorithm to efficiently
identify the process generating the data.
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Chapter 7

Conclusion

In this chapter, we present the conclusions of the thesis. In Section 7.1, we recall the
problem statement and research questions and we provide them with answers. Next,
in Section 7.2, we discuss the limitations of our work. Finally, in Section 7.3, we
discuss some promising directions for future work.

7.1 Research overview
In this thesis, we studied the speedups provided by several QML proposals over their
classical counterparts, and how to get the best possible performance out of these
proposals. Specifically, the problem statement of this thesis was:

Problem statement. Can we substantiate the capacity of various QML proposals
to (superpolynomially) outperform their classical counterparts, and what methods can
we devise to attain their best possible performance?

The above problem statement was split into 4 research question. Below, we restate
these research questions and subsequently provide them with answers.

Chapter 3 investigated the potential of a class of problems arising from the quan-
tum algorithm for topological data analysis [130] to become genuinely useful applica-
tions of quantum computers with a superpolynomial quantum speedup, with the first
research question in mind:

Research question 1. Can the linear-algebraic QML algorithms for Betti numbers
maintain their speculated superpolynomial quantum speedups, even with the develop-
ment of better classical algorithms?

We showed that this algorithm along with a number of new algorithms provided
by us (with applications in numerical linear algebra, machine learning and complex
network analysis) solve problems that are classically intractable under widely-believed
complexity-theoretic assumptions by showing that they are as hard as simulating the
one clean qubit model. Specifically, our results showed that the methods of the quan-
tum algorithm for topological data analysis withstand the sweeping dequantization
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results of Tang et al. [186, 60]. To analyze whether it is possible to further strengthen
the argument for quantum advantage (or, to actually find an efficient classical al-
gorithm) for the narrow TDA problem, we investigated state-of-the-art classical al-
gorithms and we highlighted the theoretical hurdles that, at least currently, stymie
such classical approaches. Regarding near-term implementations, we identified that
implementing sparse access to the input matrix is a major bottleneck in terms of the
required number of qubits, we proposed multiple methods to circumvent this bottle-
neck via classical precompilation strategies, and we investigated the required resources
to challenge the best known classical methods.

Chapter 4 studied how to implement structural risk minimization for quantum
machine learning models based on parameterized quantum circuits, to answer the
second research question:

Research question 2. Can we identify hyperparameters within novel quantum learn-
ing models based on parameterized quantum circuits that impact both complexity mea-
sures and performance on training data, as is crucial for the successful implementation
of structural risk minimization?

In particular, in Theorem 12 and Theorem 14 we characterized the VC-dimension
and fat-shattering dimension of these quantum models and identified hyperparameters
– such as the rank and Frobenius norms of the observables – that influence these
complexity measures. Moreover, in Proposition 15 and Proposition 17 we showed that
these hyperparameters also influence the performance that these quantum models can
have on training data. Finally, we showed how our findings can be used to construct
new quantum machine learning models with favourable performance guarantees based
on the principle of structural risk minimization.

Chapter 5 investigated quantum reinforcement learning agents based on parame-
terized quantum circuits motivated by our third research question:

Research question 3. How can new quantum machine learning models based on pa-
rameterized quantum circuits be effectively leveraged within the realm of reinforcement
learning? Specifically, can these quantum approaches demonstrate the potential to be
on par with classical models in standard benchmarking tasks and outperform them in
novel specific scenarios?

We proposed several constructions and showed the impact of certain design choices
on learning performance. In particular, we introduced the softmax-PQC model,
where a softmax policy is computed from expectation values of a parameterized quan-
tum circuit with both trainable observable weights and input scaling parameters.
These added features to standard parameterized quantum circuits used in machine
learning (e.g., as quantum classifiers) enhance both the expressivity and flexibility
of parameterized quantum circuit policies, which allows them to achieve a learning
performance on benchmarking environments comparable to that of standard deep
neural networks. We additionally demonstrated the existence of task environments,
constructed out of parameterized quantum circuit, that are very natural for parame-
terized quantum circuit agents, but on which deep neural network agents have a poor
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performance. To strengthen this result, we constructed several reinforcement learning
environments, each with a different degree of degeneracy (i.e., closeness to a supervised
learning task), where we showed a rigorous separation between a class of parameter-
ized quantum circuit agents and any classical learner, based on the widely-believed
classical hardness of the discrete logarithm problem. We believe that our results con-
stitute strides toward a practical quantum advantage in reinforcement learning using
(near-term) quantum devices.

Chapter 6 focused on the identification of learning problems within the probably
approximately correct (PAC) learning framework, where quantum learners exhibit
exponential advantages over classical learners, as motivated by our fourth research
question:

Research question 4. How can we identify learning problems that exhibit a prov-
able exponential speedup for quantum learning algorithms compared to their classical
counterparts, and can we confirm the validity of the folklore that quantum machine
learning excels when handling quantum-generated data?

Firstly, we delved into the intricacies of precisely defining what it means for a
quantum learner to exhibit an exponential advantage over its classical counterpart.
Subsequently, we studied prior instances of learning separations [126, 173], pinpoint-
ing the exact source of classical hardness and the quantum edge. Lastly, we exam-
ined the folklore that quantum machine learning excels most in scenarios involving
quantum-generated data. In doing so, we established a framework through which any
BQP-complete problem can lead to a learning separation, thereby substantiating the
quantum advantage across numerous domains in physics.

7.2 Limitations
In this section, we highlight certain limitations in the outcomes of this thesis. Firstly,
concerning our findings in Chapter 3, it is important to note that our discussion of the
noise-robustness of the quantum algorithm for topological data analysis lacks experi-
ments to confirm or reject our statements due to our limited access to sufficiently large
quantum hardware. Secondly, in relation to our results in Chapter 4, our analysis does
not consider the structure of the feature map, which has the potential to enhance the
effectiveness of structural risk minimization. Moreover, in reference to our outcomes
in Chapter 5, our ability to benchmark reinforcement learning models was limited to
toy problems, as we lacked access to hardware capable of handling real-world problem
sizes. Lastly, with respect to our findings in Chapter 6, it is worth noting that the
results of Theorem 26, in most instances, rely on contrived data distributions that
may not be representative of real-world scenarios.

7.3 Future work
The findings presented in this thesis open up exciting avenues for future research,
offering several promising directions to explore. In this section, we highlight a few of
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these potential interesting opportunities for future work.
Regarding the topological data analysis results in Chapter 3, there are several

interesting open questions. First, it remains open whether ABNE, as outlined in
Section 1.1, is indeed DQC1-hard. In particular, it remans open whether LLSD retains
its DQC1-hardness when restricted to combinatorial Laplacians. Exploring quantum
algorithms’ capabilities for poroblems in topological data analysis beyond computing
Betti numbers, such as handling other aspects of barcodes [83], presents another av-
enue of research. Lastly, the potential utility of quantum algorithms in computing
eigenvalues and eigenvectors of combinatorial Laplacians for complex network analy-
sis, as hinted in [134], merits further investigation.

Concerning the results presented in Chapter 4, which delve into structural risk
minimization for quantum machine learning models relying on parameterized quan-
tum circuits, several interesting research directions emerge. Firstly, it is worth explor-
ing alternative complexity measures beyond VC-dimension and fat-shattering dimen-
sion. Such an exploration can potentially uncover additional sets of hyperparameters
relevant to the structural risk minimization tradeoff. Additionally, there is room for
investigating how the phenomenon of overparameterization, as extensively studied in
the context of neural networks [18], extends to quantum machine learning models
that employ parameterized quantum circuits. This investigation can provide valuable
insights into the generalization performance of these quantum models, shedding light
on their behavior in comparison to classical counterparts.

In light of the results discussed in Chapter 5, which pertain to reinforcement
learning with quantum machine learning models based on parameterized quantum
circuits, several interesting avenues for future research come to the forefront. Firstly,
an exciting direction would involve exploring the potential of our novel quantum
machine learning models when combined with state-of-the-art policy gradient methods
or actor-critic methods like DDPG [123], PPO [172], or A3C [138]. Such investigations
can unveil synergies between classical reinforcement learning techniques and quantum
enhancements, potentially leading to superior performance in complex learning tasks.
Furthermore, it would be worthwhile to delve deeper into the capabilities of our novel
quantum machine learning models as we scale up the number of available qubits.

The results of Chapter 6, which delve into the exponential separations between
quantum and classical learning separations, prompt us to consider several interesting
directions for future inquiry. Firstly, an interesting direction of future research would
involve extending our investigations beyond the PAC learning framework. Delving
into alternative learning frameworks, such as the Angluins learning framework [19],
can broaden our understanding of quantum versus classical learning separations.
Moreover, the outcomes of our work underscore the significance of probing the heuris-
tic hardness of BQP-complete problems. Such investigations could give rise to novel
learning separations within specific physics-inspired scenarios, thus contributing to a
deeper understanding of the quantum advantage in practical applications.
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Summary

In this thesis, the contribution of quantum computers to machine learning has been
explored, falling under the domain of Quantum Machine Learning. This domain
promises novel perspectives and methods for addressing complex issues in machine
learning by leveraging the unique capabilities of quantum computers. Quantum com-
puters differ fundamentally from classical computers in their use of quantum mechan-
ics, resulting in unique computational abilities. Unlike classical bits, which can be
either 0 or 1, quantum computers employ qubits that can exist as both 0 and 1 si-
multaneously due to a phenomena called “superposition”. Moreover, “entanglement”
enables quantum computers to bring qubits into a mutually dependent state, allowing
for complex parallel computations. Within the research domain of quantum machine
learning, this thesis has explored various proposals regarding how quantum computers
can enhance certain components of machine learning.

The first proposal examined in this thesis is the applications of quantum comput-
ers in topological data analysis. Topological data analysis is an innovative approach
that extracts robust properties from datasets by understanding their inherent “shape”.
The focus was specifically on quantum algorithms for linear algebra, aiming to de-
termine if they could offer superpolynomial speedups compared to classical methods.
The results of this thesis demonstrated that existing quantum algorithms, along with
algorithms developed in this thesis (with applications in numerical linear algebra,
machine learning, and complex network analysis), solve problems that are classically
deemed intractable according to widespread assumptions in complexity theory. Specif-
ically, these results showed that the speedup provided by quantum algorithm methods
for topological data analysis is resilient against the development of faster classical al-
gorithms. These findings shed light on the potential power of quantum computers
in addressing complex problems in topological data analysis, machine learning, and
network analysis.

Another aspect of this thesis is the investigation of structural risk minimization
in the context of quantum machine learning models. Structural Risk Minimization
(SRM) is a principle in machine learning that seeks a balance between model complex-
ity and performance on new data. It involves selecting a model from a given family by
striking a balance between training error (how well the model fits the training data)
and a complexity term (penalizing overly complex models). The focus on this thesis
was on understanding the impact of certain design choices in machine learning mod-
els based on parameterized quantum circuits. In essence, a parameterized quantum
circuit can be seen as a quantum variant of a neural network, manipulating a set of
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qubits depending on parameters and seeking the right parameters for the problem at
hand. The research in this thesis explored whether important settings within new
quantum machine learning models based on parameterized quantum circuits can be
identified, influencing both complexity measures and training error, which is crucial
for the successful implementation of SRM. In particular, this thesis demonstrated how
to construct new quantum machine learning models with favorable performance guar-
antees based on the SRM principle. These insights contribute to optimizing quantum
machine learning models, enhancing their performance.

The subsequent topic explored in this thesis was how quantum computers can
improve reinforcement learning. Reinforcement learning revolves around learning
through interaction to achieve a specific goal, typically modeled by the interaction
between an “agent” (the learner) and an “environment”. The agent takes continuous
actions, and after each action, the environment responds by providing the agent with
a “reward”. The goal of the agent is to maximize these rewards over time. In this the-
sis, quantum models based on parameterized quantum circuits were introduced within
reinforcement learning. Notably, these models demonstrated comparable performance
to traditional classical models (such as deep neural networks), while showing superior
performance in certain scenarios. These results suggest that quantum models can be
a powerful tool for solving complex problems in reinforcement learning.

The final part of the research in this thesis focused on identifying learning tasks
within computational learning theory for which quantum learning algorithms have
exponential advantages over classical algorithms. Computational learning theory is
a mathematical framework introduced in the 1990s with the aim of providing formal
arguments about why and how machine learning can be successful in practice. This
thesis delved deep into the details to precisely define what it means for a quantum
learner to have an exponential advantage over its classical counterparts. It then
explored previous cases of exponential advantages, identifying the exact source of
classical complexity and the advantage of quantum models. Finally, it investigated
the general belief that quantum machine learning performs best in scenarios with data
generated by quantum processes. This involved establishing a framework in which
any problem with data generated by quantum processes can lead to an exponential
quantum advantage. This opens doors to the application of quantum computing in
specific scenarios where classical algorithms fall short.

In summary, this thesis provides an exploration of quantum machine learning,
applying the unique capabilities of quantum computers to diverse domains within
machine learning. The proposals researched ranged from the application of quan-
tum algorithms in topological data analysis, understanding the influence of design
choices on structural risk minimization and the introduction of quantum models in
reinforcement learning to examinations of learning tasks in computational learning
theory where quantum learning algorithms can offer exponential advantages. As a
whole, this thesis contributes to the understanding of the promising role of quantum
computers in addressing complex problems within machine learning.
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Samenvatting

In dit proefschrift is onderzocht hoe quantumcomputers kunnen bijdragen aan ma-
chine learning, hetgeen valt binnen het vakgebied Quantum Machine Learning. Dit
vakgebied belooft nieuwe perspectieven en methoden voor het oplossen van com-
plexe problemen in machine learning door gebruik te maken van de unieke mogeli-
jkheden van quantumcomputers. Quantumcomputers verschillen fundamenteel van
klassieke computers door hun gebruik van kwantummechanica, wat leidt tot unieke
rekenmogelijkheden. In tegenstelling tot klassieke bits, die ofwel 0 of 1 kunnen zijn,
maken quantumcomputers gebruik van qubits die dankzij “superpositie” zowel 0 als
1 tegelijk kunnen zijn. Bovendien stellen “verstrengelingen” quantumcomputers in
staat om qubits in een onderling afhankelijke toestand te brengen, wat complexe par-
allelle berekeningen mogelijk maakt. Binnen het onderzoeksgebied quantum machine
learning heeft dit proefschrift verschillende voorstellen onderzocht met betrekking tot
manieren waarop quantumcomputers delen van machine learning kunnen verbeteren.

Het eerste voorstel dat dit proefschrift heeft onderzocht, was het verkennen van
de toepassingen van quantum computers in topologische data-analyse. Topologische
data-analyse is een innovatieve benadering om robuuste eigenschappen uit datasets
te halen door de inherente “vorm” ervan te begrijpen. Binnen dit kader heeft dit
proefschrift zich specifiek gericht op quantumalgoritmen voor lineaire algebra, met
als doel te begrijpen of ze superpolynomiale versnellingen kunnen bieden ten opzichte
van klassieke methoden. De resultaten in dit proefschrift hebben aangetoond dat
bestaande quantumalgoritmes voor topologische data-analyse, samen met een aantal
nieuwe algoritmes die in dit proefschrift zijn ontwikkeld (met toepassingen in nu-
merieke lineaire algebra, machine learning en complexe netwerkanalyse), problemen
oplossen die klassiek gezien niet efficiënt oplosbaar zijn volgens wijdverspreide aan-
names in de complexiteitstheorie. Concreet hebben deze resultaten laten zien dat de
versnelling die de methoden van het quantumalgoritme voor topologische data-analyse
bieden, bestand is tegen het ontwikkelen van eventuele snellere klassieke algoritmes.
Deze resultaten geven inzicht in de potentiële kracht van quantumcomputers bij het
oplossen van complexe problemen in topologische data-analyse, machine learning en
netwerkanalyse.

Een ander aspect van dit proefschrift is het onderzoek naar structural risk min-
imization in het kader van quantum machine learning-modellen. Structural Risk
Minimization (SRM) is een principe in machine learning dat de balans zoekt tussen
modelcomplexiteit en prestaties op nieuwe data. Het houdt in dat je een model
kiest uit een bepaalde familie van modellen, waarbij je een evenwicht zoekt tussen

130



trainingsfout (hoe goed het model past bij de trainingsdata) en een complexiteit-
sterm (die té complexe modellen bestraft). Hierbij lag de focus op het begrijpen
van de invloed van bepaalde ontwerpkeuzes in machine learning modellen gebaseerd
op geparametriseerde quantumcircuits. Kortweg, een geparametriseerd quantumcir-
cuit kun je zien als een quantumvariant van een neuraal netwerk, waarbij men een
aantal qubits manipuleert op een manier die afhangt van enkele parameters, en waar-
bij je op zoek gaat naar de juiste parameters voor het probleem dat je probeert
op te lossen. Het onderzoek in dit proefschrift vroeg zich af of we belangrijke in-
stellingen binnen nieuwe quantum-machine learning-modellen gebaseerd op parame-
teriseerbare quantumcircuits kunnen identificeren, die zowel complexiteitstermen als
de trainingsfout beïnvloeden, wat cruciaal is voor het succesvol implementeren van
SRM. In het bijzonder heeft dit proefschrift gedemonstreerd hoe we nieuwe quantum-
machineleermodellen kunnen construeren met gunstige prestatiegaranties op basis van
het principe van SRM. Deze inzichten kunnen bijdragen aan het optimaliseren van
quantum machine learning-modellen, waardoor ze beter presteren.

Het volgende onderwerp dat dit proefschrift onderzocht, was hoe quantumcom-
puters kunnen helpen bij “reinforcement learning”. Reinforcement learning draait om
leren door interactie om een bepaald doel te bereiken. Dit wordt meestal gemod-
elleerd door de interactie tussen een “agent” (de leerling) en een “omgeving”. De agent
neemt voortdurend acties, en na elke actie reageert de omgeving door de agent een
“beloning” te geven. Het doel van de agent is om deze beloningen in de loop van de
tijd te maximaliseren. Binnen de reinforcement learning zijn er in dit proefschrift
quantummodellen geïntroduceerd die gebaseerd zijn op geparametriseerde quantum-
circuits. Opmerkelijk was dat deze modellen vergelijkbare prestaties konden leveren
als traditionele klassieke model (zoals diepe neurale netwerken), terwijl ze in bepaalde
scenario’s superieure prestaties vertoonden. Deze ontdekking suggereert dat quantum-
modellen een krachtig instrument kunnen zijn bij het oplossen van complexe proble-
men in reinforcement learning.

Het laatste deel van het onderzoek in dit proefschrift betrof de identificatie van
leertaken binnen de “computational learning theory” waarvoor quantumleeralgoritmen
exponentiële voordelen hebben ten opzichte van klassieke algoritmen. Computational
learning theory is een wiskundig framework geïntroduceerd in de jaren ’90 met het
doel formele argumenten te verschaffen over waarom en hoe machine learning in de
praktijk succesvol kan zijn. Eerst dook dit proefschrift diep in de details om precies te
definiëren wat het betekent dat een quantum-leerling een exponentieel voordeel heeft
ten opzichte van zijn klassieke tegenhanger. Daarna onderzocht het eerdere gevallen
van exponentiele voordelen, waarbij we de precieze bron van klassieke complexiteit
en het voordeel van quantum modellen identificeerden. Ten slotte onderzocht het de
algemene opvatting dat quantum machine learning het beste presteert in scenario’s
met data gegenereerd door quantum-processen. Hierbij hebben we een kader opgesteld
waarin elk probleem met data gegenereerd door quantum-processen kan leiden tot een
exponentieel quantumvoordeel. Dit opent deuren naar de toepassing van quantum
computing in specifieke scenario’s waarin klassieke algoritmen tekortschieten.

Samenvattend biedt dit proefschrift een verkenning van Quantum Machine Learn-
ing, waarbij de unieke capaciteiten van quantumcomputers worden toegepast op
uiteenlopende domeinen binnen machine learning. Van de toepassing van quantu-
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malgoritmen in topologische data-analyse tot het begrijpen van de invloed van on-
twerpkeuzes op structural risk minimization, en de introductie van quantummodellen
in reinforcement learning. Het onderzoek sluit af met een blik op leertaken in de
computational learning theory, waar quantumleeralgoritmen exponentiële voordelen
kunnen bieden. In zijn geheel draagt dit proefschrift bij aan het begrip van de veel-
belovende rol van quantumcomputers in het oplossen van complexe problemen binnen
machine learning.
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Appendix A

Towards quantum advantage via
topological data analysis

A.1 llsd is DQC1-hard
Following the definition of [178], for any problem L ∈ DQC1 and every x ∈ L, there ex-
ists a quantum circuit U of depth T ∈ O (poly(|x|)) that operates on n ∈ O (poly(|x|))
qubits such that

• x ∈ Lyes =⇒ p0 ≥ 1
2 + 1

poly(|x|) ,

• x ∈ Lno =⇒ p0 ≤ 1
2 − 1

poly(|x|) ,

where p0 = Tr
[
(|0⟩ ⟨0| ⊗ I)UρU†] and ρ = |0⟩ ⟨0| ⊗ I/2n−1. From this it can be

gathered that if we can estimate p0 to within 1/poly(|x|) additive precision, then we
can solve L.

For a positive semidefinite matrix H ∈ C2n×2n and a threshold b ∈ R≥0, we define
the normalized subtrace of H up to b as

Trb(H) =
1

2n

∑

0≤λk≤b

λk,

where λ0 ≤ · · · ≤ λ2n−1 denote the eigenvalues of H. The following result by Brandão
shows that if we can estimate the normalized subtrace Trb of log-local Hamiltonians
up to additive inverse polynomial precision, then we can solve any problem in DQC1.
In other words, estimating Trb of log-local Hamiltonians up to additive inverse poly-
nomial precision is DQC1-hard.

Proposition 31 (Brandão [40]). Given as input a description of an n-qubit quantum
circuit U of depth T ∈ O (poly(n)) together with a polynomial r(n), one can efficiently
construct a log-local Hamiltonian H ∈ CT2n×T2n and a threshold b ∈ O (poly(n)) such
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that

∣∣Trb(H)− p0
∣∣ ≤ 1

r(n)
, (A.1)

where p0 = Tr
[
(|0⟩ ⟨0| ⊗ I)UρU†] and ρ = |0⟩ ⟨0| ⊗ I/2n−1. Moreover, H also satis-

fies:

(iii) H is positive semidefinite.

(iv) There exists a δ ∈ Ω (1/poly(n)) such that H has no eigenvalues in the interval
[b, b+ δ].

Remark(s). The Hamiltonian in the above proposition is obtained by applying Ki-
taev’s circuit-to-Hamiltonian construction directly to the circuit U . However, instead
of adding penalty terms

∑n
i=1 |1⟩ ⟨1|i ⊗ |0⟩ ⟨0|clock to constrain the initial state of all

qubits i = 1, . . . , n, we only add a single penalty term |1⟩ ⟨1|1 ⊗ |0⟩ ⟨0|clock that con-
straints the first qubit to |0⟩ (i.e., a clean qubit) and leaves the rest unconstrained to
emulate the maximally mixed state.

We will show that we can efficiently estimate the normalized subtrace Trb in Equa-
tion A.1 to within additive inverse polynomial precision using an oracle for llsd. To
be precise, we show that we can estimate this normalized subtrace to within additive
inverse polynomial precision using a polynomial amount of nonadaptive queries to an
oracle for llsd (whose input is restricted to log-local Hamiltonians), together with
polynomial-time classical preprocessing of the inputs and postprocessing of the out-
puts. In other words, we provide a polynomial-time truth-table reduction from the
problem of estimating Trb to llsd. We gather this in Lemma 32, which together with
Proposition 31 shows that llsd with the input restricted to log-local Hamiltonians is
DQC1-hard under polynomial-time truth-table reductions.

Lemma 32. Given as input H ∈ CT2n×T2n and b ∈ O (poly(n)) as described in
Proposition 31, together with a polynomial q(n), one can compute a quantity Λ that
satisfies

|Λ− Trb(H)| ≤ 1

q(n)
,

using a polynomial number of queries to an oracle for llsd, together with polynomial-
time classical preprocessing of the inputs and postprocessing of the outputs.

Proof. Define ∆ = (3q(n))
−1, M = b/∆, ϵ = (6Mbq(n))−1 and let δ < ∆/3 be

such that H has no eigenvalues in the interval [b, b + δ]. Also, define the thresholds
xj = (j + 1)∆, for j = 0, . . . ,M − 1. Next, denote by χ̂j the outcome of llsd with
threshold b = xj and precision parameters δ, ϵ as defined above. That is, χ̂j is an
estimate of ŷj to within additive accuracy ϵ, where

ŷj = NH(0, xj) + γ̂j , with 0 ≤ γ̂j ≤ NH(xj , xj + δ).
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Subsequently, define χ0 = χ̂0, y0 = ŷ0 and

yj = ŷj − ŷj−1, (A.2)
χj = χ̂j − χ̂j−1, (A.3)

for 1 ≤ j ≤M − 1. Finally, define the estimate

Λ =

M−1∑

j=0

χjxj . (A.4)

We will show that Λ is indeed an estimate of Trb(H) to within additive precision
±1/q(n). To do so, we define γ0 = γ̂0 and γj = γ̂j − γ̂j−1 for 1 ≤ j ≤M − 1, and we
define and expand

Γ =

M−1∑

j=0

yjxj =

M−1∑

j=0

(NH(xj−1, xj) + γj)xj =

M−1∑

j=0

NH(xj−1, xj)xj

︸ ︷︷ ︸
B:=

+

M−1∑

j=0

γjxj

︸ ︷︷ ︸
Ebin:=

.

We start by upper-bounding the magnitude of the Ebin term. To do so, we rewrite

Ebin =

M−1∑

j=0

γjxj = γ̂0x0 +

M−1∑

j=1

(γ̂j − γ̂j−1)xj

=

M−1∑

j=0

γ̂jxj −
M−1∑

j=1

γ̂j−1xj

=

M−1∑

j=0

γ̂jxj −
M−1∑

j=1

γ̂j−1(xj−1 +∆)

=

M−1∑

j=0

γ̂jxj −
M−1∑

j=1

γ̂j−1xj−1 −∆

M−1∑

j=1

xj−1

= γ̂M−1︸ ︷︷ ︸
=0

xM−1 −∆

M−1∑

j=1

γ̂j−1

︸ ︷︷ ︸
≤1

,

and we conclude that |Ebin| ≤ ∆. Next, we upper-bound the absolute difference of B
and Trb(H).

∣∣B − Trb(H)
∣∣ =

∣∣∣∣∣∣

M−1∑

j=0

NH(xj−1, xj)xj − Trb(H)

∣∣∣∣∣∣
≤

M−1∑

j=0

∆ ·NH(xj−1, xj) ≤ ∆.
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Finally, we upper-bound the absolute difference between Λ and Γ.

|Λ− Γ| =

∣∣∣∣∣∣

M−1∑

j=0

(χj − yj)xj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

M−1∑

j=0

2ϵxj

∣∣∣∣∣∣
≤M · 2ϵ · b = 1

3q(n)

Combining all of the above we find that

|Λ− Trb(H)| ≤ |Λ− Γ|+ |Γ− Trb(H)|
≤ |Λ− Γ|+ |B − Trb(H)|+ |E|

≤ 1

3q(n)
+ ∆+∆ =

1

q(n)
.

A.2 Quantum algorithms for sues and llsd

In this section we give a quantum algorithm for sues and a quantum algorithm for
llsd. Moreover, if the input is a log-local Hamiltonian, then the quantum algorithms
we give in this section turn out to be a DQC1 algorithm in the case of llsd, and a
DQC1logn algorithm in the case of sues. That is, if the input is a log-local Hamilto-
nian, then these algorithms can be implemented in the one clean qubit model, where
in the case of sues we need to measure logarithmically many qubits (as opposed to
just one), in order to read out the entire encoding of the eigenvalue.

By scaling the input H ′ = H/Λ, where Λ ∈ O (poly(n)) is an upper bound on
the largest eigenvalue of H, we can assume without loss of generality that ||H|| < 1.
Moreover, we will use that allowing up to O (log(n)) clean qubits does not change the
class DQC1 [178]. That is, the class of problems that can be solved in polynomial time
using the one clean qubit model of computation is the same as the class of problems
that can be solved in polynomial time using the k-clean qubit model of computation,
for k ∈ O (log n). We use this result since the quantum algorithms we describe need
additional ancilla qubits, which have to be initialized in the all-zeros state and hence
be ‘clean’.

A.2.1 Quantum algorithm for sues
In this section we describe a quantum algorithm for sues, which when the input is
restricted to log-local Hamiltonians turns out to be a DQC1logn algorithm. That
is, if the input is a log-local Hamiltonian, then this algorithm can be implemented
using the one clean qubit model of computation where we are allowed to measure
logarithmically many of the qubits at the end, in order to read out the encoding of
the eigenvalue.

The quantum algorithm for sues implements an approximation of the unitary eiH
using Hamiltonian simulation, to which it applies quantum phase estimation with the
eigenvector register starting out in the maximally mixed state. In the remainder of
this section we will show that we can control the errors such that quantum phase
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estimation applied to the approximation of eiH outputs the corresponding eigenvalue
of H up to precision δ ∈ Ω (1/poly(n)), with error probability µ ∈ Ω (1/poly(n)).
Because the maximally mixed state is in a given eigenstate with uniform probabilities
over all eigenstates, this shows that this quantum algorithm is able to output a sample
from a (δ, µ)-approximation of the uniform distribution over the eigenvalues of H.

Errors can arise in two places, namely due to the imprecisions of the unitary
implemented by the Hamiltonian simulation and due to the imprecisions of estimat-
ing eigenvalues using quantum phase estimation. First, we discuss the errors of the
Hamiltonian simulation step. Given sparse access to H, we can implement a unitary
V such that

||V − eiH || < γ, (A.5)

in time O (poly (n, log(1/γ))) [133]. The algorithms for Hamiltonian simulation of ma-
trices specified by an oracle unfortunately require more than O (log n) ancilla qubits,
which implies that they can not be implemented using the one clean qubit model. On
the other hand, if H is a log-local Hamiltonian, then Hamiltonian simulation tech-
niques based on the Trotter-Suzuki formula can implement a unitary V that satisfies
Equation A.5 in time O (poly(n, 1/γ)) [129], while only using a constant number of
ancilla qubits [51]. Therefore, if H is a log-local Hamiltonian, then using the one
clean qubit model we can implement a unitary V that satisfies Equation A.5 in time
O (poly(n, 1/γ)).

Denote by λj and ζj the output of the quantum phase estimation routine (where
for now we assume that it works perfectly, i.e., introduces no error) when run using
eiH and V , respectively. Then, by Equation A.5 we have

|eiλj − eiζj | ≤ γ,

where we assume that |λj−ζj | ≤ π by adding multiples of 2π to λj if necessary. With
some algebra [51], we can show that this implies that

|λj − ζj | ≤ πγ/2.

Choosing the accuracy of the Hamiltonian simulation to be γ = δ/π ∈ Ω (1/poly(n)),
we get that

|λj − ζj | < δ/2. (A.6)

Next, we will consider the errors that arise from using the quantum phase esti-
mation routine to estimate the eigenvalues ζj of the unitary V . The quantum phase
estimation routine requires a register of t ancilla qubits (also called the eigenvalue
register), onto which the eigenvalue will be loaded. If we take

t = log(2/δ) + ⌈log(2 + 1/2µ)⌉ ∈ O (log n)

qubits in the eigenvalue register, then quantum phase estimation outputs an estimate
ζj that satisfies

|ζj − ζj | ≤ δ/2,
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with probability at least (1− µ) [145]. In particular, with probability at least (1− µ)
this estimate satisfies

|ζj − λj | ≤ |ζj − ζ|+ |ζj − λj | ≤ δ.

This requires Õ (2t) = Õ (poly(n)) applications of the unitary V , each of which can
be implemented in O (poly(n)) time as discussed above. In addition, this quantum
phase estimation step requires only O (log n) ancilla qubits, making it possible to be
implemented using the one clean qubit model.

In conclusion, both the Hamiltonian simulation and the quantum phase estimation
can be implemented up to the required precision in time O (poly(n)). Moreover,
if H is a log-local Hamiltonian, then this can be done using the one clean qubit
model. Finally, to read out the encoding of the eigenvalue, we need to measure the
t ∈ O (log(n)) qubits in the eigenvalue register, resulting in a DQC1logn algorithm for
sues if the input is a log-local Hamiltonian.

A.2.2 Quantum algorithm for llsd
In this section, we will describe two quantum algorithms for llsd, both of which turn
into DQC1 algorithms when the input is restricted to log-local Hamiltonians. That
is, if the input is a log-local Hamiltonian, then these algorithms can be implemented
using the one clean qubit model of computation.

Counting eigenvalues below the threshold

A straightforward approach is to solving llsd is to repeatedly sample from the output
of sues and then compute the fraction of samples that lie below the given threshold.
The downside of this is that it requires one to measure the entire eigenvalue register
consisting of logarithmically many qubits, which is prohibitive as we are only allowed
to measure a single qubit in the one clean qubit model. This can be circumvented by
simply adding an extra clean qubit and flipping this qubit conditioned on the state
in the eigenvalue register being smaller than the given threshold. This extra qubit
will be flipped with probability close to the low-lying spectral density, allowing us to
obtain a solution to llsd by only measuring this single qubit. Moreover, if H is a
log-local Hamiltonian, then this ‘fully quantum’ algorithm can be implemented using
the one clean qubit model, as it requires only a few more additional clean qubits on
top of those required for the quantum algorithm for sues discussed in Section A.2.1.

Note that the outcome probabilities of this ‘fully quantum’ algorithm are identical
to those obtained by measuring the entire eigenvalue register, followed by classical
counting of the number of samples below the given threshold. Consequently, the same
error analysis applies in both cases. In the rest of this section we will discuss the error
analysis of classically counting the number of samples below the given threshold.

Let m = ϵ−2 ∈ O (poly(n)) and draw for j = 1, . . . ,m a sample λkj from sues
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with δ/2 as the precision parameter. Next, compute

χj =

{
1 if λkj ∈ (a− δ/2, b+ δ/2),

0 otherwise.

For now we assume that all samples λkj
were correctly sampled, i.e., each kj is

drawn uniformly at random from the set {0, . . . , 2n− 1} and |λkj −λkj | ≤ δ/2, where
λkj

denotes the eigenvalue of which λkj
is an estimate. We now show that under this

assumption the quantity

χ :=
1

m

m∑

j=1

χj (A.7)

is, with high probability, a correct solution to llsd. By the Chernoff-Hoeffding in-
equality χ is, with high probability, an estimate to within additive precision ϵ of

y := Pr
λ∼sues

[
λ ∈ (a− δ/2, b+ δ/2)

]
,

where the probability is taken over the λ being correctly sampled from sues. Because
we assume that the λ are correctly samples from sues, we know that they satisfy
|λ− λ| ≤ δ/2, where λ denotes the eigenvalue of which λ is an estimate. This implies
that

(v) y ≤ Prλ∼U{λj}2n
j=1

[
λ ∈ (a− δ, b+ δ)

]
= NH(a− δ, b+ δ),

(vi) y ≥ Prλ∼U{λj}2n
j=1

[
λ ∈ (a, b)

]
= NH(a, b),

where the probabilities are taken over the λ being sampled uniformly from the set of
all eigenvalues of H. Combining this with the Chernoff-Hoeffding inequality, we find
that χ is, with high probability, an estimate of y up to additive precision ϵ, where y
satisfies

NH(a, b) ≤ y ≤ NH(a− δ, b+ δ).

That is, if all λkj
were sampled correctly from sues, then χ is with high probability

a correct solution to llsd.
Finally, we consider the probability that all samples λkj were indeed sampled

correctly. By the union bound this probability is at least 1 −mµ, where µ denotes
the sampling error probability of sues. Because m ∈ O (poly(n)), we can choose µ ∈
Ω
(
1/poly(ϵ−2, n)

)
= Ω(1/poly(n)) such that all our samples are sampled correctly

with probability close to 1. Therefore, we conclude that the χ defined in Equation A.7
is a correct solution to llsd, with probability close to 1. Moreover, χ can be obtained
from a polynomial number of samples from sues, and can therefore be computed in
time O (poly(n)).
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Using trace estimation of eigenvalue transform

In our paper, we use a result of Cade & Montanaro [51] to argue that the complexity
of estimating the spectral entropy of a Hermitian matrix is closely related to DQC1.
In their work, Cade & Montanaro describe a DQC1 algorithm can estimate traces
of general functions of Hermitian matrices (i.e., beyond spectral entropies). This
algorithm could also be used to extract other interesting properties encoded in the
spectrum of the combinatorial Laplacian. To illustrate this and connect even further
to this line of work, we provide an alternative algorithm for llsd based on this
algorithm. The main result we will utilize is the following Lemma.

Lemma 33 (Cade & Montanaro [51]). For a log-local Hamiltonian H ∈ C2n×2n , and
any log-space polynomial-time computable function f : I → [−1, 1] (where I contains
the spectrum of H) that is Lipschitz continuous with constant K (i.e., |f(x)−f(y)| ≤
K|x− y| for all x, y ∈ I), there exists a DQC1 algorithm to estimate Tr(f(H))/2n =∑

j f(λj)/2
n up to additive accuracy ϵ(K+1), where λj denote the eigenvalues of H,

and ϵ ∈ Ω(1/poly(n)).

It is clear that if the function f is the step-function with threshold b+ δ/2 given by

f(x) =

{
1 if x ≤ b+ δ/2,

0 otherwise,

then the quantity estimated by the algorithm of Lemma 33 is a correct solution to
llsd. However, as this function is not Lipschitz continuous, we will use a smooth
approximation based on the following lemma.

Lemma 34 (Smooth approximation of the sign function). Let δ > 0, ϵ ∈ (0, 1) and
γ = δ

√
2ϵ−ϵ2

1−ϵ . Then, the function gγ(x) =
x√

x2+γ2
satisfies

(vii) for all x ∈ [−2, 2] : −1 ≤ gγ(x) ≤ 1,

(viii) for all x ∈ [−2, 2]\(−δ, δ) : |gγ(x)− sgn(x)| ≤ ϵ, and

(ix) supx∈[−2,2] |g′γ(x)| ≤ 1
γ .

Proof. (i) It is clear that for all x ∈ [−2, 2] we have: −1 ≤ gγ(−2) ≤ gγ(x) ≤
gγ(2) ≤ 1.

(ii) Let x ∈ (δ, 2], then

|gγ(x)− sgn(x)| = |gγ(x)− 1| ≤ |gγ(δ)− 1| = ϵ.

For x ∈ [−2,−δ) we note that

|gγ(x)− sgn(x)| = |gγ(x) + 1| ≤ |gγ(−δ) + 1| = | − (gγ(δ)− 1)| = ϵ.

(iii) It is clear that: supx∈[−2,2] |g′γ(x)| = |g′γ(0)| = 1
γ .
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Let γ = (δ/2)
√
2ϵ−ϵ2

1−ϵ and define g = gγ as in Lemma 34. We define our smooth
approximation of the step-function by

f̂(x) =
g(−x+ b′) + 1

2
,

where b′ = b + δ/2. By Lemma 34 we know that f̂ is Lipschitz continuous on [0, 1]
with constant 1/γ ∈ O (poly(n)), and that it satisfies

• for all x ∈ [0, 1] : 0 ≤ f̂(x) ≤ 1, and

• for all x ∈ [0, 1]\(b, b+ δ) : |f̂(x)− f(x)| ≤ ϵ/2.
Subsequently, we define our estimation objective

y =
1

2n


 ∑

j : λj∈[0,b]

f(λj) +
∑

j : λj∈[b,b+δ]

f̂(λj)


 ,

and we note that y indeed satisfies NH(0, b) ≤ y ≤ NH(0, b+ δ), since

y =
1

2n


 ∑

j : λj∈[0,b]

f(λj) +
∑

j : λj∈[b,b+δ]

f̂(λj)




= NH(0, b) +
1

2n

∑

j : λj∈[b,b+δ]

f̂(λj)︸ ︷︷ ︸
∈[0,1]︸ ︷︷ ︸

∈[0,NH(b,b+δ)]

.

Now our goal is to use Lemma 33 to obtain an ϵ-approximation of y. To this end, we
first define

Λ =
1

2n

2n∑

j=1

f̂(λj),

and we upper-bound the absolute difference between y and Λ as follows

∣∣∣Λ− y
∣∣∣ ≤ 1

2n

∣∣∣∣∣∣
∑

j : λj∈[0,b]

(
f̂(λj)− f(λj)

)
+

∑

j : λj∈[b+δ,1]

f̂(λj)

∣∣∣∣∣∣

≤ 1

2n


 ∑

j : λj∈[0,b]

∣∣∣f̂(λj)− f(λj)
∣∣∣+

∑

j : λj∈[b+δ,1]

∣∣∣f̂(λj)
∣∣∣




≤ 1

2n


 ∑

j : λj∈[0,b]

ϵ/2 +
∑

j : λj∈[b+δ,1]

ϵ/2


 ≤ ϵ/2.

Finally, let χ be the output of the algorithm of Lemma 33 applied to our function
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f̂ with precision parameter ϵ̂ = ϵ/(2(K+1)) ∈ Ω(1/poly(n)). In particular, χ satisfies
|χ− Λ| ≤ ϵ̂(K + 1) = ϵ/2. We conclude that χ is a correct solution to llsd since

|χ− y| ≤ |χ− Λ|+ |Λ− y| ≤ ϵ/2 + ϵ/2 = ϵ,

and y indeed satisfies NH(0, b) ≤ y ≤ NH(0, b+ δ) as discussed earlier.

A.3 Betti number and spectral gap calculations
The purpose of this section is to prove Propositions 8 and 9.

Definition 22. Given two simplicial complexes X and Y , define their join X ∗ Y to
be the simplicial complex consisting of faces σ ⊗ τ := σ ∪ τ for all σ ∈ X, τ ∈ Y .

Observe that K(m, k) = K(m, k − 1) ∗K(m, 1).
In this section, we will work with reduced homology. This is identical to regu-

lar homology, except that we have an extra 1-dimensional space C−1 and an extra
boundary map ∂0 : C0 → C−1 which maps every vertex (0-simplex) to the unique
basis vector of C−1. This has the effect that the reduced homology H0 is equal to
the number of connected components minus one, rather than simply the number of
connected components. The rest of the homology groups Hk for k > 0 are unchanged.

The homology of the join is given by the well-known Kunneth formula.

Lemma 35. (Kunneth formula)

H̃k(X ∗ Y ) =
⊕

i+j=k−1

H̃i(X)⊗ H̃j(Y ) (A.8)

=⇒ β̃k(X ∗ Y ) =
∑

i+j=k−1

β̃i(X)β̃j(Y ) (A.9)

We would also like to relate the Laplacian of X ∗Y to the Laplacians of X and Y .

Lemma 36. Let σ ∈ X be an i-simplex and τ ∈ Y a j-simplex with i + j = k − 1.
Then

∆X∗Y
k (σ ⊗ τ) = (∆X

i σ)⊗ τ + σ ⊗ (∆Y
j τ) (A.10)

Proof. Let’s work in the graded algebra C−1 ⊕ C0 ⊕ C1 ⊕ . . . . We have

∆ = ∂†∂ + ∂∂†

∂(σ ⊗ τ) = (∂σ)⊗ τ + (−1)|σ|σ ⊗ (∂τ)

∂†(σ ⊗ τ) = (∂†σ)⊗ τ + (−1)|σ|σ ⊗ (∂†τ)

=⇒ ∆(σ ⊗ τ) = (∆σ)⊗ τ + σ ⊗ (∆τ)

Corollary 37. Let spec∆ denote the set of eigenvalues of ∆.

spec∆X∗Y
k =

⋃

i+j=k−1

spec∆X
i + spec∆Y

j (A.11)
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Here the plus notation for sets means A+B = {a+ b : a ∈ A, b ∈ B}.
Proof. Use Lemma 36 and let σ ∈ CX

i and τ ∈ CY
j be eigenchains of ∆X

i and ∆Y
j

respectively.

Proposition 38. (Restatement of Proposition 8.)
The (k − 1)th Betti number of the clique complex of K(m, k) is

βk−1 = (m− 1)k (A.12)

Proof. K(m, k) = K(m, k− 1) ∗K(m, 1) and the Betti numbers of K(m, 1) are (m−
1, 0, 0, . . . ). Thus by induction using the Kunneth formula, we have βk−1 = (m −
1)k.

Proposition 39. (Restatement of Proposition 9.)
The combinatorial Laplacian ∆G

k−1 = (∂Gk−1)
†∂Gk−1+∂

G
k (∂Gk )† of the clique complex

of K(m, k) has spectral gap
λmin = m (A.13)

Proof. Again K(m, k) = K(m, k−1)∗K(m, 1). The spectrum of the ∆K(m,1)
0 is 0 with

multiplicity m− 1, and m with multiplicity 1. Thus by induction using Corollary 37,
the spectrum of ∆K(m,k)

k−1 is (ignoring multiplicities) {0,m, 2m, . . . , km}. This gives
λmin = m.

A.4 SWES is DQC1-hard
In this section, we will show that swes is DQC1-hard. We will do so by showing that
we estimate the DQC1-hard normalized subtrace Trb(H) from Proposition 31 up to
additive polynomial precision ϵ ∈ Ω(1/poly) using a polynomial number of queries to
an oracle for swes, together with polynomial-time classical preprocessing of the input
and postprocessing of the output.

First, by considering how H is constructed in [40], we note that Tr(H) is known
and that Tr(H)/2n ∈ O (poly(n)). Next, we define ϵ̂ = (ϵ/(Tr(H)/2n)) and m =
1/ϵ̂2. Subsequently, let λk1

, . . . , λkm
denote samples drawn from swes with estimation

precision δ/2, where δ is such that H has no eigenvalues in [b, b + δ]. For now we
assume that all samples were correctly sampled, i.e., |λkj

− λkj
| ≤ δ/2, where λkj

denotes the eigenvalue of which λkj is an estimate. Afterwards, we estimate the
normalized subtrace Trb(H) by computing the ratio of samples that is below b+ δ/2

χ =
1

m

∑

j : λkj
≤b+δ/2

1

By the Chernoff-Hoeffding inequality (together with the fact thatH has no eigenvalues
in [b, b+ δ]), this ratio χ is, with high probability, an estimate of

Λ =
∑

j : λj≤b

λj/Tr(H),
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up to additive precision ϵ̂. Therefore, (Tr(H)/2n) · χ is, with high probability, an ϵ
estimate of (Tr(H)/2n) · Λ = Trb(H).

Finally, we consider the probability that all samples λkj
were indeed sampled

correctly. By the union bound this probability is M ·µ, where µ denotes the sampling
error probability of swes. Because m ∈ O (poly(n)), we can choose µ ∈ Ω(1/m) =
O (poly(n)) such that all our samples are sampled correctly with probability close to
1.
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Appendix B

Structural risk minimization for
quantum linear classifiers

B.1 Proofs of Section 4.1

B.1.1 Proofs of Proposition 12 and Lemma 13
Proposition 12. Let O ⊆ Herm

(
C2n

)
be a family of n-qubit observables with r =

dim
(∑

O∈O ImO
)
1. Then, the VC dimension of

COqlin =
{
c(x) = sign

(
Tr [OρΦ(x)]− d

) ∣∣ O ∈ O, d ∈ R
}

(4.1)

satisfies

VC
(
COqlin

)
≤ dim

(
Span

(
O
))

+ 1 ≤ r2 + 1. (4.2)

Proof. Define V =
∑

O∈O ImO ⊂ C2n and let PV denote the orthogonal projector onto
V . Let Φ : X → Herm

(
C2n

)
denote the feature map of COqlin and define Φ′ = PV ΦPV .

Note that COqlin(Φ′) = COqlin(Φ). It is known that the VC dimension of linear classifiers
on Rℓ is ℓ + 1, and it is clear that Herm

(
V
)
≃ Herm

(
Cr
)
≃ Rr2 . Also, note that

Span
(
O
)

is a subspace of Herm
(
V
)
. We therefore conclude that

VC
(
COqlin(Φ)

)
= VC

(
COqlin(Φ′)

)

≤ VC
(
linear classifiers on Span

(
O
))

= dim
(
Span

(
O
))

+ 1

≤ VC
(
linear classifiers on Herm

(
V
)
≃ Rr2

)
= r2 + 1.

1Here
∑

denotes the sum of vector spaces and ImO denotes the image (or column space) of the
operator O.
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Lemma 13. The vector spaces defined in Eq. (4.3) and Eq. (4.4) satisfy2

dim(H) ≤ dim(V ) ≤ dim(H)2.

Proof. First, we note that V is contained in the space of Hermitian operators on H.
Since the dimension of the space of Hermitian operators on H is equal to dim(H)2,
this implies that

dim(V ) ≤ dim(H)2.

Next, we fix a basis of H which we denote {|ψk⟩}dim(H)
k=1 , where we each |ψk⟩ is of the

form |ψi(θ)⟩ for some i ∈ {1, . . . , L} and θ ∈ Rm. To show that dim(V ) ≥ dim(H), we
will show that the operators {|ψk⟩ ⟨ψk|}dim(H)

k=1 ⊂ V are linearly independent. We do so
by contradiction, i.e., we assume they are not linearly independent and show that this
leads to a contradiction. That is, we assume that there exists a k′ ∈ {1, . . . ,dim(H)}
and {αk}k ̸=k′ ⊂ R such that

|ψ′
k⟩ ⟨ψ′

k| =
∑

k ̸=k′

αk |ψk⟩ ⟨ψk| .

This implies that

|ψ′
k⟩ =

(
|ψ′

k⟩ ⟨ψ′
k|
)
|ψ′

k⟩
=
( ∑

k ̸=k′

αk |ψk⟩ ⟨ψk|
)
|ψ′

k⟩

=
∑

k ̸=k′

(αk ⟨ψk | ψ′
k⟩) |ψk⟩ ,

which shows that {|ψk⟩}dim(H)
k=1 are not linearly independent. This clearly contradicts

the assumption that {|ψk⟩}dim(H)
k=1 is basis of H. We therefore conclude that the

operators {|ψk⟩ ⟨ψk|}dim(H)
k=1 ⊂ V are linearly independent, which shows that dim(V ) ≥

dim(H).

B.1.2 Relationship Proposition 12 and ranks of observables
In this section we discuss one possible way to relate the quantity r in Proposition 12
with the ranks of the observables by considering the overlaps of the images of the
observables. Specifically, consider a family of observables {Oi}ni=1, where each ob-

2Note that there exists ansatzes for which the inequalities are strict, i.e., dim(H) < dim(V ) <
dim(H)2 (e.g., see the first example discussed in Section 4.3).
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servable is of rank R3. Next, define the quantities

Ii = dim (ImOi ∩ [ImOi+1 + · · ·+ ImOn]) (B.1)

and

Oi = R− Ii. (B.2)

Note that Oi measures the extent to which the image of the observable Oi overlaps
with the images of the observables Oi+1, . . . ,On. Specifically, Oi is equal to zero
if the images are fully overlapping, and it is equal to R if there is no overlap at
all. Now Lemma 40 below provides a way to relate the quantity r in Proposition 12
with the ranks of the observables R and the overlaps of the images Oi. Note that
we consider the case where the family of observables is finite, whereas in the case of
explicit quantum linear classifiers this family is infinite. However, since all images live
in a finite dimensional space, summing only finitely many images is already sufficient.
More precisely, for any family of n-qubit observables O (possibly infinitely large) there
exists a O′ ⊆ O with |O′| ≤ 2n and

∑

O′∈O′

ImO′ =
∑

O∈O
ImO.

In Lemma 40 below we can thus w.l.o.g. consider the case where the family of observ-
ables is finite.

Lemma 40. Consider a family of observables O = {Oi}i∈I , where each observable is
of rank R. Then, for r defined in Proposition 12 and {Oi}i∈I defined in Eq. (B.2),
we have that

r = R+

n−1∑

i=1

Oi

Proof. The proof is basically a repeated application of the formula

dim (ImO1 + ImO2) = dim (ImO1) + dim (ImO2)− dim (ImO1 ∩ ImO2) .

3The results in this section hold more generally for families with varying ranks, though for sim-
plicity (and to more closely relate it to Proposition 15) we assume all observables have some fixed
rank R (from which it should be clear how to adapt it to the case where the observables can have
different ranks).
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Specifically, by repeatedly applying the above formula we find that

r = dim

(
n∑

i=1

ImOi

)
= dim (ImO1) + dim

(
n∑

i=2

ImOi

)

− dim

(
ImO1 ∩

n∑

i=2

ImOi

)

= dim (ImO1) + dim (ImO2) + dim

(
n∑

i=3

ImOi

)

− dim

(
ImO1 ∩

n∑

i=2

ImOi

)

− dim

(
ImO2 ∩

n∑

i=3

ImOi

)

= nR− (I1 + · · ·+ In−1)

= R−
n−1∑

i=1

(R− Ii) = R−
n−1∑

i=1

Oi

B.1.3 Proof of Proposition 14
Proposition 14. Let O ⊆ Herm

(
C2n

)
be a family of n-qubit observables with η =

maxO∈O ∥O∥F . Then, the fat-shattering dimension of

FO
qlin =

{
fO,d(x) = Tr [OρΦ(x)]− d

∣∣ O ∈ O, d ∈ R
}

(4.5)

is upper bounded by

fatFO
qlin

(γ) ≤ O
(
η2

γ2

)
. (4.6)

Proof. Due to the close relationship to standard linear classifiers, we can utilize pre-
viously obtained results in that context. In particular, for our approach we use the
following proposition.

Proposition 41 (Fat-shattering dimension of linear functions [175]). Consider the
family of real-valued functions on the ball of radius R inside RN given by

Flin =
{
fw,d(x) = ⟨w, x⟩ − d

∣∣∣ w ∈ RN with ||w|| = 1, d ∈ R with |d| ≤ R
}
.

The fat-shattering dimension of Flin can be bounded by

fatFlin
(γ) ≤ min{9R2/γ2, N + 1}+ 1.
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The context in the above proposition is closely related, yet slightly different than
that of quantum linear classifiers. Firstly, n-qubit density matrices lie within the ball
of radius R = 1 inside Herm

(
C2n

)
equipped with the Frobenius norm. However, as

in our case the hyperplanes arise from the family of observables O, whose Frobenius
norms are upper bounded by η, we cannot directly apply the above proposition. We
therefore adapt the above proposition by exchanging the role of R with the upper
bound on the norms of the observables in O, resulting in the following lemma.

Lemma 42. Consider the family of real-valued functions on the ball of radius R = 1
inside RN given by

F≤η
lin =

{
fw,d(x) = ⟨w, x⟩ − d

∣∣∣ w ∈ RN with ||w|| ≤ η, d ∈ R with |d| ≤ η
}
.

The fat shattering dimension of F≤η
lin can be upper bounded by

fatF≤η
lin

(γ) ≤ min{9η2/γ2, N + 1}+ 1.

Proof. Let us first determine the fat-shattering dimension of the family of linear func-
tions with norm precisely equal to η on points that lie within the ball of radius R = 1,
i.e.,

F=η
lin =

{
fw,d(x) = ⟨w, x⟩ − d

∣∣∣ w ∈ RN with ||w|| = η, d ∈ R with |d| ≤ η
}
.

Suppose F=η
lin can γ-shatter a set of points {x1, . . . , xk} that lie within the ball of

radius R = 1. Because ⟨w, xi⟩ = ⟨w/η, ηxi⟩, we find that F=1
lin can γ-shatter the set

of points ηx1, . . . , ηxk that lie within the ball of radius R = η. By Proposition 41
we have k ≤ min{9η2/γ2, N + 1}+ 1. Thus, the fat-shattering dimension of F=η

lin on
points within the ball of radius R = 1 is upper bounded by

fatF=η
lin

(γ) ≤ min{9η2/γ2, N + 1}+ 1.

To conclude the desired results, note that this bound is monotonically increasing
in η, and thus allowing hyperplanes with with norm ∥w∥ < η will not increase the
fat-shattering dimension.

From the above lemma we can immediately infer an upper bound on the fat-
shattering dimension of quantum linear classifiers by identifying that as vector spaces
Herm

(
C2n

)
≃ R4n .

Sample complexity in the PAC-learning framework

Besides being related to generalization performance, the fat-shattering dimension is
also related to the so-called sample complexity in the probably approximately correct
(PAC) learning framework [117]. The sample complexity captures the amount classi-
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fier queries required to find another classifier that with high probability agrees with
the former classifier on unseen examples.

By plugging the upper bound of Proposition 14 into previously established theo-
rems on the sample complexity of families of classifiers [21, 29], we derive the following
corollary, which can be viewed as a dual of the result of [8].

Corollary 43. Let O ⊆ Herm
(
C2n

)
be a family of observables with η = maxO∈O ∥O∥F

and consider the family of real-valued functions FO
qlin defined in Eq. (4.5). Fix an el-

ement F ∈ FO
qlin as well as parameters ϵ, ν, γ > 0 with γϵ ≥ 7ν. Suppose we draw

m examples D = {ρ1, . . . , ρm} independently according to a distribution P , and then
choose any function H ∈ FO

qlin such that |H(ρi) − F (ρi)| ≤ ν for all ρi ∈ D. Then,
with probability at least 1− δ over P , we have that

Pr
ρ∼P

(
|H(ρ)− F (ρ)| > γ

)
≤ ϵ,

provided that

m ∈ Ω

(
1

γ2ϵ2

( η2

γ2ϵ2
log2

1

γϵ
+ log

1

δ

))
.

Proof. Follows directly from plugging the uppper bound of Proposition 14 into Corol-
lary 2.4 of [8].

B.2 Proofs of propositions Section 4.2

B.2.1 Proof of Proposition 15

Proposition 15. Let C(r)qlin denote the family of quantum linear classifiers correspond-
ing to observables of exactly rank r, that is,

C(r)qlin =
{
c(ρ) = sign

(
Tr [Oρ]− d

) ∣∣ O ∈ Herm
(
C2n

)
, rank

(
O
)
= r, d ∈ R

}
(4.7)

Then, the following statements hold:

(x) For every finite set of examples D that is correctly classified by a quantum linear
classifier c ∈ C(k)qlin with 0 < k < 2n, there exists a quantum linear classifier

c ∈ C(r)qlin with r > k that also correctly classifies D.

(xi) There exists a finite set of examples that can be correctly classified by a classifier
c ∈ C(r)qlin, but which no classifier c′ ∈ C(k)qlin with k < r can classify correctly.

Proof. (i): Suppose cO,b ∈ C(k)qlin correctly classifies D. Next, we define

δ = min
x∈D−

∣∣Tr [Oρx]− d
∣∣,
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where D− is the subset of examples with label −1, and note that since D is correctly
classified we have δ > 0. Fix the basis we work in to be the eigenbasis of O ordered
in such a way that

O = diag(λ1, . . . , λk, 0, . . . , 0)

and define
P =

1

r − kdiag(0, . . . , 0︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
r−k times

, 0, . . . , 0︸ ︷︷ ︸
2n−r times

).

For every 0 < ϵ < δ we have that O′ = O + ϵP has rank(O′) = r. What remains to
be shown is that cO′,b ∈ C(r)qlin correctly classifies D. To do so, first let x ∈ D+ (i.e.,
labeled +1) and note that

Tr [O′ρx]− b = (Tr [Oρx]− b)︸ ︷︷ ︸
≥0

+ ϵTr [Pρx]︸ ︷︷ ︸
≥0

≥ 0,

which shows that indeed cO′,b(x) = +1. Next, let x ∈ D− (i.e., labeled −1) and note
that

Tr [O′ρx]− b = (Tr [Oρx]− b)︸ ︷︷ ︸
≤−δ

+ ϵTr [Pρx+ ]︸ ︷︷ ︸
<δ

< 0,

which shows that indeed cO′,b(x) = −1.
(ii):
We will describe a protocol that queries a classifier cO,b and based on its outcomes

checks whether O is approximately equal to a fixed target observable T of rank r. We
will show that if the queries to cO,b are labeled in a way that agrees with the target
classifier that uses the observable T , then the spectrum of O has to be point-wise
within distance ϵ of the spectrum of T . In particular, this will show that the rank of
O has to be at least r if we make ϵ small enough. Consequently, if the rank of O is less
than r, then at least one query made during the protocol has to be labeled differently
by cO,b than the target classifier. In the end, the queries made to the classifier during
the protocol will therefore constitute the set of examples described in the theorem.

Let us start with some definition. For a classifier cO,b(ρ) = sgn
(
Tr
[
Oρ
]
− b
)

we
define its effective observable Oeff = O − bI which we express in the computational
basis as Oeff = (Oij). Next, we define our target classifier to be cT ,−1 where the
observable T is given by

T = −r |0⟩ ⟨0|+
r−1∑

i=1

i |i⟩ ⟨i| ,

and we define its effective observable Teff = T + I which we express in the computa-
tional basis as Teff = (Tij). Rescaling Oeff with a positive scalar does not change the
output of the corresponding classifier. Therefore, to make the protocol well-defined,
we define Oeff to be the unique effective observable whose first diagonal element is
scaled to be equal to O00 = −(r + 1).

Our approach is as follows. First, we query cO,b in such a way that if the outcomes
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agree with with the target classifier cT ,−1, then the absolute values of the off-diagonal
entries in the first row and column of Oeff must be close to zero (i.e., approximately
equal to those of Teff). Afterwards, we again query cO,b but now in such a way that
if the outcomes agree with the target classifier cT ,−1, then the diagonal elements of
Oeff must be approximately equal to those of Teff. In the end, we query cO,b one final
time but this time in such a way that if the outcomes agree with the target classifier
cT ,−1, then the absolute values of the remaining off-diagonal elements of Oeff must
be close to zero (i.e., again approximately equal to those of Teff). Finally, we use
Gershgorin’s circle theorem to show that the spectrum of Oeff has to be point-wise
close to the spectrum of Teff. We remark that this procedure could be generalized to
a more complete tomography approach, where one uses queries to the classifier cO,b

in order to reconstruct the entire spectrum of Oeff.
First, we query the quantum states |i⟩ for i = 0, . . . , 2n − 1. Without loss of

generality, we can assume that the classifiers cO,b and cT ,−1 agree on the label, i.e.,

cO,b

(
|0⟩ ⟨0|

)
= −1, and cO,b

(
|i⟩ ⟨i|

)
= +1 for i = 1, . . . , 2n − 1, (B.3)

as otherwise a set of examples containing just these states would already separate
cO,b and cT ,−1.

In order to show that the absolute value of the off-diagonal elements of the first
row and column of Oeff must be close to zero and that the diagonal elements of Oeff
must be close to those of Teff, we consider the quantum states given by

|γθ(α)⟩ =
√
1− α |0⟩+ eiθ

√
α |j⟩ , with α ∈ [0, 1] and θ ∈ [0, 2π). (B.4)

Its expectation value with respect to Oeff is given by

⟨γθ(α)| Oeff |γθ(α)⟩ = (1− α)O00 + αOjj +
√
α(1− α)Cθ, (B.5)

where Cθ := Re
(
eiθO0j

)
, and its expectation value with respect to Teff is given by

⟨γθ(α)| Teff |γθ(α)⟩ = (1− α)T00 + αTjj . (B.6)

Crucially, by Equation (B.3) we know that the label of |γθ(α)⟩ goes from −1 to +1
as α goes 0 → 1. Note that the expectation value of |γθ(α)⟩ with respect to Teff is
independent from the phase θ.

To determine that
∣∣O0j

∣∣ is smaller than δ > 0, we query the classifier cO,b on the
states |γθ̂(α̂)⟩ for all θ̂ in a ζ-mesh of [0, 2π) and for all α̂ in a ξ-mesh of [0, 1] and
we suppose they are labeled the same as the target classifier cT ,−1 would label them.
Using these queries we can find estimates α̂Oeff

cross(θ̂) that are ξ-close to the unique
αOeff

cross(θ) = α′ that satisfies

⟨γθ(α′)| Oeff |γθ(α′)⟩ = 0, (B.7)

by finding the smallest α̂ where the label has gone from −1 to +1. We refer to the α′

satisfying Equation (B.7) as the crossing point at phase θ. Because the label assigned
by cT ,−1 does not depend on the phase θ, and since all states |γθ̂(α̂)⟩ were assigned
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the same label by cO,b and cT ,−1, we find that the crossing point estimate α̂Oeff
cross(θ̂) is

the same for all θ̂. In particular, this implies that the actual crossing points αOeff
cross(θ̂)

have to be within ξ-distance of each other for all θ̂.
Before we continue, we first show that if cO,b assigns the same labels as cT ,−1,

then Ojj is bounded above by a quantity that only depends on n. Fix θ̃ to be any
point inside the ζ-mesh such that Cθ̃ ≤ 0, and define the function E(α) = (1 −
α)O00+αOjj +

√
(1− α)αCθ̃. By our choice of T , we have that αT

cross ∈ ( r+1
2r+1 ,

r+1
r+3 ).

Therefore, if cO,b and cT ,−1 agree on the entire ξ-mesh for a small enough ξ, then
it must hold that αOeff

cross(θ̃) ∈ ( 12 ,
2n+1
2n+2 ). By the mean value theorem there exists an

α′ ∈ (αOeff
cross(θ̃),

2n+1
2n+2 ) such that

E′(α′) =
E( 2

n+1
2n+2 )− E(αOeff

cross(θ̃))
2n+1
2n+2 − α

Oeff
cross(θ̃)

. (B.8)

After some rewriting, we can indeed conclude from the above equation that Ojj is
bounded above by a quantity that only depends on n.

Next, write O0j =
∣∣O0j

∣∣eiϕ with ϕ ∈ [0, 2π), let θ̂abs denote the point in the ζ-
mesh of [0, 2π) that is closest to 2π − ϕ, and let θ̂0 denote the point in the ζ-mesh of
[0, 2π) that is closest to π/2−ϕ modulo 2π. By our previous discussion we know that∣∣αOeff

cross(θ̂abs) − αOeff
cross(θ̂0)

∣∣ < ξ, which together with the previously established bound
on Ojj implies that

∣∣∣Cθ̂abs
− Cθ̂0

∣∣∣ < f(ξ), (B.9)

where f is a continuous function (independent from cO,b) with f(ξ) → 0 as ξ → 0.
Moreover, using the inequality cos(ζ) ≥ 1 − λζ, where λ ≈ 0.7246 is a solution of
λ
(
π − arcsin(λ)

)
= 1 +

√
1− λ2, together with the inequality cos(π/2− ζ) ≤ ζ, we

can derive that
∣∣∣Cθ̂abs

− Cθ̂0

∣∣∣ =
∣∣∣
∣∣O0j

∣∣ cos
(
θ̂abs + ϕ

)
−
∣∣O0j

∣∣ cos
(
θ̂0 + ϕ

)∣∣∣

≥
∣∣∣O0j

∣∣∣ ·
∣∣∣ cos

(
ζ
)
− cos

(
π/2− ζ

)∣∣∣

≥
∣∣∣O0j

∣∣∣ ·
∣∣∣1−

(
λ+ 1

)
ζ
∣∣∣.

(B.10)

Finally, by combining Equation (B.9) with Equation (B.10) we can conclude that

∣∣O0j

∣∣ < f(ξ)

1− (λ+ 1)ζ
,

which for ξ and ζ small enough shows that
∣∣O0j

∣∣ < δ for any chosen precision δ > 0
(i.e., the fineness of both meshes ξ and ζ will depend on the choice of δ).

To determine that Ojj is within distance δ′ > 0 of Tjj we again query the classifier
cO,b but this time on the states |γ0(α̂)⟩ for all α̂ in a ξ′-mesh of [0, 1] and we suppose
they are labeled the same as the target classifier cT ,−1 would. Using these queries

154



we can find estimates α̂Oeff
cross(0), α̂Teff

cross(0) that are ξ′-close to the corresponding actual
crossing point. As we assumed that all queries are labeled the same by cO,b and cT ,−1,
the crossing point estimate α̂Oeff

cross(0) has to be equal to the crossing point estimate
α̂Teff

cross(0). In particular, this implies that the actual crossing points αOeff
cross(0) and

αTeff
cross(0) have to be within ξ′-distance of each other. Next, define g(α,C) to be the

unique coefficient O ∈ R≥0 that satisfies

(1− α)O00 + αO +
√
α(1− α)C = 0.

It is clear that g is a continuous function in α and C that is independent from cO,b,
and that Tjj = g(αTeff

cross(0), 0) and Ojj = g(αOeff
cross(0), C0). Finally, we let δ > 0 and

ξ′ > 0 be small enough such that if
∣∣αOeff

cross(0)− αTeff
cross(0)

∣∣ < ξ′ and
∣∣C0

∣∣ < δ, then
∣∣Ojj − Tjj

∣∣ =
∣∣g(αTeff

cross(0), 0)− g(αOeff
cross(0), C0)

∣∣ < δ′.

In conclusion, to determine that Ojj is within distance δ′ > 0 of Tjj we first do the
required queries to determine that

∣∣C0

∣∣ =
∣∣O0j

∣∣ < δ, after which we do the required
queries to determine that

∣∣αOeff
cross(0) − αTeff

cross(0)
∣∣ < ξ′, which together indeed implies

that Ojj is within distance δ′ > 0 of Tjj .
In order to show that the absolute value of the remaining off-diagonal elements of

Oeff must be close to zero (i.e., close to those of Teff) we consider the quantum states
given by

|µθ(α)⟩ =
√
1− α√
2

(
|0⟩+ |i⟩

)
+ eiθ

√
α |j⟩ , with α ∈ [0, 1] and θ ∈ [0, 2π). (B.11)

Its expectation value with respect to Oeff is given by

⟨µθ(α)| Oeff |µθ(α)⟩ =
(
1− α

)(
O00 +Oii + Re(O0i)

)
+ αOjj (B.12)

+
√
2α(1− α)Cθ, (B.13)

where Cθ := Re
(
eiθ(O0j+Oij)

)
, and its expectation value with respect to Teff is given

by

⟨µθ(α)| Teff |µθ(α)⟩ =
(
1− α

)(
T00 + Tii

)
+ αTjj . (B.14)

Crucially, by our choice of T we know that the label of |µθ(α)⟩ goes from −1 to +1
as α goes 0 → 1. Note that the expectation value of |µθ(α)⟩ with respect to Teff is
independent from the phase θ.

To determine that
∣∣Oij

∣∣ is smaller than δ′′ > 0 for i, j ≥ 1 and i ̸= j, we query
the classifier cO,b on the states |γθ̂(α̂)⟩ for all θ̂ in a ζ ′′-mesh of [0, 2π) and for all α̂ in
a ξ′′-mesh of [0, 1] and we suppose they are labeled the same as the target classifier
cT ,−1 would. Using these queries we can find estimates α̂Oeff

cross(θ̂) that are ξ-close to
the unique αOeff

cross(θ) = α′ that satisfies

⟨µθ(α
′)| Oeff |µθ(α

′)⟩ = 0, (B.15)
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by finding the smallest α̂ where the label has gone from −1 to +1. Because the label
assigned by cT ,−1 does not depend on the phase θ, and since all states |µθ̂(α̂)⟩ were
assigned the same label by cO,b and cT ,−1, we find that the crossing point estimate
α̂Oeff

cross(θ̂) is the same for all θ̂. In particular, this implies that the actual crossing
points αOeff

cross(θ̂) have to be within ξ′′-distance of each other for all θ̂. Subsequently,
write O0j + Oij =

∣∣O0j + Oij

∣∣eiϕ with ϕ ∈ [0, 2π), let θ̂abs denote the point in the
ζ ′′-mesh of [0, 2π) that is closest to 2π−ϕ, and let θ̂0 denote the point in the ζ ′′-mesh
of [0, 2π) that is closest to π/2 − ϕ modulo 2π. By our previous discussion we know
that

∣∣αOeff
cross(θ̂abs)− αOeff

cross(θ̂0)
∣∣ < ξ′′, which implies
∣∣∣Cθ̂abs

− Cθ̂0

∣∣∣ < h(ξ′′), (B.16)

where h is a continuous function (independent from cO,b and cT ,−1) with h(ξ′′)→ 0 as
ξ′′ → 0. Moreover, using the inequality cos(ζ ′′) ≥ 1−λζ ′′, where λ ≈ 0.7246 is a solu-
tion of λ

(
π− arcsin(λ)

)
= 1+

√
1− λ2, together with the inequality cos(π/2− ζ ′′) ≤

ζ ′′, we can derive that
∣∣∣Cθ̂abs

− Cθ̂0

∣∣∣ =
∣∣∣
∣∣O0j +Oij

∣∣ cos
(
θ̂abs + ϕ

)
−
∣∣O0j +Oij

∣∣ cos
(
θ̂0 + ϕ

)∣∣∣

≥
∣∣∣O0j +Oij

∣∣∣ ·
∣∣∣ cos

(
ζ ′′
)
− cos

(
π/2− ζ ′′

)∣∣∣

≥
∣∣∣O0j +Oij

∣∣∣ ·
∣∣∣1−

(
λ+ 1

)
ζ ′′
∣∣∣.

(B.17)

Finally, by combining Equation (B.16) with Equation (B.17) we can conclude that

∣∣O0j +Oij

∣∣ < h(ξ′′)
1− (λ+ 1)ζ ′′

,

which for ξ′′ and ζ ′′ small enough shows that
∣∣O0j +Oij

∣∣ < δ′′/2 (i.e., the fineness of
both meshes ξ′′ and ζ ′′ will depend on the choice of δ′′). In conclusion, to determine
that

∣∣Oij

∣∣ is smaller than δ′′ > 0 we first do the required queries to determine that∣∣O0j

∣∣ < δ′′/2, after which we do the required queries to determine that
∣∣O0j +Oij

∣∣ <
δ′′/2, which together indeed implies that

∣∣Oij

∣∣ < δ′′.
All in all, we have described a (finite) set of states such that if the label assigned by

cO,b agrees with the label assigned by cT ,−1, then the absolute value of the off-diagonal
elements of the first row of Oeff have to be smaller than δ, the diagonal elements of
Oeff have to be within δ′-distance of those of Teff, and the remaining off diagonal
elements of Oeff have to be smaller than δ′′. Finally, we choose δ, δ′, δ′′ = 1/2n+1 and
use the above protocol to establish that for 1 ≤ i ≤ r − 1 the Gershgorin discs Di

of Oeff (i.e., with center Oii and radius
∑

j |Oij |) have to be contained in the disks
D̃i with center i+1 and radius 1/2. Moreover, we establish that the Gershgorin disc
D0 has to be contained in the disks D̃0 with center −r + 1 and radius 1/2. Since
the disks D̃i as disjoint, so are the Gershgorin discs Di, which implies that Oeff must
have at least r distinct eigenvalues, and thus that rank

(
O
)
≥ r. Consequently, if

rank
(
O
)
< r, then cO,b must disagree with cT ,−1 on the label of at least one of the
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states queried during the protocol.

B.2.2 Proof of Proposition 16
Proposition 16. Let Clin(Φ) denote the family of linear classifiers that is equipped
with a feature map Φ. Also, let C(≤r)

qlin (Φ′) denote the family of quantum linear clas-
sifiers that uses observables of rank at most r and which is equipped with a quantum
feature map Φ′. Then, the following statements hold:

(xii) For every feature map Φ : Rℓ → RN with supx∈Rℓ ||Φ(x)|| = M < ∞, there
exists a feature map Φ′ : Rℓ → RN+1 such that ||Φ′(x)|| = 1 for all x ∈ Rℓ and
the families of linear classifiers satisfy Clin(Φ) ⊆ Clin(Φ′).

(xiii) For every feature map Φ : Rℓ → RN with ||Φ(x)|| = 1 for all x ∈ Rℓ, there exists
a quantum feature map Φ′ : Rℓ → Herm

(
C2n

)
that uses n = ⌈logN + 1⌉ + 1

qubits such that the families of linear classifiers satisfy Clin(Φ) ⊆ C(≤1)
qlin (Φ′).

(xiv) For every quantum feature map Φ : Rℓ → Herm
(
C2n

)
, there exists a classical

feature map Φ′ : Rℓ → R4n such that the families of linear classifiers satisfy
Cqlin(Φ) = Clin(Φ′).

Proof. (i): First, we define the feature map Φ′ : Rℓ → RN+1 which maps

x 7→ Φ(x)

M
+

√
1− ||Φ(x)||

2

M2
eN+1,

where eN+1 denotes the (N +1)-th standard basis vector. Note that this feature map
indeed satisfies that ||Φ′(x)|| = 1 for all x ∈ Rℓ. Next, for any classifier cw,b ∈ Cqlin(Φ)
we define w′ = w and b′ = b/M and we note that for any x ∈ Rℓ we have

cw′,b′(Φ
′(x)) = sign

(
⟨w′,Φ′(x)⟩ − b′

)

= sign
(
M−1

[
⟨w,Φ(x)⟩ − b

])

= sign
(
⟨w,Φ(x)⟩ − b

)
= cw,b(Φ(x)).

(ii): First, we define the feature map Φ̃ : Rℓ → RN+1 which maps

x 7→ Φ(x) + eN+1,

where eN+1 denotes the (N + 1)-th standard basis vector. Next, for any classifier
cw,b ∈ Clin(Φ) we define w̃ = w − beN+1 and we note that for all x ∈ Rℓ we have

cw̃,0(Φ̃(x)) = sign
(
⟨Φ̃(x), w̃⟩

)
= sign

(
⟨Φ(x), w⟩ − b

)
= cw,b(Φ(x)).

Therefore, it suffices to show that we can implement any linear classifier on RN+1

with b = 0 as a quantum linear classifier on n = ⌈logN + 1⌉+ 1 qubits. To do so, we
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define the quantum feature map Φ′ : Rℓ → Herm
(
C2n

)
which maps

x→ ρx =

( |Φ(x)⟩+ |0⟩√
2

)( ⟨Φ(x)|+ ⟨0|√
2

)
,

where |0⟩ is a vector that does not lie in the support of Φ (note this vectors exists
since we have chosen n large enough). Finally, for any linear classifier cw,0 ∈ Clin(Φ)
on RN+1 we define b′ = ||w||2/2 and O = |w′⟩ ⟨w′|, where |w′⟩ = |w⟩ + ||w|| |0⟩ and
we note that for all x ∈ R we have

cO,b′(Φ
′(x)) = sign

(
Tr [Oρx]− b′

)

= sign
(1
2

∣∣∣ ⟨w | Φ(x)⟩+ ||w||
∣∣∣
2

− ||w||
2

2

)

= sign
(
⟨w,Φ(x)⟩

)
= cw,0(Φ(x)).

(iii): This follows directly from the fact that Herm
(
C2n

)
≃ R4n .

B.2.3 Proof of Proposition 17

Proposition 17. Let C(η)qlin denote the family of quantum linear classifiers correspond-
ing to all n-qubit observables of Frobenius norm η, that is,

C(η)qlin =
{
c(ρ) = sign

(
Tr [Oρ]− d

) ∣∣ O ∈ Herm
(
C2n

)
with ||O||F = η, d ∈ R

}
.

(4.10)

Then, for every η ∈ R>0 and 0 < m ≤ 2n there exists a set of m examples consisting
of binary labeled n-qubit pure states that satisfies the following two conditions:

(xv) There exists a classifier c ∈ C(η)qlin that correctly classifies all examples with margin
η/
√
m.

(xvi) No classifier c′ ∈ C(η
′)

qlin with η′ < η can classify all examples correctly with margin
≥ η/√m.

Proof. Define Dm = D+
m∪D−

m whose positive examples (i.e., labeled +1) are given by

D+
m =

{
|i⟩ ⟨i| | i = 1, . . . ,

m

2

}
,

and whose negative examples (i.e., labeled −1) are given by

D−
m =

{
|i⟩ ⟨i| | i = m

2
+ 1, . . . ,m

}
.

To classify this set of examples we take the classifier cO,0 ∈ C(η)qlin whose observable is
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given by

O =
η√
m



(m/2∑

i=1

|i⟩ ⟨i|
)
+
( m∑

j=m
2 +1

|j⟩ ⟨j|
)

 .

We remark that cO,0 can indeed classify the set of examples Dr with margin η/
√
m.

Now suppose cO′,b′ ∈ Cη
′

qlin with η′ < η can classify Dm with margin γ′, that is

Tr
[
O′ |i⟩ ⟨i|

]
{
≥ b′ + γ′ if i = 1, . . . , m2 ,

≤ b′ − γ′ if i = m
2 + 1, . . . ,m.

(B.18)

Define ρ+ =
∑m/2

i=1 |i⟩ ⟨i| and ρ− =
∑m

i=m
2 +1 |i⟩ ⟨i| and note that Equation (B.18)

implies that
Tr
[
O′ρ+

]
≥ m

2
b′ +

m

2
γ′

and that
Tr
[
O′ρ−

]
≤ m

2
b′ − m

2
γ′

By combining these two inequalities we find that

Tr
[
O′(ρ+ − ρ−)

]
≥ m

2
b′ − m

2
b′ +

m

2
γ′ +

m

2
γ′ = mγ′. (B.19)

Finally, by the Cauchy–Schwarz inequality we find that

Tr
[
O′(ρ+ − ρ−)

]
≤ ||O′||F︸ ︷︷ ︸

<η

· ||ρ+ − ρ−||F︸ ︷︷ ︸
=
√
m

< η
√
m. (B.20)

Combining Equation (B.19) and (B.20) we find that

mγ′ ≤ Tr
[
O′(ρ+ − ρ−)

]
< η
√
m

from which we can conclude that γ′ < η/
√
m.
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Appendix C

Parametrized quantum policies
for reinforcement learning

C.1 Derivation of the log-policy gradient
For a softmax-PQC defined in Def. 16, we have:

∇θ log πθ(a|s) = ∇θ log e
β⟨Oa⟩s,θ −∇θ log

∑

a′

eβ⟨Oa′ ⟩s,θ

= β∇θ ⟨Oa⟩s,θ −
∑

a′

eβ⟨Oa′ ⟩s,θβ∇θ ⟨Oa′⟩s,θ∑
a′′ e

β⟨Oa′′ ⟩s,θ

= β

(
∇θ ⟨Oa⟩s,θ −

∑

a′

πθ(a
′|s)∇θ ⟨Oa′⟩s,θ

)
.

C.2 Efficient implementation of softmax-PQC poli-
cies

C.2.1 Efficient approximate policy sampling
In this section we prove Lemma 19, restated below:

Lemma 19. For a softmax-PQC policy πθ defined by a unitary U(s,θ) and observ-
ables Oa, call ⟨Õa⟩s,θ approximations of the true expectation values ⟨Oa⟩s,θ with at
most ε additive error. Then the approximate policy π̃θ = softmaxβ(⟨Õa⟩s,θ) has total
variation distance O(βε) to πθ = softmaxβ(⟨Oa⟩s,θ). Since expectation values can be
efficiently estimated to additive error on a quantum computer, this implies efficient
approximate sampling from πθ.
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Proof. Consider |A| estimates
{
⟨Õa⟩s,θ

}
1≤a≤|A|

, obtained all to additive error ε, i.e.,

∣∣∣⟨Õa⟩s,θ − ⟨Oa⟩s,θ
∣∣∣ ≤ ε, ∀a

and used to compute an approximate policy

π̃θ(a|s) =
eβ⟨Õa⟩s,θ

∑
a′ eβ⟨Õa′ ⟩s,θ

.

Due to the monoticity of the exponential, we have, for all a:

e−βεeβ⟨Oa⟩s,θ

eβε
∑

a′ e
β⟨Oa′ ⟩s,θ

≤ eβ⟨Õa⟩s,θ
∑

a′ eβ⟨Õa′ ⟩s,θ
≤ eβεeβ⟨Oa⟩s,θ

e−βε
∑

a′ e
β⟨Oa′ ⟩s,θ

⇔ e−2βεπθ(a|s) ≤ π̃θ(a|s) ≤ e2βεπθ(a|s). (C.1)

Hence,

TV(πθ, π̃θ) =
∑

a

|π̃θ(a|s)− πθ(a|s)|

≤
∑

a

∣∣e2βεπθ(a|s)− e−2βεπθ(a|s)
∣∣

=
∑

a

∣∣e2βε − e−2βε
∣∣πθ(a|s)

= 2|sinh(2βε)| =
βε→0+

4βε+O
(
(βε)3

)
,

where TV(., .) denotes the total-variation distance, and we used

{π̃θ(a|s), πθ(a|s)} ∈ [e−2βεπθ(a|s), e2βεπθ(a|s)]

in the first inequality.

C.2.2 Efficient estimation of the log-policy gradient
Using a similar approach to the proof of the previous section, we show the following
lemma:

Lemma 44. For a softmax-PQC policy πθ defined by a unitary U(s,θ) and observ-
ables Oa, call ∂i⟨Õa⟩s,θ approximations of the true derivatives ∂i⟨Oa⟩s,θ with at most
ε additive error, and ⟨Õa⟩s,θ approximations of the true expectation values ⟨Oa⟩s,θ
with at most ε′ = ε(4βmaxa ∥Oa∥)−1 additive error. Then the approximate log-policy
gradient ∇θ log π̃θ(a|s) = β

(
∇θ⟨Õa⟩s,θ−

∑
a′ π̃θ(a

′|s)∇θ⟨Õa′⟩s,θ
)

has distance O(βε)
to ∇θ log πθ(a|s) in ℓ∞-norm.
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Proof. Call xa,i = πθ(a|s)∂i⟨Oa⟩s,θ and x̃a,i = π̃θ(a|s)∂i⟨Õa⟩s,θ, such that:

∂i log π̃θ(a|s) = β
(
∂i⟨Õa⟩s,θ −

∑
a′
x̃a′,i

)
.

and similarly for ∂i log πθ(a|s).
Using Eq. (C.1) and that |∂i⟨Oa⟩s,θ − ∂i⟨Õa⟩s,θ| ≤ ε,∀a, i, we have:

e−2βε′πθ(a|s) (∂i⟨Oa⟩s,θ − ε) ≤ π̃θ(a|s)∂i⟨Õa⟩s,θ (C.2)

≤ e2βε′πθ(a|s) (∂i⟨Oa⟩s,θ + ε) (C.3)

which implies that

e−2βε′

(∑

a

xa,i − ε
)
≤

∑

a

x̃a,i ≤ e2βε′
(∑

a

xa,i + ε

)
(C.4)

where we summed the first inequalities over all a. Hence:
∣∣∣∣∣
∑

a

xa,i −
∑

a

x̃a,i

∣∣∣∣∣ ≤
∣∣∣∣∣e

2βε′

(∑

a

xa,i + ε

)
− e−2βε′

(∑

a

xa,i − ε
)∣∣∣∣∣

≤
∣∣∣∣∣(e

2βε′ + e−2βε′)ε+ (e2βε
′ − e−2βε′)

∑

a

xa,i

∣∣∣∣∣

≤
∣∣∣∣∣2 cosh(2βε

′)ε+ 2 sinh(2βε′)
∑

a

xa,i

∣∣∣∣∣

=
βε′→0+

∣∣∣∣∣ε+ 4βε′
∑

a

xa,i +O
(
(βε′)2ε

)
+O

(
(βε′)3

)
∣∣∣∣∣. (C.5)

We also have
∣∣∣∣∣
∑

a

xa,i

∣∣∣∣∣ =
∣∣∣∣∣
∑

a

πθ(a|s)∂i⟨Oa⟩s,θ
∣∣∣∣∣ ≤ max

a,i
|∂i⟨Oa⟩s,θ| ≤ max

a
∥Oa∥

where the last inequality derives from the parameter-shift rule (Eq. (5.4)) formulation
of ∂i ⟨Oa⟩ for derivatives w.r.t. rotation angles of the PQC and the fact that ∂i ⟨Oa⟩
are simply expectation values ⟨Ha,i⟩ with ∥Ha,i∥ ≤ ∥Oa∥ for observable weights.
Applying the triangular inequality on the right side of Eq. (C.5), we hence have:

∣∣∣∣∣
∑

a

xa,i −
∑

a

x̃a,i

∣∣∣∣∣ ≤
βε′→0+

ε+ 4βε′ max
a
∥Oa∥+O

(
(βε′)2ε

)
+O

(
(βε′)3

)
.

For ε′ = ε(4βmaxa ∥Oa∥)−1 and using |∂i⟨Oa⟩s,θ − ∂i⟨Õa⟩s,θ| ≤ ε,∀a, i, we finally
have:

|∂i log πθ(a|s)− ∂i log π̃θ(a|s)| ≤
βε→0+

3βε+O(βε3) ∀i
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C.3 Role of trainable observables in softmax-PQC

In Sec. 5.1.1, we presented a general definition of the softmax-PQC observables
Oa =

∑
i wa,iHa,i in terms of an arbitrary weighted sum of Hermitian matrices Ha,i.

In this appendix, we clarify the role of such a decomposition.

C.3.1 Training the eigenbasis and the eigenvalues
Consider a projective measurement defined by an observable O =

∑
m αmPm, to be

performed on a quantum state of the form V (θ) |ψ⟩, where V (θ) denotes a (varia-
tional) unitary. Equivalently, one could also measure the observable V †(θ)OV (θ) on
the state |ψ⟩. Indeed, these two measurements have the same probabilities p(m) =
⟨ψ|V †(θ)PmV (θ) |ψ⟩ of measuring any outcome αm. Note also that the possible
outcomes αm (i.e., the eigenvalues of the observable O) remain unchanged.

From this observation, it is then clear that, by defining an observable O =∑
m αmPm using projections Pm on each computational basis state of the Hilbert

space H and arbitrary eigenvalues αm ∈ R, the addition of a universal variational uni-
tary V (θ) prior to the measurement results in a family of observables {V †(θ)OV (θ)}θ,α
that covers all possible Hermitian observables in H. Moreover, in this setting, the
parameters that define the eigenbasis of the observables V †(θ)OV (θ) (i.e., θ) are com-
pletely distinct from the parameters that define their eigenvalues (i.e., α). This is not
the case for observables that are expressed as linear combinations of non-commuting
matrices, for instance.

In our simulations, we consider restricted families of observables. In particular,
we take the Hermitian matrices Ha,i to be diagonal in the computational basis (e.g.,
tensor products of Pauli-Z matrices), which means they, as well as Oa, can be de-
composed in terms of projections on the computational basis states. However, the
resulting eigenvalues α that we obtain from this decomposition are in our case de-
generate, which means that the weights wa underparametrize the spectrums of the
observables Oa. Additionally, the last variational unitaries Vvar(ϕL) of our PQCs are
far from universal, which restricts the accessible eigenbasis of all variational observ-
ables V †

var(ϕL)OaVvar(ϕL).

C.3.2 The power of universal observables
Equivalently to the universal family of observables {V †(θ)OV (θ)}θ,α that we defined
in the previous section, one can construct a family of observables {Ow =

∑
i wiHi}w

that parametrizes all Hermitian matrices in H (e.g., by taking Hi to be single com-
ponents of a Hermitian matrix acting on H). Note that this family is covered by
our definition of softmax-PQC observables. Now, given access to data-dependent
quantum states |ψs⟩ that are expressive enough (e.g., a binary encoding of the input
s, or so-called universal quantum feature states [89]), one can approximate arbitrary
functions of s using expectations values of the form ⟨ψs|Ow |ψs⟩. This is because the
observables Ow can encode an arbitrary quantum computation. Hence, in the case
of our softmax-PQCs, one could use such observables and such encodings |ψs⟩ of
the input states s to approximate any policy π(a|s) (using an additional softmax),

163



without the need for any variational gates in the PQC generating |ψs⟩.
As we mentioned in the previous section, the observables that we consider in this

work are more restricted, and moreover, the way we encode the input states s leads to
non-trivial encodings |ψs,ϕ,λ⟩ in general. This implies that the variational parameters
ϕ,λ of our PQCs have in general a non-trivial role in learning good policies. One
can even show here that these degrees of freedom are sufficient to make such PQCs
universal function approximators [158].

C.4 Environments specifications and hyperpameters
In Table C.1, we present a specification of the environments we consider in our numer-
ical simulations. These are standard benchmarking environments from the OpenAI
Gym library [43], described in Ref. [151], PQC-generated environments that we de-
fine in Sec. 5.3.2, and the CognitiveRadio environment of Ref. [58] that we discuss in
Appendix C.5.

Environment
State

dimension
Number of
actions

Horizon Reward function Termination conditions

CartPole-v1 4 2 500 +1 until termination

� Pole angle or cart position
outside of bounds

� Reaching horizon

MountainCar-v0 2 3 200
−1 + height

until termination
Reaching goal or horizon

Acrobot-v1 6 3 500 −1 until termination Reaching goal or horizon

SL-PQC 2 2 20
+1 for good action

Reaching horizon−1 for wrong action

Cliffwalk-PQC 2 2 20
+1 for good action � Doing wrong action

−1 for wrong action � Reaching horizon

CognitiveRadio
2 to 5

2 to 5 100
+1 for good action

Reaching horizon
(discrete) −1 for wrong action

Table C.1: Environments specifications. The reward function of Mountaincar-
v0 has been modified compared to the standard specification of OpenAI Gym [43],
similarly to Ref. [71].

In Tables C.2 and C.3, we list the hyperparameters used to train our agents on
the various environments we consider. All agents use an ADAM optimizer. For the
plots presented in this manuscript, all quantum circuits were implemented using the
Cirq library [88] in Python and simulated using a Qulacs backend [184] in C++. For
the tutorial [161], the TensorFlow Quantum library [44] was used.
All simulations were run on the LEO cluster (more than 3000 CPUs) of the University
of Innsbruck, with an estimated total compute time (including hyperparametrization)
of 20 000 CPU-hours.
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C.5 Deferred plots and shape of policies PQCs vs.
DNNs

C.5.1 Influence of architectural choices on raw-PQC
In Fig. C.1, we run a similar experiment to that of Sec. 5.2.2 in the main text,
but on raw-PQC agents instead of softmax-PQC agents. We observe that both
increasing the depth of the PQCs and training the scaling parameters λ have a similar
positive influence on the learning performance, and even more pronounced than for
softmax-PQC agents. Nonetheless, we also observe that, even at greater depth, the
final performance, as well as the speed of convergence, of raw-PQC agents remain
limited compared to that of softmax-PQC agents.
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Figure C.1: Influence of the model architecture for raw-PQC agents. The
blue curves in each plot correspond to the learning curves from Fig. 5.2 and are taken
as a reference.
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Environment Model
Learning
rates

Discount
γ

Final
β

Batch
size

Depth Width

CartPole-v1
softmax-PQC [0.01, 0.1, 0.1] 1 1 10 {1, 5} 4

raw-PQC [0.01, 0., 0.1] 1 ✗ 10 {1, 5} 4

MountainCar-v0
softmax-PQC [0.01, 0.1, 0.01] 1 1.5 10 {4, 6} 2

raw-PQC [0.01, 0., 0.01] 1 ✗ 10 {4, 6} 2

Acrobot-v1
softmax-PQC [0.01, 0.1, 0.1] 1 1 10 {2, 5} 6

raw-PQC [0.01, 0., 0.1] 1 ✗ 10 {2, 5} 6

SL-PQC
softmax-PQC [0.01, 0.1, 0.01] 0.9 1 10 4 2

DNN 0.01 0.9 1 10 4 16

Cliffwalk-PQC
softmax-PQC [0.01, 0.1, 0.1] 0.9 1 10 4 2

DNN 0.01 0.9 1 10 4 16

CognitiveRadio softmax-PQC [0.01, 0.1, 0.1] 0.9 1 1 3 2 to 5

Table C.2: Hyperparmeters 1/2. For PQC policies, we choose 3 distinct learning
rates [αϕ, αw, αλ] for rotation angles ϕ, observable weights w and scaling parameters
λ, respectively. For softmax-PQCs, we take a linear annealing schedule for the
inverse temperature parameter β starting from 1 and ending up in the final β. The
batch size is counted in number of episodes used to evaluate the gradient of the value
function. Depth indicates the number of encoding layers Denc for PQC policies, or
the number of hidden layers for a DNN policy. Width corresponds to the number of
qubits n on which acts a PQC (also equal to the dimension d of the environment’s
state space), or the number of units per hidden layer for a DNN.
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Environment Model
Entang.
topology

Train
entang.

Observables
Number

of
params.

Baseline

CartPole-v1
softmax-PQC All-to-all Yes [wZ0Z1Z2Z3, (− . . .)] {31, 119} No

raw-PQC All-to-all Yes [Z0Z1Z2Z3, (− . . .)] {30, 118} No

MountainCar-v0
softmax-PQC One-to-one No [w0Z0, w1Z0Z1, w2Z1] {39, 55} Yes

raw-PQC One-to-one No [P0,1, P2, P3] {36, 52} Yes

Acrobot-v1
softmax-PQC Circular Yes

[
wi · (Z0, . . . , Z5)

T
]
1≤i≤3

{90, 180} Yes

raw-PQC Circular Yes [P0..21, P22..42, P43..63] {72, 162} Yes

SL-PQC
softmax-PQC One-to-one No [wZ0Z1, (− . . .)] 37 No

DNN ✗ ✗ ✗ 902 No

Cliffwalk-PQC
softmax-PQC One-to-one No [wZ0Z1, (− . . .)] 37 No

DNN ✗ ✗ ✗ 902 No

CognitiveRadio softmax-PQC Circular No [w0Z0, w1Z1, . . . , wnZn] 30 to 75 No

Table C.3: Hyperparmeters 2/2. We call entangling layer a layer of 2-qubit gates
in the PQC. Circular and all-to-all topologies of entangling layers are equivalent for
n = 2 qubits, so we call them one-to-one in that case. When trained, entangling
layers are composed of Rzz = e−iθ(Z⊗Z)/2 rotations, otherwise, they are composed of
Ctrl-Z gates. For policies with 2 actions, the same observable, up to a sign change,
is used for both actions. Zi refers to a Pauli-Z observable acting on qubit i, while
Pi..j indicates a projection on basis states i to j. In the experiments of Sec. 5.2.2,
when the weights of the softmax-PQC are kept fixed, the observables used for
MountainCar-v0 and Acrobot-v1 are [Z0, Z0Z1, Z1], and those used for CartPole-v1
are [Z0Z1Z2Z3,−Z0Z1Z2Z3]. The different number of parameters in a given row
correspond to the different depths in that same row in Table C.2.
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C.5.2 Shape of the policies learned by PQCs v.s. DNNs
In CartPole-v1 The results of the Sec. 5.2 demonstrate that our PQC policies can
be trained to good performance in benchmarking environments. To get a feel of the
solutions found by our agents, we compare the softmax-PQC policies learned on
CartPole to those learned by standard DNNs (with a softmax output layer), which
are known to easily learn close-to-optimal behavior on this task. More specifically,
we look at the functions learned by these two models, prior to the application of the
softmax normalization function (see Eq. (5.2)). Typical instances of these functions
are depicted in Figure C.3. We observe that, while DNNs learn simple, close to piece-
wise linear functions of their input state space, PQCs tend to naturally learn very
oscillating functions that are more prone to instability. While the results of Schuld
et al. [166] already indicated that these highly oscillating functions would be natural
for PQCs, it is noteworthy to see that these are also the type of functions naturally
learned in a direct-policy RL scenario. Moreover, our enhancements to standard
PQC classifiers show how to make these highly oscillating functions more amenable
to real-world tasks.

In PQC-generated environments Fig. C.4 shows the analog results to Fig.
5.4 in the main text but with two different random initializations of the environment-
generating PQC. Both confirm our observations. In Fig. C.5, we compare the policies
learned by prototypical softmax-PQC and DNN agents in these PQC-generated
environments. We observe that the typical policies learned by DNNs are rather simple,
with up to 2 (or 3) regions, delimited by close-to-linear boundaries, as opposed to
the policies learned by softmax-PQCs, which delimit red from blue regions with
wide margins. These observations highlight the inherent flexibility of softmax-PQC
policies and their suitability to these PQC-generated environments, as opposed to the
DNN (and raw-PQC) policies we consider.

C.5.3 Additional simulations on CognitiveRadio
In a related work on value-based RL with PQCs, the authors of Ref. [58] introduced
the CognitiveRadio environment as a benchmark to test their RL agents. In this
environment, the agent is presented at each interaction step with a binary vector
(0, 0, 0, 1, 0) of size n that describes the occupation of n radio channels. Given this
state, the agent must select one of the n channels as its communication channel, such
as to avoid collision with occupied channels (a ±1 reward reflects these collisions).
The authors of Ref. [58] consider a setting where, in any given state, only one channel
is occupied, and its assignment changes periodically over time steps, for an episode
length of 100 steps. While this constitutes a fairly simple task environment with
discrete state and action spaces, it allows to test the performance of PQC agents on
a family of environments described by their system size n and make claims on the
parameter complexity of the PQCs as a function of n. As to reproduce the findings of
Ref. [58] in a policy-gradient setting, we test the performance of our softmax-PQC
agents on this environment. We find numerically (see Fig. C.2) that these achieve a
very similar performance to the PQC agents of Ref. [58] on the same system sizes they
consider (n = 2 to 5), using PQCs with the same scaling of number of parameters,
i.e., O(n).
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Figure C.2: Performance of our softmax-PQC agents on the CognitiveRa-
dio environment proposed in Ref. [58]. Average performance of 20 agents for
system sizes (and number of qubits) n = 2 to 5.
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Figure C.3: Prototypical unnormalized policies learned by softmax-PQC
agents and DNN agents in CartPole. Due to the 4 dimensions of the state space
in CartPole, we represent the unnormalized policies learned by (a) softmax-PQC
agents and (b) DNN agents on 3 subspaces of the state space by fixing unrepresented
dimensions to 0 in each plot. To get the probability of the agent pushing the cart to
the left, one should apply the logistic function (i.e., 2-dimensional softmax) 1/(1 +
exp(−z)) to the z-axis values of each plot.
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Figure C.4: Different random initializations of PQC-generated environments
and their associated learning curves. See Fig. 5.4 for details. The additional
learning curves (20 agents per curve) of randomly-initialized raw-PQC agents high-
light the hardness of these environments for PQC policies drawn from the same family
as the environment-generating PQCs.
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Figure C.5: Prototypical policies learned by softmax-PQC agents and
DNN agents in PQC-generated environments. All policies are associated to
the labeling function of Fig. C.4.d. Policies (a) and (b) are learned in the SL-PQC
environment while policies (c) and (d) are learned in the Cliffwalk-PQC environment.
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C.6 Supervised learning task of Liu et al.

Define p a large prime number, n = ⌈log2(p − 1)⌉, and g a generator of Z∗
p =

{1, 2, . . . , p − 1} (i.e., a g ∈ Z∗
p such that {gy, y ∈ Zp−1} = Z∗

p). The DLP con-
sists in computing logg x on input x ∈ Z∗

p. Based on DLP, Liu et al. [128] define
a concept class C = {fs}s∈Zp−1

over the input space X = Z∗
p, where each labeling

function of this concept class is defined as follows:

fs(x) =

{
+1, if logg x ∈ [s, s+ p−3

2 ],

−1, otherwise.
(C.6)

Each function fs : Z∗
p → {−1, 1} hence labels half the elements in Z∗

p with a label
+1 and the other half with a label −1. We refer to Figure 1 in Ref. [128] for a good
visualization of all these objects.
The performance of a classifier f is measured in terms of its testing accuracy

Accf (fs) = Prx∼X [f(x) = fs(x)].

C.7 Proof of Theorem 20
In the following, we provide constructions of a) fully random, b) partially random
and c) fully deterministic environments satisfying the properties of Theorem 20. We
consider the three families of environments separately and provide individual lemmas
specifying their exact separation properties.

Fully random: the SL-DLP environment. This result is near-trivially obtained
by noting that any classification problem can be easily mapped to a (degenerate) RL
problem. For this, the environment will be an MDP defined as follows: its state
space is the input space of the classification problem, its action space comprises all
possible labels, rewards are trivially +1 for assigning a correct label to an input
state and −1 otherwise, and the initial and next-state transition probabilities are
state-independent and equal to the input distribution of the classification task. The
optimal policy of this MDP is clearly the optimal classifier of the corresponding SL
task. Consider now the classification task of Liu et al., defined in detail in Appendix
C.6: the input distribution is taken to be uniform on the state space, i.e., P (st) = 1

|S| ,
and the performance of a classifier f w.r.t. a labeling (or ground truth) function f∗

is measured in terms of a testing accuracy

Accf (f∗) =
1

|S|
∑

s

Pr[f(s) = f∗(s)]. (C.7)
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For the MDP associated to this classification task and length-1 episodes of interaction,
the value function of any policy π(a|s) is given by

Vπ(s0) =
1

|S|
∑

s0

(π(f∗(s0)|s0)− π(−f∗(s0)|s0))

=
1

|S|
∑

s0

2π(f∗(s0)|s0)− 1

= 2Accπ(f∗)− 1,

which is trivially related to the testing accuracy of this policy on the classification
task. Note that we also have Vrand(s0) = 0 and Vopt(s0) = 1.
Since these observations hold irrespectively of the labeling function f∗, we can show
the following result:

Lemma 45 (Quantum advantage in SL-DLP). There exists a uniform family of SL-
DLP MDPs, each derived from a labeling function f∗ of the DLP concept class C (see
Appendix C.6), for which classical hardness and quantum learnability holds. More
specifically, the performance of any classical learner is upper bounded by 1/poly(n),
while that of a class of quantum agents is lower bounded by 0.98 with probability above
2/3 (over the randomness of their interaction with the environment and noise in their
implementation).

Proof. Classical hardness is trivially obtained by contraposition: assuming no classical
polynomial-time algorithm can solve DLP, then using Theorem 1 of Liu et al., any
classical policy would have testing accuracy Accπ(f∗) ≤ 1/2 + 1/poly(n), and hence
its value function would be Vπ(s0) ≤ 1/poly(n).

For quantum learnability, we define an agent that first collects poly(n) random
length-1 interactions (i.e., a random state s0 and its associated reward for an action
+1, from which the label f∗(s0) can be inferred), and use Theorem 2 of Liu et al.
to train a classifier that has test accuracy at least 0.99 with probability at least 2/3
(this process can be repeated O

(
log
(
δ−1
))

times to increase this probability to 1− δ
via majority voting). This classifier has a value function Vπ(s0) ≥ 0.98.

Note that this proof trivially generalizes to episodes of interaction with length
greater than 1, when preserving the absence of temporal correlation in the states
experienced by the agents. For episodes of length H, the only change is that the
value function of any policy, and hence the bounds we achieve, get multiplied by a
factor of 1−γH

1−γ for a discount factor γ < 1 and by a factor H for γ = 1.

Partially random: the Cliffwalk-DLP environment. One major criticism to
the result of Lemma 45 is that it applies to a very degenerate, fully random RL
environment. In the following, we show that similar results can be obtained in envi-
ronments based on the same classification problem, but while imposing more temporal
structure and less randomness (such constructions were introduced in Ref. [72], but
for the purpose of query separations between RL and QRL). For instance, one can
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consider cliffwalk-type environments, inspired by the textbook “cliff walking” environ-
ment of Sutton & Barto [183]. This class of environments differs from the previous
SL-DLP environments in its state and reward structure: in any episode of interac-
tion, experienced states follow a fixed “path” structure (that of the cliff) for correct
actions, and a wrong action yields to immediate “death” (negative reward and episode
termination). We slightly modify this environment to a “slippery scenario” in which,
with a δ probability, any action may lead to a uniformly random position on the cliff.
This additional randomness allows us to prove the following separation:

Lemma 46 (Quantum advantage in Cliffwalk-DLP). There exists a uniform family
of Cliffwalk-DLP MDPs with arbitrary slipping probability δ ∈ [0.86, 1] and discount
factor γ ∈ [0, 0.9], each derived from a labeling function f∗ of the DLP concept class
C, for which classical hardness and quantum learnability holds. More specifically, the
performance of any classical learner is upper bounded by Vrand(s0) + 0.1, while that
of a class of quantum agents is lower bounded by Vopt(s0)− 0.1 with probability above
2/3 (over the randomness of their interaction with the environment and noise in their
implementation). Since Vrand(s0) ≤ − 1

2 and Vopt = 0, we always have a classical-
quantum separation.

The proof of this lemma is deferred to Appendix C.8 for clarity.

Fully deterministic: the Deterministic-DLP environment. The simplest ex-
ample of a deterministic RL environment where separation can be proven is a partially
observable MDP (POMDP) defined as follows: it constitutes a 1-D chain of states of
length k+2, where k is poly(n). We refer to the first k states as “training states", and
we call the last two states “test” and “limbo” states, respectively. The training states
are of the form (x, fs(x)), i.e., a point uniformly sampled and its label. The actions
are +1,−1, and both lead to the same subsequent state on the chain (since the same
(x, fs(x)) can appear twice in the chain, this is the reason why the environment is
partially observable), and no reward is given for the first k states. In the test state,
the agent is only given a point x with no label. A correct action provides a reward
of 1 and leads to the beginning of the chain, while an incorrect action leads to the
limbo state, which self-loops for both actions and has no rewards. In other words,
after poly-many examples where the agent can learn the correct labeling, it is tested
on one state. Failure means it will never obtain a reward.

For each concept fs, we define exponentially many environments obtained by
random choices of the states appearing in the chain. In a given instance, call T =
(x0, . . . , xk−1) the training states of that instance, xk its testing state and l its limbo
state. The interaction of an agent with the environment is divided into episodes of
length k + 1, but the environment keeps memory of its state between episodes. This
means that, while the first episode starts in x0, depending on the performance of the
agent, later episodes start either in x0 or in l. For a policy π, we define the value
Vπ(s0) as the expected reward1 of this policy in any episode of length k + 1 with an
initial state s0 ∈ {x0, l}. Since the testing state xk is the only state to be rewarded,

1Note that we assume here a discount factor γ = 1, but our results would also hold for an arbitrary
γ > 0, if we scale the reward of the testing state to γ−k.
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we can already note that Vπ(x0) = π(f∗(xk)|T, xk), that is, the probability of the
policy correctly labeling the testing state xk after having experienced the training
states T . Also, since s0 ∈ {x0, l} and Vπ(l) = 0, we have Vπ(x0) ≥ Vπ(s0).

With this construction, we obtain the following result:

Lemma 47 (Quantum advantage in Deterministic-DLP). There exists a uniform
family of Deterministic-DLP POMDPs (exponentially many instances for a given
concept fs of the DLP classification problem) where:
1) (classical hardness) if there exists a classical learning agent which, when placed in
a randomly chosen instance of the environment, has value Vc(s0) ≥ 1/2 + 1/poly(n)
(that is, 1/poly(n) better than a random agent), with probability at least 0.845 over
the choice of environment and the randomness of its learning algorithm, then there
exists an efficient classical algorithm to solve DLP,
2) (quantum learnability) there exists a class of quantum agents that attains a value
Vq(s0) = 1 (that is, the optimal value) with probability at least 0.98 over the choice of
environment and randomness of the learning algorithm.

The proof of this lemma is deferred to Appendix C.9 for clarity.
By combining our three lemmas, and taking the weakest separation claim for the

cases ii) and iii), we get Theorem 20. For the interested reader, we list the following
remarks, relating to the proofs of these lemmas:

• SL-DLP and Deterministic-DLP are the two closest environments to the DLP clas-
sification task of Liu et al. While the value function in SL-DLP is trivially equiv-
alent to the accuracy of the classification problem, we find the value function in
Deterministic-DLP to be weaker than this accuracy. Namely, a high accuracy triv-
ially leads to a high value while a high (or non-trivial) value does not necessarily
lead to a high (or non-trivial) accuracy (in all these cases, the high probability over
the randomness of choosing the environments and of the learning algorithms is im-
plied). This explains why the classical hardness statement for Deterministic-DLP
is weaker than in SL-DLP.

• In Cliffwalk-DLP, it is less straightforward to relate the testing accuracy of a policy
to its performance on the deterministic parts of the environment, which explains
why we trivially upper bound this performance by 0 on these parts. We believe
however that these deterministic parts will actually make the learning task much
harder, since they strongly restrict the part of the state space the agents can see.
This claim is supported by our numerical experiments in Sec. 5.3.2. Also, since we
showed classical hardness for fully deterministic environments, it would be simple
to construct a variant of Cliffwalk-DLP where these deterministic parts would be
provably hard as well.

C.8 Proof of Lemma 46
Consider a slippery cliffwalk environment defined by a labeling function f∗ in the
concept class C of Liu et al. This cliffwalk has p− 1 states ordered, w.l.o.g., in their
natural order, and correct actions (the ones that do not lead to immediate “death")
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f∗(i) for each state i ∈ Z∗
p. For simplicity of our proofs, we also consider circular

boundary conditions (i.e, doing the correct action on the state p− 1 of the cliff leads
to the state 1), random slipping at each interaction step to a uniformly sampled state
on the cliff with probability δ > 0, an initialization of each episode in a uniformly
sampled state i ∈ Z∗

p, and a 0 (−1) reward for doing the correct (wrong) action in
any given state.

C.8.1 Upper bound on the value function
The value function of any policy π which has probability π(i) (we abbreviate π(f∗(i)|i)
to π(i)) of doing the correct action in state i ∈ Z∗

p is given by:

Vπ(i) = π(i)γ


(1− δ)Vπ(i+ 1) + δ

1

p− 1

p−1∑

j=1

Vπ(j)


− (1− π(i)) (C.8)

Since this environment only has negative rewards, we have that Vπ(i) ≤ 0 for any
state i and policy π, which allows us to write the following inequality:

Vπ(i) ≤ π(i)γ


δ 1

p− 1

p−1∑

j=1

Vπ(j)


− (1− π(i))

We use this inequality to bound the following term:

1

p− 1

p−1∑

i=1

Vπ(i) ≤
1

p− 1

p−1∑

i=1


π(i) γδ

p− 1

p−1∑

j=1

Vπ(j)− (1− π(i))




=

(
1

p− 1

p−1∑

i=1

π(i)

)
 γδ

p− 1

p−1∑

j=1

Vπ(j) + 1


− 1

We note that the first factor is exactly the accuracy of the policy π on the classification
task of Liu et al.:

Accπ(f∗) =
1

p− 1

p−1∑

i=1

π(i).

We hence have:

1

p− 1

p−1∑

i=1

Vπ(i) ≤ Accπ(f∗)


γδ 1

p− 1

p−1∑

j=1

Vπ(j) + 1


− 1

which is equivalent to:

1

p− 1

p−1∑

i=1

Vπ(i) ≤
Accπ(f∗)− 1

1−Accπ(f∗)γδ
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when Accπ(f∗)γδ < 1.
We now note that this average value function is exactly the value function evaluated
on the initial state s0 of the agent, since this state is uniformly sampled from Z∗

p for
every episode. Hence,

Vπ(s0) ≤
Accπ(f∗)− 1

1−Accπ(f∗)γδ
(C.9)

C.8.2 Lower bound on the value function
Again, by noting in Eq. (C.8) that we have Vπ(i) ≤ 0 and π(i) ≤ 1 for any policy π
and state i ∈ Z∗

p, we have:

Vπ(i) ≥ γ


(1− δ)Vπ(i+ 1) +

δ

p− 1

p−1∑

j=1

Vπ(j)


− (1− π(i))

We use this inequality to bound the value function at the initial state s0:

Vπ(s0) =
1

p− 1

p−1∑

i=1

Vπ(i)

≥ γ


1− δ
p− 1

p−1∑

i=1

Vπ(i+ 1) +
δ

p− 1

p−1∑

j=1

Vπ(j)


+

1

p− 1

p−1∑

i=1

π(i)− 1

= γ ((1− δ)Vπ(s0) + δVπ(s0)) + Accπ(f∗)− 1

= γVπ(s0) + Accπ(f∗)− 1

by using the circular boundary conditions of the cliffwalk in the third line.
This inequality is equivalent to:

Vπ(s0) ≥
Accπ(f∗)− 1

1− γ (C.10)

when γ < 1.

C.8.3 Bounds on classical- vs. and quantum- learnability
We use the bounds derived in the two previous sections to prove classical hardness
and quantum learnability of this task environment, as stated in Lemma 46.

For this, we start by noting the following expression for the value function of a
random policy (one that does random actions in all states):

Vrand(s0) =
γ

2


1− δ
p− 1

p−1∑

i=1

Vrand(i+ 1) +
δ

p− 1

p−1∑

j=1

Vrand(j)


− 1

2

=
γ

2
Vrand(s0)−

1

2
= − 1

2− γ
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again due to the circular boundary conditions of the cliffwalk and the resulting absence
of termination conditions outside of “death".
As for the value function of the optimal policy, this is trivially Vopt = 0.

Proof of classical hardness

For any policy π, we define the function g(x, δ, γ) = V (x, δ, γ) − Vrand(γ), where we
adopt the short-hand notation x = Accπ(f∗) and call V the upper bound on the value
function Vπ(s0) of π. The expression of g(x, δ, γ) (for (x, δ, γ) ̸= (1, 1, 1)) is given by:

g(x, δ, γ) =
x− 1

1− δγx +
1

2− γ (C.11)

To prove classical hardness, it is sufficient to show that x ≤ 0.51 implies g(x, δ, γ) ≤ 0.1
for δ ∈ [δ0, 1], γ ∈ [0, γ1] and a {δ0, γ1} pair of our choosing. To see this, notice
that the contraposition gives x = Accπ(f∗) > 0.51 which is sufficient to construct an
efficient algorithm that solves DLP. To achieve this result, we show the three following
inequalities, ∀ x ≤ 0.51 and ∀ (δ, γ) ∈ [δ0, 1]× [0, γ1]:

g(x, δ, γ)
(i)

≤ g(0.51, δ, γ)
(ii)

≤ g(0.51, δ0, γ)
(iii)

≤ g(0.51, δ0, γ1)

where δ0 and γ1 are chosen such that g(0.51, δ0, γ1) ≤ 0.1.

Proof of (i). We look at the derivative of g w.r.t. x:

∂g(x, δ, γ)

∂x
=

1− δγ
(1− δγx)2 ≥ 0 ∀(x, δ, γ) ∈ [0, 1]3\(1, 1, 1)

and hence g is an increasing function of x, which gives our inequality.

Proof of (ii). We look at the derivative of g w.r.t. δ:

∂g(x, δ, γ)

∂δ
=

γ(x− 1)x

(1− δγx)2 ≤ 0 ∀(x, δ, γ) ∈ [0, 1]3\(1, 1, 1)

and hence g is a decreasing function of δ, which gives our inequality.

Proof of (iii). We look at the derivative of g w.r.t. γ:

∂g(x, δ, γ)

∂γ
=

δ(x− 1)x

(1− δγx)2 +
1

(2− γ)2 ∀(x, δ, γ) ∈ [0, 1]3\(1, 1, 1)

We have:

∂g(x, δ, γ)

∂γ
≥ 0⇔

(
(δx)2 + δ(x2 − x)

)
γ2 − 2δ(2x2 − x)γ + 4δ(x2 − x) + 1 ≥ 0
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By setting x = 0.51 and δ = 0.86, we find

∂g(0.51, 0.86, γ)

∂γ
≥ 0 ∀γ ∈ [0, 1]

since the roots of the second-degree polynomial above are approximately {−2.91, 2.14}
and we have (δx)2 + δ(x− 1)x ≈ −0.0225 < 0.
Hence g(0.51, δ0, γ) is an increasing function of γ, which gives our inequality.

Given that g(0.51, 0.86, 0.9) ≈ 0.0995 < 0.1, we then get our desired result for
δ0 = 0.86 and γ1 = 0.9. Noting that Vπ(s0) − Vrand(γ) ≤ g(x, δ, γ) ≤ 0.1 from Eq.
(C.9), we hence have classical hardness ∀ (δ, γ) ∈ [δ0, 1]× [0, γ1].

Proof of quantum learnability

Proving quantum learnability is more trivial, since, for Accπ(f∗) ≥ 0.99 and γ ≤ 0.9,
we directly have, using Eq. (C.10):

Vπ(s0) ≥ −0.1 = Vopt − 0.1

To conclude this proof, we still need to show that we can obtain in this environment a
policy π such that Accπ(f∗) ≥ 0.99 with high probability. For that, we use agents that
first collect poly(n) distinct samples (states s and their inferred labels f∗(s)) from the
environment (distinct in order to avoid biasing the distribution of the dataset with
the cliffwalk temporal structure). This can be done efficiently in poly(n) interactions
with the environment, since each episode is initialized in a random state s0 ∈ Z∗

p. We
then use the learning algorithm of Liu et al. to train a classifier π with the desired
accuracy, with high probability.

C.9 Proof of Lemma 47

C.9.1 Proof of classical hardness
Suppose that a polynomial-time classical agent achieves a value Vc(s0) ≥ 1

2 + 1
poly(n)

with probability (1 − δ) over the choice of environment and the randomness of its
learning algorithm. We call “success" the event Vc(s0) ≥ 1

2 + 1
poly(n) and Sδ the

subset of the instances S = {T, xk} for which, theoretically, a run of the agent would
“succeed" (this is hence a set that depends on the randomness of the agent).

Note that, on every instance in Sδ, π(f∗(xk)|T, xk) = Vc(x0) ≥ Vc(s0) ≥ 1
2 +

1
poly(n) . Since this probability is bounded away from 1/2 by an inverse polynomial,
this means that we can “boost" it to a larger probability (1 − ε). More specifically,
out of the policy π obtained after interacting for k steps with the environment, we
define a classifier fc acting on xk such that we sample O

(
log
(
ε−1
))

-many times from
π(a|T, xk) and label xk by majority vote. For the instances in Sδ, the probability of
correctly labeling xk is Pr [fc(xk) = f∗(xk)] ≥ 1− ε.

Define P (T ) = Pr[T = T ] and P (xk) = Pr[xk = xk] the probabilities of sampling
certain training states T and a testing state xk, when choosing an instance of the
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environment. We now look at the following quantity:

EP (T ) [Accfc(T )] =
∑

T

P (T )
∑

xk

P (xk)Pr [fc(xk) = f∗(xk)|T, xk]

=
∑

T,xk

P (T, xk)Pr [fc(xk) = f∗(xk)|T, xk]

≥
∑

T,xk

P (T, xk)Pr
[
success|T, xk

]

× Pr
[
fc(xk) = f∗(xk)|T, xk, success

]

≥ (1− δ)(1− ε)

since Pr [fc(xk) = f∗(xk)|T, xk] ≥ 1− ε for instances in Sδ and by definition we have
∑

T,xk

P (T, xk)Pr
[
success|T, xk

]
≥ 1− δ.

In the following, we set 1− ε = 0.999 and 1− δ ≥ 0.845 (the reason for this becomes
apparent below), such that:

EP (T ) [Accfc(T )] ≥ 0.844155 >
5

6
+

1

96
(C.12)

Now, consider the following learning algorithm: given a training set T , construct
a Deterministic-DLP environment that uses this T and a randomly chosen xk, and
define the classifier fc that boosts the π(a|T, xk) obtained by running our classical
agent on this environment (as explained above). We want to show that fc has accuracy
Accfc(T ) ≥ 1

2 + 1
poly(n) with probability at least 2/3 over the choice of T and the

randomness of its construction, which is sufficient to solve DLP classically. For that,
we show a stronger statement. Call Tsucc the subset of all instances of training states
T = {T} for which Accfc(T ) ≥ 1

2 + 1
poly(n) . We prove by contradiction that |Tsucc| ≥

2|T |
3 :

Assume |Tsucc| < 2|T |
3 , then

EP (T ) [Accfc(T )] =
∑

T

P (T )Accfc(T )

=
1

|T |


 ∑

T∈Tsucc

Accfc(T ) +
∑

T /∈Tsucc

Accfc(T )




<
|Tsucc|
|T | × 1 +

|T | − |Tsucc|
|T |

(
1

2
+

1

poly(n)

)

<
5

6
+

1

3poly(n)
< 0.844155

for large enough n, in contradiction with Eq. (C.12).
Hence, with probability at least 2/3 over the choice of training states and the ran-
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domness of the learning algorithm, our constructed classifier has accuracy Accfc(T ) ≥
1
2 +

1
poly(n) . By using Theorem 8, Remark 1 of Liu et al., this is sufficient to construct

an efficient classical algorithm that solves DLP.

C.9.2 Proof of quantum learnability
Using the learning algorithm of Liu et al., we can construct a quantum classifier that
achieves accuracy Accq(T ) ≥ 0.99 with probability at least 2/3 over the randomness
of the learning algorithm and the choice of training states T , of length |T | = poly(n).
Now define instead training states T of length |T | =Mpoly(n), forM = O

(
log
(
δ′−1

))

(hence |T | is still polynomial in n), and use each of the M segments of T to train
M independent quantum classifiers. Define fq as a classifier that labels xk using a
majority vote on the labels assigned by each of these classifiers. This constructed
classifier has accuracy Accfq (T ) ≥ 0.99 with now probability 1− δ′ over the choice of
training states T and the randomness of the learning algorithm.

We then note that, by calling “success" the event Accfq (T ) ≥ 0.99, we have:
∑

T,xk

P (T, xk)Pr
[
Vq(x0) = 1|T, xk

]

≥
∑

T

P (T )
∑

xk

P (xk)Pr
[
success|T

]

× Pr
[
Vq(x0) = 1|T, xk, success

]

=
∑

T

P (T )Pr
[
success|T

]∑

xk

P (xk)

× Pr
[
fq(xk) = f∗(xk)|T, xk, success

]

=
∑

T

P (T )Pr
[
success|T

]
Accfq (T )

≥ (1− δ′)× 0.99

which means that our constructed agent achieves a value Vq(x0) = 1 (which also im-
plies Vq(s0) = 1) with probability at least (1−δ′)×0.99 over the choice of environment
and the randomness of the learning algorithm. By setting (1 − δ′) = 0.98/0.99, we
get our statement.

C.10 Construction of PQC agent for the DLP envi-
ronments

In the two following appendices, we construct a PQC classifier that can achieve close-
to-optimal accuracy in the classification task of Liu et al. [128] (see Appendix C.6),
and can hence also be used as a learning model in the DLP environments defined in
Sec. 5.3.1.
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C.10.1 Implicit vs. explicit quantum SVMs
To understand the distinction between the quantum learners of Liu et al. and the
PQC policies we are constructing here, we remind the reader of the two models for
quantum SVMs defined in Ref. [169]: the explicit and the implicit model. Both models
share a feature-encoding unitary U(x) that encodes data points x into feature state
|ϕ(x)⟩ = U(x) |0⊗n⟩.
In the implicit model, one first evaluates the kernel values

K(xi, xj) = |⟨ϕ(xi)⟩ϕ(xj)|2 (C.13)

for the feature states associated to every pair of data points {xi, xj} in the dataset,
then uses the resulting kernel matrix in a classical SVM algorithm. This algorithm
returns a hyperplane classifier in feature space, defined by its normal vector ⟨w| =∑

i αi ⟨ϕ(xi)| and bias b, such that the sign of |⟨w | ϕ(x)⟩|2 + b gives the label of x.
In the explicit model, the classifier is instead obtained by training a parametrized
|wθ⟩. Effectively, this classifier is implemented by applying a variational unitary
V (θ) on the feature states |ϕ(x)⟩ and measuring the resulting quantum states using
a fixed observable, with expectation value |⟨wθ | ϕ(x)⟩|2.

In the following sections, we describe how the implicit quantum SVMs of Liu et
al. can be transformed into explicit models while guaranteeing that they can still
represent all possible optimal policies in the DLP environments. And in Appendix
C.11, we show that, even under similar noise considerations as Liu et al., these optimal
policies can also be found using poly(n) random data samples.

C.10.2 Description of the PQC classifier
As we just described, our classifier belongs to a family of so-called explicit quantum
SVMs. It is hence described by a PQC with two parts: a feature-encoding unitary
U(x), which creates features |ϕ(x)⟩ = U(x) |0⊗n⟩ when applied to an all-0 state,
followed by a variational circuit V (θ) parametrized by a vector θ. The resulting
quantum state is then used to measure the expectation value ⟨O⟩x,θ of an observable
O, to be defined. We rely on the same feature-encoding unitary U(x) as the one used
by Liu et al., i.e., the unitary that creates feature states of the form

|ϕ(x)⟩ = 1√
2k

2k−1∑

i=0

|x · gi⟩ (C.14)

for k = n − t log(n), where t is a constant defined later, under noise considerations.
This feature state can be seen as the uniform superposition of the image (under
exponentiation s′ 7→ gs

′
) of an interval of integers [logg(x), logg(x) + 2k − 1] in log-

space. Note that U(x) can be implemented in Õ(n3) operations [128].
By noting that every labeling functions fs ∈ C to be learned (see Eq. (C.6)) is de-

limiting two equally-sized intervals of log
(
Z∗
p

)
, we can restrict the decision boundaries

to be learned by our classifier to be half-space dividing hyperplanes in log-space. In
feature space, this is equivalent to learning separating hyperplanes that are normal
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to quantum states of the form:

|ϕs′⟩ =
1√

(p− 1)/2

(p−3)/2∑

i=0

|gs′+i⟩ . (C.15)

Noticeably, for input points x such that logg(x) is away from some delimiting regions
around s and s + p−3

2 , we can notice that the inner product |⟨ϕ(x)⟩ϕs|2 is either
∆ = 2k+1

p−1 or 0, whenever x is labeled +1 or −1 by fs, respectively. This hence leads
to a natural classifier to be built, assuming overlaps of the form |⟨ϕ(x)⟩ϕs′ |2 can be
measured:

hs′(x) =

{
1, if |⟨ϕ(x)⟩ϕs′ |2/∆ ≥ 1/2,

−1, otherwise
(C.16)

which has an (ideal) accuracy 1−∆ whenever s′ = s.
To complete the construction of our PQC classifier, we should hence design the

composition of its variational part V (θ) and measurement O such that they result in
expectation values of the form ⟨O⟩x,θ = |⟨ϕ(x)⟩ϕs′ |2. To do this, we note that, for
|ϕs′⟩ = V̂ (s′) |0⟩, the following equality holds:

|⟨ϕ(x)⟩ϕs′ |2 =
∣∣∣⟨0⊗n| V̂ (s′)†U(xi) |0⊗n⟩

∣∣∣
2

= Tr
[
|0⊗n⟩ ⟨0⊗n| ρ(x, s′)

]

where ρ(x, s′) = |ψ(x, s′)⟩ ⟨ψ(x, s′)| is the density matrix of the quantum state |ψ(x, s′)⟩ =
V̂ (s′)†U(xi) |0⊗n⟩. Hence, an obvious choice of variational circuit is V (θ) = V̂ (s′),
combined with a measurement operator O = |0⊗n⟩ ⟨0⊗n|. Due to the similar nature
of |ϕ′s⟩ and |ϕ(x)⟩, it is possible to use an implementation for V̂ (s′) that is similar to
that of U(xi) (take xi = gs

′
and k ≈ n/2).2 We also note that, for points x such that

logg(x) is (p−1)∆/2 away from the boundary regions of hs′ , the non-zero inner prod-
ucts |⟨ϕ(x)⟩ϕs′ |2 are equal to ∆ = O(n−t). These can hence be estimated efficiently
to additive error, which allows to efficiently implement our classifier hs′ (Eq. (C.16)).

C.10.3 Noisy classifier
In practice, there will be noise associated with the estimation of the inner products
|⟨ϕ(x)⟩ϕs′ |2, namely due to the additive errors associated to sampling. Similarly
to Liu et al., we model noise by introducing a random variable eis′ for each data
point xi and variational parameter gs

′
, such that the estimated inner product is

2Note that we write V̂ (s′) and Us′ to be parametrized by s′ but the true variational parameter
here is gs

′
, since we work in input space and not in log-space.

183



|⟨ϕ(xi)⟩ϕs′ |2 + eis′ . This random variable satisfies the following equations:




eis′ ∈ [−∆,∆]

E[eis′ ] = 0

Var[eis′ ] ≤ 1/R

where R is the number of circuit evaluations used to estimate the inner product. We
hence end up with a noisy classifier:

h̃s′(xi) =

{
1, if

(
|⟨ϕ(xi)⟩ϕs′ |2 + eis′

)
/∆ ≥ 1/2,

−1, otherwise

The noise has the effect that some points which would be correctly classified by
the noiseless classifier have now a non zero probability of being misclassified. To limit
the overall decrease in classification accuracy, we focus on limiting the probability
of misclassifying points xi such that logg(xi) is (p− 1)∆/2 away from the boundary
points s′ and s′ + p−3

2 of gs′ . We call Is′ the subset of Z∗
p comprised of these points.

For points in Is′ , the probability of misclassification is that of having |eis′ | ≥ ∆/2.
We can use Chebyshev’s inequality to bound this probability:

Pr
(
|eis′ | ≥

∆

2

)
≤ 4

∆2R
(C.17)

since E[eis′ ] = 0 and Var[eis′ ] ≤ 1/R.

C.11 Proof of trainability of PQC agent in the SL-
DLP

In this Appendix, we describe an optimization algorithm to train the variational pa-
rameter gs

′
of the PQC classifier we defined in Appendix C.10. This task is non-trivial

for three reasons: 1) even by restricting the separating hyperplanes accessible by our
classifier, there are still p−1 candidates, which makes an exhaustive search for the op-
timal one intractable; 2) noise in the evaluation of the classifier can potentially heavily
perturb its loss landscape, which can shift its global minimum and 3) decrease the
testing accuracy of the noisy classifier. Nonetheless, we show that all these consid-
erations can be taken into account for a simple optimization algorithm, such that it
returns a classifier with close-to-optimal accuracy with high probability of success.
More precisely, we show the following Theorem:

Theorem 48. For a training set of size nc such that

c ≥ max

{
logn(8/δ), logn

(
log(δ/2)

log(1− 2n−t)

)}

for t ≥ max {3 logn(8/δ), logn(16/ε)} in the definition of ∆, and a number of cir-
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cuit evaluations per inner product R ≥ max
{

4n2(t+c)

δ , 128ε3

}
, then our optimization

algorithm returns a noisy classifier h̃s′ with testing accuracy Acch̃s′
(fs) on the DLP

classification task of Liu et al. such that

Pr
(
Acch̃s′

(fs) ≥ 1− ε
)
≥ 1− δ.

The proof of this Theorem is detailed below.
Given a training set X ⊂ X polynomially large in n, i.e., |X| = nc, define the

training loss:

L(s′) = 1

2|X|
∑

x∈X

|hs′(x)− fs(x)|

and its noisy analog:

L̃(s′) = 1

2|X|
∑

x∈X

∣∣∣h̃s′(x)− fs(x)
∣∣∣

Our optimization algorithm goes as follows: using the noisy classifier h̃s′ , evaluate
the loss function L̃

(
logg(x)

)
for each variational parameter gs

′
= x ∈ X, then set

gs
′
= argminx∈X L̃(logg(x)).

This algorithm is efficient in the size of the training set, since it only requires |X|2
evaluations of h̃s′ .
To prove Theorem 48, we show first that we can enforce argminx∈X L̃(logg(x)) =
argminx∈XL(logg(x)) with high probability (Lemma 49), and second, that this algo-
rithm also leads to s′ close to the optimal s in log-space with high probability (Lemma
50).

Lemma 49. For a training set of size nc such that c ≥ logn(8/δ), a t ≥ 3c in the
definition of ∆, and a number of circuit evaluations per inner product R ≥ 4n2(t+c)

δ ,
we have

Pr
(

argmin
x∈X

L̃(logg(x)) = argmin
x∈X

L(logg(x))
)
≥ 1− δ

2

Proof. In order for the minima of the two losses to be obtained for the same x ∈ X,
it is sufficient to ensure that the classifiers hlogg(xi) and h̃logg(xi) agree on all points
xj , for all (xi, xj) ∈ X. This can be enforced by having:



⋂

i,j
i̸=j

xi ∈ Ilogg(xj)


 ∩


⋂

i,s′

|ei,s′ | ≤
∆

2




that is, having for all classifiers hlogg(xj) that all points xi ∈ X, xi ̸= xj , are away
from its boundary regions in log-space, and that the labels assigned to these points
are all the same under noise.
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We bound the probability of the negation of this event:

Pr



⋃

i,j
i̸=j

xi /∈ Ilogg(xj) ∪
⋃

i,s′

|ei,s′ | ≥
∆

2


 ≤ Pr



⋃

i,j
i̸=j

xi /∈ Ilogg(xj)




+ Pr


⋃

i,s′

|ei,s′ | ≥
∆

2




using the union bound.
We start by bounding the first probability, again using the union bound:

Pr



⋃

i,j
i̸=j

xi /∈ Ilogg(xj)


 ≤

∑

i,j
i̸=j

Pr
(
xi /∈ Ilogg(xj)

)

=
∑

i,j
i̸=j

∆

2
≤ n2c∆

2

By setting t ≥ 3c, we have ∆ ≤ 4n−t ≤ 4n−3c, which allows us to bound this first
probability by δ/4 when c ≥ logn(8/δ).
As for the second probability above, we have

Pr


⋃

i,s′

|ei,s′ | ≥
∆

2


 ≤

∑

i,s′

Pr
(
|ei,s′ | ≥

∆

2

)

≤ 4n2c

∆2R

using the union bound and Eq. (C.17). By setting R ≥ 4n2(t+c)

δ ≥ 16n2c

∆2δ (since
∆ ≥ 2n−t), we can bound this second probability by δ/4 as well, which gives:

Pr
(

argmin
x∈X

L̃(logg(x)) = argmin
x∈X

L(logg(x))
)
≥ 1− Pr

(⋃

i,j
i̸=j

xi /∈ Ilogg(xj)

∪
⋃

i,s′

|ei,s′ | ≥
∆

2

)

≥ 1− δ/2

Lemma 50. For a training set of size nc such that

c ≥ logn

(
log(δ/2)

log(1− 2ε)

)
,
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then s′ = logg
(
argminx∈XL(logg(x))

)
is within ε distance of the optimal s with prob-

ability:

Pr
( |s′ − s|
p− 1

≤ ε
)
≥ 1− δ

2

Proof. We achieve this result by proving:

Pr
( |s′ − s|
p− 1

≥ ε
)
≤ δ

2

This probability is precisely the probability that no logg(x) ∈ logg(X) is within ε
distance of s, i.e.,

Pr

( ⋂

x∈X

log(x) /∈ [s− ε(p− 1), s+ ε(p− 1)]

)

As the elements of the training set are all i.i.d., we have that this probability is equal
to

Pr (log(x) /∈ [s− ε(p− 1), s+ ε(p− 1)])
|X|

Since all the datapoints are uniformly sampled from Z∗
p, the probability that a dat-

apoint is in any region of size 2ε(p − 1) is just 2ε. With the additional assumption
that |X| = nc ≥ log1−2ε(δ/2) (and assuming ε < 1/2), we get:

Pr
( |s′ − s|
p− 1

≥ ε
)
≤ (1− 2ε)log1−2ε(δ/2) =

δ

2

Lemma 49 and Lemma 50 can be used to prove:

Corollary 51. For a training set of size nc such that

c ≥ max

{
logn(8/δ), logn

(
log(δ/2)

log(1− 2ε)

)}
,

a t ≥ 3c in the definition of ∆, and a number of circuit evaluations per inner product
R ≥ 4n2(t+c)

δ , then our optimization algorithm returns a variational parameter gs
′

such that
Pr
( |s′ − s|
p− 1

≤ ε
)
≥ 1− δ

From here, we notice that, when we apply Corollary 51 for ε′ ≤ ∆
2 , our optimiza-

tion algorithm returns an s′ such that, with probability 1− δ, the set Is′ is equal to
Is and is of size (p− 1)(1− 2∆). In the event where |s′ − s|/(p− 1) ≤ ε′ ≤ ∆

2 , we can
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hence bound the accuracy of the noisy classifier:

Acch̃s′
(fs) =

1

p− 1

∑

x∈X
Pr
(
h̃s′(x) = fs(x)

)

≥ 1

p− 1

∑

x∈Is

Pr
(
h̃s′(x) = fs(x)

)

≥ (1− 2∆) min
xi∈Is

Pr
(
|ei,s′ | ≤

∆

2

)

≥ (1− 2∆)

(
1− 4

∆2R

)

= 1−
(
2∆

(
1− 4

∆2R

)
+

4

∆2R

)

with probability 1− δ.
We now set t ≥ max {3 logn(8/δ), logn(16/ε)}, ε′ = n−t and R ≥ max

{
4n2(t+c)

δ , 128ε3

}
,

such that 2ε′ = 2n−t ≤ ∆ ≤ 4n−t ≤ ε
4 ,
(
1− 4

∆2R

)
≤ 1 and 4

∆2R ≤ ε
2 .

Using these inequalities, we get

Acch̃s′
(fs) ≥ 1− ε

with probability 1− δ, which proves Theorem 48.

188



Appendix D

Exponential separations
between classical and quantum
learners

D.1 Details regarding definitions

D.1.1 Constraining hypothesis classes to those that are effi-
ciently evaluatable

In this section, we discuss why it makes sense to restrict the hypothesis class to
be efficiently evaluatable. Specifically, we show that if we allow the learner to use
hypotheses that run for superpolynomial time, then every concept class that is learn-
able in superpolynomial time is also learnable in polynomial time. Thus, if we do
not restrict the hypotheses to be efficiently evaluatable, then the restriction that the
learning algorithm has to run in polynomial time is vacuous (i.e., it imposes no extra
restrictions on what can be learned). For more details we refer to [116].

Consider a concept class C that is learnable by a superpolynomial time learning
algorithm A using a hypothesis class H. To show that this concept class is learnable
using a polynomial time learning algorithm, consider the hypothesis class H whose
hypotheses are enumerated by all possible polynomially-sized sets of examples. Each
hypothesis in H′ runs the learning algorithm A on its corresponding set of examples,
and it evaluates the hypothesis from H that the learning algorithm outputs based
on this set of examples. Finally, consider the polynomial-time learning algorithm A′

that queries the example oracle a polynomial number of times and outputs the speci-
fication of the hypothesis in H′ that corresponds to the obtained set of examples. By
construction, this polynomial-time learning algorithm A′ now learns C.

D.1.2 Proof of Lemma 3
Lemma 3. CQ = QQ.
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Proof. Since any efficient classical algorithm can be simulated using an efficient quan-
tum algorithm it is obvious that CQ ⊆ QQ. For the other inclusion, let L = (C,D) ∈
QQ. That is, the concept classes C are efficiently learnable under the distributions D
by a quantum learning algorithm Aq using a quantum evaluatable hypothesis class
H. To show that L ∈ CQ, consider the quantum evaluatable hypothesis class H′

whose hypotheses are enumerated by all possible polynomially-sized sets of training
examples. Each hypothesis in H′ runs the quantum learning algorithm Aq on its
corresponding set of examples, and evaluates the hypothesis from H that the quan-
tum learning algorithm Aq outputs based on the set of examples. Finally, consider
the classical polynomial-time learning algorithm Ac that queries the example ora-
cle a polynomial number of times and outputs the specification of the hypothesis in
H′ that corresponds to the obtained set of examples. By construction, this classical
polynomial-time algorithm Ac can learn the concept classes C under the distributions
D using the quantum evaluatable hypothesis class H′. This shows that L ∈ CQ.

D.1.3 Proof of Lemma 4
Lemma 4. HeurBPP/samp ⊆ HeurP/poly.

Proof. The proof strategy is analogous to the arguments in Section 2 of the supple-
mentary material of [109], where they show that BPP/samp ⊆ P/poly.

Let (L, {Dn}n∈N) ∈ HeurBPP/samp. In particular, there exist a polynomial-time
classical algorithms A with the following property: for every n and ϵ > 0 it holds that

Prx∼Dn

[
Pr
(
A(x, 0⌊1/ϵ⌋, T ) = L(x)

)
≥ 2

3

]
≥ 1− ϵ, (D.1)

where the inner probability is over the randomization of A and

T = {(xi, L(xi)) | xi ∼ Dn}poly(n)i=1 .

Let ϵ > 0 and partition the set of n-bit strings as follows

{0, 1}n = Incorrect(ϵ) ⊔ Inerror(ϵ), (D.2)

such that for every x ∈ Incorrect(ϵ) we have

Pr
(
A(x, 0⌊1/ϵ⌋, T ) = L(x)

)
≥ 2

3
, (D.3)

where the probability is taken over the internal randomization of A and T . Impor-
tantly, we remark that our partition is such that

Prx∼Dn

[
x ∈ Incorrect(ϵ)

]
≥ 1− ϵ. (D.4)

By applying the arguments of Section 2 of the supplementary material of [109]
to A with the bitstring 0⌊1/ϵ⌋ fixed as input we obtain a polynomial-time classical
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algorithm A′ with the following property: for every n there exists an advice string
αn,ϵ ∈ {0, 1}poly(n,1/ϵ)1 such that for every x ∈ Incorrect(ϵ):

A′(x, 0⌊1/ϵ⌋, αn,ϵ) = L(x). (D.5)

Intuitively, the algorithm A′(x, 0⌊1/ϵ⌋, αn,ϵ) runs A(x, 0⌊1/ϵ⌋, T ) a certain number of
times and decides its output based on a majority-vote. Moreover, A′ does so with a
particular setting of random seeds and training data T that makes it correct decide
L(x), which is collected in αn,ϵ. Finally, from Eq. (D.4) we find that we have

Prx∼Dn

[
A′(x, 0⌊1/ϵ⌋, αn,ϵ) = L(x)

]
≥ 1− ϵ, (D.6)

which shows that (L, {Dn}n∈N) ∈ HeurP/poly.

D.2 Proof of Theorem 24
Theorem 24. If the 2c-DCRA holds, then the learning problem

Lmodexp =
(
{Cmodexp

n }n∈N, {DU
n }n∈N)

exhibits a CC/QC separation, where DU
n denotes the uniform distribution over Z∗

N .

Proof. To see why Lmodexp is not in CC, we first note that the modular exponenti-
ation concept class contains the cube root function f−1

N discussed in Section 6.1.2.
Therefore, the proof presented in [116], which shows that the cube root concept class
is not in CC under the DCRA, also implies that the modular exponentiation concept
class is not in CC under the DCRA. To briefly recap, recall from Section 6.1.2 that we
can efficiently generate examples (y, f−1

N (y)), for y ∈ Z∗
N uniformly at random. If we

put these examples into an efficient classical learning algorithm for the modular expo-
nentiation concept class, the learning algorithm would with high probability identify
a classically efficiently evaluatable hypothesis that agrees with f−1

N on a polynomial
fraction of inputs. This directly violates the DCRA, which states that evaluating f−1

N

is classically intractable, even on a polynomial fraction of inputs (i.e., it is outside of
HeurBPP).

What remains to be shown is that Lmodexp is in QC. Suppose we are given access
to an example oracle EX(cd,DU

n ) which when queried returns an example (x, xd

mod N), where x is sampled uniformly at random from Z∗
N . To show that Lmodexp

is in QC, we will describe a O(poly(n, 1/δ))-time quantum learning algorithm that
uses queries to EX(cd,DU

n ) and identifies d with probability at least 1 − δ. Before
describing the quantum learning algorithm, we will first prove the following lemma,
which is used to prove that our quantum learning algorithm is correct.

Lemma 52. Write (p − 1)(q − 1) = 2c · pk1
1 · · · pkℓ

ℓ , where the pis are distinct odd
primes. Then, for any i = 1, . . . , ℓ we have that with probability at least 1/2, an

1Note that the advice string also depends on ϵ, since 0⌊1/ϵ⌋ was fixed as input to A.
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example (x, xd mod N) queried from EX(cd,DU
n ) satisfies

pki
i | ordN (x), (D.7)

where ordN (x) denotes the order of x in Z∗
N .

Proof of Lemma 52. Let Ck denote the cyclic group of order k. Since (p−1)(q−1) =
2ca and gcd(p − 1, q − 1) = 2c

′
as described in Definition 19, the Chinese remainder

theorem tells us that

Z∗
N ≃ Z∗

p × Z∗
q ≃ Cp−1 × Cq−1 ≃ C2c1 × C2c2 × Cp

k1
1
× · · · × C

p
kℓ
ℓ

,

for some c1, c2 such that c1 + c2 = c. For any x ∈ Z∗
N we will use

x = (x
(1)
0 , x

(2)
0 , x1, . . . , xℓ)

to denote its corresponding element in C2c1 × C2c2 × C
p
k1
1
× · · · × C

p
kℓ
ℓ

. Next,
note that the order of x in Z∗

N is the least common multiple of the orders of all
x
(1)
0 , x

(2)
0 , x1, . . . , xℓ in their respective groups. What this implies is that any element

x = (x
(1)
0 , x

(2)
0 , x1, . . . , xℓ) satisfies

pki
i | ordN (x),

if xi is a generator of C
p
ki
i

. The number of generators of C
p
ki
i

is equal to φ(pki
i )

(where φ denotes Euler’s totient function), and the number of elements of x =

(x
(1)
0 , x

(2)
0 , x1, . . . , xℓ) such that xi is a generator of C

p
ki
i

is therefore equal to

2c1 · 2c2 · pk1
1 · · · p

ki−1

i−1 · φ(pki
i ) · pki+1

i+1 · · · pkℓ

ℓ .

Thus, the probability that a uniformly random x ∈ Z∗
N satisfies Eq. (D.7) is at least

2c1 · 2c2 · pk1
1 · · ·φ(pki

i ) · · · pkℓ

ℓ .

#Z∗
N

=
2c1 · 2c2 · pk1

1 · · · p
ki−1

i−1 · φ(pki
i ) · pki+1

i+1 · · · pkℓ

ℓ .

(p− 1)(q − 1)

=
φ(pki

i )

pki
i

≥ 1

2
.

We now describe the quantum learning algorithm that can identify d in time
O(poly(n, 1/δ)) using queries to EX(cd,DU

n ). We write (p−1)(q−1) = 2c ·pk1
1 · · · pkℓ

ℓ ,
where the pis are distinct primes. The idea is to query EX(cd,DU

n ) sufficiently many
times such that for every i = 1, . . . , ℓ we have an example (xi, x

d
i mod N) where

pki
i | ordN (xi). (D.8)

Next, we use Shor’s algorithm [176] to compute ri = ordN (xi) and ai = logxi
(xdi ),
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where loga(b) denotes the discrete logarithm of b in the group generated by a (i.e.,
the smallest integer ℓ such that aℓ = b). Now by elementary group theory we obtain
the congruence relation

d ≡ ai mod ri,

which by Eq. (D.8) implies the congruence relation

d ≡ ai mod pki
i .

In other words, the examples allowed us to recover d mod pki
i for every i = 1, . . . , ℓ.

By the Chinese remainder theorem, all that remains is to recover d mod 2c, which
we can do by brute force search since c is constant. All in all, if we query EX(cd,DU

n )
sufficiently many times such that for every i = 1, . . . , ℓ we have an example (xi, x

d
i

mod N) satisfying Eq. (D.8), then we can recover d.
What remains to be shown is that with probability 1 − δ a total number of

O(poly(n, 1/δ)) queries to EX(cd,DU
n ) suffices to find an example (xi, x

d
i mod N)

satisfying Eq. (D.8) for every i = 1, . . . , ℓ. To do so, we invoke Lemma 52 and conclude
from it that for any individual i = 1, . . . , ℓ after O(log(1/δ′)) queries with probability
at least 1− δ′ we found an example (xi, x

d
i mod N) satisfying Eq. (D.8). In particu-

lar, this implies that after a total of O(log(n, 1/δ)) queries we found with probability
at least 1− δ examples (xi, x

d
i mod N) satisfying Eq. (D.8) for all i = 1, . . . , ℓ.

D.2.1 Discrete cube root assumption for moduli of Defini-
tion 19

Recall that in Definition 19 we have constraint our moduli N = pq to satisfy the
conditions

(a) gcd(3, (p− 1)(q − 1)) = 1,

(b) (p− 1)(q − 1) = 2c · a, where a ∈ N is odd and c is a constant,

(c) gcd(p− 1, q − 1) = 2c
′
for some c′.

Firstly, we remark that (a) is a standard condition required for the function cube root
function f−1

N to be well-defined, and it therefore does not influence the DCRA. On
the other hand, the implications that the conditions (b) and (c) have on the hardness
in the DCRA are relatively unexplored. Nonetheless, there are reasons to believe that
the DCRA still holds under conditions (b) and (c).

To see why conditions (b) and (c) might not influence the DCRA, we remark that
the DCRA is closely-related to the security of the RSA cryptosystem. Specifically, the
DCRA for a specific modulus N is equivalent to assuming that the RSA cryptosystem
with public exponentiation key e = 3 and modulus N has an “exponential security”
(i.e., deciphering a ciphertext without the private key requires time exponential in the
cost of decryption). In other words, if a certain family of moduli is used in practice,
or are not actively avoided, this can be considered as supporting evidence that the
DCRA holds for those moduli.
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In practice it is generally prefered to use so-called “cryptographically strong primes”2
p and q when constructing the modulus N = pq for the RSA cryptosystem. One of
the conditions for a prime p to be a cryptographically strong prime is that p− 1 has
large prime factors. Note that if p− 1 has large prime factors, then the largest power
of 2 that divides it must be small. In other words, if p and q are cryptographically
strong primes, then condition (b) holds. Moreover, if p− 1 and q − 1 only have large
prime factors, then the probability that p − 1 and q − 1 share a prime factors is rel-
atively small, and condition (c) is thus likely to hold. Finally, we note that recently
factored RSA numbers3, which is a factoring challenge of a set of cryptographically
strong moduli organized by the inventors of the RSA cryptosystem, all satisfy both
conditions (b) and (c). For instance, all RSA numbers that have been factored over
the last five years (i.e., RSA-250, RSA-240, RSA-768, RSA-232 and RSA-230) all have
c′ ≤ 2 and c ≤ 8 in conditions (b) and (c).

D.3 Proof of Theorem 25
Theorem 25. LDCRI =

(
{CDCRI

n }n∈N, {DU
n }n∈N) exhibits a CH/QH separation, where

H = CDCRI and DU
n denotes the uniform distribution over Z∗

N .

Proof. To show quantum learnability, we note that N is known and we can thus use
Shor’s algorithm [176] to efficiently compute d ∈ {0, . . . , (p− 1)(q − 1)} such that

(m3)d ≡ m mod N, for all m ∈ Z∗
N . (D.9)

Next, we note that from (x, cm(x)) we can retrieve the kth bit of m3, where k =
int(x1 : · · · : x⌊logn⌋). Since for any given k ∈ [n] we have

Prx∼DU
n

(
int(x1 : · · · : x⌊logn⌋) = k

)
=

1

n
(D.10)

we find that O(poly(n)) examples suffices to reconstruct the full binary representation
of m3 with high probability. Finally, using d and m3 we can compute (m3)d ≡ m
mod N .

To show classical non-learnability we show that an efficient classical learning al-
gorithm Alearn can efficiently solve the discrete cube root problem. To do so, we let
e ∈ Z∗

N and our goal is to use Alearn to efficiently compute m ∈ Z∗
N such that m3 ≡ e

mod N . First, we generate examples

(x, cm(x)) = (x, bin(e, k)), (D.11)

where x ∈ {0, 1}n is sampled uniformly at random and k = int(x1 : · · · : x⌊logn⌋).
If we plug these examples into Alearn with ϵ = 1/n3 and δ = 1/3, then with high

2https://en.wikipedia.org/wiki/Strong_prime
3https://en.wikipedia.org/wiki/RSA_numbers
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probability we obtain some m′ such that

Prk∼[n]

(
bin(m3, k) ̸= bin((m′)3, k)

)
≤ 1

n3
, (D.12)

where k ∈ [n] is sampled uniformly at random. Next, we claim that m3 ≡ (m′)3

mod N . Specifically, suppose there exists some i such that bin(m3, i) ̸= bin((m′)3, i),
then this implies that

Prk∼[n]

(
bin(m3, k) ̸= bin((m′)3, k)

)
=

1

n

n∑

k=1

1
[
bin(m3, k) = bin((m′)3, k)

]
(D.13)

≥ 1

n
, (D.14)

which clearly contradicts Eq. (D.12). Now since x 7→ x3 mod N is a bijection to and
from Z∗

N we conclude that m = m′ and that we have thus solved our instances of the
discrete cube root.

D.4 Proof of Theorem 26
Theorem 26. Consider a family of concept classes {Cn}n∈N and distributions {Dn}n∈N
such that

Quantum learnability:

(a) Every cn ∈ Cn can be evaluated quantumly in time O (poly(n)).

(b) There exists a polynomial p such that for every n ∈ N we have

|Cn| ≤ p(n).

Classical non-learnability:

(c) There exists a family {cn}n∈N, where cn ∈ Cn, such that

({cn}n∈N, {Dn}n∈N) ̸∈ HeurP/poly.

Then, L = ({Cn}n∈N, {Dn}n∈N) exhibits a CC/QQ learning separation.

Proof. Firstly, a quantum learner can iterate over all concepts in Cn and find the
one that matches the examples obtained from the oracle. In other words, a quantum
learner can implement empirical risk minimization through brute-force search. By
Corollary 2.3 of [174] this shows that L ∈ QQ.

Next, suppose L ∈ CC, i.e., suppose there exists an efficient classical learning
algorithm for L that uses a classically evaluatable hypothesis class. By combining
the classical learning algorithm with the evaluation algorithm of the hypothesis class
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we obtain a polynomial-time classical randomized algorithm A such that for every
c′n ∈ Cn on input T = {(xi, c′n(xi)) | xi ∼ Dn}poly(n)i=1 and x ∈ {0, 1}n we have

Prx∼Dn

[
Pr
(
A(x, 0⌊1/ϵ⌋, T ) = c′n(x)

)
≥ 2

3

]
≥ 1− ϵ

If we applyA to the concepts {cn}n∈N we obtain ({cn}n∈N, {Dn}n∈N) ∈ HeurBPP/samp ⊆
HeurP/poly, which contradicts the classical non-learnability assumption. Therefore,
it must hold that L ̸∈ CC.

D.4.1 Proof of Lemma 27
Lemma 27. If there exists a (L,D) ̸∈ HeurP/poly with L ∈ BQP, then for every
L′ ∈ BQP-complete4 there exists a family of distributions D′ = {D′

n}n∈N such that
(L′,D′) ̸∈ HeurP/poly.

Proof. Let L′ ∈ BQP-complete and consider the many-to-one polynomial-time reduc-
tion f : L→ L′ such that L(x) = L′(f(x)). Also, consider the pushforward distribu-
tions D′

n = f(Dn) on {0, 1}n′5, i..e, the distribution induced by first sampling x ∼ Dn

and subsequently computing f(x). Next, we suppose that (L′,D′) ∈ HeurP/poly.
Specifically, we suppose that there exists a classical algorithm A and a sequence ad-
vice strings {αn}n∈N as in Definition 13 such that for every n ∈ N:

Pry∼D′
n

[
A(y, 0⌊1/ϵ⌋, αn′) = L′(y)

]
≥ 1− ϵ (D.15)

By the definition of the push-forward distribution D′
n we have

Pry∼D′
n

[
A(y, 0⌊1/ϵ⌋, αn′) = L′(y)

]
= Prx∼Dn

[
A(f(x), 0⌊1/ϵ⌋, αn′) = L′(f(x))

]

(D.16)

Finally, we define a polynomial-time classical algorithm A′ that uses advice as follows

A′(x, 0⌊1/ϵ⌋, αn) = A(f(x), 0⌊1/ϵ⌋, αn).

Then, by Eq. (D.16) we have that

Prx∼Dn

[
A′(x, 0⌊1/ϵ⌋, αn) = L(x)

]
= Prx∼Dn

[
A(f(x), 0⌊1/ϵ⌋, αn) = L′(f(x))

]

(D.17)

≥ 1− ϵ (D.18)

which implies that (L,D) ∈ HeurP/poly. This contradicts the assumptions, and we
therefore conclude that indeed (L′,D′) ̸∈ HeurP/poly.

4With respect to many-to-one reductions (as is the case for, e.g., quantum linear system solv-
ing [101]).

5Note that f can map instances x ∈ {0, 1}n to instances of size n′ that are at most polynomially
larger than n.
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D.4.2 Proof of Lemma 28
Lemma 28. If L ̸∈ P/poly and L is polynomially random self-reducible with respect
to some distribution D, then (L,D) ̸∈ HeurP/poly.

Proof. Since L is polynomially random self-reducible (for a formal definition we re-
fer to [79]), we know that there exists a family of distributions D = {Dn}n∈N, a
polynomial-time computable function f , and some integer kn = O(poly(n)) such that

Pry1,...,ykn∼Dn

(
f
(
x, L(y1), . . . , L(ykn

)
)
= L(x)

)
≥ 3

4
(D.19)

Suppose (L,D) ∈ HeurP/poly, i.e., there exists a polynomial-time classical algo-
rithm A and a sequence of advice strings {αn}n∈N such that

Pry∼Dn

(
A(y, 0⌊1/ϵ⌋, αn) = L(y)

)
≥ 1− ϵ. (D.20)

Let ϵ′ = 1/(9k), then by combining Eq. (D.19) and Eq. (D.20) we get that

Pry1,...,ykn∼Dn(x)

(
f
(
x,A(y1, 01/ϵ

′
, αn), . . . ,A(ykn

, 01/ϵ
′
, αn)

)
= L(x)

)
≥ 2

3
(D.21)

In other words, if we define

A′(x, αn) = f
(
x,A(y1, 01/ϵ

′
, αn), . . . ,A(y1, 01/ϵ

′
, αn)

)
,

where yi ∼ Dn are sampled during the runtime of the algorithm, then we conclude
that L ∈ BPP/poly = P/poly. This contradicts the assumption in the lemma, and we
therefore conclude that (L,D) ̸∈ HeurP/poly.

D.5 Proof of Theorem 30
Theorem 30. Suppose there exists a polynomial-time randomized classical algo-
rithm A with the following property: for every geometrically-local family of n-qubit
Hamiltonians H(x) there exist a dataset TH ∈ {0, 1}poly(n) such that for every sum
O =

∑L
i=1Oi of L ∈ O(poly(n)) many local observables with

∑L
i=1 ||Oi|| ≤ B for

some constant B, the function

fH,O(x) = A(x,O, TH)

satisfies

Ex∼[−1,1]m

[ ∣∣fH,O(x)− fH,O(x)
∣∣
]
<

1

6
,

where fH,O(x) = Tr [ρH(x)O] and ρH(x) denotes the ground state of H(x). Then,
DLP ∈ P/poly.
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Proof. We define DLP to be the problem of computing the first bit of loga x (i.e.,
the smallest positive integer ℓ such that aℓ ≡ x mod p) with respect to a generator
a ∈ Z∗

p for a given x ∈ Z∗
p.

First, using Shor’s algorithm we can construct a polynomial-depth circuit UShor

such that

UShor |0, x, 0ℓ⟩ = (1− α) |DLP(x), x, 0ℓ⟩+ α |garbage⟩ , (D.22)

for all x ∈ {0, 1}n and where α = O(2−n). Next, we parameterize

U(x) = U ·
(
I0 ⊗

[
n⊗

i=1

Xi(gγ(xi) · 2π)
])

, (D.23)

where X is a rotation such that X(0) |0⟩ = |0⟩ and X(2π) |0⟩ = |1⟩, and gγ is a
continuous function such that

gγ(xi) =





0, xi ∈ [−1,−γ)
(2γ − x)(γ + x)/(4γ3), x ∈ (−γ, γ)
1, xi ∈ (γ, 1]

, (D.24)

for some γ > 0. Finally, we add 2T layers of identities to U(x), where T denotes the
depth of UShor.

We define H(x) to be the Hamiltonian family on C2s ⊕ C23T with s = n + ℓ + 1
given by

H(x) = Hinit +Hclock +

3T∑

t=1

Ht(x), (D.25)

with

Hinit =

s∑

i=1

|0⟩ ⟨0|i , (D.26)

Hclock =

3T−1∑

t=1

|01⟩ ⟨01|clockt,t+1 , (D.27)

Ht(x) =
1

2

(
I ⊗ |100⟩ ⟨100|clockt−1,t,t+1 + I ⊗ |110⟩ ⟨110|clockt−1,t,t+1− (D.28)

Ut(x)⊗ |110⟩ ⟨100|clockt−1,t,t+1 − Ut(x)
† ⊗ |100⟩ ⟨110|clockt−1,t,t+1

)
(D.29)

where |.⟩ ⟨.|i acts on the ith site of C2s , |.⟩ ⟨.|clockj acts on the jth site of C23T and Ut

denotes the tth layer of gates in U(x). Note that H(x) is 5-local for all x ∈ [−1, 1].
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The ground state of H(x) is given by ρ(x) = |ψ(x)⟩ ⟨ψ(x)|, where

|ψ(x)⟩ = 1√
3T

T∑

t=1

(Ut · · ·U1)(x) |0s⟩ |1t03T−t⟩ , (D.30)

We define O = |0⟩ ⟨0|0 ⊗ I ⊗ |1⟩ ⟨1|
clock
T and note that it is a local observable with

constant norm. Now fH,O defined in Eq. 6.8 is such that

fH,O(x) = Tr [ρ0(x)O] =
2

3
p1(x), (D.31)

where p1(x) denotes the probability that |ψout(x)⟩ = U(x) |0s⟩ outputs 1 when mea-
suring the first qubit in the computational basis. In particular, we have that

fH,O(x) = Tr [ρ0(x)O] =
2

3
((1− α)DLP(gγ(x)) + α · garb) , (D.32)

for all x ∈ [−1, 1]n for which there does not exists xi ∈ (−γ, γ), and some quantity
garb ≤ 1.

Finally, assume that we obtain fH,O such that

Ex∼[−1,1]n

[ ∣∣fH,O − fH,O

∣∣
]
<

1

6
. (D.33)

Also, suppose there exists a bitstring y ∈ {0, 1}n whose corresponding corner Cy ⊂
[−1, 1]n6 with size γ is such that

∣∣∣Ex∼Cy

[
fH,O

]
− Ex∼Cy

[
fH,O

]∣∣∣ > 1

3
. (D.34)

Then, we find that

Ex∼[−1,1]n

[ ∣∣fH,O − fH,O

∣∣
]
=

∫

[−1,1]n

∣∣fH,O − fH,O

∣∣ dx (D.35)

≥
∫

Cy

∣∣fH,O − fH,O

∣∣ dx (D.36)

≥
∣∣∣∣∣

∫

Cy

fH,O − fH,Odx

∣∣∣∣∣ (D.37)

=

∣∣∣∣∣

(∫

Cy

fH,Odx

)
−
(∫

Cy

fH,Odx

)∣∣∣∣∣ (D.38)

=
∣∣∣Ex∼Cy

[
fH,O

]
− Ex∼Cy

[
fH,O

]∣∣∣ > 1

3
. (D.39)

6Here y ∈ {0, 1}n is mapped to {−1, 1}n by setting all 0s to −1, and the corner Cy consists of
all points x ∈ [−1, 1]n whose ith coordinate is γ close to yi for all i ∈ [n].
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which clearly contradicts Eq. (D.33). We therefore conclude that
∣∣∣Ex∼Cy

[
fH,O

]
− Ex∼Cy

[
fH,O

]∣∣∣ < 1

3
. (D.40)

In conclusion, for every y ∈ {0, 1}n the quantity Ex∼Cy [fH,O] is exponentially
close to DLP(y). Finally, we can efficiently estimate Ex∼Cy

[fH,O] to within additive
inverse-polynomial error, which allows us to compute DLP(y) in BPP/poly = P/poly.

Spectral gap and smoothness Note that the Hamiltonian family constructed
above indeed does not satisfy all requirements for the methods of Huang et al. [107]
to work. In particular, it is known that the spectral gap of Hamiltonians obtained
from Kitaev’s circuit-to-Hamiltonian construction (i.e., those defined in Eq. (D.25))
have a spectral gap that is inverse polynomial in the depth of the circuit, which is
our case is polynomial in the instance size n. Moreover, since we apply a function gγ
to the parameters x (which has a rapid increase between −γ and γ), it is likely that
the average gradient of the function Tr [OρH(x)] is not bounded by a constant, but
rather scales with the number of parameters m (which in our case also scales with
the instance size n).
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