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Abstract
Members of the Bacillus genus are widely distributed throughout natural
environments and have been studied for decades among others for their
physiology, genetics, ecological functions, and applications. However,
despite its prevalence in nature, the characterization and classification of
Bacillus remain challenging due to its complex and ever-evolving taxonomic
framework. This review addresses the current state of the Bacillus taxo-
nomic landscape and summarizes the critical points in the development of
Bacillus phylogeny. With a clear view of Bacillus phylogeny as a foundation,
we subsequently review the methodologies applied in identifying and quanti-
fying Bacillus, while also discussing their respective advantages and
disadvantages.

INTRODUCTION

The Bacillus genus encompasses a diverse set of spe-
cies with the highly distinctive feature of forming dor-
mant endospores that survive harsh conditions such as
radiation (Setlow, 2006), drought (Vardharajula
et al., 2011), or heat (Mandic-Mulec et al., 2015). Micro-
biologists have constantly discovered Bacillus and
related species in diverse various natural environments
like soil, air, and ocean sediments, as well as human-
created niches such as clean rooms in spacecraft, or
hospitals (Rüger et al., 2000; Satomi et al., 2006; Seuy-
lemezian et al., 2020; Shivaji et al., 2006; Xu
et al., 2020). Members of the Bacillus genus are
involved in numerous ecosystem functions, reflecting
the diverse environmental habitats in which they are
distributed (Saxena et al., 2020).

Although the initial characterization of Bacillus spe-
cies took place around 150 years ago, the taxonomic
classification of Bacillus remains notoriously confusing
(Zeigler & Perkins, 2021). One of the reasons is the
loose criteria used in the past, whereby diverse bacteria
were assigned to the Bacillus genus simply based on
the ability to form spores aerobically (Combet-Blanc
et al., 1995; Denariaz et al., 1989). The development of

Bacillus phylogeny has been a remarkable reflection
of the continuous advancements in methods deployed
for bacterial characterization and identification. Rapid
progress in molecular genetics led to an exponential
influx of novel species in a short period. This has, on
the one hand, expanded our knowledge of the diversity,
distributions, and functions of the members of the Bacil-
lus genus (Fortina et al., 2001; Rooney et al., 2009;
Rössler et al., 1991; Wisotzkey et al., 1992). However,
it has also led to an intricate genus containing hundreds
of taxa grouped under the same genus name but with-
out any well-defined characteristics that are commonly
shared among and exclusive to them (Logan & De
Vos, 2009). Accurate characterization of the member in
the Bacillus genus provides information for inferring
evolutionary relatedness and genetic diversity among
the species, where phylogenetic analysis helps species
delineation and novel strain identification, making the
characterization and phylogeny of the Bacillus genus
mutually informative and complementary.

Here, in this review, we first systematically survey
the taxonomic development of the Bacillus genus by
summarizing the emergence of novel species, re-clas-
sification, and re-description of its members at a few
critical milestone time points. The comprehensive
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understanding of the Bacillus phylogenetic framework
serves as the cornerstone for the accurate characteri-
zation of species in the Bacillus genus. Then, we pro-
vide an overview of methodologies applied for the
identification and quantification of species in the Bacil-
lus genus, particularly, concerning the advancements
and limitations. By synthesizing the current state of
molecular methodologies, we aspire to offer sugges-
tions for refining and advancing the identification and
quantification of Bacillus.

A RETROSPECTIVE EXAMINATION OF
BACILLUS PHYLOGENY DEVELOPMENT

Bacillus subtilis and Bacillus anthracis were the earliest
species of the genus Bacillus that were described by
Cohn and Koch in the late 1870s (Cohn, 1876;
Koch, 1876). The first description of B. subtilis was
provided by Cohn, specifically noting the formation,
germination, and heat resistance of endospores
(Cohn, 1876). The initial identification of B. anthracis
was solely dependent on a series of animal inocula-
tions from suspect cultures that were followed up upon
the development of anthrax (Irenge & Gala, 2012). At
that time, isolates that were unable to cause anthrax in
laboratory animals were simply categorized as B.
cereus or B. anthracis similis (Turnbull, 1999).

For the next 50 years, many bacteria that were rod-
shaped, Gram-positive, spore-forming, and aerobic
were classified as Bacillus or as a member of the Bacil-
laceae family. However, such a vague definition failed
to fit a diverse genus as Bacillus which has no exclu-
sive phenotypic characteristics (Heather & Geral-
dine, 2011). For instance, in a few cases, Bacillus
isolates exhibit a Gram-variable staining response
(Burke & McDonald, 1983). Certain species display
round or coccoid shapes under specific growth phases
or nutrient-deficient conditions (Gray et al., 2019). This
genus includes aerobic, anaerobic, and facultative
anaerobe species (Clements et al., 2002). The use of
crude criterion resulted in an extreme polyphyly and
heterogeneity of Bacillus species. In the past decade,
to better understand the phylogenetic and evolutionary
history of the Bacillus genus, certain species were
reclassified into other genera (Dunlap et al., 2020;
Gupta et al., 2020; Patel & Gupta, 2020), the remaining
species have amended the description (Dunlap, 2015a;
Dunlap et al., 2016; Gordon et al., 1977), and prospec-
tive species within these genera have set new criteria
(Carroll et al., 2020).

The comparative phylogenomic analysis on >300
Bacillus/Bacillaceae genomes Gupta et al. performed is
an important milestone in the development of Bacillus
systematics, where they first identified six novel clades
of Bacillus and transferred species from these
clades into genera including Peribacillus gen. nov.,

Cytobacillus gen. nov., Mesobacillus gen. nov., and so
forth (Gupta et al., 2020). Moreover, they proposed that
the Bacillus genus should be restricted to only the ‘sub-
tilis clade’ and ‘cereus clade’ (Bhandari et al., 2013)
and confirmed most of the species outside these
2 clades robustly formed 17 distinct clades and reclas-
sified these as new genera (Patel & Gupta, 2020). As a
result, 206 of the 291 known Bacillus species were
reclassified to other genera, remaining 27 and 19 spe-
cies as part of the subtilis and cereus clades. The ‘sub-
tilis clade’ encompasses the type species B. subtilis
and represents the genus Bacillus sensu stricto. The
‘cereus clade’ comprises human pathogens including
B. anthracis and Bacillus cereus. Furthermore, they
proposed that all novel species of the Bacillus genus
should meet the minimal criteria that prospective spe-
cies with the ‘cereus clade’ or ‘subtilis clade’ should be
supported either by a 16S sequence-based phyloge-
netic tree or concatenated protein sequences.

Given the current classification of Bacillus, we out-
line the major changes in Bacillus taxonomy by review-
ing the ‘subtilis clade’ and ‘cereus clade’, respectively.
We hope that retrospectively examining the phyloge-
netic development of the genus Bacillus in a historical
overview, will provide a clearer understanding of
its intricate taxonomy and laid groundwork for
its characterization.

THE B. SUBTILIS GROUP

Species of the B. subtilis group are genetically closely
related and hardly distinguishable phenotypically. Most
vegetative cells of these organisms are <1 μm, they are
generally mesophilic and neutrophilic, although some
can be tolerant to high pH levels (Oualha et al., 2020).
This group is identified as prolific secondary metabo-
lites producers with at least 4%–5% genome of the
genome of a given strain in this group devoted to sec-
ondary metabolites synthesis (Caulier et al., 2019;
Steinke et al., 2021). Among the wide array of second-
ary metabolites produced by the B. subtilis group, com-
pounds such as fengycin and surfactin are involved in
many biological control activities with the traits of anti-
fungals, antibacterial, and elicitor of induced systemic
resistance of plants (Kiesewalter et al., 2021; Ongena &
Jacques, 2008). Therefore, marketed biofertilizers and
biofungicides are mostly from this group (Dunlap,
2019b; Pérez-García et al., 2011).

The first proposed species B. subtilis, Bacillus liche-
niformis, Bacillus pumilus, and Bacillus amyloliquefa-
ciens in this group were described more than 50 years
ago (Gordon et al., 1973). Phylogenomics of the B.
subtilis group underwent various changes with influxes
of novel species and previous species being reclassi-
fied (Figure 1). Many studies provided reliable phyloge-
netic terms and molecular signatures that enabled the
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re-demarcation of several clades. For instance, Bacillus
gibsonii and Bacillus clausii were assigned to other
genera, and renamed Alkalicoccobacillus gibsonii and
Shouchella clausii, respectively (Joshi et al., 2022; Kim
et al., 2023). Meanwhile, species including Bacillus aer-
ius, Bacillus aerophilus, and Bacillus stratosphericus
that are no longer available from any strain collection
were proposed to be listed as rejection names (Bran-
quinho et al., 2015; Dunlap, 2015b). There are also
species in this group not been validly published under
the International Code of Nomenclature of Prokaryotes
(ICNP) yet, such as species B. subtilis subsp. natto
which has been applied in natto (fermented soybean
food) production for almost 100 years (Kubo
et al., 2011). The classification of certain subspecies
within the Bacillus genus stems from distinctive genetic
traits or adaptations to diverse habitats. However, sub-
species B. subtilis subsp. inaquosorum and B. subtilis
subsp. spizizenii were left as subspecies due to the
lack of distinguishing phenotypes. They recently have

been promoted to species status based on genomic
comparisons, and phenotypical and chemotaxonomy
determinations (Dunlap et al., 2020).

The B. velezensis species entails controversial tax-
onomy, initially proposed as a later heterotypic syno-
nym of B. amyloliquefaciens but was overthrown based
on comparative genomics and DNA–DNA relatedness
calculations (Dunlap et al., 2016; Wang et al., 2008).
Furthermore, plant-associated strain B. amyloliquefa-
ciens subsp. plantarum FZB42T had debates on
whether it should be a later heterotypic synonym of B.
velezensis. Dunlap et al. (2015) and Fan et al. (2017)
demonstrated that the morphological, physiological,
chemotaxonomic, and phylogenetics properties display
only minor differences between these two taxa indicat-
ing FZB42 should be regarded as B. velezensis.

Currently, most registered commercialized species
used as plant pathogen antagonists from the B. subtilis
group have inconsistent names due to these convo-
luted taxonomic (re)classifications (13). For instance,

F I GURE 1 Taxonomy development of the species from the B. subtilis group. The species are classified following their relatedness to the
closest original member of the group (bold text) and listed by the published years. Species coloured in red were re-classified and assigned as
other genera. Species coloured in blue were placed on the list of rejected names as they were not available from any collection. Species
coloured in green were identified as earlier or later heterotypic synonyms of the respective species on the same branch. Species coloured in
orange were promoted to species status. Species coloured in black are validly published under the International Code of Nomenclature of
Prokaryotes (ICNP). This figure is an updated version of the study done by Fritze (2004).
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B. velezensis is the most commonly misidentified strain
and is registered as either B. subtilis or B. amyloliquefa-
ciens. This reminds us that there is much work to be
done to set strict criteria to assign new species and to
attain a coherent phylogeny for the B. subtilis group
to benefit research and application.

THE B. CEREUS GROUP

The B. cereus group (termed Bacillus cereus sensu
lato) is the other major group within the Bacillus genus
with significant roles in agriculture, human health, food
spoilage, and the environment. It encompasses a wide
array of pathogenic strains: B. anthracis, the etiological
agent of anthrax (Koch, 1876); B. cereus, the food-
borne pathogen causing emetic and diarrhoea (Jovano-
vic et al., 2021); Bacillus. thuringiensis, a pathogen of
invertebrate organisms applied as biopesticide control
agents (Brar et al., 2006). The pathogenicity of the B.
cereus group is mainly associated with the plasmids it
encodes. Bacillus anthracis encompasses pXO1 and
pXO2, one carrying genes coding for the anthrax toxin
components and the other containing an operon for bio-
synthesis capsule that is important for host immune
system evasion (Okinaka et al., 1999). Emetic B.
cereus strains harbour plasmid pCER270 encoding the
toxin cereulide biosynthesis gene cluster (Rasko
et al., 2007). Bacillus thuringiensis contains plasmids
that encode crystal proteins (Höfte & Whiteley, 1989).

The ease of plasmid loss or transfer makes plasmid
contents a simple but not completely reliable marker for
the phenotypic delineation of these species (Vilas-Bôas
et al., 2007).

The taxonomic development of this group had a lot
of debates over decades (Figure 2). Smith and Gordon
clustered highly correlated species into ‘lumpers’ rather
than ‘splitters’, knowing that, the ‘lumpers’ would be
dissected to form ‘good species’ when more advanced
differentiation methods come (Gordon et al., 1973).
Indeed, B. anthracis, B. thuringiensis, and Bacillus
mycoides that were transferred as varieties of ‘parent
species’ of B. cereus were reinstalled in 1980 on the
Approved Lists of Bacterial Names with clearer descrip-
tions (Skerman et al., 1980). After that, very few spe-
cies were added to the B. cereus group for decades. It
was not until 2013 that Bacillus toyonensis and Bacillus
cytotoxicus were introduced as new species of B.
cereus. s.l., marking the first study that incorporated
whole genome sequencing (WGS) data to describe
unknown species. In 2017, nine novel species were
proposed as additional novel species which effectively
expanded the group. Nevertheless, it is still equivocal
whether the announcement of these species led to fur-
ther ambiguities due to the use of different genomospe-
cies thresholds for species delineation.

Several studies aimed to standardize novel species
identification and establish frameworks for taxonomic
classification of B. cereus. s.l. Carroll et al. (2020) pro-
posed a nomenclatural framework where they

F I GURE 2 Taxonomy development of the species from the B. cereus group. The species are classified following their relatedness to the
closest original member of the group (bold text) and listed by the published years. Species coloured in green were identified as earlier or later
heterotypic synonyms of corresponding species on the same branch. Species coloured in black are validly published under the ICNP. The figure
is an updated version of the study done by Fritze (2004).
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reassigned the species in the B. cereus group and des-
ignated the medically important species into subli-
neages. In this case, the emetic B. cereus is referred to
as B. mosaicus subsp. cereus. However, this nomen-
clature method has not been widely adapted to date.
Despite the phylogenetic unrelatedness of B. cereus
and B. anthracis to the subtilis clade, it needs to be
retained within the genus Bacillus. This retention is
attributed to the deeply ingrained terminology in publi-
cations and daily usage, coupled with the highly patho-
genic traits of these species. Thus, according to Rule
56a of the code, transferring species from the B. cereus
group is not recommended, and any nomenclatural
framework should undergo rigorous tests to avoid
confusion.

IDENTIFICATION AND QUANTIFICATION
OF BACILLUS

From Gram smear to 16S rRNA sequencing, the relent-
less pursuit of scientists to accurately describe bacteria
has yielded profound implications across domains such
as health care, agriculture, biotechnology, etc. In the
case of pathogenic Bacillus species, a swift and high-
resolution identification is crucial in guiding the choice
and duration of medical treatments. As a basis for agri-
culture, the identification and characterization of the
exact Bacillus species hold immense significance, facil-
itating the discernment of potential field applications.
Additionally, the multifaceted involvement of Bacillus in
ecosystem functions such as nitrification, soil organic
matter degradation, and phosphorus solubilisation
necessitates species identification to comprehend their
ecological roles within natural environments. Alto-
gether, the identification and characterization of Bacil-
lus holds far-reaching significance in numerous fields.
Therefore, scientists have developed a range of
approaches from traditional phenotypic characterization
to molecular analyses. In the following sections, we crit-
ically review the methodologies applied for the identifi-
cation and characterization of Bacillus concerning the
benefits and limitations of each approach.

BACILLUS IDENTIFICATION IN THE PRE-
NGS ERA: PHYSIOLOGICAL AND
MORPHOLOGICAL TESTS

The advent of next-generation sequencing (NGS)
enables culture-independent, large-scale, time-efficient
approaches to profile microbiomes on the level of single
isolate and complex communities (Knight et al., 2018).
Consequently, conventional methods including bio-
chemical and physiological tests seem to have lost their
significance in defining a bacterial species. Neverthe-
less, for several medically important species, a simple

look through the microscope or biochemical tests may
still be faster than 16S rRNA gene sequencing which
allows quick identification to assist clinical diagnosis
(Irenge & Gala, 2012; Rao et al., 2010).

Physiological tests for the differentiation of the B.
subtilis group are not frequently used, primarily
because morphologies vary in response to environ-
mental conditions, resulting in diverse colony patterns
on solid media (Tasaki et al., 2017). Nevertheless, cer-
tain physiological tests were employed to distinguish
between specific species in the B. subtilis group. For
instance, B. pumilus is known as starch hydrolysis neg-
ative and hippurate-positive (Peng et al., 2013); B.
licheniformis was reported to be distinguishable from B.
pumilus as it is facultatively anaerobe, propionate-posi-
tive, and grows up to 55�C (Fritze & Pukall, 2011); B.
atrophaeus and B. subtilis were observed distinguish-
able based on the formation of pigments when cultured
on tyrosine medium (Burke et al., 2004). Besides, B.
subtilis was documented as distinguishable from B.
amyloliquefaciens based on a faster acid production
from lactose, and slower gluconate utilization (Naka-
mura, 1987). However, caution is advised with mor-
phology-based methods in this group, as molecular
identification and evolving taxonomy reveal its
inaccuracies.

Phenotypic characteristics remain as a main
approach for preliminary taxonomic classification of B.
cereus s. l. species (Carroll et al., 2022). For example,
B. anthracis is non-haemolytic, non-motile, susceptible
to lysis by γ phage, and incapable of decomposing tyro-
sine (Logan & De Vos, 2015; Tallent et al., 2019); B.
mycoides and Bacillus pseudomycoides form rhizoid
colonies on agar medium (Logan & De Vos, 2015;
Nakamura & Jackson, 1995); B. thuringiensis forms
crystals during the stationary phase that can be
detected using microscopy; and B. cereus produces
lecithinase and do not ferment mannitol on mannitol-
egg yolk-polymyxin agar medium (Baldwin, 2020;
Schnepf et al., 1998). Phenotypic analysis of patho-
genic and harmless B. cereus strains remains difficult,
but the tests described above are adequate for distin-
guishing B. cereus from the other members of the B.
cereus group (Kamar et al., 2013).

CONVENTIONAL DNA SEQUENCING

Prior to the implementation of targeted sequence typing
schemes, methods such as restriction fragment length
polymorphism (Joung & Côté, 2001; Palmisano
et al., 2001), pulsed field gel electrophoresis (Gaviria
Rivera & Priest, 2003), random amplified polymorphic
DNA (Rivera & Priest, 2003), multi-locus variable num-
ber tandem repeat (Dhakal et al., 2013; Durmaz
et al., 2012), multi-locus enzyme electrophoresis were
crucial in distinguishing members of the Bacillus genus

IDENTIFY AND QUANTIFY THE MEMBERS OF THE BACILLUS GENUS 5 of 13
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(Helgason et al., 2000; Zahner et al., 1994). Subse-
quently, single- and multi-locus sequence typing (SLST
and MLST) approaches became, and remain instru-
mental methods for the identification of Bacillus species
or subspecies.

At the flourishing time of molecular genetics, the
16S rRNA gene was a pillar of SLST approach to clas-
sifying bacteria, making it possible to reconstruct phy-
logeny on an unprecedented scale (Goto et al., 2000;
Miranda et al., 2008; Sacchi et al., 2002). Nevertheless,
it has insufficient differentiating ability of all Bacillus
species. It has been shown that 93.93% of members of
the Bacillus genera carry multiple copies of 16S rRNA
genes and 55.32% of the 16S alleles are identical to
other species (Strube, 2021). Alternative protein-coding
genes such as rpoB (Ki et al., 2009; Mohkam
et al., 2016), gyrA (Chun & Bae, 2000; Jongsik &
Kyung, 2000; Liu et al., 2022), and gyrB were proposed
as potential biomarkers to identify a Bacillus species
(Bavykin et al., 2004; Chen & Tsen, 2002; La
et al., 2004; Wang et al., 2007; Yamada et al., 1999).
For a primary delineation, Dunlap (2019a) suggested
gyrA or gyrB to be used for the B. subtilis group, and
pycA for the B. cereus group. Recently, we thoroughly
analysed primer sets frequently employed in literature
and revealed that gyrA and rpoB-based primers have
high intra-species specificity within the B. subtilis group
(Xu et al., 2023). Surprisingly, gyrB-based degenerated
primers had no amplification of certain Bacillus
genomes which prompted the doubts about phyloge-
netic discrimination capacity of gyrB. Meanwhile, we
proved elongation factor thermal unstable Tu (tuf ) is a
good phylogenetic marker that is not only specific for
the Bacillus genus but also adequately discriminates
the so far described species within the genus.
These highly conserved protein-encoding genes offer a
preliminary characterization of isolates from the Bacil-
lus genus at either the species or subspecies level
in instances where complete genomes are not
accessible yet.

Other than SLST, a multitude of diverse methods
was employed for the discrimination of Bacillus species
or subspecies many of which were regarded as the
‘golden standard’ during different periods. The use of
concatenated sets of housekeeping genes scattered
along the genome, known as MLST, is one of the most
powerful tools to discriminate closely related species. It
has been widely applied to investigate the evolutionary
history and population genetics of B. cereus s.l. group
(Helgason et al., 2004; Hoffmaster et al., 2008), but
specific approaches have also been developed for the
B. subtilis group (Madslien et al., 2012). Despite
the advantages of being unambiguous, reproducible,
and easily portable between laboratories, MLST has
faced the main demand of Bacillus discrimination less
towards the genus/species level and more towards the
strain level where it fails to yield clear-cut

discrimination. However, the advancement of NGS has
revolutionized the standards for novel strain typing and
achieved strain-level discrimination. As described in
the following section, NGS has opened new avenues
for studying Bacillus populations and their diverse eco-
logical roles.

THE NGS ERA, RESHAPING THE
IDENTIFICATION OF BACILLUS

The advances in NGS have fostered the rapid develop-
ment of microbiome research (Shendure & Ji, 2008).
As one of the most frequently applied NGS
approaches, WGS contributed to the explosion of novel
Bacillus species discovery and provided tremendous
quantities of genome sequences. The utilization of
WGS has circumvented the low resolution achieved by
conventional approaches and re-clarified the evolution-
ary relationships of Bacillus species. At the time of writ-
ing, more than a thousand complete Bacillus genomes
are deposited in the National Center for Biotechnology
Information (NCBI) and the number keeps rising. To
systematically characterize novel Bacillus isolates, it
has been recommended to perform polyphasic ana-
lyses that go beyond solely WGS regardless of the cir-
cumstances. Ideally, biochemical, phenotypic, and
genotypic testing, together with full-length 16S rRNA
gene analysis and comparative genome analysis sub-
sequently to WGS should jointly provide information for
Bacillus characterization.

EXPLORING BACILLUS DIVERSITY IN
COMMUNITY SETTINGS USING NGS

Nowadays, there is a widespread recognition that
microorganisms are not solitary players but rather intri-
cately woven within their microbial networks. Thus,
people have shifted their focus from single cultures to
complex communities which more accurately reflect the
natural lifestyles of microbiomes.

Advances in DNA-based, high-throughput sequenc-
ing technologies, such as amplicon sequencing (also
known as metataxonomics or marker gene sequencing)
and metagenome sequencing have revolutionized our
ability to investigate the composition and function of
natural microbial communities (Shendure & Ji, 2008).
Among these technologies, 16S rRNA gene amplicon
sequencing has emerged as a cost-efficient, rapid
method to profile bacterial community composition and
is now routinely used. However, as highlighted above,
the 16S rRNA gene has an exceptionally high allele
multiplicity in the species of the Bacillus genus and
extensive species overlap, therefore the amplicons
obtained on these genomes are rarely unique for the
individual species (Pan et al., 2023; Strube, 2021). For
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instance, routinely used 16S amplicon primers targeting
the V3V4 hypervariable region show a high allele multi-
plicity of 63.90% and a species overlap of 74.47% for
Bacillus (Strube, 2021). Consequently, when analysing
a community containing B. subtilis with V3V4 metataxo-
nomics, it will incorrectly define several unique ampli-
con sequence variants due to the presence of multiple
alleles of B. subtilis resulting in overinflated richness in
the sample. Moreover, in a sample containing B. thurin-
giensis, one may even incorrectly infer the presence of
no <14 other species, as all these have V3V4 alleles
shared with one another.

An alternative term for amplicon sequencing is
marker gene sequencing, which is self-explanatory as it
involves targeting a specific region of a gene of interest
to profile microbial phylogenies. To further elevate the
specificity for the Bacillus genus, several studies have
adapted conserved genes that have high discrimination
power that applied in SLST and developed amplicon-
based approaches to investigate Bacillus communities.
Porcellato et al. (2019) selected the three most discrim-
inating genes of B. cereus group members from an
MLST scheme and demonstrated panC gene had bet-
ter discrimination power than glpT and pycA. They
found psychrotrophic strains of the genus Bacillus,
including B. weihenstephanensis, B. mycoides, and B.
thuringiensis strains were the most abundant phyloge-
netic clusters in milk samples. Additionally, the house-
keeping gene gyrA, which encodes DNA gyrase
subunit A was deployed as another molecular marker
to determine the diversity of Bacillus species (Liu
et al., 2022). It demonstrated the ability to detect at
least 92 Bacillus species and resolve 6 phylogenetic
clusters out of 8 strains in a mock community but has
not been tested for environmental samples.

The two aforementioned studies have certain limita-
tions in the detection spectrum of Bacillus species.
panC-based amplicon sequencing specifically targeted
the B. cereus group while the gyrA-based approach
focuses on the B. subtilis group. It is challenging to find
genes that contain a highly variable region that can be
used universally for Bacillus species or sub-species
identification and flanked by highly conserved regions
that can serve as binding sites for amplicon primers.
Recently, a tuf-targeted amplicon sequencing approach
was developed which exhibits the highest coverage of
Bacillus species diversity reported to date with high
specificity (Xu et al., 2023). It allows precise species
resolution of the Bacillus community in natural soil com-
munities and could be potentially applied to track the
persistence of Bacillus inoculant in the field.

Metagenomics plays an irreplaceable role in resolv-
ing microbial community structure at the species or
even strain level, as well as in profiling functional
genes, pathways, and metabolism (Daniel, 2005). For
instance, metagenome sequencing was applied to
track the persistence of inoculated plant protective
agent B. amyloliquefaciens in the field, where

indigenous rhizosphere community shifts were ana-
lysed caused by the inoculant-produced secondary
metabolites (Kröber et al., 2014). Similarly, Huang et al.
(2022) employed metagenomics to investigate the
effects of bio-inoculant B. subtilis subsp. H11 on the
microbial community structure and the metabolic poten-
tial of aged flue-cured tobacco. Furthermore, metage-
nomics was also applied to profile the Bacillus phage
abundance in naturally fermented soybean food. This
highlights the potential of metagenomics to also deci-
pher viral–bacterial interactions (Tamang et al., 2022).

Without a doubt, NGS technology allows a much
deeper characterization of the role that the Bacillus
genus plays in natural environment contexts. Neverthe-
less, it only semi-quantified the abundance of Bacillus
as it assesses the relative, but not absolute abun-
dances of individual microbes. Recently, cell-based
(flow cytometry [FCM]) and molecular methods (qPCR)
were integrated with NGS data to estimate the absolute
microbial abundance. It remains unclear to what extent
these quantification methods eliminated the bias
introduced by amplicon sequencing (Tettamanti et al.,
2020). Thus, in the last section, the quantification
methods are reviewed specifically for Bacillus which
holds another significant aspect of research in this field.

EMPHASIZING QUANTIFICATION: THE
CRUCIAL ROLE BEYOND IDENTIFICATION
IN BACILLUS SPECIES

Under certain circumstances, quantifying bacterial
abundance is more crucial than mere detection or iden-
tification. As one of the most versatile used bacteria
genera, commercial products derived from Bacillus
sp. range from biofertilizers (Borriss, 2011; Sun
et al., 2020), biofungicides (Lahlali et al., 2013), and
biopesticides (Brar et al., 2006), to probiotics (Elsha-
ghabee et al., 2017), enzymes (Contesini et al., 2018),
and vitamins (Schallmey et al., 2004), where addres-
sing critical questions regarding the efficacy, safety,
and consistency of these products necessitates quanti-
tative data. Do biocontrol agents applied in the field
actively promote plant growth? Do probiotics have ade-
quate amounts of bacteria that consistently and effec-
tively confer benefits to the host? What are the residue
levels of biopesticide throughout the food chain? Here,
we highlight the studies that use quantitative data to
address these real-world challenges.

Conventional culture-dependent approaches that
rely on counting the total number of colony-forming
units grown on solid media generally underestimate the
total abundance. Culture-independent approaches
such as quantitative real-time polymerase chain reac-
tion (qPCR) and fluorescence in situ hybridization
(FISH) quantify populations based on the DNA of bac-
terial cells without the necessity of laborious colony
count tests. These DNA-based approaches have been
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successfully used for the quantitative analysis of Bacil-
lus and provide irreplaceable information in industrial
applications.

Xie et al. (2020) developed a primer/probe set for
rapid quantitative detection of B. subtilis populations
and successfully detected the colonization dynamic of
inoculants within the Arabidopsis thaliana rhizosphere.
Their approach demonstrates significant implications in
agriculture especially when multiple strains serve as
biological control agents (BCAs) for pathogen suppres-
sion. In such a scenario, qPCR assay could quantita-
tively detect the development and population shift of
BCAs in response to environmental changes and
enable the selection of ‘superior performers’ in field tri-
als (Lim et al., 2011; Rotolo et al., 2016). In the food
industry, Bacillus is unwelcome due to its spoilage
capability and pathogenic potential. Therefore, qPCR
allows quantitative detection of foodborne pathogens
and ensures the hygiene standards within the food
industry (Cattani et al., 2016; Dzieciol et al., 2013;
Kwon et al., 2021; Sadeghi et al., 2014).

One of the major limitations of any PCR-based
molecular methods is the overestimation of cell num-
bers by amplification of nonviable cells. This shortcom-
ing has been addressed by using propidium monoazide
(PMA) as a nucleic acid-intercalating dye to inhibit the
amplification of DNA from dead cells. Importantly,
PMA-qPCR could enumerate not only vegetative cells
but also the activated spores of Bacillus, a relevant cri-
terion for the spore-forming Bacillus (Guo et al., 2022;
Rawsthorne et al., 2009).

Another limitation of qPCR is its inability to provide
insights into the interactions of bacteria within their
environment. FISH as an alternative technique allows

the identification and visualization of individual microbe
cells in natural environments by utilizing a fluorescent-
labelled probe that hybridizes to specific target
sequences within the intact cells (Levsky &
Singer, 2003). In a study conducted by Posada et al.
(2016), a specific probe was designed for plant growth-
promoting bacterium B. subtilis EA-CB0575, where it
successfully hybridized with several strains of B. subti-
lis and failed to hybridize with other closely related spe-
cies. To avoid indigenous bacteria autofluorescence
and root structure interference, a catalysed reporter
deposition-FISH (CARD-FISH) methodology targeting
this strain was further developed (Posada et al., 2018).
They demonstrated both FISH and CARD-FISH tech-
niques effectively detected B. subtilis on plant roots
growing in different culture systems. Moreover, Pasulka
et al. (2021) designed FISH probes to quantitatively
measure Bacillus abundance in direct-fed microbial
products and crop microbial biostimulants to ensure
these probiotics have adequate amounts of bacteria.
Still, the potential of FISH to be used for enumerating
Bacillus within products has largely been unexplored.
We are convinced that with further development, the
use of FISH to visualize and quantify Bacillus will be
more prevalent to enable scientists to better study the
ecological impact of Bacillus after application in natural
systems.

Other culture-independent techniques such as FCM
offer rapid determination of cell numbers, size-related
scatter signals, and fluorescence (Müller & Nebe-von-
Caron, 2010). This technique provides a useful and
complementary approach to culture-based and other
molecular methods for the study of complex environ-
ments, such as sediments, water, soil, and sludge

TAB LE 1 Characteristics of methods used to quantify the Bacillus genus in complex environments.

Methods Advantages Limitations Application to bacillus genus

Colony counting • Simple
• Cost-effective

• Laborious
• Not applied to unculturable

bacteria

(Gorsuch et al., 2019)

Quantitative real-time PCR • High specificity and sensitivity
• Unaffected by cell size

• Not discriminated between
live and dead cells

• Requires primer and probe
optimization

• Soil particles might
contaminate DNA extraction
and negatively affect PCR

(Cattani et al., 2016; Dzieciol
et al., 2013; Fern�andez-No
et al., 2011; Guo et al., 2022;
Kwon et al., 2021; Lim
et al., 2011; Rawsthorne
et al., 2009; Rotolo
et al., 2016; Sadeghi
et al., 2014; Xie et al., 2020)

Fluorescent in situ
hybridization

• In situ detection
• Rapid analysis
• Visualization
• High specificity

• Requires confocal or
epifluorescence microscope

• Requires optimization of
probe design and
hybridization conditions

(Pasulka et al., 2021; Posada
et al., 2016, 2018)

Flow cytometry/ Fluorescence-
activated Cell Sorting

• High specificity
• Rapid analysis
• Capable of enumerate viable

but non-culturable state

• Expensive
• Complex data analysis
• Limited applicability for

sample types

(Cronin & Wilkinson, 2010;
Majeed et al., 2018)
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(Amalfitano & Fazi, 2008). It can efficiently separate
vegetative cells or endospores of B. cereus from the
food matrix and label them with specific fluorescent
tags (Cronin & Wilkinson, 2010). A study conducted by
Majeed et al. highlighted the use of FCM to enumerate
the resuscitation stage of Bacillus coagulans (corrected
name: Heyndrickxia coagulans) in commercial formula-
tions like capsules and tablets (Majeed et al., 2018).
The application of FCM allowed the quantification of
the state in which bacteria retain characteristics of living
cells but are not culturable (Davis, 2014). This capabil-
ity is particularly valuable since the traditional culture-
dependent method may underestimate the extent of
viable but not culturable populations. The advantages
and limitations of the quantification techniques are dis-
cussed in Table 1 which aims to provide comprehen-
sive insights for researchers.

CONCLUSIONS

Smith and Gordon highlighted in their work, ‘When only
a few strains of a group are available, as often hap-
pens, their species descriptions must remain tentative
until verified by the study of more strains’ (Berke-
ley, 2002). With the decreasing cost and advancements
in sequencing technologies, microbiologists will con-
tinue to explore Bacillus in diverse habitats. This will
undoubtedly expand the existing genome database,
enabling more comprehensive descriptions of novel
species. Nevertheless, amidst these advancements,
researchers should be careful with novel species pro-
posals and classifications of new isolates. We should
not solely depend on single techniques for novel isolate
characterization but embrace multi-dimensional
approaches. The integration of omics data, including
genomics, transcriptomics, proteomics, and metabolo-
mics will keep reshaping contemporary Bacillus taxo-
nomics, providing invaluable insights into their
functionalities, evolution histories, characteristics, and
ecological roles they play in nature.

Nowadays, the identification of the Bacillus genus is
shifting towards high accuracy, high throughput, and
high speed on an unprecedented scale. Moreover, the
focus of identifying a Bacillus species is transitioning to
two directions, on the one hand, doing detailed molecu-
lar analyses, down to the level of strains, even clones;
and on the other, moving up to the level of community,
studying lifestyle in their natural habitat (e.g., soil).
Although strictly speaking, the identification of bacteria
relies on the given reference database used, such tax-
onomy assignment can be changed subsequently with
the dynamic taxonomy landscapes. Thus, only through
continuous collaborations among taxonomists and
microbiologists, a refined genome reference database
and a highly accurate identification system can be
developed.

Despite the extensive application of the Bacillus
genus in medicine, agriculture, and industry, studies on
quantifying Bacillus numbers in complex communities
are scarce. One reason is the lack of proper methods
to determine their populations along with the chal-
lenges of selecting appropriate methodologies for the
diverse environments. From the studies summarized
here, answers to those real-world challenges call for
the development of Bacillus-specific tools that can
quantify Bacillus community members in situ. Together
with the versatile omics approaches, studying the func-
tionality and metabolism will move a step forward to
understanding the ecology of Bacillus.
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