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Abstract
Every atomic JBW-algebra is known to be a direct sum of JBW-algebra factors of
type I. Extending Kadison’s anti-lattice theorem, we show that each of these factors
is a disjointness free anti-lattice. We characterise disjointness, bands, and disjointness
preserving bijections with disjointness preserving inverses in direct sums of disjoint-
ness free anti-lattices and, therefore, in atomic JBW-algebras. We show that in unital
JB-algebras the algebraic centre and the order theoretical centre are isomorphic.More-
over, the order theoretical centre is a Riesz space of multiplication operators. A survey
of JBW-algebra factors of type I is included.

Keywords Anti-lattice · Atomic JBW-algebra · Band · Centre · Disjointness ·
Factor · Order direct sum · Order unit space

Mathematics Subject Classification Primary 46B40; Secondary 17C65

1 Introduction

Jordan algebras equipped with their cones of squares are interesting instances of par-
tially ordered vector spaces that are not lattices, in general. A prominent example is
the Jordan algebra B(H)sa consisting of all self-adjoint operators on some complex
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Hilbert space H with the Jordan product given by

A ◦ B = 1

2
(AB + B A). (1.1)

Kadison [16] has shown that this space is actually an anti-lattice, which means that
the supremum of two elements exists only if they are comparable. With the notion of
disjointness in partially ordered vector spaces [19], a partially ordered vector space
is an anti-lattice if and only if there are no non-trivial disjoint positive elements [17,
Theorem 14]. In the space B(H)sa, it turns out that there are even no disjoint elements
at all.We call such a partially ordered vector space disjointness free. The space B(H)sa
is one of the possible factors in the algebraic direct sum that represents atomic JBW-
algebras. In this paper, we study all atomic JBW-algebras that are factors and show
that all of them are disjointness free anti-lattices. By [3, Theorem 3.39 and Proposi-
tion 3.45], every atomic JBW-algebra that is a factor is isomorphic as JBW-algebra to
a member of one of the following classes of JBW-algebras,

(i) the self-adjoint bounded operators B(H)sa on a real or complex Hilbert space H of
dimension d ≥ 3, or B(Hq)whereHq is a quaternionic Hilbert space of dimension
d ≥ 3, endowed with the product (1.1),

(ii) the spin factors H ⊕ R, where H is a real Hilbert space of dimension at least 2,
with the multiplication defined in (A.3),

(iii) the 3×3 self-adjointmatricesM3(O)sa with entries from the octonionsO, endowed
with the product (1.1).

For general atomic JBW-algebras, there is a representation theorem as follows. See
[3, Proposition 3.45].

Theorem 1.1 Every atomic JBW-algebra equals the algebraic direct sum of atomic
JBW-algebras that are factors, that is, of factors that are isomorphic as JBW-algebras
to those listed in (i)–(iii).

The factors listed in (i)–(iii) are exactly the factors among all JBW-algebras that are
of so called ‘type I’, up to JBW-algebra isomorphism.

Theorem 1.1 leads to the question what can be said about disjointness and related
notions in such direct sums. The algebraic direct sum in Theorem 1.1 is in fact an
order direct sum of order unit spaces. We will characterise disjointness and bands
in order direct sums of order unit spaces that are disjointness free anti-lattices. We
will apply this characterisation to describe which disjointness preserving bijections
have a disjointness preserving inverse, proceeding corresponding research in Banach
lattices and finite-dimensional pre-Riesz spaces [12, 18]. These results apply to atomic
JBW-algebras.

In the theory of Jordan algebras, there is a notion of an algebraic centre, whereas, in
the theory of operators on partially ordered vector spaces, there is a notion of an order
theoretical centre. The algebraic centre of a Jordan algebra consists of all elements
where the corresponding left multiplication operator commutes with all other left
multiplication operators. The order theoretical centre of a partially ordered vector
space consists of all operators that are in an order interval whose end points are
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multiples of the identity. We study the natural question how these two notions of
centre are related. For a unital JB-algebra, we show that the algebraic centre and the
order theoretical centre are isomorphic as JB-algebras.

The structure of the paper is as follows. There are two preliminary sections with
the basic relevant notions from the theory of partially ordered vector spaces and JB-
algebras. We need quite a few details on the factors of atomic JBW-algebras, as listed
above in (i)–(iii). These results are known, but not easily collected from the dif-
ferent sources in the literature. Therefore, a survey on this subject is included in
“Appendix A”.

In Sect. 4, we show that every factor of an atomic JBW-algebra is a disjointness free
anti-lattice. In Sect. 5, we develop basic theory on direct sums of pre-Riesz spaces and
order direct sums of order unit spaces. Disjointness and bands in order direct sums of
order unit spaces that are disjointness free anti-lattices are characterised in Sect. 6. As
a consequence, we obtain a characterisation of disjointness and bands in atomic JBW-
algebras. This is used in Sect. 7 to show that disjointness preserving linear bijections
with disjointness preserving inverses are exactly the bijections that permute the factors
in the direct sum. In Sect. 8, we show that the algebraic centre and the order theoretical
centre of a unital JB-algebra are isomorphic as JB-algebras. Consequently, the order
theoretical centre is a Riesz space. We introduce in Sect. 9 a class of order unit spaces,
including all finite-dimensional ones, whose order theoretical centre is isomorphic to
R

n for some n.

2 Preliminaries on partially ordered vector spaces

Let X be a real vector space containing a cone K , i.e., K is convex, λK ⊆ K for every
λ ≥ 0, and K ∩ −K = {0}. The cone K induces a partial order ≤ in X by x ≤ y
if y − x ∈ K . We call (X , K ) a partially ordered vector space. We say that (X , K )

is directed if X = K − K . The space (X , K ) is called Archimedean if, for every
x, y ∈ X with nx ≤ y for all n ∈ N, we have x ≤ 0. A partially ordered vector space
X is called monotone complete if for any increasing net (xi )i in X that is bounded
from above the supremum exists in X .

If for every x, y ∈ X the supremum of {x, y} exists, then X is called a vector lattice
or aRiesz space. For further terminology on vector lattices, see [2].We say that (X , K )

is an anti-lattice if for every x, y ∈ X the supremum of {x, y} exists only if x and y
are comparable, that is, x ≤ y or x ≥ y. Trivially, if (X , K ) is totally ordered, then
X , K ) is an anti-lattice. Hence R is both a lattice and an anti-lattice.

A linear subspace D of X is order dense in X if, for every x ∈ X , we have

x = inf{d ∈ D : d ≥ x},

and a subspace Y of a partially ordered vector space X is is called majorizing in X if
for every x ∈ X there is a y ∈ Y such that x ≤ y. A linear map T : X → Y , where
X and Y are partially ordered vector spaces, is called positive if for every x ∈ X with
x ≥ 0 we have T x ≥ 0 and T is called bipositive if x ≥ 0 is equivalent to T x ≥ 0.

123



   10 Page 4 of 54 O. van Gaans et al.

A partially ordered vector space X is called a pre-Riesz space if there is a Riesz
space Y and a bipositive linear map i : X → Y such that i[X ] is order dense in Y .
We call (Y , i) a vector lattice cover of X . An intrinsic definition of pre-Riesz spaces
is given by van Haandel in [22], see also [19, Section 2.2]. Note that every directed
Archimedean partially ordered vector space is pre-Riesz, and that every pre-Riesz
space is directed. Clearly, every Riesz space is pre-Riesz. If (Y , i) is a vector lattice
cover of a pre-Riesz space X such that no proper Riesz subspace of Y contains i[X ],
then we call (Y , i) a Riesz completion of X and is denoted by Xρ . Such a space is
unique up to isomorphism (for details see, e.g., [19, Section 2.4]).

For A ⊆ X , denote

Au := {x ∈ X : x ≥ a for all a ∈ A} and Al := {x ∈ X : x ≤ a for all a ∈ A}.

Riesz* homomorphisms are defined in [22, Definition 5.1 and Corollary 5.4(iv)] and
Riesz homomorphisms in [6].

Definition 2.1 Let X and Y be directed partially ordered vector spaces. A linear map
T : X → Y is called

(i) a Riesz* homomorphism if, for every non-empty finite subset F of X , one has

T
[

Ful
]

⊆ T [F]ul,

(ii) a Riesz homomorphism if, for every x, y ∈ X , one has

T
[{x, y}u]l = T [{x, y}]ul.

If X and Y are pre-Riesz spaces, then every Riesz homomorphism is a Riesz* homo-
morphism, and every Riesz* homomorphism is positive, see [19, Theorem 2.3.19]. If
X and Y are vector lattices, then the notions of a Riesz homomorphism and a Riesz*
homomorphism both coincide with the notion of a Riesz homomorphism from vector
lattice theory, see, e.g., [19, Lemma 2.3.2].

The following Lipecki–Luxemburg–Schep theorem can be found, e.g., in [19, The-
orem 2.1.17].

Theorem 2.2 Let Y be a Riesz space, let Z be a Dedekind complete Riesz space, and
let D be a majorizing Riesz subspace of Y . If h : D → Z is a Riesz homomorphism,
then there exists a Riesz homomorphism H : Y → Z that extends h.

The subsequent theorem is due to van Haandel, see, e.g., [19, Theorem 2.4.11]. In
this section, ◦ denotes composition.

Theorem 2.3 Let X1 and X2 be pre-Riesz spaces and let (Y1, i1) and (Y2, i2) be vector
lattice covers, respectively. Let h : X1 → X2 be a linear map.

(i) If there exists a Riesz homomorphism ĥ : Y1 → Y2 such that ĥ ◦ i1 = i2 ◦ h, then
h is a Riesz* homomorphism.

(ii) If (Y1, i1) is the Riesz completion of X1 and h is a Riesz* homomorphism, then
there exists a unique Riesz homomorphism ĥ : Y1 → Y2 with ĥ ◦ i1 = i2 ◦ h.
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An element u ∈ K is said to be an order unit if for every x ∈ X there is a λ > 0
such that −λu ≤ x ≤ λu. If (X , K ) is an Archimedean partially ordered vector space
with order unit u, it can be equipped with the order unit norm which is defined by

‖x‖u := inf{λ > 0 : − λu ≤ x ≤ λu}

for x ∈ X , see, e.g., [19, Section 1.5.3]. In this case, the triple (X , K , u) is called an
order unit space. Every order unit space is a pre-Riesz space. In the setting of order
unit spaces, we recall characterisations of functionals that are Riesz homomorphisms
or Riesz* homomorphisms, respectively, and construct a vector lattice cover with the
pointwise partial ordering. The functional representation of X is given by means of
the state space, �X , which is the weak* compact convex set

�X := {ϕ ∈ X∗ : ϕ[K ] ⊆ [0,∞), ϕ(u) = 1} (2.1)

by the Banach-Alaoglu theorem, and the set �X of the extreme points of �X , which
exist by the Krein-Milman theorem. The weak* closure�X of�X in�X is a compact
Hausdorff space, and the map

�X : X → C(�X ), x → (ϕ → ϕ(x)), (2.2)

is a bipositive linear map, and hence injective (for details, see, e.g., [19, Section 2.5]).
Moreover, (C(�X ),�X ) is a vector lattice cover of X [19, Theorem 2.5.9]. We recall
the statement in [19, Proposition 2.5.5].

Proposition 2.4 Let (X , K , u) be an order unit space and let ϕ ∈ �X .

(i) One has ϕ ∈ �X if and only if ϕ is a Riesz homomorphism.
(ii) One has ϕ ∈ �X if and only if ϕ is a Riesz* homomorphism.

Recall that two elements x and y in a Riesz space are said to be disjoint if |x |∧|y| =
0. This notion is generalised to pre-Riesz spaces as follows. Two elements x and y in
a pre-Riesz space (X , K ) are called disjoint, denoted x ⊥ y, if {x + y, x − y}u =
{x − y,−x + y}u. The disjoint complement of a set A ⊆ X is denoted by Ad. If
(Y , i) is a vector lattice cover of X , then x ⊥ y if and only if i(x) ⊥ i(y), see, e.g.,
[19, Proposition 4.1.4]. Anti-lattices can be characterised by means of disjointness. A
pre-Riesz space (X , K ) is an anti-lattice if and only if there are no non-trivial positive
disjoint elements in X , see [17, Theorem 14]. We call X disjointness free if there
are no non-trivial disjoint elements in X . Clearly, every disjointness free partially
ordered vector space is an anti-lattice. In [17], an example of an anti-lattice that is not
disjointness free can be found.

A set B ⊆ X is called a band if B = Bdd. Bands in pre-Riesz spaces are linear
subspaces, see [19, Proposition 4.1.5(ii)]. Many examples are given in [19, Chapter 4].
It is straightforward to verify that the intersection of two bands is a band. In contrast
to vector lattices, there may exist bands that are not directed in pre-Riesz spaces.

A projection P in V is called an order projection if both P and I − P are positive
operators, where I denotes the identity operator. If V is a pre-Riesz space, then [11,
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Proposition 3.1] yields that a projection P in V is an order projection if and only if P
is a band projection, which means that the range and kernel of P both are bands in V .
The range of a band projection is called a projection band. If P and Q are two band
projections in V , then P Q is a band projection in V , see [11, Proposition 3.6].

Direct sums will play a crucial role in later sections. Let I be a non-empty set and
let ((Vi , Ci , ui ))i∈I be a collection of order unit spaces. We define the order direct
sum to be the vector space

⊕
i∈I

Vi :=
{

i → vi : I →
⋃
i∈I

Vi : vi ∈ Vi for every i ∈ I and sup
i∈I

‖vi‖ui < ∞
}

(2.3)

with the cone {v ∈ ⊕
i∈I Vi : v(i) ∈ Ci for every i ∈ I}. Then ⊕

i∈I Vi is an
Archimedean directed partially ordered vector space with order unit i → ui , which
we denote by u. Note that for every v ∈ ⊕

i∈I Vi we have that

‖v‖u = sup
α∈I

‖v(i)‖ui . (2.4)

Let J be a non-empty subset of I. We define �J : ⊕ j∈J Vj → ⊕
i∈I Vi by

�J (w) := v, where vi = wi for every i ∈ J and vi = 0 otherwise. Clearly,
�J is a bipositive linear map. If J = { j}, then we write � j instead of �J .

If ((Wi , Ki , wi ))i∈I is another family of order unit spaces and for every i ∈ I we
have a linear map Ti : Vi → Wi such that for every v ∈ ⊕

i∈I Vi the map i → Tiv(i)
from I to

⋃
i∈I Wi belongs to

⊕
i∈I Wi , then we denote this map by

⊕
i∈I Ti .

Let (V , C, u) be an order unit space with V �= {0}. Then V is called irreducible if
for every collection ((Vi , Ci , ui ))i∈I of order unit spaces such that V is isomorphic to⊕

i∈I Vi as order unit spaces, there exists i ∈ I such that Vj = {0} for all j ∈ I\{i}.
Otherwise, V is called reducible. If there exists an order projection P in V with P �= 0
and P �= I , then

(P[V ], P[C], Pu) and ((I − P)[V ], (I − P)[C], (I − P)u)

are non-trivial order unit spaces and V is as order unit space isomorphic to the order
direct sum P[V ] ⊕ (I − P)[V ]. Hence, V is reducible.

Let (V , C) be a directed partially ordered vector space. The order theoretical centre
of V is the set

E(V ) :={T : V → V : T is linear and there exists λ ≥ 0 such that − λI ≤T ≤λI },

which is a partially ordered vector space with order unit I . If V is Archimedean, then
so is E(V ). In that case, Buck shows in [5] that the restriction of each T ∈ E(V ) to
any subspace of V that is an order unit space corresponds to a multiplication operator
on the functional representation of that subspace. As a consequence, he obtains that
E(V ) is commutative under composition. In our analysis, we also need properties of
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the operator norm on E(V ), stated in Corollary 2.7(i),(ii), and (iv) below. As it is little
extra work, we will reprove Buck’s result for order unit spaces and make the treatment
of E(V ) self-contained.

A norm ‖·‖ on V is called semimonotone if there exists a constant κ such that
for all v,w ∈ C with v ≤ w we have ‖v‖ ≤ κ‖w‖. The norm is called regular if
‖v‖ = inf{‖w‖: − w ≤ v ≤ w} for every v ∈ V . If ‖·‖ is a semimonotone norm
on V such that C is closed and V is complete, then the norm is equivalent to a regular
norm and then every element of E(V ) is a bounded operator; see [19, Corollary 3.4.13
and Lemma 5.4.1]. In that case, we obtain

E(V ) = {T ∈ B(V ) : there exists λ ≥ 0 such that − λI ≤ T ≤ λI }, (2.5)

where B(V ) denotes the vector space of all bounded linear operators on V . Note that
for a general order unit space, the order theoretical centre E(V ) can be equipped with
both the operator norm and the order unit norm. In Corollary 2.7 below, we show that
these norms coincide.

For a linear subspace X ⊆ C(
), where
 is a compact Hausdorff space, we denote
the point evaluation at a point w ∈ 
 by δw, that is, δw(x) = x(w) for every x ∈ X .
For a function f ∈ C(
), we define the corresponding multiplication operator M f on
C(
) by

M f (g)(w) = f (w)g(w), w ∈ 
, g ∈ C(
).

Note that ‖M f ‖ = ‖ f ‖∞. We show that the operators in the order theoretical cen-
tre of an order unit space correspond to multiplication operators on the functional
representation.

Proposition 2.5 Let 
 be a compact Hausdorff space and let X ⊆ C(
) be a linear
subspace containing the constant one function 1. Assume that


0 := {w ∈ 
 : δw : X → R is a Riesz homomorphism}

is dense in 
. Let T : X → X be a linear map with 0 ≤ T ≤ I . Then for every x ∈ X
and for every w ∈ 
 we have

(T x)(w) = (T1)(w)x(w).

Proof Let w ∈ 
0. Define ϕ : X → R by

ϕ(x) := (T x)(w), x ∈ X .

Then ϕ : X → R is linear and for every x ∈ X with x ≥ 0 we have 0 ≤ T x ≤ I x = x ,
so

ϕ(x) = (T x)(w) ≥ 0 and ϕ(x) = (T x)(w) ≤ x(w) = δw(x).
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Hence 0 ≤ ϕ ≤ δw. Due to Proposition 2.4, we have δw ∈ �X , hence δw is an
extreme point of �X . Then δw is extremal in the dual cone of X by [19, Lemma
1.5.19]. Therefore, there exists λ ∈ [0, 1] such that ϕ = λδw. In particular, λ =
λδw(1) = ϕ(1) = (T1)(w). Thus, for every x ∈ X we have

(T x)(w) = ϕ(x) = λδw(x) = (T1)(w)x(w).

Next, let x ∈ X . As T x , T1, and x are continuous on 
 and 
0 is dense in 
, it
follows that (T x)(w) = (T1)(w)x(w) for every w ∈ 
. ��

The next result and Corollary 2.7(iii) are due to Buck in [5].

Theorem 2.6 Let (V , C, u) be an order unit space and let � : V → C(�) be its
functional representation.

(i) We have E(V ) = {T : V → V : � ◦ T = M�(T u) ◦ �}.
(ii) For every S, T ∈ E(V ), we have that � ◦ (S ◦ T ) = M f g ◦ �, where f = �(Su)

and g = �(T u).

Proof (i) Let T ∈ E(V ). Let α > 0 be such that −I ≤ αT ≤ I and denote S :=
I − 1

2αT . Then 0 ≤ S ≤ I . Since� is an order isomorphism from V onto the subspace
X := �[V ] of C(�), we have that � equals

{w ∈ � : δw : X → R is a Riesz homomorphism}
= {w ∈ � : w : V → R is a Riesz homomorphism},

which is dense in �. Proposition 2.5 yields for every x ∈ X and every w ∈ � that

(� ◦ S ◦ �−1x)(w) = (� ◦ S ◦ �−11)(w)x(w),

so that for every v ∈ V we have

((� ◦ S)v)(w) = ((� ◦ S)u)(w)(�v)(w).

Hence, ((� − 1
2α� ◦ T )v)(w) = (1 − 1

2α� ◦ T u)(w)(�v)(w), which yields that
� ◦ T v = M�(T u)(�(v)).

Conversely, let T : V → V be such that � ◦ T = M�(T u) ◦�. There is α > 0 with
−α1 ≤ �(T u) ≤ α1. Then for every v ∈ C we have −α�(v) ≤ �(T v) ≤ α�(v),
so that −α I ≤ T ≤ α I .

(i i) We have � ◦ (S ◦ T ) = (� ◦ S) ◦ T = (M f ◦ �) ◦ T = M f ◦ (� ◦ T ) =
M f ◦ (Mg ◦ �) = (M f ◦ Mg) ◦ � = M f g ◦ �. ��
Corollary 2.7 Let (V , C, u) be an order unit space.

(i) E(V ) is a subspace of B(V ) and the operator norm and the order unit norm
induced by I coincide.

(ii) E(V ) is a closed subspace of B(V ).
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(iii) E(V ) with composition is a commutative associative algebra.
(iv) For every S, T ∈ E(V ) we have

‖ST ‖ ≤ ‖S‖‖T ‖, ‖T 2‖ = ‖T ‖2, and ‖T 2‖ ≤ ‖S2 + T 2‖.

Proof (i) We use the functional representation of V and Theorem 2.6. Let T ∈ E(V ),
denote f := �(T u), and put X := �[V ]. Then � ◦ T = M f ◦ �. Since 1 = �(u) ∈
�[V ], both the operator norm and the order unit norm of M f on X equal ‖ f ‖∞.
Indeed, for every x ∈ X we have ‖M f x‖∞ ≤ ‖ f ‖∞‖x‖∞ and ‖M f 1‖∞ = ‖ f ‖∞,
hence ‖M f ‖ = ‖ f ‖∞. For every α ≥ 0 and every x ∈ X with x ≥ 0 we have that
−α I x ≤ M f x ≤ α I x if and only if −αx(w) ≤ f (w)x(w) ≤ αx(w) for all w ∈ �,
hence −α I ≤ M f ≤ α I if and only if −α1 ≤ f ≤ α1. Thus, ‖M f ‖I = ‖ f ‖∞.

As � : V → X is an order isomorphism, for all x ∈ C we have −λx ≤ T x ≤ λx
if and only if −λ�(x) ≤ M f �(x) ≤ λ�(x). Hence ‖T ‖I = ‖M f ‖I , where ‖T ‖I

is the order unit norm in E(V ) and ‖M f ‖I is the order unit norm in E(C(
)). Also,
� : V → X is an isometry, so T is bounded and ‖T ‖ = ‖M f ‖. Thus, ‖T ‖I =
‖M f ‖I = ‖ f ‖∞ = ‖M f ‖ = ‖T ‖.

(i i) Let (Tn)n be a sequence in E(V ) and let T ∈ B(V ) be such that ‖Tn −T ‖ → 0.
For every n ∈ N denote fn := �(Tnu). By (i), we have ‖ fn − fm‖∞ = ‖M fn −
M fm ‖ = ‖Tn − Tm‖ for every n, m ∈ N, hence ( fn)n is a Cauchy sequence in C(�).
Let f ∈ C(�) be the limit of ( fn)n . Next we show that � ◦ T = M f ◦ �. Indeed, let
v ∈ V . As � ◦ Tn = M fn ◦ � for every n ∈ N, we have

‖(� ◦ T )v − (M f ◦ �)v‖ =‖(� ◦ T )v − (� ◦ Tn)v + (M fn ◦ �)v − (M f ◦ �)v‖
≤ ‖�‖‖Tn − T ‖‖v‖ + ‖ fn − f ‖∞‖v‖ → 0,

hence � ◦ T = M f ◦ �. Hence �(T u) = f and T ∈ E(V ) by Theorem 2.6(i).
(i i i) Let S, T ∈ E(V ) and let α, β ∈ R be such that −α I ≤ S ≤ α I and

−β I ≤ T ≤ β I . As β I + T is positive, we obtain S(β I + T ) ≤ α(β I + T ), hence

ST ≤ αβ I + αT − βS ≤ 3αβ I .

Similarly, ST ≥ −3αβ I , hence ST ∈ E(V ).
Let f = �(Su) and g = �(T u). By Theorem 2.6(i i), we have

� ◦ (ST ) = M f g ◦ � = Mg f ◦ � = � ◦ (T S),

hence ST = T S.
(iv) Clearly, the operator norm is submultiplicative. With the aid of Theorem

2.6(i i), we obtain

‖T 2‖ = ‖Mg2‖ = ‖g2‖∞ = ‖g‖2∞ = ‖T ‖2.

Similarly, ‖T 2‖ = ‖g2‖∞ ≤ ‖ f 2+g2‖∞ = ‖M f 2+g2‖ = ‖M2
f +M2

g‖ = ‖S2+T 2‖,
since (M2

f + M2
g ) ◦ � = � ◦ (S2 + T 2). ��
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Remark 2.8 Let (V , C, u) be an order unit space and Q = {T 2 : T ∈ E(V )}. By
Corollary 2.7(i i i), we have Q ⊆ E(V ). Moreover, Q ⊆ E(V )+. Indeed, let T ∈ E(V )

and f = �(T u). As in Corollary 2.7(iv), we have � ◦ T 2 = M f 2 ◦ �. Since � is an
order isomorphism, it follows that T 2 is positive. In general, the sets Q and E(V )+
differ. For an example, let V := Pol[0, 1] be the subspace of C([0, 1]) consisting
of all polynomials. Then V is an order unit space with the constant function 1 as
order unit. Since V is order dense in C([0, 1]), the space C([0, 1]) (with identity as
embedding map) is the functional representation of V . Further, V is an associative
subalgebra of C([0, 1]). Let f (t) = t2 + 1. The multiplication operator M f maps V
into V . Also, 0 ≤ M f ≤ 2I , hence M f ∈ E(V )+. Suppose that there exists T ∈ E(V )

such that T 2 = M f . Let g = T1. Then, by Theorem 2.6, we have T = Mg , so that
Mg2 = T 2 = M f , hence g2 = f and thus g is not a polynomial. Then T1 = Mg1 is
not in V , which yields a contradiction. Note that we also obtain that Q is not a cone,
as M1, Mt →t2 ∈ Q.

Corollary 2.9 Let (V , C, u) be an order unit space and let � : V → C(�) be its
functional representation. If �[V ] is a subalgebra of C(�), then E(V ) = {�−1 ◦
M f ◦ � : f ∈ �[V ]}.

3 Preliminaries on JB-algebras

A Jordan algebra (A, ◦) is a commutative, not necessarily associative algebra such
that

x ◦ (y ◦ x2) = (x ◦ y) ◦ x2 for all x, y ∈ A.

A JB-algebra A is a normed, complete Jordan algebra over the scalar fieldR satisfying

‖x ◦ y‖ ≤ ‖x‖ ‖y‖ ,∥∥∥x2
∥∥∥ = ‖x‖2 ,

∥∥∥x2
∥∥∥ ≤

∥∥∥x2 + y2
∥∥∥

for all x, y ∈ A. If A is finite-dimensional and there is an inner product on A such
that 〈x ◦ y, z〉 = 〈x, y ◦ z〉 for all x, y, z ∈ A, then A is a so called Euclidean Jordan
algebra, see [10, Chapter III]. As mentioned in the introduction, an important example
of a JB-algebra is the set of self-adjoint elements of a C∗-algebra equipped with the
Jordan product x ◦ y := 1

2 (xy + yx).
The elements x, y ∈ A are said to operator commute if x ◦ (y ◦ z) = y ◦ (x ◦ z)

for all z ∈ A. An element x ∈ A is said to be central if it operator commutes with all
elements of A. The algebraic centre of A, denoted by Z(A), consists of all elements
that operator commute with all elements of A, and it is an associative subalgebra
of A. In the remainder of this paper, it will be assumed that all JB-algebras have an
algebraic unit e and then e ∈ Z(A). The following representation theorem can be found
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in [13, Theorem 3.2.2]. Here C(
) is endowed with supremum-norm and pointwise
multiplication.

Theorem 3.1 Every associative unital JB-algebra is isometrically isomorphic as a
JB-algebra to C(
) for some compact Hausdorff space 
.

Corollary 3.2 The algebraic centre Z(A) of a unital JB-algebra is isometrically iso-
morphic as a JB-algebra to C(
) for some compact Hausdorff space 
.

The spectrum σ(x) of x ∈ A is defined to be the set of λ ∈ R such that x − λe
is not invertible in JB(x, e), the JB-subalgebra of A generated by x and e, see [13,
Section 3.2.3]. Furthermore, there is a continuous functional calculus, which means
that there exists an isometric JB-algebra isomorphism from JB(x, e) onto C(σ (x)),
see [3, Corollary 1.19]. The cone of elements with non-negative spectrum is denoted
by A+, and equals the set of squares by the functional calculus, and its interior A◦+
consists of all elements with strictly positive spectrum. This cone turns A into an order
unit space with order unit e, that is,

‖x‖ = inf{λ > 0 : −λe ≤ x ≤ λe}.

The Jordan triple product {·, ·, ·} is defined as

{x, y, z} := (x ◦ y) ◦ z + (z ◦ y) ◦ x − (x ◦ z) ◦ y

for x, y, z ∈ A. The linear map Ux : A → A defined by Ux y := {x, y, x} will play an
important role and is called the quadratic representation of x . It is always a positive
map by [3, Theorem 1.25]. In case x is invertible, it follows thatUx is an automorphism
of the cone A+ and its inverse is Ux−1 by [3, Lemma 1.23] and [3, Theorem 1.25]. A
state ϕ of A is a positive linear functional on A such that ϕ(e) = 1. The set of states
on A is called the state space of A. The extreme points of the state space are referred
to as pure states on A (cf. [3, A 17]). In the notation introduced for pre-Riesz spaces
in the previous section, the state space is denoted by �A and the pure states by �A,
which would be the Riesz homomorphisms from the functional representation of A
given in (2.2).

A JBW-algebra M is the Jordan analogue of a von Neumann algebra: it is a
monotone complete JB-algebra with unit e and a separating set of normal states,
or equivalently, a JB-algebra that is a dual space. A state ϕ on M is said to be normal
if for any bounded increasing net (xi )i with supremum x we have ϕ(xi ) → ϕ(x). The
(convex) set of normal states on M is called the normal state space of M . The topology
on M defined by the duality of M and the normal state space of M is called the σ -weak
topology. That is, we say a net (xi )i converges σ -weakly to x if ϕ(xi ) → ϕ(x) for
all normal states ϕ on M . The Jordan multiplication on a JBW-algebra is separately
σ -weakly continuous in each variable and jointly σ -weakly continuous on bounded
sets by [3, Proposition 2.4] and [3, Proposition 2.5]. Furthermore, for any x the corre-
sponding quadratic representation Ux is σ -weakly continuous by [3, Proposition 2.4].
If A is a JB-algebra, then one can extend the Jordan product uniquely to its bidual A∗∗
turning A∗∗ into a JBW-algebra, see [3, Corollary 2.50].
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An element p in a JBW-algebra M is a projection if p2 = p. For a projection
p ∈ M , the orthogonal complement, e − p, will be denoted by p⊥ and a projection q
is orthogonal to p precisely when q ≤ p⊥, see [3, Proposition 2.18]. In each JBW-
algebra M , the spectral theorem [3, Theorem 2.20] holds, which implies, in particular,
that the linear span of projections is norm dense in M , see [13, Proposition 4.2.3].

Let (Vi )i∈I be a family of JBW-algebras with units ui . The algebraic direct sum of
(Vi )i∈I is the vector space given by (2.3) endowed with the norm given by (2.4) and
componentwise multiplication. According to [3, Definition 2.42], the algebraic direct
sum

⊕
i∈I Vi is a JBW-algebra. If Vi is atomic for every i ∈ I, then the direct sum⊕

i∈I Vi is atomic, as well. As the positive elements are the squares, the algebraic
direct sum and the order direct sum of JBW-algebras coincide.

Any central projection p, i.e., p is a projection that is also a central element,
decomposes the JBW-algebra M as an algebraic direct sum of JBW-subalgebras such
that M = Up M ⊕ Up⊥ M , see [3, Proposition 2.41]. If a JBW-algebra M has trivial
algebraic centreRe, M is called a factor. A minimal element in the set of all non-zero
projections of a JBW-algebra is called an atom. A JBW-algebra in which every non-
zero projection dominates an atom is called atomic. Our investigation of atomic JBW-
algebras relies on the representation given in Theorem 1.1 and the list (i)–(iii) (above
that theorem) of atomic JBW-algebras that are factors. Those factors are discussed
in detail in “Appendix A’. It is shown there that they are indeed JBW-algebras and
factors. Moreover the states and pure states are described. The latter are used in the
subsequent section to show that the factors are disjointness free anti-lattices.

4 Factors of atomic JBW-algebras are anti-lattices

Recall that every unital JB-algebra A is an order unit space. Therefore, its functional
representation (C(�A),�A) given by (2.2) is a vector lattice cover. All elements of�A

are states of A, and the elements of�A are precisely the pure states. Disjointness of two
elements a, b ∈ A is equivalent to disjointness of �A(a) and �A(b) in C(�A), which
is pointwise disjointness on �A. To show that a and b are not disjoint, it suffices to
find one element ϕ ∈ �A such that ϕ(a) = (�A(a))(ϕ) �= 0 and, similarly, ϕ(b) �= 0.

4.1 Disjointness in B(Hq)sa and B(H)sa

We will use vector states to show that there are no non-zero disjoint operators in
B(Hq)sa. For a normalised vector v ∈ Hq the corresponding vector state is given by
ϕv(T ) := 〈T v, v〉, T ∈ B(Hq). By Lemma A.6, vector states of B(Hq)sa are pure
states.

Proposition 4.1 There are no non-zero disjoint operators in B(Hq)sa.

Proof Let S and T be non-zero. Then there are normalised vectors v and w such that
〈T v, v〉 �= 0 and 〈Sw,w〉 �= 0 by Lemma A.3 and the functional calculus [3, Corol-
lary 1.19]. Consider the corresponding vector states ϕv and ϕw. If either 〈T w,w〉 �= 0
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or 〈Sv, v〉 �= 0, then either

ϕw(T )ϕw(S) �= 0 or ϕv(T )ϕv(S) �= 0.

On the other hand, if 〈T w,w〉 = 〈Sv, v〉 = 0, choose n ≥ 1 such that n2〈T v, v〉 +
2Re(〈T v,w〉) �= 0, 2Re(〈Sv,w〉) + 1

n2
〈Sw,w〉 �= 0, and nv + 1

n w �= 0. Define

q0 := nv + 1
n w and q := ‖q0‖−1 q0. Then

〈T q0, q0〉 = n2〈T v, v〉 + 2Re(〈T v,w〉) + 1
n2

〈T w,w〉 �= 0

and

〈Sq0, q0〉 = n2〈Sv, v〉 + 2Re(〈Sv,w〉) + 1
n2

〈Sw,w〉 �= 0.

Hence, we have

ϕq(T )ϕq(S) �= 0.

We conclude that in either case there exists a pure state ϕ by Lemma A.6 such that
ϕ(T )ϕ(S) �= 0, so T and S are not disjoint. ��

The argument to show that there are no non-zero disjoint operators in B(H)sa where
H is a complex or real Hilbert space is analogous to the proof of Proposition 4.1.

Proposition 4.2 Let H be a real or complex Hilbert space. Then there are no non-zero
disjoint operators in B(H)sa.

This proposition is a generalisation of [17, Proposition 16], where the space of sym-
metric n × n-matrices with the cone of positive semi-definite matrices is considered.

4.2 Disjointness in spin factors

To show that there are no non-zero disjoint elements in a spin factor H ⊕ R, we will
use the characterisation of the pure states given in Lemma A.13.

Proposition 4.3 There are no non-zero disjoint elements in a spin factor.

Proof Let (x, λ) and (y, μ) be non-zero elements of H ⊕R. Then there are pure states
ϕ and ψ such that ϕ((x, λ)) �= 0 and ψ((y, μ)) �= 0. According to Lemma A.13,
there are unit vectors v and w of H such that the state ϕ is represented by (v, 1) and
the state ψ is represented by (w, 1). We have 〈v, x〉 + λ �= 0 and 〈w, y〉 + μ �= 0.

Let us first consider the case v �= w and v �= −w. Then v and w are linearly
independent. For every t ∈ (0, 1), define ut = tv + (1 − t)w. Note that ut �= 0.
Define ηt = (ut/‖ut‖, 1) for every t ∈ (0, 1). By Lemma A.13, ηt is a pure state.
The equation ηt ((x, λ)) = 0 holds for at most two values of t ∈ (0, 1). Indeed,
ηt ((x, λ)) = 0 comes down to 〈ut , x〉 + λ‖ut‖ = 0, which yields

〈tv + (1 − t)w, x〉 = −λ
√

t2 + (1 − t)2 + 2t(1 − t)〈v,w〉.
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Squaring both sides and sorting terms leads to the following quadratic equation in t ,

(
〈v, x〉2 + 〈w, x〉2 − 2〈v, x〉〈w, x〉 − 2λ2 + 2λ2〈v,w〉

)
t2

+
(
−2〈w, x〉2 + 2〈v, x〉〈w, x〉 + 2λ2 − 2λ2〈v,w〉

)
t + 〈w, x〉2 − λ2 = 0.

If the equation would be satisfied for three or more values of t , then its coefficients
are zero, so λ2 = 〈w, x〉2, 2〈v, x〉〈w, x〉 − 2〈w, x〉2〈v,w〉 = 0, and

〈v, x〉2 − 〈w, x〉2 − 2〈v, x〉〈w, x〉 + 2〈w, x〉2〈v,w〉 = 0. (4.1)

Addition of the latter two equations yields 〈v, x〉2 = 〈w, x〉2 and from (4.1) we then
also obtain

〈v, x〉〈w, x〉 = 〈w, x〉2〈v,w〉.

Observe that 〈w, x〉 �= 0, as otherwise 〈v, x〉 = 0 and λ = 0, whereas 〈v, x〉 + λ �= 0.
Therefore, from 〈v, x〉2 = 〈w, x〉2 we obtain either 〈v, x〉 = 〈w, x〉 and 〈v,w〉 = 1,
or 〈v, x〉 = −〈w, x〉 and 〈v,w〉 = −1. As v and w are unit vectors, it follows from
Cauchy–Schwarz that v = w or v = −w, which both yield a contradiction. Thus,
the equation ηt ((x, λ)) = 0 holds for at most two values of t ∈ (0, 1). Similarly,
ηt ((y, μ)) = 0 holds for at most two values of t ∈ (0, 1). We conclude that there
exists t ∈ (0, 1) with ηt ((x, λ)) �= 0 and ηt ((y, μ)) �= 0. Therefore, (x, λ) and (y, μ)

are not disjoint.
Let us now address the case v = w or v = −w. Since H is at least two dimensional,

there exists a unit vector z ∈ H which is linearly independent of v and w. For every
s ∈ (0, 1), define ws = w + sz and note that ws �= 0. Then ψs = (ws/‖ws‖, 1) is a
pure state by Lemma A.13. It follows by continuity that there exists s ∈ (0, 1) such
that ψs((y, μ)) = 〈ws, y〉/‖ws‖ + μ �= 0. The first part of the proof with ψ replaced
by ψs yields that (x, λ) and (y, μ) are not disjoint. ��

A finite-dimensional space with a Lorentz cone is a special case of Proposition 4.3
and for such a space the result also follows from [17, Theorem 15].

4.3 Disjointness in M3(O)sa

We will use the characterisation of the pure states in Lemma A.18 to show that there
are no non-zero disjoint elements in M3(O)sa.

Proposition 4.4 There are no non-zero disjoint elements in M3(O)sa.

Proof Let A, B ∈ M3(O)sa be non-zero and distinct. By Lemma A.18, there are
minimal projections P and Q such that 〈A, P〉 �= 0 and 〈B, Q〉 �= 0. If either 〈A, Q〉 �=
0 or 〈B, P〉 �= 0, then A and B are not disjoint. If 〈A, Q〉 = 〈B, P〉 = 0,we distinguish
two cases.
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As case 1, consider P ◦ Q �= 0. Then 〈P, Q〉 �= 0 by [10, Exercise III.3]. Note that
〈P, Q〉 ≤ √〈P, P〉√〈Q, Q〉 = 1 by theCauchy–Schwarz inequality, and 〈P, Q〉 < 1
as otherwise

〈P − Q, P − Q〉 = 〈P, P〉 − 2〈P, Q〉 + 〈Q, Q〉 = 0,

which is impossible as P and Q are distinct. Hence, there exists θ ∈ (
0, 1

2π
)
such

that cos2 θ := 〈P, Q〉. Define

P ′ :=
(
1 0
0 0

)
, Q′ :=

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
, R′ :=

(
cos2 θ 1

2 cos θ sin θ
1
2 cos θ sin θ 0

)
.

The Jordan algebra generated by P and Q (without I3) is isomorphic to M2(R)sa via
the map

αP + βQ + γ P ◦ Q → αP ′ + βQ′ + γ R′

by [10, Proposition IV.1.6]. By Remark A.15, all the minimal projections in M2(R)sa
are of the form

( 1
2 + x2 x1

x1
1
2 − x2

)
,

where x21 + x22 = 1
4 . Let n ∈ N. With x1 :=

√
1
n − 1

n2
and x2 := 1

n − 1
2 , it follows that

S′
n :=

⎛
⎝

1
n

√
1
n − 1

n2√
1
n − 1

n2
1 − 1

n

⎞
⎠

is a minimal projection in M2(R)sa. A computation shows that

S′
n = αn P ′ + βn Q′ + γn R′,

where

αn := 1

n
+ (n − 1) cos2 θ

n sin2 θ
− 2

√
n − 1 cos θ

n sin θ
,

βn := n − 1

n sin2 θ
,

γn := 2
√

n − 1

n cos θ sin θ
− 2(n − 1)

n sin2 θ
.

Since S′
n is a projection in M2(R)sa with trace(S′

n) = 1, the preimage

Sn := αn P + βn Q + γn P ◦ Q
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is a projection in M3(O)sa with trace(Sn) = 1 as well. The spectral decomposition
of Sn expands Sn as a linear combination of minimal projections and the spectrum
of Sn consists of the coefficients in this linear combination. As Sn is a projection,
we have σ(Sn) = {0, 1}. Since the trace of Sn equals 1, only one term in its spectral
decomposition can be non-zero. Thus, Sn is a minimal projection. Suppose there is
a subsequence of (〈A, Sn〉)n≥1 such that 〈A, Snk 〉 = 0 for all k ≥ 1. Note that as
n → ∞,

αn → cos2 θ

sin2 θ
, βn → 1

sin2 θ
, and γn → − 2

sin2 θ
.

By letting k → ∞ in 〈A, Snk 〉 = 0, we find

〈
A,

cos2 θ

sin2 θ
P + 1

sin2 θ
Q − 2

sin2 θ
P ◦ Q

〉
= 0.

As 〈A, Q〉 = 0, we obtain 〈A, P ◦ Q〉 = 1
2 〈A, cos2 θ P〉. Hence 0 = 〈A, Snk 〉 =

(αnk + 1
2 cos

2 θγnk )〈A, P〉 for all k ≥ 1. But

αnk + 1

2
cos2 θγnk = 1

nk
−

√
nk − 1 cos θ

nk sin θ
< 0

for all nk > 1
cos2 θ

, which yields a contradiction. Hence, there is a number N ≥ 1 such
that 〈A, Sn〉 �= 0 for all n ≥ N .

There is a number M ≥ 1 such that 〈B, Sn〉 �= 0 whenever n ≥ M . Indeed, suppose
there is a subsequence such that 〈B, Snk 〉 = 0 for all k ≥ 1. Taking limits yields

〈
B,

cos2 θ

sin2 θ
P + 1

cos2 θ
Q − 2

sin2 θ
P ◦ Q

〉
= 0.

As 〈B, P〉 = 0, we obtain

〈B, P ◦ Q〉 = sin2 θ

2 cos2 θ
〈B, Q〉.

Hence

0 = 〈B, Snk 〉 =
(

βnk + sin2 θ

2 cos2 θ
γnk

)
〈B, Q〉.

Note that

βn + sin2 θ

2 cos2 θ
γn = n − 1

n

(
1

sin2 θ
− 1

cos2 θ

)
+

√
n − 1 sin θ

n cos3 θ
,

which is non-zero for large n. Thus, we arrive at a contradiction.
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Therefore, for any n ≥ N , M , we have 〈A, Sn〉〈B, Sn〉 �= 0, which yields that A
and B are not disjoint, as 〈·, Sn〉 is a pure state by Lemma A.18.

Next, we consider the case 2, namely P ◦ Q = 0. We will construct a minimal
projection R such that R ◦ P �= 0 and 〈B, R〉 �= 0. Then case 1 of the proof with
Q replaced by R yields that A and B are not disjoint. To construct R, we use that
M3(O)sa is a factor, so there is a C ∈ M3(O)sa such that P ◦ C = Q ◦ C = 1

2C and
C2 = P + Q by [10, Proposition IV.1.4(i)] and [10, Proposition IV.2.4(i)]. Note that
〈C, P〉 = 〈C, P2〉 = 〈P ◦C, P〉 = 1

2 〈C, P〉, so 〈C, P〉 = 0. Similarly, it follows that
〈C, Q〉 = 0, and hence,

trace(C) = trace
( 1
2C + 1

2C
) = trace(P ◦ C) + trace(Q ◦ C)

= 〈C, P〉 + 〈C, Q〉 = 0.

For numbers α, β such that α2 + β2 = 1, a straightforward calculation shows that

α2P + β2Q + αβC

is a projection. Its trace equals 1, so it is a minimal projection. Define for n ≥ 1 the
minimal projection Rn by

Rn := 1

n2 P +
(
1 − 1

n2

)
Q + 1

n

√
1 − 1

n2 C .

Since 〈B, P〉 = 0 and 〈B, Q〉 �= 0, there exists N such that for n ≥ N we have
〈B, Rn〉 �= 0. Moreover, there exists n ≥ N such that Rn ◦ P �= 0, so R := Rn is as
required. ��

5 Order direct sums of order unit spaces

By Theorem 1.1, every atomic JBW-algebra is a direct sum of atomic JBW-algebra
factors. In Sect. 4, we have shown that these factors are disjointness free anti-lattices.
Thus, every atomic JBW-algebra is the order direct sum of order unit spaces that are
disjointness free anti-lattices. In this section, we consider order direct sums of order
unit spaces, we investigate their vector lattice covers, relate Riesz* homomorphisms
on the direct sum with those on the components, and we determine the functional
representation. For clarity of the ideas, we first consider the case of two components
and then formulate the general case, which is entirely similar.

Lemma 5.1 Let Y1 and Y2 be partially ordered vector spaces and X1 ⊆ Y1, X2 ⊆ Y2
subspaces. If Xi is order dense in Yi (i ∈ {1, 2}), then X1 × X2 is order dense in
Y1 × Y2.

Proof Let y = (y1, y2) ∈ Y1 ×Y2 and S := {(x1, x2) : xi ∈ Xi , xi ≥ yi , i ∈ {1, 2}}.
Clearly, y is a lower bound of S. Let z = (z1, z2) ∈ Y1 × Y2 be a lower bound of S.
For i ∈ {1, 2}, we have zi ≤ xi for every xi ∈ Xi with xi ≥ yi . As Xi is order dense
in Yi , we obtain zi ≤ yi . Hence z ≤ y. Therefore y = inf S. ��
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We note an immediate consequence of Lemma 5.1.

Proposition 5.2 If X1, X2 are pre-Riesz spaces and (Y1, i1), (Y2, i2) vector lattice
covers of X1, X2, respectively, then (Y1 × Y2, i1 × i2) is a vector lattice cover of
X1 × X2.

We relate Riesz* homomorphisms on pre-Riesz spaces to Riesz* homomorphisms
on their Cartesian product.

Proposition 5.3 Let X1, X2 be pre-Riesz spaces and Z an Archimedean pre-Riesz
space.

(i) If h1 : X1 → Z is a Riesz* homomorphism, then

h : X1 × X2 → Z , (x1, x2) → h1(x1),

is a Riesz* homomorphism.
(ii) Assume that Z is a disjointness free anti-lattice. If h : X1 × X2 → Z is a Riesz*

homomorphism, then

h1 : X1 → Z , x → h(x, 0), h2 : X2 → Z , x → h(0, x),

are Riesz* homomorphisms, and there is k ∈ {1, 2} such that for all (x1, x2) ∈
X1 × X2 we have h(x1, x2) = hk(xk).

Proof For j ∈ {1, 2}, let (Y j , i j ) be a vector lattice cover of X j . Let (Z δ, iZ ) be the
Dedekind completion of Z , see [19, Theorem 2.1.13].

(i) Take for the Riesz completion Xρ
1 of X1 the Riesz subspace of Y1 generated by

i1[X1]. By Theorem 2.3, there exists a Riesz homomorphism hρ
1 : Xρ

1 → Z δ such that
hρ
1 ◦ i1 = iZ ◦ h1. As i1[X1] is majorizing in Y1, we have that Xρ

1 is majorizing in Y1.
By Theorem 2.2, there is a Riesz homomorphism ĥ1 : Y1 → Z δ extending hρ

1 . Define

ĥ : Y1 × Y2 → Z δ, (y1, y2) → ĥ1(y1).

Clearly, ĥ is linear. Moreover, for every (y1, y2) ∈ Y1 × Y2, we have

ĥ (|(y1, y2)|) = ĥ ((|y1|, |y2|)) = ĥ1 (|y1|) = ∣∣ĥ1 (y1)
∣∣ = ∣∣ĥ (y1, y2)

∣∣,

hence ĥ is a Riesz homomorphism. For every (x1, x2) ∈ X1 × X2, we have

iZ (h(x1, x2)) = iZ (h1(x1)) = hρ
1 (i1(x1)) = ĥ1(i1(x1)) = ĥ (i1(x1), i2(x2))

= ĥ ((i1 × i2)(x1, x2)) .

A combination of Proposition 5.2 and Theorem 2.3 yields that h is a Riesz* homo-
morphism.

(i i) Let Y ρ be the Riesz subspace of Y1 × Y2 generated by (i1 × i2)[X1 × X2].
According to Theorem 2.3, there is a Riesz homomorphism ĥ : Y ρ → Z δ such that
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ĥ ◦ (i1 × i2) = iZ ◦h. As Y ρ is majorizing in Y1 ×Y2, by Theorem 2.2, there is a Riesz
homomorphism H : Y1 × Y2 → Z δ such that H extends ĥ. In particular, for every
y ∈ (i1 × i2)[X1 × X2], we have H(y) = ĥ(y), therefore H ◦ (i1 × i2) = iZ ◦ h. For
every (y1, y2) ∈ Y1 × Y2, define

H1 : Y1 → Z δ, y1 → H(y1, 0), and H2 : Y2 → Z δ, y2 → H(0, y2).

H1 is linear, and for every y1 ∈ Y1 we have

H1(|y1|) = H((|y1|, 0)) = H(|(y1, 0)|) = |H(y1, 0)| = |H1(y1)|,

hence H1 is a Riesz homomorphism. Moreover, for every x ∈ X1, we have

(H ◦ i1)(x) = H1 (i1(x)) = H ((i1(x), 0)) = H ((i1(x), i2(0)))

= H ((i1 × i2)(x, 0)) = iZ (h(x, 0)) = iZ (h1(x)),

hence H1◦i1 = iZ ◦h1. Similarly, H2 is aRiesz homomorphismwith H2◦i2 = iZ ◦h2. It
follows by Theorem 2.3 that h1 and h2 are Riesz* homomorphisms. It remains to show
that there exists k ∈ {1, 2} such that h(x1, x2) = hk(xk) for every (x1, x2) ∈ X1 × X2.
First, observe that for every (x1, x2) ∈ X1 × X2 we have

h(x1, x2) = h(x1, 0) + h(0, x2) = h1(x1) + h2(x2).

If h1 = 0 then we choose k = 2. Otherwise, if h1 �= 0, we show that h2 = 0. Indeed,
choose x1 ∈ X1 such that h1(x1) �= 0. For every x2 ∈ X2, we have (i1(x1), 0) ⊥
(0, i2(x2)) in Y1 × Y2, therefore H (i1(x1), 0) ⊥ H (0, i2(x2)) in Z δ . Since

H (i1(x1), 0) = H1 (i1(x1)) = iZ (h1(x1)) �= 0,

and Z is a disjointness free anti-lattice, it follows that H (0, i2(x2)) = 0, hence

iZ (h2(x2)) = H2(i2(x2)) = H(0, i2(x2)) = 0,

which implies h2(x2) = 0. Thus, h2 = 0. ��
For an order unit space X , we have, by Proposition 2.4,

�X = {h : X → R : h is a Riesz* homomorphism, h(u) = 1} .

Therefore, we obtain the following consequence of Proposition 5.3.

Proposition 5.4 Let (X1, K1, u1) and (X2, K2, u2) be order unit spaces. Then (X1 ×
X2, K1 × K2, (u1, u2)) is an order unit space and

�X1×X2 = {
(x1, x2) → f (x1) : f ∈ �X1

} ∪ {
(x1, x2) → g(x2) : g ∈ �X2

}
.
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Moreover, if we consider the disjoint union topology on �X1 ∪ �X2 , then the map
J : �X1 ∪ �X2 → �X1×X2 given by

(J f )(x1, x2) :=
{

f (x1) if f ∈ �X1 ,

f (x2) if f ∈ �X2 ,

for (x1, x2) ∈ X1 × X2, is a homeomorphism.

Proof We apply Proposition 5.3 for Z := R.
Let h ∈ �X1×X2 . Let h1, h2, and k be as in Proposition 5.3(i i). Then hk(uk) =

h(u1, u2) = 1, hence hk ∈ �Xk .
Conversely, let h1 ∈ �X1 and define h as in Proposition 5.3(i). Then h(u1, u2) =

h1(u1) = 1, hence h ∈ �X1×X2 . For h2 ∈ �X2 , the proof is analogous.
It remains to show that J and J−1 are continuous. Let ( fi )i be a net in �X1 ∪ �X2

and let f ∈ �X1 ∪ �X2 be such that fi → f . Assume first that f ∈ �X1 . Then there
is i0 with fi ∈ �X1 for every i ≥ i0. Hence, for every (x1, x2) ∈ X1 × X2 and i ≥ i0,
we have

(J fi )(x1, x2) = fi (x1) → f (x1) = (J f )(x1, x2),

therefore J fi → J f . Similarly, if f ∈ �X2 , we obtain J fi → J f . Thus, J is
continuous. Since �X1 ∪ �X2 is compact and �X1×X2 is Hausdorff, it follows that
J−1 is continuous. ��
Corollary 5.5 The functional representation

(
C
(
�X1×X2

)
,�X1×X2

)
of X1 × X2 sat-

isfies

C
(
�X1×X2

) = C
(
�X1

)⊕ C
(
�X2

)
,

�X1×X2(x1, x2) = (
�X1(x1),�X2(x2)

)

for all x1 ∈ X1 and x2 ∈ X2.

Proposition 5.6 Let X1 and X2 be pre-Riesz spaces. Then X1 × {0} and {0} × X2 are
projection bands in X1 × X2.

Proof Let (Y1, i1), (Y2, i2) be vector lattice covers of X1, X2, respectively. By Propo-
sition 5.2, (Y1 × Y2, i1 × i2) is a vector lattice cover of X1 × X2.

Let x1 ∈ X1 and x2 ∈ X2. Then (i1(x1), 0) ⊥ (0, i2(x2)) in Y1 × Y2, hence
(x1, 0) ⊥ (0, x2) in X1×X2. Thus, X1×{0} ⊆ ({0}×X2)

d and {0}×X2 ⊆ (X1×{0})d.
Let (v1, v2) ∈ (X1 × {0})d. Then, for every x1 ∈ X1, we have

(i1(v1), i2(v2)) ⊥ (i1(x1), 0).

By order denseness of i1[X1] in Y1, we obtain (i1(v1), i2(v2)) ⊥ (y1, 0) for every
y1 ∈ Y1. Therefore, i1(v1) = 0, hence v1 = 0. We get (v1, v2) = (0, v2) ∈ {0} × X2.
Consequently, (X1 × {0})d ⊆ {0} × X2.
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We conclude (X1 × {0})d = {0} × X2, and, similarly, ({0} × X2)
d = X1 × {0}.

Thus, (X1 × {0})dd = X1 × {0}, which means that X1 × {0} is a band. Analogously,
{0} × X2 is a band. Finally, X1 × X2 = (X1 × {0}) ⊕ ({0} × X2), hence X1 × {0} and
{0} × X2 are projection bands. ��

Analogues of the statements of Proposition 5.4, Proposition 5.3, and Proposition
5.6 are valid for arbitrary direct sums of order unit spaces, as we state next without
proof.

Proposition 5.7 Let ((Vi , Ci , ui ))i∈I be a family of order unit spaces and, for every
i ∈ I, let Yi be an Archimedean partially ordered vector space and ji : Vi → Yi be a
bipositive linear map such that ji (ui ) is an order unit in Yi . Denote V = ⊕

i∈I Vi .

(i) If ji [Vi ] is order dense in Yi for every i ∈ I, then
⊕

i∈I ji [Vi ] is order dense in⊕
i∈I Yi . Consequently, if (Yi , ji ) is a vector lattice cover of Vi for every i ∈ I,

then (
⊕

i∈I Yi ,
⊕

i∈I ji ) is a vector lattice cover of V .
(ii) Let Z be a disjointness free anti-lattice. For every k ∈ I and every Riesz* homo-

morphism h : Vk → Z the map H : V → Z defined by

H(x) := h(x(k)), x ∈
⊕
i∈I

Vi ,

is a Riesz* homomorphism. Conversely, if H : V → Z is a Riesz* homomorphism,
then for every k ∈ I the map h : Vk → Z defined by

hk(v) := H(�k(v)), v ∈ Vk,

is a Riesz* homomorphism. Moroever, in the latter case there exists k ∈ I such
that H(v) = hk(v) for every v ∈ V .

(iii) We have

�V =
⋃
k∈I

{
x → f (x(k)) : V → R : f ∈ �Vk

}
.

Moreover, consider the disjoint union topology on
⋃

k∈I �Vk and the map
J : ⋃i∈I �Vi → �V given by (J ( f ))(x) = f (x(i)), where i ∈ I is such that
f ∈ �Vi . Then J is a homeomorphism.

6 Disjointness and bands in order direct sums of disjointness free
anti-lattices

In this section, we characterise disjointness and bands in atomic JBW-algebras. First,
we show that two elements in an order direct sum of order unit spaces are disjoint if
and only if they are componentwise disjoint.

Lemma 6.1 Let ((Vi , Ci , ui ))i∈I be a collection of order unit spaces with order direct
sum (V , C, u). Let v,w ∈ V . Then v and w are disjoint in V if and only if for every
i ∈ I the elements v(i) and w(i) are disjoint in Vi .
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Proof Assume that v and w are disjoint in V . We have

{v(i) + w(i),−v(i) − w(i)}u = {v(i) − w(i),−v(i) + w(i)}u.

Indeed, let z ∈ {v(i)+w(i),−v(i)−w(i)}u. Take t := sup j∈I ‖v( j)+w( j)‖u j and
define x ∈ V by x(i) = z and x( j) = tu j for every j ∈ I\{i}. Then x ∈ V and
x ≥ v + w,−v − w. As v and w are disjoint, we obtain x ≥ v − w,−v + w. In
particular, z = x(i) ∈ {v(i)−w(i),−v(i)+w(i)}u. The converse inclusion is proven
similarly. Thus, v(i) and w(i) are disjoint.

Next, assume that for every i ∈ I we have that v(i) and w(i) are disjoint. For
every z ∈ {v + w,−v − w}u we have z(i) ∈ {v(i) + w(i),−v(i) − w(i)}u, so
z ∈ {v −w,−v +w}u. Hence, {v +w,−v −w}u ⊆ {v −w,−v +w}u. The converse
inclusion follows similarly, so v and w are disjoint. ��

Next we observe that the components of an order direct sum of order unit spaces
are projection bands that are pairwise disjoint. Let ((Vi , Ci , ui ))i∈I be a collection
of order unit spaces with order direct sum (V , C, u). For every J ⊆ I, we define
PJ : V → V by PJ (v) = w, where wi = vi for every i ∈ J and wi = 0 otherwise.
Clearly, PJ is a projection with range �J

[⊕
i∈J Vi

]
, where �J is as defined below

(2.3).

Proposition 6.2 Let ((Vi , Ci , ui ))i∈I be a collection of order unit spaces with order
direct sum (V , C, u) and let J ⊆ I.

(i) PJ is a band projection.
(ii) �J

[⊕
i∈J Vi

]
is a projection band in V and is directed.

(iii) For every x ∈ �J
[⊕

i∈J Vi
]

and y ∈ �I\J
[⊕

i∈I\J Vi

]
we have that x and

y are disjoint.
(iv) We have �J

(
u|J

)dd = �J
[⊕

i∈J Vi
]
.

Proof (i) As PJ and I − PJ = PI\J both are positive, we have that PJ is an order
projection, hence PJ is a band projection by [11, Proposition 3.1].

(i i) Follows directly from (i) and the fact that �J
[⊕

i∈J Vi
]
has an order unit.

(i i i) For every i ∈ J we have y(i) = 0 and for every i ∈ I\J we have x(i) = 0.
It follows from Lemma 6.1 that x and y are disjoint.

(iv)Asu|J ∈ ⊕
i∈J Vi and�J

[⊕
i∈J Vi

]
is a band inV , we have�J

(
u|J

)dd ⊆
�J

[⊕
i∈J Vi

]
.

In the proof of the converse inclusion, we call a set S of a partially ordered vector
space X full if for every s, t ∈ S and x ∈ X with s ≤ x ≤ t we have x ∈ S.
As �J

(
u|J

)dd is a band, it is a full subspace by [19, Theorem 4.3.13 and Lemma
4.3.5]. For every w ∈ �J

[⊕
i∈J Vi

]
there exists λ such that −λu ≤ w ≤ λu, hence

−λ�J
(
u|J

) ≤ w ≤ λ�J
(
u|J

)
and, therefore, w ∈ �J

(
u|J

)dd. ��
Remark 6.3 Let (V , C, u) be an order unit space which is also an anti-lattice. Then V
is irreducible. Indeed, there are no non-trivial positive disjoint elements in V , hence
no non-trivial directed bands. Therefore, V is irreducible.
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A converse of Proposition 6.2 is true if the components in the order direct sum are
disjointness free anti-lattices.

Theorem 6.4 Let ((Vi , Ci , ui ))i∈I be a collection of order unit spaces that are dis-
jointness free anti-lattices with order direct sum (V , C, u).

(i) B ⊆ V is a band if and only if there exists J ⊆ I such that B = �J
[⊕

j∈J Vj

]
,

where it is understood that B = {0} for J = ∅.
(ii) Two non-zero x, y ∈ V are disjoint if and only if there is J ⊆ I with J �= ∅ and

I\J �= ∅ such that x ∈ �J
[⊕

i∈J Vi
]

and y ∈ �I\J
[⊕

i∈I\J Vi

]
.

Proof (i) Let B be a band in V . Define

J := {i ∈ I : there is a v ∈ B such that v(i) �= 0}.

Let v ∈ B. For every i ∈ I\J we have v(i) = 0, hence v ∈ �J (v|J ) ∈
�J

[⊕
j∈J Vj

]
. For the converse inclusion, first observe that for every i ∈ J we

have

{x(i) : x ∈ B}d = {0}.

Indeed, there exists v ∈ B with v(i) �= 0.AsVi is disjointness free,we have {x(i) : x ∈
B}d ⊆ {v(i)}d = {0}.

Next, let v ∈ �J
[⊕

j∈J Vj

]
. Let z ∈ Bd and let i ∈ I. If i ∈ I\J , then v(i) = 0,

so v(i) and z(i) are disjoint. If i ∈ J , then, by Lemma 6.1, z(i) ∈ {x(i) : x ∈ B}d,
hence z(i) = 0, so that v(i) and z(i) are disjoint. By Lemma 6.1, we obtain that v and
z are disjoint. Thus, v ∈ Bdd = B.

(i i) Let x, y ∈ V be disjoint. Define J := {i ∈ I : x(i) �= 0}. Then
x ∈ �J

[⊕
i∈J Vi

]
. By Lemma 6.1, we have y(i) = 0 for every i ∈ J , as Vi is

disjointness free. Therefore, y ∈ �I\J
[⊕

i∈I\J Vi

]
. ��

Theorem 6.4 yields a characterisation of disjointness and bands atomic JBW-
algebras.

Theorem 6.5 Let M = ⊕
i∈I Mi be an atomic JBW-algebra with its factor decompo-

sition given in Theorem 1.1.

(i) B ⊆ M is a band if and only if B = ⊕
j∈J M j for J ⊆ I, where it is understood

that B = {0} for J = ∅.
(ii) Two non-zero x, y ∈ M are disjoint if and only if there is a J ⊆ I with J �= ∅

and I\J �= ∅ such that x ∈ ⊕
i∈J Mi and y ∈ ⊕

i∈I\J Mi .

7 Inverses of disjointness preserving bijections

In Banach lattices [12] and in finite-dimensional pre-Riesz spaces [18], the inverse of
a disjointness preserving bijection is disjointness preserving. We provide an example
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of a disjointness preserving bijection in an atomic JBW-algebra where the inverse
is not disjointness preserving. Further, we characterise the disjointness preserving
bijections with disjointness preserving inverse on order direct sums of disjointness
free anti-lattices.

Example 7.1 Define M to be the algebraic direct sum of the spin factor �2(N) ⊕ R

and �∞(N). We have that M is an atomic JBW-algebra. For x := (xn)n≥1 ∈ �2(N),
α ∈ R, and y := (yn)n≥1 ∈ �∞(N), define

T : M → M, (x, α, y) → ( (x2, x3, x4, . . .), α, (x1, y1, y2, y3, . . .) ) .

Then T is a linear map. Moreover, T is disjointness preserving. Indeed, let (x, α, y),
(v, β,w) ∈ M be disjoint. Then (x, α) and (v, β) are disjoint in �2(N)⊕R by Lemma
6.1. By Proposition 4.3, we get (x, α) = 0 or (v, β) = 0. Without loss of generality
assume (x, α) = 0. Then ( (x2, x3, x4, . . .), α) = 0. Further, (x1, y1, y2, y3, . . .) =
(0, y1, y2, y3, . . .) and (v1, w1, w2, w3, . . .) are disjoint in �∞(N). Hence T (x, α, y)

and T (v, β,w) are disjoint.
Note that the map

S : M → M, (x, α, y) → ( (y1, x1, x2, x3, . . .), α, (y2, y3, y4, . . .) )

is the inverse of T . The operator S is not disjointness preserving. Indeed,

a := ( (0, 0, 0, . . .), 1, (0, 0, 0, . . .) ) and b := ( (0, 0, 0, . . .), 0, (1, 0, 0, 0, . . .) )

are disjoint in M , but

Sa = a and Sb = ( (1, 0, 0, 0, . . .), 0, (0, 0, 0, . . .) )

are not disjoint in M , since ( (0, 0, 0, . . .), 1) and ( (1, 0, 0, 0, . . .), 0) are both non-zero
and, hence, cannot be disjoint in �2(N) ⊕ R.

Theorem 7.2 Let ((Vi , Ci , ui ))i∈I be a collection of order unit spaces that are dis-
jointness free anti-lattices with order direct sum (V , C, u). Let T : V → V be a
disjointness preserving linear bijection. Then T −1 is disjointness preserving if and
only if there is a bijection σ : I → I and there are linear bijections Ti : Vi → Vσ(i)

such that T = ⊕
i∈I Ti .

Proof Assume that T −1 is disjointness preserving. Fix i ∈ I. Since v := T (�i (ui )) �=
0, there is j ∈ I such that v( j) �= 0. Then v(k) = 0 for every k �= j . Indeed, the
elements � j (v( j)) and v − � j (v( j)) are disjoint, hence x := T −1(� j (v( j))) and
y := T −1(v − � j (v( j))) are disjoint. By Theorem 6.4(i i), there is K ⊆ I such that

x ∈ �K

[⊕
k∈K

Vk

]
and y ∈ �I\K

⎡
⎣ ⊕

i∈I\K
Vi

⎤
⎦ .
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But x + y = �i (ui ), so x = 0 or y = 0. Since v( j) �= 0, we have T (y) �= v =
T (�i (ui )), so x �= 0, hence y = 0. Thus, v = � j (v( j)) and, therefore, v(k) = 0 for
all k ∈ I\{ j}. Define σ(i) := j and for every w ∈ Vi define

Tiw := T (�i (w))( j). (7.1)

Clearly, Ti : Vi → Vσ(i) is linear.
Next, we show that σ : I → I is a bijection and, for every i ∈ I, Ti : Vi → Vσ(i)

is a bijection. Let i ∈ I and j := σ(i). We start by showing that T maps �i [Vi ]
into � j [Vj ]. For every w ∈ �i [Vi ] and z ∈ � j [Vj ]d we have that T (�i (ui )) and z
are disjoint, so T −1(z) and �i (ui ) are disjoint. According to Proposition 6.2(iv), we
have �i (ui )

dd = �i [Vi ]. As T −1(z) ∈ �i (ui )
dd, we obtain that T −1(z) and w are

disjoint. Therefore, z and T (w) are disjoint. Thus, T (w) ∈ � j [Vj ]dd = � j [Vj ] by
Theorem 6.4(i i). Consequently, T [�i [Vi ]] ⊆ �[(Vj ]. Applying the same arguments
to T −1 instead of T , there exists k ∈ I such that T −1[� j [Vj ]] ⊆ �k[Vk]. Then
ui = T −1(T ui ) ∈ �k(Vk), so k = i . It follows that Ti is a bijection from �i [Vi ] onto
� j [Vj ]. Moreover, it follows that σ is injective. To see that σ is surjective, let j ∈ I
and let i ∈ I be such that T −1(� j (u j )) ∈ �i [Vi ]. Then T [�i [Vi ]] ⊆ � j [Vj ], hence
σ(i) = j .

It remains to show that T = ⊕
i∈I Ti . Let v ∈ V and i ∈ I. Again, we write

j = σ(i). Since v − �i (v(i)) ∈ �i [Vi ]d and T is disjointness preserving, we obtain

T (v − �i (v(i))) ∈ (T [�i [Vi ])d = � j [Vj ]d,

hence (T (v − �i (v(i))))( j) = 0. Therefore, by (7.1),

(T v)( j) = T (�i (v(i)))( j) = Tiv(i),

which shows that T = ⊕
i∈I Ti .

For a proof of the converse implication, assume that there are a bijection σ : I → I
and linear bijections Ti : Vi → Vσ(i) such that T = ⊕

i∈I Ti . Let v,w ∈ V be disjoint
and denote x := T −1(v) and y := T −1(w). By Theorem 6.4(i i), there exists J ⊆ I
such that v ∈ �J

[⊕
i∈J Vi

]
and w ∈ �I\J

[⊕
i∈I\J Vi

]
. Denote K := σ−1[J ].

Then x ∈ �K
[⊕

i∈K Vi
]
. Indeed, for every i ∈ I, we have

(T (�K(x |K))) (σ (i)) = Ti (�K(x |K)(i)) .

If i ∈ K, then �K(x |K)(i) = x(i), so

Ti (�K(x |K)(i)) = Ti (x(i)) = (T x)(σ (i)) = v(σ (i)).

If i ∈ I\K, then �K(x |K)(i) = 0, so

Ti (�K(x |K)(i)) = 0 = v(σ (i)),
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since σ(i) ∈ σ [I\K] = I\σ [K] = I\J . Hence,

T (�K(x |K)) (σ (i)) = v(σ (i)) = (T x)(σ (i))

for every i ∈ I. Thus,�K(x |K) = x , which yields that x ∈ �K
[⊕

i∈K Vi
]
. Similarly,

it follows that y ∈ �I\K
[⊕

i∈I\K Vi

]
, so that x and y are disjoint. Consequently,

T −1 is disjointness preserving. ��
Corollary 7.3 Let M = ⊕

i∈I Mi be an atomic JBW-algebra with the corresponding
factor decomposition as in Theorem 1.1, and T : M → M be a disjointness preserving
linear bijection. Then T −1 is disjointness preserving if and only if there is a bijection
σ : I → I and there are linear bijections Ti : Mi → Mσ(i) such that T = ⊕

i∈I Ti .

Since every disjointness preserving bijection on a finite-dimensional order unit space
has a disjointness preserving inverse [18, Theorem 3.4], Theorem 7.2 also has the
following consequence.

Corollary 7.4 Let ((Vi , Ci , ui ))i∈{1,...,n} be a collection of finite-dimensional order
unit spaces that are disjointness free anti-lattices with order direct sum (V , C, u). Let
T : V → V be a disjointness preserving linear bijection. Then there is a bijection
σ : {1, . . . , n} → {1, . . . , n} and, for every i ∈ {1, . . . , n} there is a linear bijection
Ti : Vi → Vσ(i) such that T = ⊕

i∈{1,...,n} Ti .

8 The algebraic and order theoretical centre of unital JB-algebras

Recall that the order theoretical centre of an order unit space (V , C, u) is the partially
ordered vector space

E(V ) := {T ∈ B(V ) : − λI ≤ T ≤ λI for some λ > 0} .

The operator norm on E(V ) coincides with the order unit norm generated by the order
unit I , see Corollary 2.7. In the theory of Riesz spaces, it is known that the order
theoretical centre of a Riesz space is again a Riesz space, see [1, Theorem 3.30]. It
turns out that also for complete order unit spaces the order theoretical centre is a Riesz
space.

Proposition 8.1 Let (V , C, u) be a complete order unit space. Then E(V ) with com-
position is an associative unital JB-algebra, E(V ) is isomorphic as a JB-algebra to
a space of continuous functions on a compact Hausdorff space, and E(V ) is a Riesz
space.

Proof As V is complete, we have that E(V ) is a Banach space by Corollary 2.7(i i).
With Corollary 2.7(i i i) and (iv), it follows that E(V ) is an associative JB-algebra.
Clearly, I ∈ E(V ). According to Theorem 3.1, E(V ) is therefore isomorphic as a
JB-algebra to a space of continuous functions C(
). Since the positive cone of a JB-
algebra consists of the squares of the algebra, E(V ) and C(
) are then also isomorphic
as partially ordered vector spaces. Thus, E(V ) is a Riesz space. ��
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The order theoretical centre of an order unit space that is not complete need not be
a Riesz space, as the next example shows.

Example 8.2 Let V := C1([0, 1])with pointwise order and order unit 1. The inclusion
ofV inC([0, 1]) is the functional representation ofV . AsV is a subalgebra ofC([0, 1]),
Corollary 2.9 yields the identity E(V ) = {M f : f ∈ C1([0, 1])}. In particular, E(V )

is not a Riesz space as the map f → M f is an order isomorphism.

Let A be a unital JB-algebra. By Proposition 8.1, the order theoretical centre E(A) is
isomorphic as a JB-algebra to a space of continuous functions on a compact Hausdorff
space. According to Corollary 3.2, the same is true for the algebraic centre Z(A). In
this section, we show that the algebraic centre Z(A) and the order theoretical centre
E(A) are isometrically isomorphic as JB-algebras.

In what follows, we will denote the multiplication operator by an element x ∈ A
on A by Tx , that is, Tx y := x ◦ y for all y ∈ A. The isomorphism between Z(A)

and E(A) will be given by the map z → Tz . Thus, E(A) consists of multiplication
operators. This extends a result from Banach lattice theory, where it is known that the
order theoretical centre of a space of continuous functions on a compact Hausdorff
space consist of all multiplication operators, see [1, Theorem 3.32]. Let us collect
some elementary properties.

Lemma 8.3 Let A be a unital JB-algebra and let f : Z(A) → B(A) be given by
f (z) := Tz for all z ∈ Z(A). Then f is linear, multiplicative, injective, and f maps
the algebraic unit to the identity operator. Moreover, ‖Tz‖ = ‖z‖ for all z ∈ Z(A).

Proof It is clear that f is linear and that it maps the algebraic unit to the identity
operator. Since Tae = Tbe implies a = b for all a, b ∈ A, we get that f is injective.
As mentioned in the proof of [3, Proposition 1.52], we have that Tz◦w = Tz ◦ Tw for
any z, w ∈ Z(A), so f is an algebra homomorphism.

If x ∈ A is such that ‖x‖ ≤ 1, then ‖Tz x‖ = ‖z ◦ x‖ ≤ ‖z‖, so ‖Tz‖ ≤ ‖z‖.
Conversely, ‖Tz‖ ≥ ‖Tze‖ = ‖z‖. ��

The idea to show that z → Tz maps Z(A) onto E(A) is to consider the JBW-algebra
case first and investigate the order interval [0, e] in the JBW-algebra and the operator
interval [0, I ] in the order theoretical centre of the JBW-algebra. We extend the result
to JB-algebras by passing to the bidual.

Let M be a JBW-algebra. Recall that the operator interval [0, I ] consists of bounded
linear operators T : M → M such that 0 ≤ T ≤ I , see (2.5).

The predual M∗ of M generates the σ -weak operator topology on B(M) by letting
Ti → T if and only if ϕ(Ti x) → ϕ(T x) for all x ∈ M and all normal states ϕ ∈ M∗.
Note that the interval [0, I ] is closed for the σ -weak operator topology. Indeed, if
Ti → T for the σ -weak operator topology with Ti in [0, I ] for all i , then, for any
x ∈ M+ and any normal stateϕ, we haveϕ((I −Ti )x) ≥ 0 for all i , soϕ((I −T )x) ≥ 0
and T ≤ I by [3, Corollary 2.17]. Similarly, we find that T ≥ 0. It turns out that the
operator interval [0, I ] is actually compact for the σ -weak operator topology, which
is essentially [7, Remark 2.10(b)]. We provide the details.

Lemma 8.4 Let M be a JBW-algebra. The operator interval [0, I ] is compact for the
σ -weak operator topology.
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Proof If we identify M with (M∗)∗, then an operator T ∈ B(M) can be thought of as
T x(ϕ) := ϕ(T x) for all x ∈ M and all ϕ ∈ M∗ by [3, Corollary 2.17(2.11)]. Define
the linear map

� : (M⊗̂M∗)∗ → B(M) (M⊗̂M∗ is the projective tensor product)

by�(ψ)(x)(ϕ) := ψ(x ⊗ϕ) for all x ∈ M . We show that� is an isometry. Indeed, let
ϕ ∈ M∗ be such that ‖ϕ‖ ≤ 1. It follows that |�(ψ)(x)(ϕ)| = |ψ(x ⊗ϕ)| ≤ ‖ψ‖‖x‖,
so ‖�(ψ)(x)‖ ≤ ‖ψ‖‖x‖ and, therefore, ‖�(ψ)‖ ≤ ‖ψ‖. Let η ∈ M⊗̂M∗ and let

η =
∞∑

k=1

xk ⊗ ϕk

be a representation of η. For ψ ∈ (M⊗̂M∗)∗, it follows by continuity of ψ that

|ψ(η)| =
∣∣∣∣∣

∞∑
k=1

ψ(xk ⊗ ϕk)

∣∣∣∣∣ ≤
∞∑

k=1

|ψ(xk ⊗ ϕk)|

≤
∞∑

k=1

‖�(ψ)(xk)‖‖ϕk‖ ≤ ‖�(ψ)‖
∞∑

k=1

‖xk‖‖ϕk‖.

Taking the infimum over all such representations of η yields |ψ(η)| ≤ ‖�(ψ)‖‖η‖π

where ‖ · ‖π denotes the projective norm on M⊗̂M∗. Hence, ‖ψ‖ ≤ ‖�(ψ)‖ and we
conclude that � is an isometry.

Next we show that � is surjective. Indeed, let T ∈ B(M) and define the bilinear
map ϑ : M × M∗ → R by ϑ(x, ϕ) := ϕ(T x). By the universal property of the
projective tensor product, there is a unique bounded linear map ψ : M⊗̂M∗ → R

with ‖ψ‖ = ‖ϑ‖ such that ψ(x ⊗ ϕ) = ϑ(x, ϕ) = ϕ(T x). Hence, �(ψ) = T . We
conclude that � is an isometric isomorphism.

Equip B(M)with the σ -weak operator topology and the norm dual of the projective
tensor product M⊗̂M∗ with the weak* topology. If (ψi )i is a net in M⊗̂M∗ that
converges weak* to ψ , then

ϕ(�(ψi )(x)) = �(ψi )(x)(ϕ) = ψi (x ⊗ ϕ) → ψ(x ⊗ ϕ) = ϕ(�(ψ)(x)),

so�(ψi ) converges to�(ψ) in the σ -weak operator topology. Hence,� is continuous
with respect to the weak* topology and the σ -weak operator topology. It follows that
�−1 [[0, I ]] is a norm bounded and weak* closed set which is weak* compact by
the Banach-Alaoglu theorem. Therefore, [0, I ] is compact for the σ -weak operator
topology as it is the continuous image of a compact set. ��
Lemma 8.5 Let p be a projection in a JBW-algebra M. Then Up is in the operator
interval [0, I ] if and only if p is central.

Proof Let p ∈ M be a projection. Suppose Up is in [0, I ]. Then we have Upx ≤ x
for all positive x ∈ M , so p operator commutes with all elements in M+ by [3,
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Lemma 1.48]. As M+ generates M , it follows that p must be a central projection.
Conversely, if p is a central projection in M , then Upx ≤ x for all x ∈ M+ by [3,
Lemma 1.48], so Up is in the operator interval [0, I ]. ��

The following lemma characterises the extreme points of the positive ball [0, e] in
a JBW-algebra. This is [3, Proposition 1.40], but the proof there is not correct. We will
provide an alternative argument here.

Lemma 8.6 Let A be a JB-algebra with unit e. Then the extreme points of [0, e] are
precisely the projections in A.

Proof Let p be a projection and x, y ∈ [0, e] be such that p = t x + (1− t)y for some
0 < t < 1. Since t x ≤ p and (1− t)y ≤ p, it follows that Up⊥ x = Up⊥ y = 0. Thus,
Upx = x , and Up y = y by [3, Proposition 1.38]. Hence, x = Upx ≤ Upe = p =
t x + (1 − t)y and x ≤ y. Similarly, y ≤ p implies that y ≤ x and we find that p is
an extreme point of [0, e].

Let x be an extreme point of [0, e]. Then 2x − x2, x2 ∈ [0, e] by the functional
calculus [3, Corollary 1.19], so that x = 1

2 (2x − x2)+ 1
2 x2, hence x = x2 and x must

be a projection. ��
Next, we investigate the extreme points of the order interval [0, I ] in the space of

bounded linear operators on a JBW-algebra M . We have that 0 and I are extreme
points of [0, I ]. Indeed, if 0 = t S + (1 − t)T with S, T ∈ [0, I ] and t ∈ (0, 1),
then t S, (1 − t)T ≤ 0, so that S = T = 0. Similarly, if I = t S + (1 − t)T with
S, T ∈ [0, I ] and t ∈ (0, 1), then 0 = t(I − S) + (1− t)(I − T ) and both I − S and
I − T are in [0, I ], so I − S = I − T = 0. Hence S = T = I . Therefore, {0, I } is
a subset of the set of extreme points of [0, I ]. We will see below that every extreme
point in [0, I ] comes from a central projection. First, we need some more terminology
concerning projection operators on M .

A positive projection P : M → M with ‖P‖ = 1 is called complemented if there
is a positive projection Q : M → M with ‖Q‖ = 1 and

M+ ∩ ker P = M+ ∩ ran Q.

In this case, P and Q are said to be complementary. For a positive projection P : M →
M , the dual operator P∗ : M∗ → M∗ is a positive projection.

Lemma 8.7 Let M be a JBW-algebra and let T : M → M be a bounded linear
operator.

(i) If T ∈ [0, I ], then T ∗[M∗] ⊆ M∗.
(ii) If T ∗[M∗] ⊆ M∗, then T is σ -weakly continuous.

Proof (i) Let ϕ be a normal state. If (xi )i decreases to 0, then 0 ≤ T xi ≤ xi , so (T xi )i

decreases to 0, and T ∗ϕ(xi ) = ϕ(T xi ) → 0. Hence T ∗ϕ is a normal state.
(i i) Let (xi )i and x be such that ϕ(xi ) → ϕ(x) for every ϕ ∈ M∗. For each ϕ ∈ M∗,

we have T ∗ϕ ∈ M∗, so ϕ(T xi ) = T ∗ϕ(xi ) → T ∗ϕ(x) = ϕ(T x). ��
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For a bounded linear operator T : M → M with T ∗[M∗] ⊆ M∗, let T∗ denote the
restriction of T ∗ to M∗. A σ -weakly continuous positive projection P : M → M is
called bicomplemented if there is a σ -weakly continuous positive projection Q : M →
M such that P and Q are complementary, P∗[M∗] ⊆ M∗, Q∗[M∗] ⊆ M∗, and the
projections P∗ : M∗ → M∗ and Q∗ : M∗ → M∗ are complementary. If c is a central
projection, then Uc = Tc; see [3, (1.65) on p. 29].

Proposition 8.8 Let M be a JBW-algebra. A bounded linear operator T on M is an
extreme point of the interval [0, I ] if and only if it is of the form Tp for some central
projection p in M.

Proof Let T ∈ [0, I ] be an extreme point. Since 0 ≤ T 2 ≤ T and 0 ≤ 2T − T 2 ≤ I ,
we have T = 1

2 (2T − T 2) + 1
2T 2. Hence, T = T 2. Note that T and I − T are

complementary. By Lemma 8.7, the adjoint operators T ∗ and (I − T )∗ map normal
states to normal states and are σ -weakly continuous. Moreover, T∗ is in [0∗, I∗] with
T 2∗ = T∗, and T∗ is complemented by I∗ − T∗. Hence T is bicomplemented. By [3,
Theorem 2.83], it therefore follows that T = Up for some projection p in M . By
Lemma 8.5, we obtain that p must be a central projection, so that T = Tp.

Conversely, let p ∈ M be a central projection. According to Lemma 8.5, we have
Tp = Up ∈ [0, I ]. Let S, V ∈ [0, I ] be such that Tc = 1

2 S + 1
2V . Define x :=

Se, y := V e, S0 := S − Tx , and V0 := V − Ty . Note that S0e = V0e = 0.
Evaluating Tp at e yields p = 1

2 x + 1
2 y. By Lemma 8.6, we obtain x = y = p,

so S0 = S − Tx = 2Tp − V − Tx = Ty − V = −V0. Further, as T 2
p = Tp, we

have Tp + Tp S0 = Tp + Tp S − T 2
p = Tp S ≤ Tp, so Tp S0 ≤ 0. Thus, −Tp S0 is a

positive operator which vanishes at the order unit e, so that −Tp S0 = 0. But now, by
[3, Proposition 1.47], S0 = Tp S0+Tp⊥ S0 = Tp⊥ S0, hence Tp⊥ S = Tp⊥ S0 = S0 ≥ 0.
As S0e = 0, we get S0 = 0. Hence Tp is an extreme point of [0, I ]. ��

Let M be a JBW-algebra with algebraic centre Z(M). By [3, Proposition 2.36],
the algebraic centre Z(M) is a JBW-subalgebra of M with algebraic unit e. Denote
[0, e]Z(M) := [0, e] ∩ Z(M). Since the unit ball [−e, e] is σ -weakly compact in M
by the Banach-Alaoglu theorem, the interval [0, e] is σ -weakly compact as well, as
it is the image of [−e, e] under the homeomorphism x → 1

2 (x + e). Since Jordan
multiplication is σ -weakly continuous in each separate variable, Z(M) is σ -weakly
closed in M . We conclude that [0, e]Z(M) is therefore σ -weakly compact in M .

Proposition 8.9 Let M be a JBW-algebra with algebraic centre Z(M). The map
f : [0, e]Z(M) → [0, I ] defined by f (z) := Tz is a homeomorphism with respect
to the σ -weak topology on M and the σ -weak operator topology on [0, I ].
Proof We start by an observation that we need three times. If (zi )i and z in M are
such that zi converges σ -weakly to z, then Tzi converges to Tz in the σ -weak opera-
tor topology. Indeed, Jordan multiplication is σ -weakly continuous in each separate
variable, so (zi ◦ x)i converges σ -weakly to z ◦ x . Hence, for every normal state ϕ,
we have ϕ(Tzi x) = ϕ(zi ◦ x) → ϕ(z ◦ x) = ϕ(Tz x).

We will show next that f indeed maps into [0, I ]. By Lemma 8.6, every extreme
point z of [0, e]Z(M) is a projection. As z is also central, we have by Proposition 8.8
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that Tz ∈ [0, I ]. Since [0, I ] is convex, for every convex combination z of extreme
points of [0, e]Z(M), we have Tz ∈ [0, I ]. The set [0, e]Z(M) is convex and σ -weakly
compact, so the Krein-Milman theorem yields that, for any z ∈ [0, e]Z(M), there is
a net (zi )i that converges σ -weakly to z, where each zi is a convex combination of
extreme points of [0, e]Z(M). Then Tzi ∈ [0, I ] for every i and Tzi converges to Tz in
the σ -weak operator topology. By Lemma 8.4, it follows that Tz ∈ [0, I ].

From the observation at the beginning of the proof, it is clear that f is continuous.
To see that f is injective, observe that Tx e = Tye implies x = y for every x, y ∈ M .

Next, we show that f is surjective. For every extreme point T of [0, I ], Proposition
8.8 yields that T = Tz for some central projection z in M . Then z ∈ [0, e]Z(M). As
[0, e]Z(M) is convex, for every convex combination T of extreme points of [0, I ], there
exists z ∈ [0, e]Z(M) such that T = Tz . Let T ∈ [0, I ]. According to Lemma 8.4, the
convex set [0, I ] is compact. By the Krein-Milman theorem, there is a net (Ti )i in
[0, I ] that converges to T in the σ -weak operator topology, where each Ti is a convex
combination of extreme points of [0, I ]. For each i , there is zi ∈ [0, e]Z(M) such that
Ti = Tzi . Since [0, e]Z(M) is σ -weakly compact, there is a subnet (w j ) j of (zi )i that
converges σ -weakly to an element z of [0, e]Z(M). But then Tw j → Tz . As (Tw j ) j is
a subnet of (Ti )i , we obtain T = Tz . Thus, f is surjective.

Since [0, e]Z(M) is σ -weakly compact and [0, I ] is Hausdorff for the σ -weak oper-
ator topology, it follows that f is a homeomorphism. ��

We are now in a position to show that the algebraic centre and the order theoretic
centre of a JBW-algebra are isometrically isomorphic as JBW-algebras.

Theorem 8.10 Let M be a JBW-algebra. Consider its algebraic centre Z(M) and its
order theoretical centre E(M) equipped with the order unit norm induced by I .

(i) The map f : Z(M) → E(M) defined by f (z) := Tz is a multiplicative isometric
isomorphism.

(ii) The order unit norm induced by I and the operator norm coincide on E(M).
(iii) f is a homeomorphism if we equip Z(M) with the σ -weak topology and E(M)

with the σ -weak operator topology.

Proof (i) Due to Lemma 8.3, it remains to show that f maps into and onto E(M), and
that it is an isometry with respect to the order unit norm on E(M). We first check that
it maps into E(M). If z ∈ Z(M) is non-zero, then w := 1

2 (e + ‖z‖−1z) ∈ [0, e]Z(M).
By Theorem 8.9, we obtain Tw ∈ [0, I ], hence −‖z‖I ≤ Tz ≤ ‖z‖I , which means
that Tz ∈ E(M).

To see that f is surjective, let T ∈ E(M). For λ > 0 such that −λI ≤ T ≤ λI ,
we have 1

2 I + 1
2λ T ∈ [0, I ], so, by Theorem 8.9, there is a zλ ∈ [0, e]Z(M) such that

1
2 I + 1

2λ T = Tzλ . Then T = Tλ(2zλ−e), which shows that f is surjective.
We show that f is an isometry. From −‖z‖I ≤ Tz ≤ ‖z‖I , it follows that ‖Tz‖I ≤

‖z‖, where ‖·‖I denotes the the order unit norm on E(M) induced by I . On the other
hand, −‖Tz‖I I ≤ Tz ≤ ‖Tz‖I I . By evaluating at e, we find that −‖Tz‖I e ≤ z ≤
‖Tz‖I e, so that ‖Tz‖I ≥ ‖z‖.

(i i) By (i) and Lemma 8.3, we get ‖Tz‖ = ‖z‖ = ‖Tz‖I .
(i i i) Let (zi )i be a net in Z(M) that converges σ -weakly to z. Then zi ◦ x converges

σ -weakly to z ◦ x for any x ∈ M as Jordan multiplication is separately σ -weakly
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continuous. For any normal state ϕ, it follows that ϕ(Tzi x) → ϕ(Tz x) and so Tzi

converges to Tz in the σ -weak operator topology. On the other hand, if Tzi converges
to Tz in the σ -weak operator topology, then, for any normal state ϕ, we find that
ϕ(zi ) = ϕ(Tzi e) → ϕ(Tze) = ϕ(z), so zi → z in the σ -weak topology. ��

The main step to obtain a result for the general case of JB-algebras is to modify
Theorem 8.9 in the following way.

Proposition 8.11 Let A be a unital JB-algebra with algebraic centre Z(A). The map
f : [0, e]Z(A) → [0, I ] defined by f (z) := Tz is a homeomorphism with respect to the
weak topology on A and the weak operator topology on [0, I ].

Proof According to [3, Corollary 2.50], the bidual A∗∗ of the JB-algebra A is a JBW-
algebra. Moreover, A ∩ Z(A∗∗) = Z(A). Indeed, every element of A ⊆ A∗∗ that
operator commutes with every element of A∗∗ also operator commutes with every
element of A, so A ∩ Z(A∗∗) ⊆ Z(A). To see that Z(A) ⊆ A ∩ Z(A∗∗), let z ∈ Z(A)

and let x, y ∈ A∗∗ be arbitrary. By Goldstine’s theorem, A is weak* dense in A∗∗,
so there are nets (xi )i and (y j ) j in A that weak* converge to x and y, respectively.
Then xi ◦ (z ◦ y j ) = Txi Tz y j = TzTxi y j = z ◦ (xi ◦ y j ) for every i and j . Due to [3,
Corollary 2.50], Jordan multiplication is separately weak* continuous on A∗∗. Hence,
xi ◦ (z ◦ y) = z ◦ (xi ◦ y) for all i and, thus, x ◦ (z ◦ y) = z ◦ (x ◦ y). The latter means
that z and x operator commute in A∗∗, so that z ∈ A ∩ Z(A∗∗).

We proceed by showing that f maps indeed into [0, I ]. Let z ∈ [0, e]Z(A) and
let x ∈ A+. By the functional calculus [3, Corollary 1.19], x has a positive square
root x1/2 and the quadratic representation Ux1/2 of x1/2 is a positive operator. As z is
central, we have

Ux1/2 z = {x1/2, z, x1/2} = 2Tx1/2Tz x1/2 − TzTx1/2x1/2 = TzTx1/2x1/2 = Tz x .

(8.1)

It follows that Tz x = Ux1/2 z ≥ 0. Also, Tz x = Ux1/2 z ≤ Ux1/2e = x . Hence,
0 ≤ Tz ≤ I .

The map f is injective, since Tx e = Tye implies x = y. To see that f is surjective,
let T ∈ [0, I ]. Then the double adjoint operator T ∗∗ of T satisfies 0∗∗ ≤ T ∗∗ ≤
I ∗∗, where 0∗∗ and I ∗∗ denote the zero operator and the identity operator on A∗∗,
respectively. By Theorem 8.9, there exists z ∈ [0, e]Z(A∗∗) such that T ∗∗x = z ◦ x for
all x ∈ A∗∗. Note that left multiplication by z leaves Z(A∗∗) invariant and that T ∗∗
leaves A invariant. Thus, T ∗∗ leaves the intersection A ∩Z(A∗∗) = Z(A) invariant. In
particular, z = T ∗∗e ∈ Z(A), since e is also the identity of A∗∗ by [3, Corollary 2.50].
It follows that T = T ∗∗|A = Tz , so that T = f (z).

Next we show that f is continuous. Let (zi )i be a net in [0, e]Z(A) that converges
weakly to z ∈ [0, e]Z(A). Then for any state ϕ on A and x ∈ A+, it follows with the
aid of (8.1) that

∣∣ϕ(Tzi x) − ϕ(Tz x)
∣∣ = ∣∣ϕ(Tzi −z x)

∣∣ = ∣∣U∗
x1/2ϕ(zi − z)

∣∣ → 0,
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hence Tzi → Tz for the weak operator topology. If Tzi → Tz with respect to the weak
operator topology in [0, I ], then for any state ϕ on A, we have

ϕ(zi ) = ϕ(Tzi e) → ϕ(Tze) = ϕ(z),

so zi → z weakly. We conclude that f is a homeomorphism with respect to the weak
topology on A and the weak operator topology on [0, I ]. ��

In the proof of Theorem 8.10, we can now replace Theorem 8.9 by Theorem 8.11
and, thus, we obtain the following result on the algebraic centre and order theoretical
centre of unital JB-algebras.

Theorem 8.12 Let A be a unital JB-algebra. Consider its algebraic centre Z(A) and
its order theoretical centre E(A) equipped with the order unit norm induced by I .

(i) The map f : Z(A) → E(A) defined by f (z) := Tz is a multiplicative isometric
isomorphism.

(ii) The order unit norm induced by I and the operator norm coincide on E(A).
(iii) f is a homeomorphism if we equip Z(A) with the weak topology and E(A) with

the weak operator topology.

9 The order theoretical centre of order unit spaces whose cone is
positively spanned by extreme vectors

In this section, we further investigate a certain class of complete order unit spaces
(including all finite-dimensional ones) for which the order theoretical centre is Rn .
The order theoretical centre, just as in the case of (atomic) JBW-algebras, contains
information about the decomposability of the order unit space in terms of order direct
sums. In particular, it turns out that the order theoretical centre is isomorphic to R

when the order unit space is irreducible or an anti-lattice.
A non-zero element p ∈ C is said to be extreme if, for every x ∈ C with x ≤ p,

there exists λ ≥ 0 such that x = λp. The set of all extreme elements ofC is denoted by
ext(C). We will consider order unit spaces with the property that Span+ext(C) = C .
The natural cone of C([0, 1]) does not have extreme elements, hence does not satisfy
this property.

Lemma 9.1 Let (V , C, u) be an order unit space. If V is finite-dimensional, then
Span+ext(C) = C.

Proof By [19, Corollary 5.4.11], the dual space V ∗ of V is directed and then [19,
Proposition 1.5.13] yields that the cone C∗ of V ∗ has a non-empty interior. Then C∗∗
has a compact base by [19, Theorem 1.5.21] and, according to [19, Lemma 2.6.8], we
have thatC∗∗ is naturally isomorphic toC . Thus, the coneC has a compact base S. Due
to [19, Lemma 1.5.19], the extreme elements of C correspond to the extreme points
of S. Since S is a compact convex set in a finite-dimensional space, Minkowski’s
theorem yields that S equals the convex hull of its extreme points. It follows that
Span+ext(C) = C . ��
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We consider a direct sum of a collection of order unit spaces ((Vi , Ci , ui ))i∈I
and use the notations introduced below (2.3). Denote by Pi the order projection onto
�i [Vi ].
Lemma 9.2 Let ((Vi , Ci , ui ))i∈I be a collection of order unit spaces with order direct
sum (V , C, u).

(i) Let W be a projection band in V with P the order projection onto W such that
(W , C ∩ W , Pu) is an irreducible order unit space. Then there exists i ∈ I such
that W ⊆ �i [Vi ].

(ii) If p ∈ ext(C), then there exists i ∈ I such that p = Pi p and p(i) ∈ ext(Ci ).
(iii) If Span+ext(C) = C, then Span+ext(Ci ) = Ci for every i ∈ I.

Proof (i) For every i ∈ I, we have that P = Pi P + (I − Pi )P . Since W is irreducible
and P is the identity on W , we obtain that Pi P = 0 or (I − Pi )P = 0. There exists
i ∈ I such that Pi P �= 0 and then P = Pi P and, therefore, W ⊆ �i [Vi ].

(i i) For every i ∈ I, we have �i (p(i)) ≤ p, so there is λi ≥ 0 with �i (p(i)) =
λi p. Using that p �= 0, we choose i ∈ I with p(i) �= 0. Then λi �= 0. For all j �= i
we have that � j (p( j)) and �i (p(i)) are disjoint, so that λ j p and λi p are disjoint,
which yields that λ j = 0. Therefore, p( j) = 0. Hence p = Pi p.

If x ∈ Ci is such that x ≤ p(i), then there is λ ≥ 0 such that �i (x) = λp as p is
extreme in C . Hence, x = (�i (x))(i) = λp(i). Thus, p(i) is extreme in Ci .

(i i i) Let v ∈ Ci . By assumption, there are p1, . . . , pn ∈ ext(C) and λ1, . . . , λn ≥
0 such that �i (v) = ∑n

k=1 λk pk . By (i i), for every k ∈ {1, . . . , n}, there exists
ik ∈ I such that pk = Pik pk and pk(ik) ∈ ext(Cik ). Then v = (�i (v))(i) =∑n

k=1 λk pk(i) and, for every k ∈ {1, . . . , n} with ik �= i , we have pk(i) = 0. Hence,
v ∈ Span+ext(Ci ). ��
Lemma 9.3 If (V , C, u) is an order unit space such that Span+ext(C) = C, then it
is the order direct sum of finitely many irreducible order unit spaces. Moreover, this
decomposition is unique up to possibly reordering the indices.

Proof By assumption, we can write the order unit u = λ1 p1 + · · · + λn pn , where
λk > 0 and pk ∈ ext(C). Suppose thatV is reducible and thatV = ⊕

i∈I Vi is an order
direct sum of order unit spaces ((Vi , Ci , ui ))i∈I . By Lemma 9.2(i i), for every k ∈
{1, . . . , n}, there exists ik ∈ I such that pk = Pik pk and pk(ik) ∈ ext(Cik ). Let J =
{ik : k ∈ {1, . . . , n}} and let P be the order projection onto the band �J

[⊕
i∈J Vi

]
.

Then I − P is a positive order projection as well and the operator norm satisfies
‖I − P‖ = ‖(I − P)u‖ = 0, so P = I . Hence, V = �J

[⊕
i∈J Vi

]
. Note that,

for every i ∈ I\J and every x ∈ Vi , we have that u and �i (x) are disjoint. Hence,
Vi = {0} for every i ∈ I\J . It follows that at most n of the summands Vi are non-zero.

Thus, each decomposition of V into a direct sum of order unit spaces has at most
n non-trivial summands. By splitting up reducible summands inductively, it follows
that V equals the direct sum of finitely many irreducible order unit spaces.

Suppose that ((Vi , Ci , ui ))i∈{1,...,m} and ((W j , C j , u j )) j∈{1,...,n} are irreducible
order unit spaces such that V is isomorphic to

⊕m
i=1 Vi and to

⊕n
j=1 W j . Then there

is a bipositive surjective linear map � : ⊕m
i=1 Vi → ⊕n

j=1 W j .
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Fix k ∈ {1, . . . , m}. Since �k[Vk] is a projection band in
⊕m

i=1 Vi , we have
that �[�k[Vk]] is a projection band in

⊕n
j=1 W j . Let P be the order projection

in
⊕n

j=1 W j onto �[�k[Vk]]. Then, by Lemma 9.2(i), there exists j ∈ {1, . . . , n}
such that �[�k[Vk]] ⊆ �̃ j [W j ], where �̃ j denotes the natural embedding of W j into⊕n

j=1 W j .

Similarly, there exists k′ ∈ {1, . . . , n} such that �−1[�̃ j [W j ]] ⊆ �k′ [Vk′ ]. Then

�[�k Vk]] = P[�[�k[Vk]]] ⊆ P[�̃ j [W j ]] = P[��−1[�̃ j [W j ]]] ⊆ P[�[�k′ [Vk′ ]]],

hence P[�[�k′ [Vk′ ]]] �= {0}. It follows that k′ = k. Indeed, if k′ �= k, then
�k′ [Vk′ ] and �k[Vk] are disjoint, hence �[�k′ [Vk′ ]] and �[�k[Vk]] are disjoint, so
that P[�[�k′ [Vk′ ]]] = {0}, which is a contradiction. Then

�[�k[Vk]] ⊆ �̃ j [W j ] = ��−1�̃ j [W j ] ⊆ ��k[Vk],

so �[�k[Vk]] = �̃ j [W j ]. For distinct elements k, we obtain distinct elements j this
way, hence n ≥ m. We conclude that n = m and that the decompositions as order
direct sums are unique up to possibly reordering the indices. ��

We proceed with preparations for the proof of Theorem 9.7. In that proof, to a
positive element of the order theoretical centre, we will associate a positive bijection
with a positive inverse. Hereby we will use the following lemma, which relies on
completeness of the space.

Lemma 9.4 The order theoretical centreE(V ) of a complete order unit space (V , C, u)

equipped with the order unit norm ‖·‖I is a Banach space and if T ∈ [0, I ] is such
that ‖T ‖I < 1, then I − T is invertible with inverse

∑∞
k=0 T k.

Proof Suppose that (Tn)n≥1 is a Cauchy sequence of operators in E(V ) for ‖·‖I .
Let ε > 0. Then there is an N ≥ 1 such that −ε I ≤ Tn − Tm ≤ ε I whenever
n, m ≥ N . Hence, for x ∈ C , it follows that −ε‖x‖u ≤ (Tn − Tm)x ≤ ε‖x‖u, so
‖(Tn − Tm)x‖ ≤ ε‖x‖ whenever n, m ≥ N . This implies that (Tn x)n≥1 is a Cauchy
sequence in V . Consequently, we can define an additive positively homogeneous map
τ : C → V by τ(x) := limn→∞ Tn x , which can be extended to a linear map T : V →
V via T x = T (y − z) := τ(y) − τ(z) see [19, Theorem 1.2.5], where x = y − z
is a difference of positive elements y and z. Since (Tn)n≥1 is bounded with respect
to ‖·‖I , by say M , it follows that −M I ≤ Tn ≤ M I for all n ≥ 1, and, for any
x ∈ C , we therefore have −Mx ≤ Tn x ≤ Mx . Taking the limit as n → ∞ yields
−M I ≤ T ≤ M I , so T ∈ E(V ). For every n, m ≥ N and every x ∈ C , we have
−εx ≤ (Tn − Tm)x ≤ εx , so −εx ≤ (Tn − T )x ≤ εx , hence −ε I ≤ Tn − T ≤ ε I .
Therefore, ‖Tn − T ‖I ≤ ε. Thus, E(V ) is a Banach space.

Note that, for any positive S, T ∈ E(V ), it follows that ‖ST ‖I ≤ ‖S‖I ‖T ‖I .
So, if T ∈ [0, I ] is such that ‖T ‖I < 1, then

∑∞
k=1 T k converges in the Banach

space (E(V ), ‖·‖I ) to an operator R. We have that (I − T )
∑N

k=0 T k → (I − T )R
as N → ∞. Since I − (I − T )

∑N
k=0 T k = T N+1 for every N and T N+1 → 0 as

N → ∞, we obtain I −(I −T )R = 0, so that (I −T )R = I . Similarly, R(I −T ) = I .
It follows that (I − T ) is invertible in E(V ) with inverse R. ��
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Lemma 9.5 Let (V , C, u) be an order unit space and let S : V → V be a positive
linear bijection with a positive inverse such that S ≤ I . For every p ∈ ext(C), there
exists λ > 0 such that Sp = λp.

Proof Since S ∈ [0, I ], for every p ∈ ext(C) we have Sp ≤ p, hence there is λ > 0
with Sp = λp. ��

In the next proposition,we dealwith irreducible spaces and proceedwith the general
case in the subsequent theorem.

Proposition 9.6 Let (V , C, u) be a complete irreducible order unit space such that
Span+ext(C) = C. Then the order theoretical centre of V is isomorphic to R as
partially ordered vector spaces.

Proof Let T ∈ [0, I ]. Then ‖ 1
2T ‖I < 1, so S := I − 1

2T is invertible with positive
inverse by Lemma 9.4. For every λ > 0, define the set

Kλ := {q ∈ ext(C) : Sq = λq} .

By Lemma 9.5, ext(C) = ⋃
λ Kλ and Kλ and Kμ are disjoint whenever λ �= μ. We

wish to show that, actually, there exists λ > 0 such that ext(C) = Kλ. Choose λ > 0
such that Kλ �= ∅. By assumption, every element of C is a positive linear combination
of elements of ext(C). Define π : C → Span+Kλ by

π(α1 p1 + · · · + αn pn) :=
∑
k∈M

αk pk,

where αk ≥ 0, pk ∈ ext(C) for all k, and M := {k ∈ {1, . . . , n} : pk ∈ Kλ}. We will
first show that π is well defined. Let α1 p1 + · · ·+αn pn = β1 p1 + · · ·+βn pn , where
αk, βk ≥ 0 and pk ∈ ext(C) for all k ∈ {1, . . . , n}. Note thatwe allowcoefficients to be
0, so that wemay indeed assume that the same vectors pk appear in both positive linear
combinations. Denote N := {1, . . . , n}\M . Without loss of generality, we assume that
all pk with k ∈ N are linearly independent, where we have to allow that αk, βk ∈ R

for k ∈ N . For k ∈ N , let λk > 0 be such that pk ∈ Kλk . We have

∑
k∈M

αk pk −
∑
k∈M

βk pk =
∑
k∈N

βk pk −
∑
k∈N

αk pk . (9.1)

If we apply S to this equality and divide by λ it follows that

∑
k∈M

(αk − βk)pk =
∑
k∈N

(βk − αk)
λk
λ

pk, (9.2)

and by subtracting (9.1) from (9.2) we obtain

∑
k∈N

(βk − αk)
(

λk
λ

− 1
)

pk = 0.
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Since all pk with k ∈ N are assumed to be linearly independent and λk �= λ for all
k ∈ N , it follows that βk − αk = 0 for all k ∈ N . Thus, by (9.1),

∑
k∈M αk pk =∑

k∈M βk pk and, therefore, π is well-defined.
Note that π is positively homogeneous. Furthermore, π is additive. Indeed, let

x, y ∈ C and write x = α1 p1 + · · · + αn pn and y = β1 p1 + · · · + βn pn , where
pk ∈ ext(C) and αk, βk ≥ 0 for all k. With the set M as defined above, we obtain

π(x + y) =
∑
k∈M

(αk + βk)pk = π(x) + π(y).

It follows that we can extend π to a positive linear operator P : V → Span Kλ by
writing any x ∈ V as x = y − z for y, z ∈ C and defining Px := π(y) − π(z), see
[19, Theorem 1.2.5]. Since we also have that P ≤ I , we obtain an order projection on
V . Suppose there are λ,μ > 0 with λ �= μ such that Kλ, Kμ �= ∅. Then P �= 0 and
P �= I , which contradicts the fact that V is irreducible.We conclude that ext(C) = Kλ

for some λ > 0. Then S = λI and therefore, T = 2(1− λ)I . Hence, the map t → t I
is a bijection from R to the order theoretical centre of V , which clearly also is a linear
order isomorphism. ��
Theorem 9.7 Let (V , C, u) be a complete order unit space such that Span+ext(C) =
C. There exist irreducible order unit spaces (Vk, Ck, uk), k ∈ {1, . . . , n}, such that V
is isomorphic to the order direct sum

⊕n
k=1 Vk. Moreover, the order theoretical centre

of V is isomorphic to R
n as order unit spaces.

Proof Lemma 9.3 yields that V is isomorphic to the order direct sum
⊕n

k=1 Vk and
also that it is unique up to possibly reordering the indices. If T ∈ [0, I ], then, by
Lemma 9.4, we have that S := I − 1

2T is a positive linear bijection with positive
inverse and S ∈ [0, I ]. By Lemma 9.5, for any p ∈ ext(C), there is a λ > 0 such that
Sp = λp. Lemma 9.2(i i i) then yields that S[�k[Vk]] ⊆ �k[Vk] for every k. Since
S is surjective, it follows for every k that S[�k[Vk]] = �k[Vk]. For every v ∈ Vk ,
define Sk(v) := S(�k(v))(k) and similarly, define Rk(v) := S−1(�k(v))(k). Then
Rk is the inverse of Sk , so that Sk : Vk → Vk is a positive bijection with a positive
inverse. Also, Sk ∈ [0, Ik], where Ik is the identity on Vk . By Proposition 9.6, there
is a 0 < μk ≤ 1 such that Sk = μk Ik . It follows that S = ⊕n

k=1 μk Ik , and so,
T = ⊕n

k=1 2(1 − μk)Ik . Conversely, for every 0 ≤ μ1, . . . , μn ≤ 1, we have that
the operator T := ⊕n

k=1 μk Ik is in [0, I ], and we conclude that the order theoretical
centre of V and R

n are isomorphic as order unit spaces. ��
For finite-dimensional spaces, either Proposition 8.1 or Theorem 9.7 and Lemma

9.1 together yield the following characterisation of the order theoretical centre.

Corollary 9.8 Let (V , C, u) be a finite-dimensional order unit space of dimension d.
Then there exists n ∈ N with n ≤ d such that the order theoretical centre of V is
isomorphic to R

n as order unit spaces.

According to Remark 6.3, anti-lattices are irreducible, so we have the following
special case.
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Corollary 9.9 Let (V , C, u) be a finite-dimensional order unit space. If V is an anti-
lattice, then its order theoretical centre is isomorphic to R as order unit spaces.

Example 9.10 The order theoretical centre of the spin factor Rn−1 ⊕ R is isomorphic
to R. Also the order theoretical centre of the space of symmetric n × n-matrices with
the cone of positive semi-definite matrices is isomorphic toR. Indeed, both spaces are
anti-lattices due to Propositions 4.3 and 4.2, so the assertions follow from Corollary
9.9. Note that this conclusion also follows from Theorem 8.10.

Acknowledgements The authors are grateful to A.W. Wickstead for making them aware of reference [5].

A Appendix

This appendix contains a survey of the factors of atomic JBW-algebras.

A.1 Quaternionic Hilbert spaces and their operators

By introducing the multiplication rules i2 = j2 = k2 = i jk = −1 on the symbols i ,
j , and k, we induce the structure of a unital associative algebra on the four dimensional
real vector space

H := {
a1 + bi + cj + dk : a, b, c, d ∈ R

}

where the general product distributes over the sum as usual, with unit 1. This algebra
H is referred to as the quaternions, and i , j , and k are called the imaginary units.
The multiplication on H is not commutative as i j = − j i = k, ki = −ik = j , and
jk = −k j = i . The algebraic centre of H equals R1, and every non-zero quaternion
is invertible as

(a1 + bi + cj + dk)(a1 − bi − cj − dk) = (a2 + b2 + c2 + d2)1.

For q = a1 + bi + cj + dk, the quaternionic conjugate is defined to be q∗ :=
a1 − bi − cj − dk, which defines an involution ∗ : H → H that reverses the order
of multiplication. That is, for q, r ∈ H, we have (qr)∗ = r∗q∗. The real part of q
is denoted by Re(q) and is given by Re(q) := 1

2 (q + q∗) = a1. Furthermore, this
conjugation gives rise to the multiplicative norm |q| := √

q∗q onH. Note thatR1 has
been identified with R here.

An abelian group (V ,+) that admits a right action · : V × H → V is called
a quaternionic vector space if the action distributes over + in V and the sum of
quaternions. That is, we have (v + w) · q = v · q + w · q, v · (q + r) = v · q + v · r ,
(v · r) · q = v · (qr), and v · 1 = v for all q, r ∈ H and all v,w ∈ V . The reason for
choosing a right action on V is so that an n × n matrix A acting on the left as usual
on a vector x ∈ H

n , that is, x → Ax , is now H-linear.
A quaternionic inner product on V is a H-sesquilinear form 〈·, ·〉 : V × V → H,

so 〈·, ·〉 satisfies 〈u, v · q + w〉 = 〈u, v〉q + 〈u, w〉 and 〈v,w〉 = 〈w, v〉∗ for all q ∈ H
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and all u, v, w ∈ V , which in addition satisfies 〈v, v〉 ≥ 0 for all v ∈ V and 〈v, v〉 = 0
if and only if v = 0. It follows that ‖v‖ := √〈v, v〉 yields a norm on V , which we
prove next by using the quaternionic version of the Cauchy–Schwarz inequality.

Lemma A.1 (Cauchy–Schwarz) Let V be a quaternionic vector space equipped with a
quaternionic inner product. Then, for any v,w ∈ V , it follows that |〈v,w〉| ≤ ‖v‖‖w‖
with equality if and only if v and w are H-linearly dependent.

Proof If w = 0, the statement clearly holds, so we may assume that w �= 0. Let
q := 〈w, v〉‖w‖−2 and observe that

0 ≤ ‖v − w · q‖2 = ‖v‖2 − q∗〈w, v〉 − 〈v,w〉q + q∗‖w‖2q

= ‖v‖2 − |〈v,w〉|2
‖w‖2 − |〈v,w〉|2

‖w‖2 + |〈v,w〉|2
‖w‖2

= ‖v‖2 − |〈v,w〉|2
‖w‖2 ,

and hence, we have |〈v,w〉| ≤ ‖v‖‖w‖. Moreover, in case of an equality above, it
follows that v = w · q and if v = w · r for some r ∈ H, then |〈v,w〉| = |〈w,w〉||r | =
|r |‖w‖‖w‖ = ‖w · r‖‖w‖ = ‖v‖‖w‖. ��
It now follows from Lemma A.1 that, for v,w ∈ V , we have

‖v + w‖2 ≤ ‖v‖2 + 2|〈v,w〉| + ‖w‖2 ≤ (‖v‖ + ‖w‖)2,

showing that the triangle inequality is satisfied. If V is complete with respect to the
norm ‖ · ‖, then V is a quaternionic Hilbert space. For more details, see [21]. Quater-
nionicHilbert spaceswill fromnowonbe denoted byHq .Most of the theory forHilbert
spaces passes over analogously to quaternionic Hilbert spaces as will be shown. Two
vectors v,w ∈ Hq are said to be orthogonal if 〈v,w〉 = 0, and similarly, the orthog-
onal complement S⊥ of a set is defined. A subset B ⊆ Hq is orthonormal if the
vectors in B have norm one and are pairwise orthogonal. The Pythagorean theorem
also holds for the quaternionic inner product. That is, if v1, . . . , vn ∈ Hq are pairwise
orthogonal, then

‖v1 + · · · + vn‖2 = ‖v1‖2 + · · · + ‖vn‖2 (Pythagorean identity).

The Pythagorean theorem can be used in turn to prove Bessel’s inequality, stating that,
for an orthonormal set {bn : n ∈ N} and any v ∈ Hq , we have

∞∑
k=1

|〈v, bk〉|2 ≤ ‖v‖2 (Bessel’s inequality).

We call a subset B ⊆ Hq an orthonormal basis forHq if it is a maximal orthonormal
set. An application of Zorn’s lemma tells us that every quaternionic Hilbert space
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Hq �= {0} has an orthonormal basis. Indeed, the set

B := {
B ⊆ Hq : B is an orthonormal set

}

is non-empty and partially ordered by set inclusion. Let (Bi )i be a chain in B. Then
B0 := ⋃

i Bi is an orthonormal set and Zorn’s lemma implies that B contains a
maximal element B. Hence, there is no non-zero vector v ∈ Hq such that 〈v, b〉 = 0
for all b ∈ B, showing that B is an orthonormal basis forHq . By Bessel’s inequality,
for any v ∈ Hq , there are at most countably many vectors in B such that 〈v, b〉 �= 0,
and it follows that

v =
∑
b∈B

b · 〈v, b〉 and ‖v‖2 =
∑
b∈B

|〈v, b〉|2. (A.1)

For more details, see [8, Lemma I.4.12] and [8, Theorem I.4.13] (the arguments are
the same for quaternionic Hilbert spaces).

An H-linear operator T : Hq → Hq is bounded in the same way an operator
between Hilbert spaces is bounded, so T is bounded if and only if sup{‖T v‖: ‖v‖ ≤
1} < ∞, with this supremum denoted by ‖T ‖. Since multiplication in H is not
commutative, the bounded operators onHq can only be a equipped with the structure
of a real vector space. For r ∈ R, theH-linear operator rT is defined by rT x := T x ·r ,
but linearity fails if r is replacedby ageneral quaternionq ∈ H. To illustrate thiswith an
example, for an operator T onHq , it follows that, for S := jT , we have S(v·i) �= Sv·i .
The real vector space of boundedH-linear operators is denoted byB(Hq ), and becomes
a Banach space when equipped with the norm T → ‖T ‖. In order to define the
quaternionic adjoint of an operator in B(Hq), we need the quaternionic version of
the Riesz representation theorem. Similarly, a H-linear functional ϕ : Hq → H is
bounded if sup{|ϕ(v)| : ‖v‖ ≤ 1} < ∞.

Lemma A.2 (Riesz representation theorem) If ϕ : Hq → H is a bounded H-linear
functional, then there exists a unique v ∈ Hq such that ϕ(w) = 〈v,w〉 for all w ∈ Hq .

Proof Since ϕ is continuous, it follows that ker ϕ is closed in Hq . Clearly, if ϕ = 0,
then we can take v = 0 to represent ϕ. So, suppose that ϕ �= 0. By choosing an
orthonormal basis for ker ϕ, it follows that this basis is not maximal in Hq , so there
is a v ∈ ker ϕ⊥ such that ϕ(v) = 1. For w ∈ Hq , we have ϕ(w − v · ϕ(w)) = 0, so
w − v · ϕ(w) ∈ ker ϕ. Hence, 〈v,w〉 − ‖v‖2ϕ(w) = 〈v,w − v · ϕ(w)〉 = 0 and so
ϕ(w) = 〈‖v‖−2v,w〉 for allw ∈ Hq . Note that if u ∈ Hq is such that 〈v,w〉 = 〈u, w〉
for all w ∈ Hq , then, by choosing w = u − v, we get 〈u − v, u − v〉 = 0, so u = v. ��

Given a bounded operator T ∈ B(Hq), we have a well-defined linear operator
S : Hq → Hq given by the relation 〈w, T v〉 = 〈Sw, v〉 as a consequence of Lemma
A.2, since, for any v ∈ Hq , themapw → 〈v, T w〉 isH-linear and bounded by Lemma
A.1. The properties of a quaternionic inner product also show that this operator S is
unique, and bounded with ‖S‖ = ‖T ‖. We say that S is the quaternionic adjoint of
T , and will be denoted by T ∗. It is again similar to the case of dealing with operators
on a Hilbert space to find that T ∗∗ = T and ‖T ∗T ‖ = ‖T ‖2. An operator T ∈ B(Hq)
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is self-adjoint if T ∗ = T and the subspace of self-adjoint operators will be denoted
by B(Hq)sa. Since B(Hq)sa is closed in B(Hq), it is a Banach space as well. Note
that 〈T v, v〉 ∈ R1 for all T ∈ B(Hq)sa. An orthogonal projection in B(Hq)sa is
an idempotent operator, and orthogonal projections are in bijection with the closed
subspaces of Hq . Indeed, for a closed subspace K ⊆ Hq , we have that K = {0} is
precisely the range of the projection P = 0. Otherwise, let B be an orthonormal basis
for K, and, for any finite set F ⊆ B, define PF : Hq → Hq by

PFv :=
∑
b∈F

b · 〈b, v〉.

Then, it follows that PF is linear, idempotent, and ‖PF‖ = 1. Furthermore, note that,
for v,w ∈ Hq , we have

〈PFv,w〉 =
∑
b∈F

〈b · 〈b, v〉, w〉 =
∑
b∈F

(〈w, b〉〈b, v〉)∗ =
∑
b∈F

〈v, b〉〈b, w〉

=
∑
b∈F

〈v, b · 〈b, w〉〉 = 〈v, PFw〉,

hence, PF is self-adjoint. Since

Pv :=
∑
b∈B

〈v, b〉 · b

is the limit of the net {PFv : F ⊆ B finite}, it follows that P is an idempotent linear
operator with ‖P‖ = 1. Moreover, for v,w ∈ Hq , we have

∣∣〈Pv,w〉 − 〈v, Pw〉∣∣ = ∣∣〈(P − PF )v,w〉 − 〈v, (P − PF )w〉∣∣ ≤ ‖(P − PF )v‖‖w‖
+‖(P − PF )w‖‖v‖

and hence, we find that P is self-adjoint making it an orthogonal projection. By
(A.1), the range of P equals K. The uniqueness of P follows from the fact that any
orthogonal projection Q with range K must agree with P as ran P = ran Q = K and
ker P = ker Q = K⊥. Conversely, any orthogonal projection P yields a closed subset
ran P ⊆ Hq .

The commutative bilinear product ◦: B(Hq)sa × B(Hq)sa → B(Hq)sa defined
by T ◦ S := 1

2 (T S + ST ) turns B(Hq)sa into a real Jordan algebra and the norm
T → ‖T ‖ satisfies ‖S ◦ T ‖ ≤ ‖S‖‖T ‖, and also ‖T 2‖ = ‖T ∗T ‖ = ‖T ‖2 for all
S, T ∈ B(Hq)sa. Furthermore, for S, T ∈ B(Hq)sa and v ∈ Hq with ‖v‖ ≤ 1, it
follows that

‖T v‖2 = 〈T v, T v〉 ≤ 〈T v, T v〉+〈Sv, Sv〉 = 〈T 2v, v〉+〈S2v, v〉 = 〈(T 2+S2)v, v〉
≤ ‖T 2 + S2‖
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by Lemma A.1, so ‖T 2‖ ≤ ‖T 2 + S2‖, and we conclude that B(Hq)sa is a JB-algebra
with identity I . The spectrum of an operator T in B(Hq)sa is denoted by σ(T ) and is
defined to be

σ(T ) := {λ ∈ R : T − λI is not invertible in B(Hq)sa}.

Note that real scalar multiples of I are considered here as B(Hq)sa is a real vector
space. Note that by the functional calculus [3, Corollary 1.19], the spectrum of an
operator is never empty. The numerical range of an operator T ∈ B(Hq)sa, which is
defined to be N (T ) := {〈T v, v〉 : ‖v‖ = 1}, is related to the spectrum of T as follows.

Lemma A.3 For T ∈ B(Hq)sa, we have σ(T ) ⊆ N (T ).

Proof If λ is such that T − λI is not injective, then there is a normalised v ∈ Hq

such that T v = λv, so 〈T v, v〉 = λ, and thus λ ∈ N (T ). If T − λI is not surjective,
then there are two cases to distinguish, the range of T − λI is not dense in Hq ,
and the range of T − λI is not closed but dense in Hq . Firstly, suppose there is a
normalised vector v in the orthogonal complement of ran(T − λI ). Then we find that
〈T v, v〉−λ = 〈(T −λI )v, v〉 = 0, soλ ∈ N (T ). Secondly, if the range of T −λI is not
closed but dense inHq , then there is no μ > 0 such that ‖(T − λI )v‖ ≥ μ‖v‖ for all
v ∈ Hq as the range is not closed, so there is a sequence of normalised vectors (vn)n≥1
inHq such that (T −λI )vn → 0. It follows that 〈T vn, vn〉−λ = 〈(T −λI )vn, vn〉 → 0,
so λ ∈ N (T ). ��

The partial ordering on B(Hq)sa can be formulated via the following equivalent
properties.

Lemma A.4 For an operator T ∈ B(Hq)sa, the following statements are equivalent.

(i) 〈T v, v〉 ≥ 0 for all v ∈ Hq .
(ii) T = S2 for some S ∈ B(Hq)sa.
(iii) σ(T ) ⊆ [0,∞).

Proof (i) �⇒ (i i i): If λ < 0 and v ∈ Hq , then

‖(T − λI )v‖2 = ‖T v‖2 − 2λ〈T v, v〉 + λ2‖v‖2 ≥ λ2‖v‖2

which implies that T − λI is injective. The same inequality shows that the range of T
is closed inHq , so we can define a left inverse S ∈ B(Hq) of T by S := T ′ ⊕ Iran T ⊥ ,
where T ′ is the inverse of T restricted to the range of T . The fact that T ′ is bounded
follows from the inverse mapping theorem for bounded operators on Banach spaces
[8, Theorem III.12.5] where the argument also works for operators on Hq . Since T
is self-adjoint, it follows that T also has a right inverse. Note that T −1 needs to be
self-adjoint, as, for any v ∈ Hq , we have

〈T −1v, v〉 = 〈T −1T w, T w〉 = 〈w, T w〉 = 〈T w,w〉 = 〈v, T −1v〉.

We conclude that λ /∈ σ(T ). Hence, σ(T ) ⊆ [0,∞).
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(i i i) �⇒ (i i): The existence of an operator S such that T = S2 in this case follows
from the functional calculus [3, Corollary 1.19].

(i i) �⇒ (i): If S is such that T = S2, then it follows directly that 〈T v, v〉 =
〈S2v, v〉 = 〈Sv, Sv〉 ≥ 0 for all v ∈ Hq . ��
Lemma A.5 The JB-algebra B(Hq)sa is monotone complete.

Proof Without loss of generality, we may assume that (Ti )i is an increasing net such
that 0 ≤ Ti ≤ I . By the functional calculus [3, Proposition 1.12], we have S2 ≤ S for
all 0 ≤ S ≤ I , so that, for any v ∈ Hq and i ≤ j , we have

‖(Tj − Ti )v‖2 = 〈(Tj − Ti )v, (Tj − Ti )v〉 = 〈(Tj − Ti )
2v, v〉 ≤ 〈(Tj − Ti )v, v〉

(A.2)

by Lemma A.4. Furthermore, as 〈Tiv, v〉 ≤ ‖v‖2 for all v ∈ Hq , the increasing net
(〈Tiv, v〉)i is Cauchy in R1, which implies that (Tiv)i is a Cauchy net in Hq for
every v ∈ Hq by (A.2). Hence, we can define a linear operator T via the pointwise
norm limits T v := limi Tiv. It follows that ‖T ‖ ≤ 1 and since we also have that
〈Tiv, v〉 → 〈T v, v〉 for all v ∈ Hq , we have T ∈ B(Hq)sa. Suppose that S ∈ B(Hq)sa
is such that Ti ≤ S for all i . Then

〈(S − T )v, v〉 = 〈(S − Ti )v, v〉 + 〈(Ti − T )v, v〉 ≥ 〈(Ti − T )v, v〉 → 0,

so T ≤ S by Lemma A.4 and T is the supremum of (Ti )i . ��
Let v ∈ Hq be such that ‖v‖ = 1. Then ϕv : B(Hq)sa → R defined by ϕv(T ) :=

〈T v, v〉 is a positive linear functional with ϕv(I ) = 1, so it is a state on B(Hq)sa.
Furthermore, if (Ti )i is an increasing net with supremum T in B(Hq)sa, then we saw
in the proof of Lemma A.5 that ϕv(Ti ) = 〈Tiv, v〉 → 〈T v, v〉 = ϕv(T ). Hence, we
have that ϕv is a normal state. These states are referred to as vector states.

Lemma A.6 The vector states ϕv on B(Hq)sa are pure states.

Proof Let v be a normalised vector and ϕv be the corresponding vector state. Suppose
that, for some 0 < t < 1 and statesψ ,η, we haveϕv = tψ+(1−t)η. For the projection
Pvw := v · 〈v,w〉, it follows that ϕv(Pv) = 1 and as 0 ≤ ψ(Pv), η(Pv) ≤ 1, since
0 ≤ Pv ≤ I , it follows that ψ(Pv) = η(Pv) = 1. The symmetric bilinear form
(S, T ) → ψ(S ◦ T ) is positive semi-definite, and so

|ψ(T ◦ (I − Pv))|2 ≤ |ψ(T )||ψ(I − Pv)| = 0

by the generalised Cauchy–Schwarz inequality, [9, 5.5.3]. Hence ψ(T ) = ψ(T ◦ Pv)

for all T ∈ B(Hq)sa. Using that (Pv ◦ T ) ◦ Pv = 1
2 PvT Pv + 1

2T ◦ Pv and the fact that
PvT Pv is self-adjoint, it follows that

ψ(T ) = ψ((Pv ◦ T ) ◦ Pv) = 1
2ψ(PvT Pv) + 1

2ψ(T ◦ Pv) = 1
2ψ(PvT Pv) + 1

2ψ(T ),

123



   10 Page 44 of 54 O. van Gaans et al.

so that ψ(T ) = ψ(PvT Pv). Since (PvT Pv)w = v · 〈T v, v〉〈v,w〉 = ϕv(T )Pvw for
all w ∈ Hq , we conclude that ψ(T ) = ψ(PvT Pv) = ϕv(T )ψ(Pv) = ϕv(T ) for all
T ∈ B(Hq)sa, so ψ = ϕv . Hence, ϕv = ψ = η and ϕv is a pure state. ��

Note that if T , S ∈ B(Hq)sa are such that 〈(S − T )v, v〉 = 0 for all v ∈ Hq , then
S ≤ T and T ≤ S by LemmaA.4 and so T = S. We find that the vector states separate
the points of B(Hq)sa and hence, it follows that B(Hq)sa is a JBW-algebra.

We will show that B(Hq)sa is an atomic JBW-algebra. Indeed, let P be a non-
zero orthogonal projection in B(Hq)sa. Then the range of P is a closed subspace
of Hq , so we may choose an orthonormal basis for it. Let v be an element of this
orthonormal basis and note that the orthogonal projection Pvw := v · 〈v,w〉 satisfies
Pv = P Pv = Pv P , so P − Pv is idempotent and self-adjoint, so 〈(P − Pv)w,w〉 ≥ 0
for all w ∈ Hq and therefore Pv ≤ P . The following lemma shows that Pv is an atom
from which we can conclude that B(Hq)sa is atomic.

Lemma A.7 For v ∈ Hq with ‖v‖ = 1, the projection Pv is an atom, and every atom
in B(Hq)sa is of this form.

Proof Suppose that Pv = Q + R for some orthogonal projections Q and R. If Qv and
Rv are non-zero, then they are H-linearly independent and so the dimension over H
of the range of Q + R is at least two, which contradicts the fact that the range of Pv

equals Hv := {v · q : q ∈ H}. Hence, we may assume without loss of generality that
Qv = v and Rv = 0. But RQ R = 0 by [3, Proposition 2.18] and as

‖RQ R‖ = ‖RQ2R‖ = ‖(Q R)∗Q R‖ = ‖Q R‖2,

it follows that Q R = 0. Hence, Pvw = Q(v · 〈v,w〉) = Qw + Q Rw = Qw, so
Q = Pv and Pv is an atom.

Let P be an atom in B(Hq)sa. Then the range of P must be of the form Hv

for some v ∈ Hq with ‖v‖ = 1. If w ∈ Hq and Pw = v · q, then it follows from
w = Pw+(I −P)w that q = 〈v,w〉 by taking the inner product with v as v ∈ ker P⊥.
Hence, P = Pv . ��
Lemma A.8 The JBW-algebra B(Hq)sa is a factor.

Proof Suppose T ∈ B(Hq)sa operator commutes with all S ∈ B(Hq)sa. For any
normalised v ∈ Hq , the atom Pv yields

1
2 (T v + v · 〈T v, v〉) = T ◦ (Pv ◦ Pv)v = Pv ◦ (T ◦ Pv)v = v · 3

4 〈T v, v〉 + 1
4T v,

hence, T v = v · 〈T v, v〉. If v and w are two linearly independent normalised vectors
inHq , then the linearity of T implies that

(v + w) · 〈T (v + w), v + w〉‖v + w‖−2 = T (v + w) = T v + T w

= 〈T v, v〉v + 〈T w,w〉w

and so 〈T v, v〉 = 〈T w,w〉. Hence, it follows that T = λI for some λ ∈ R showing
that the algebraic centre of B(Hq)sa equals RI . ��
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A.2 Spin factors

Let H be a real Hilbert space of dimension at least two. If we equip the direct sum
H ⊕ R with the product

(x, λ) ◦ (y, μ) := (μx + λy, 〈x, y〉 + λμ), (A.3)

then H⊕R becomes a Jordan algebrawith unit (0, 1). TheCauchy–Schwarz inequality
implies that we can define the norm ‖(x, λ)‖ := √〈x, x〉+|λ| on H ⊕R and it follows
that this defines a JB-algebra norm.

Lemma A.9 The norm on H ⊕ R is a JB-algebra norm.

Proof Let (x, λ) and (y, μ) be in H ⊕ R. Then

‖(x, λ) ◦ (y, μ)‖
= ‖(μx + λy, 〈x, y〉+λμ)‖=

√
μ2〈x, x〉+2λμ〈x, y〉+λ2〈y, y〉+|〈x, y〉+λμ|

≤
√

μ2〈x, x〉 + 2|λ||μ|√〈x, x〉√〈y, y〉 + λ2〈y, y〉 +√〈x, x〉√〈y, y〉 + |λ||μ|
= |μ|√〈x, x〉 + |λ|√〈y, y〉 +√〈x, x〉√〈y, y〉 + |λ||μ|
= (

√〈x, x〉 + |λ|)(√〈y, y〉 + |μ|)
= ‖(x, λ)‖‖(y, μ)‖,

by the Cauchy–Schwarz inequality, and we can explicitly check the identity

‖(x, λ)2‖ = ‖(2λx, 〈x, x〉 + λ2)‖ = 2|λ|√〈x, x〉 + 〈x, x〉 + λ2

= (
√〈x, x〉 + |λ|)2 = ‖(x, λ)‖2.

Lastly, by using the Cauchy–Schwarz inequality once more, it follows that

‖(x, λ)2 + (y, μ)2‖
=
√
4λ2〈x, x〉 + 8λμ〈x, y〉 + 4μ2〈y, y〉 + 〈x, x〉 + 〈y, y〉 + λ2 + μ2

≥
√
4λ2〈x, x〉 − 8|λ||μ|√〈x, x〉√〈y, y〉 + 4μ2〈y, y〉 + 〈x, x〉 + 〈y, y〉 + λ2 + μ2

= 2|λ|√〈x, x〉 − 2|μ|√〈y, y〉 + 〈x, x〉 + 〈y, y〉 + λ2 + μ2

= (
√〈x, x〉 + |λ|)2 + (

√〈y, y〉 − |μ|)2
≥ ‖(x, λ)2‖.

Hence this norm satisfies the properties of a JB-algebra norm. ��
Furthermore, note that theHilbert spacedirect sumnorm‖(x, λ)‖2 := √〈x, x〉 + λ2

on H ⊕ R is equivalent to ‖·‖. Indeed, we have

‖(x, λ)‖2 ≤ √〈x, x〉 + |λ| = ‖(x, λ)‖,
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and by the concavity of the square root function, we find that

‖(x, λ)‖ = √〈x, x〉 + |λ| ≤ √
2
√

〈x, x〉 + λ2 = √
2‖(x, λ)‖2.

Hence, H ⊕ R is reflexive by [20, Proposition 1.11.8]. It follows that H ⊕ R is a
JB-algebra that is a dual space, so by [3, Theorem 2.55] it is a JBW-algebra. These
JBW-algebras are called a spin factor.

Lemma A.10 The projections in H ⊕ R are precisely (0, 0), (0, 1), and (x, 1
2 ) such

that
√〈x, x〉 = 1

2 . Moreover, the latter are precisely the atoms.

Proof The equation (x, λ)2 = (2λx, 〈x, x〉 + λ2) yields (2λ − 1)x = 0 and λ2 − λ +
〈x, x〉 = 0. So, if x = 0, then λ = 0 or λ = 1 gives the idempotents (0, 0) and (0, 1),
and if x �= 0, then λ = 1

2 and 〈x, x〉 = 1
4 as required. If x is such that

√〈x, x〉 = 1
2 ,

then (x, 1
2 )+ (−x, 1

2 ) = (0, 1), and it is clear that (x, 1
2 ) can not be written as the sum

of two projections of the form (y, 1
2 ) or (0, 1). Hence, the atoms are precisely of the

form (x, 1
2 ). ��

By [3, Lemma 1.10], spin factors are partially ordered by the cone of squares.

Lemma A.11 The cone of squares C in a spin factor H ⊕ R equals � :=
{(x, λ) : √〈x, x〉 ≤ λ}.
Proof Observe that (0, λ) is a square if and only if λ ≥ 0. Suppose that (x, λ) is
not a multiple of (0, 1). Then (x, λ)2 = (2λx, 〈x, x〉 + λ2) satisfies

√〈2λx, 2λx〉 =
2|λ|√〈x, x〉 ≤ 〈x, x〉 + λ2 as (

√〈x, x〉 − |λ|)2 ≥ 0 and it follows that C ⊆ �.
Conversely, note that the two atoms (x, 1

2 ) and (−x, 1
2 ) are orthogonal since (x, 1

2 ) ◦
(−x, 1

2 ) = (0, 0). So, if (x, λ) is an element of �, then (x, λ) is the square of

σ1

(
x

2
√〈x, x〉 ,

1

2

)
+ σ2

(
− x

2
√〈x, x〉 ,

1

2

)

where σk := √
λ + (−1)k+1

√〈x, x〉 for k = 1, 2. Hence � ⊆ C . ��
To see that the spin factor H ⊕ R is an atomic JBW-algebra, by Lemma A.10, it

remains to show that there is an atom below (0, 1). Actually, for every atom (x, 1
2 ), we

have that (x, 1
2 ) ≤ (0, 1) by Lemma A.11. Thus, H ⊕ R is an atomic JBW-algebra.

Next, we consider the spectrum of elements of H ⊕ R. Suppose that (x, λ) is not
a multiple of (0, 1). Then we can write

(x, λ) = λ(0, 1) +√〈x, x〉
(

x√〈x, x〉 , 0
)

where 〈x, x〉−1/2(x, 0) squares to (0, 1). By the functional calculus [3, Corollary 1.19],
the spectrum of the element 〈x, x〉−1/2(x, 0) must be {±1}, so the spectrum of the
element (x, λ) must, therefore, equal {λ + √〈x, x〉, λ − √〈x, x〉}. On the other hand,
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any multiple of (0, 1) has a spectrum containing at most two numbers, so any element
of H ⊕ R has a spectrum consisting of at most two numbers. Furthermore,

(x, λ) = (λ +√〈x, x〉)
(

x

2
√〈x, x〉 ,

1

2

)
+ (λ −√〈x, x〉)

(
− x

2
√〈x, x〉 ,

1

2

)

is the spectral decomposition of (x, λ). Note that the spectrum of (x, λ) is positive if
and only if (x, λ) is an element of C .

The cone � := {(x, λ) : √〈x, x〉 ≤ λ} in the vector space H ⊕ R is called the
Lorentz cone. Clearly, (H ⊕ R,�) is an Archimedean partially ordered vector space
and (0, 1) is an order unit. In particular, for every n ≥ 3, the vector space R

n can
be endowed with a Lorentz cone, by viewing R

n as R × R
n−1 and considering the

Euclidean inner product on R
n−1.

Lemma A.12 A spin factor H ⊕ R is in fact a factor.

Proof Let x, y ∈ H be orthogonal unit vectors. Then (x, 0)◦(y, 0)2 = (x, 0)◦(0, 1) =
(x, 0) and (y, 0)◦ ((x, 0)◦ (y, 0)

) = (0, 0), so (x, 0) does not operator commute with
(y, 0), thus (x, 0) can not be in the algebraic centre of H ⊕ R. This implies that if
(x, λ) = (x, 0) + λ(0, 1) is an element of the algebraic centre, then (x, 0) must be an
element of the algebraic centre as λ(0, 1) is. We conclude that x = 0 and, therefore,
the algebraic centre equals R(0, 1) and H ⊕ R is a factor. ��

We show that a functional ϕ is a state of H ⊕R if and only if there exists y ∈ H with
〈y, y〉 = 1 such that ϕ((x, λ)) = 〈(x, λ), (y, 1)〉 for every (x, λ) ∈ H ⊕ R. Indeed,
let ϕ be a state of H ⊕R. By the Riesz representation theorem, it follows that there is
a (y, μ) such that ϕ((x, λ)) = 〈(x, λ), (y, μ)〉 = 〈x, y〉 + λμ for all (x, λ) ∈ H ⊕R.
Since ϕ(0, 1) = 1, we must have μ = 1. If y �= 0, then

ϕ

(( −y

2
√〈y, y〉 ,

1

2

))
=
〈( −y

2
√〈y, y〉 ,

1

2

)
, (y, 1)

〉
= 1

2

(
−√〈y, y〉 + 1

)
≥ 0

since ϕ is positive, so
√〈y, y〉 ≤ 1. On the other hand, if y ∈ H is such that

√〈y, y〉 ≤
1 and we define the linear functionalψ byψ((x, λ)) := 〈x, y〉+λ, thenψ((0, 1)) = 1
and

ψ((x, λ)2) = 2λ〈x, y〉 + 〈x, x〉 + λ2 ≥ −2|λ||〈x, y〉| + 〈x, x〉 + λ2

≥ −2|λ|√〈x, x〉 + 〈x, x〉 + λ2 =
(√〈x, x〉 − |λ|

)2 ≥ 0

by the Cauchy–Schwarz inequality, so ψ is positive. Hence, ψ is a state.

Lemma A.13 Let (y, 1) represent the state ϕ on H ⊕ R. Then ϕ is a pure state if and
only if

√〈y, y〉 = 1.
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Proof Suppose that y ∈ H is such that
√〈y, y〉 < 1. If y = 0, then we can write

(0, 1) = 1
2 (x, 1) + 1

2 (−x, 1) for a unit vector x ∈ H , and the states represented by
(x, 1) and (−x, 1) are distinct since

〈(x, 1), (−x, 1)〉 = −〈x, x〉 + 1 = 0 and 〈(−x, 1), (−x, 1)〉 = 〈x, x〉 + 1 = 2.

Hence, the state represented by (0, 1) is not a pure state. If y �= 0, then we can write

(y, 1) = t

(
y√〈y, y〉 , 1

)
+ (1 − t)

( −y√〈y, y〉 , 1
)

for some 0 < t < 1, and the states represented by (± 〈y, y〉−1/2y, 1) are again distinct
since

〈(
y√〈y, y〉 , 1

)
,

( −y√〈y, y〉 , 1
)〉

= 0 and

〈( −y√〈y, y〉 , 1
)

,

( −y√〈y, y〉 , 1
)〉

= 2.

We conclude that the state represented by (y, 1) can, therefore, not be a pure state.
Conversely, suppose that y is a unit vector in H . If (x, 1) and (z, 1) represent states such
that a non-trivial convex combination of them equal the state represented by (y, 1),
then (y, 1) = t(x, 1) + (1 − t)(z, 1) for some 0 < t < 1 and so y = t x + (1 − t)z.
Since the unit sphere in H is strictly convex, it follows that x = z = y, so (y, 1)
represents a pure state. ��

A.3 Matrices with octonionic entries

We introduce the multiplication rules on {e1, . . . , e7} as follows. Set e2i = −1 for all
1 ≤ i ≤ 7 and determine the product of any two ei and e j via the so called Fano plane
below.

e7

e6

e3 e5

e4

e2

e1

The elements ei and e j lie on a unique line consisting of three elements, including the
circle. The product is defined by following the arrow and using cyclic permutations
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(which preserve the directions of the arrows). For example, the elements e1 and e2
lie on the line (e1, e2, e4), so e1e2 = e4. Furthermore, we also have that e1 and e4
lie on the line (e1, e2, e4), which yields the same line (e4, e1, e2) by applying cyclic
permutations, so e4e1 = e2. Transversing in the opposite direction of the indicated
arrow yields a minus sign, that is, e1e4 = −e2. The 8-dimensional real vector space

O := {
a01 + a1e1 + · · · + a7e7 : a0, . . . , a7 ∈ R

}

equipped with the multiplication rules described above and unit 1, where a general
product distributes over the sums, forms the so called octonions. The product on
the octonions is not commutative as we have seen, and it also fails to be associative.
Indeed, note that (e1e2)e3 = e4e3 = −e6 and e1(e2e3) = e1e5 = e6. The octonions are
alternative, meaning that the subalgebra generated by two elements inO is associative.
The real multiples of the identity 1 commute with all octonions. For x = a01 +∑7

k=1 akek , the octonionic conjugate of x is defined to be x∗ := a01 − ∑7
k=1 akek .

The octonionic conjugate is an involution onO that reverses the order ofmultiplication,
that is, for x, y ∈ O, we have (xy)∗ = y∗x∗. The real part of x is denoted byRe(x) and
is given by Re(x) := 1

2 (x +x∗) = a01. Note that every non-zero octonion is invertible
since x∗x = (a2

0+· · ·+a2
7)1. Furthermore, the octonionic conjugation induces a norm

on O given by ‖x‖ := √
x∗x , where R1 has been identified with R. Similar to the

norm on the quaternions, the norm is multiplicative, that is, ‖xy‖ = ‖x‖‖y‖ for all
x, y ∈ O. This implies that

‖xy‖2 = (xy)∗(xy) = (y∗x∗)(xy) = y∗(x∗x)y = ‖x‖2‖y‖2.

The octonions can be equipped with the real inner product 〈x, y〉 := Re(xy∗) =
1
2 (xy∗ + yx∗), where again the real multiples of the identity 1 are identified with
the real numbers. The inner product coincides with the standard inner product on
R
8, that is, for x := a01 + ∑7

k=1 akek and y := b01 + ∑7
k=1 bkek it follows that

〈x, y〉 = ∑7
k=0 akbk . Furthermore, note that the norm relates to the inner product as

usual, ‖x‖ = √〈x, x〉. For the reader interested in studying properties of the octonions
in more detail, we recommend the well written and extensive exposition on the subject
[4].

In view of the theory of JB-algebras, let Mn(O) denote the n × n matrices over the
octonions which form a non-associative unital real algebra. Similar to the Hermitian
adjoint, an involution can be defined on Mn(O) given by (A∗)i j := (A ji )

∗. Since
every JB-algebra is formally real, the subspace of self-adjoint matrices Mn(O)sa are
considered instead of Mn(O), equipped with the commutative product A ◦ B :=
1
2 (AB + B A) (note that squares coincide for both products). It was shown by Jordan,
von Neumann, and Wigner in [15] that Mn(O)sa is a Jordan algebra for 1 ≤ n ≤ 3
and not for n ≥ 4, see also [13, Theorem 2.7.6, Theorem 2.7.8]. In particular, it turns
out that M2(O)sa is a spin factor, see [4, p. 28].
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Lemma A.14 M2(O)sa is a spin factor.

Proof Define the map f : M2(O)sa → R
9 ⊕ R by

(
α + β x

x∗ α − β

)
→ ((x, β), α).

It is a straightforward verification that f is a linear bijection that maps the identity
matrix I2 to the unit (0, 1). Let

A :=
(

α1 + β1 x
x∗ α1 − β1

)
and B :=

(
α2 + β2 y

y∗ α2 − β2

)
.

Using that 〈x, y〉 = 〈x∗, y∗〉, it follows that

A ◦ B =
(

a + b α2x + α1y
α2x∗ + α1y∗ a − b

)

where a = α1α2 + β1β2 + 〈x, y〉 and b = α1β2 + α2β1, so

f (A ◦ B) = ((α2x + α1y, α1β2 + α2β1), α1α2 + β1β2 + 〈x, y〉)
= ((x, β1), α1) ◦ ((y, β2), α2) = f (A) ◦ f (B)

showing that f is a Jordan homomorphism. Hence M2(O)sa is isomorphic to the spin
factor R9 ⊕ R. ��

Remark A.15 A similar argument proves that M2(H)sa is isomorphic to the spin factor
R
5 ⊕ R, that M2(C)sa is isomorphic to the spin factor R3 ⊕ R, and that M2(R)sa is

isomorphic to the spin factor R2 ⊕ R. Therefore, by Lemma A.10, all the minimal
projections in M2(R)sa are of the form

( 1
2 + x2 x1

x1
1
2 − x2

)

where x21 + x22 = 1
4 .

The self-adjoint 3× 3 matrices over the octonions is called the Albert algebra and
is an exceptional Jordan algebra, as it is not Jordan isomorphic to a subalgebra of an
associative real algebra A with the product a ◦ b := 1

2 (ab + ba), see [3, Theorem 4.6]
and [13, Corollary 2.8.5]. Furthermore, by [3, Theorem 3.32], the Albert algebra is a
JBW-algebra and even a factor. Hence, it follows from [3, Lemma 1.10] that M3(O)sa
is partially ordered by the cone of squares. The minimal projections (or atoms) in
M3(O)sa can be characterised as follows.
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Proposition A.16 The minimal projections P in M3(O)sa are of the form

P :=
⎛
⎝

‖x1‖2 x1x∗
2 x1x∗

3
x2x∗

1 ‖x2‖2 x2x∗
3

x3x∗
1 x3x∗

2 ‖x3‖2

⎞
⎠

where x1, x2, x3 ∈ O associate, that is, (x1x2)x3 = x1(x2x3), and ‖x1‖2 + ‖x2‖2 +
‖x3‖2 = 1.

Proof Let

A :=
⎛
⎝

r1 y∗
1 y∗

2
y1 r2 y∗

3
y2 y3 r3

⎞
⎠

be so that A2 = A. Then, as

A2 =
⎛
⎝

r21 + ‖y1‖2 + ‖y2‖2 (r1 + r2)y∗
1 + y∗

2 y3 (r1 + r3)y∗
2 + y∗

1 y∗
3

(r1 + r2)y1 + y∗
3 y2 r22 + ‖y1‖2 + ‖y3‖2 (r2 + r3)y∗

3 + y1y∗
2

(r1 + r3)y2 + y3y1 (r2 + r3)y3 + y2y∗
1 r23 + ‖y2‖2 + ‖y3‖2

⎞
⎠ , (A.4)

it follows that 0 ≤ r1, r2, r3 ≤ 1 and not all the ri are zero, as otherwise A = 0.
Furthermore, from the system of equations

⎧
⎪⎨
⎪⎩

(1 − r1 − r2)y1 = y∗
3 y2

(1 − r1 − r3)y2 = y3y1
(1 − r2 − r3)y3 = y2y∗

1

we see that y1, y2, and y3 are in a subalgebra N ⊆ Ogenerated by two elements (and 1).
SinceO is alternative,wemust have that N is associative. Let x ∈ N be non-zero. Since
O has no zero divisors, the R-linear map Lx (y) := xy is injective on O. Hence, the
restriction of Lx to N is injective aswell and as N is finite-dimensional, it is a bijection.
Let z ∈ N be such that xz = 1. It follows that (zx)2 = (zx)(zx) = z(xz)x = zx as N
is associative, and so zx = 1, again sinceO has no zero divisors. This shows that x has
an inverse z and, therefore, N is a real division algebra. By Hurwitz’s theorem [14], we
have that N is isomorphic to R, C, or H. It follows that the entries of A are elements
of the algebra N which is isomorphic toH. Under this isomorphism, the inner product
on N 3 induced by the inner product of O3 coincides with the inner product of H3.

Hence, by Lemma A.7, there is a unital vector x ∈ N 3 such that Ay = x · 〈x, y〉. It
follows that x := (x1, x2, x3) is a unital vector in O3 with (x1x2)x3 = x1(x2x3) and

A =
⎛
⎝

‖x1‖2 x1x∗
2 x1x∗

3
x2x∗

1 ‖x2‖2 x2x∗
3

x3x∗
1 x3x∗

2 ‖x3‖2

⎞
⎠ . (A.5)
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Conversely, suppose A is as in (A.5) for some unit vector (x1, x2, x3) ∈ O
3 such

that (x1x2)x3 = x1(x2x3). Then it follows that A2 = A, and as the subalgebra M ⊆ O

generated by x1, x2, and x3 (and 1) is associative, it follows that M is isomorphic
to R, C, or H by Hurwitz’s theorem once more. Therefore, the matrix A satisfies
Ay = x · 〈x, y〉 for x = (x1, x2, x3), so it is a minimal projection by Lemma A.7. ��

The trace of A ∈ M3(O)sa is defined as usual for matrices by trace(A) :=
A11 + A22 + A33, where Aii are the diagonal entries of A. It follows that 〈A, B〉 :=
trace(A ◦ B) is a real inner product on M3(O)sa. Indeed, note that, by (A.4), it follows
that 〈A, A〉 ≥ 0, and 〈A, A〉 = 0 if and only if A = 0. Furthermore, trace(A ◦ B) =
Re(trace(AB)) and, by [10, Proposition V.2.2], we have that 〈A ◦ B, C〉 = 〈A, B ◦C〉
for all A, B, C ∈ M3(O)sa. Hence, with this inner product M3(O)sa is a Euclidean
Jordan algebra. For any A ∈ M3(O)sa, there are unique λ1, . . . , λm and unique pair-
wise orthogonal projections P1, . . . , Pm such that A = λ1P1 + · · · + λm Pm by [10,
Theorem III.1.1]. This is the spectral decomposition of A. The spectrum of A, denoted
by σ(A), consists of the eigenvalues that occur in the spectral decomposition of A,
that is, σ(A) = {λ1, . . . , λm}.
Lemma A.17 Let A ∈ M3(O)sa. Then the following statements are equivalent.

(i) A ≥ 0.
(ii) σ(A) ⊆ [0,∞).
(iii) 〈A, B〉 ≥ 0 for all B ≥ 0.

Proof (i) ⇐⇒ (i i): If A ≥ 0, then A = B2 for some B ∈ M3(O)sa, and the
spectral decomposition of B = λ1P1 + · · · + λm Pm now yields A = B2 = λ21P1 +
· · · + λ2m Pm , so σ(A) ⊆ [0,∞). On the other hand, if σ(A) ⊆ [0,∞), then the
spectral decomposition of A = μ1Q1 + · · · + μn Qn yields A = B2 for B :=√

μ1Q1 + · · · + √
μn Qn .

(i) ⇐⇒ (i i i): This equivalence follows from the fact that the cone of squares
in a Euclidean Jordan algebra yields a symmetric cone by [10, Theorem III.2.1]. In
particular, 〈A, B〉 ≥ 0 for all B ≥ 0 if and only if A ≥ 0. ��

By the Riesz representation theorem, for every functional ϕ : M3(O)sa → R, there
is a unique B ∈ M3(O)sa such that ϕ(A) = 〈A, B〉. Furthermore, it follows from
Lemma A.17 that ϕ := 〈·, B〉 is a state if and only if B ≥ 0 and trace(B) = 1.

Lemma A.18 A state 〈·, B〉 onM3(O)sa is pure if and only if B is a minimal projection,
i.e., an atom.

Proof Suppose that 〈·, B〉 is a pure state on M3(O)sa. Let B = ∑m
k=1 λk Pk be the

spectral decomposition of B such that λk �= 0 for all k. Since every Pk can be written
as the sum of minimal projections, we may assume that each Pk is minimal. Suppose
that there are two distinct minimal projections Pi and Pj in this decomposition. Then
we can write

〈·, B〉 = λi 〈·, Pi 〉 +∑
k �= j λk

(
(
∑

k �= j λk)
−1
〈
·,∑k �= j λk Pk

〉)
(A.6)
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and since trace(Pk) = 1 for all k by Lemma A.16, it follows that (A.6) writes 〈·, B〉 as
a non-trivial convex combination of two distinct states, which is impossible. Hence,
we have that 〈·, B〉 = λk〈·, Pk〉 for some k and as trace(B) = 1, we find that B = Pk .

On the other hand, let P be a minimal projection and suppose 〈·, P〉 = t〈·, C〉 +
(1 − t)〈·, D〉 for 0 < t < 1, C, D ≥ 0 with trace(C) = trace(D) = 1. Then we must
have P = tC + (1 − t)D and so C = λP and D = μP by [3, Proposition 2.15] and
[3, Lemma 3.29] since P is a minimal projection. Because trace(C) = trace(D) = 1,
it follows that λ = μ = 1 and so 〈·, P〉 is a pure state. ��

A.4 The pre-duals of atomic JBW-algebra factors

We conclude this appendix by determining the pre-duals of all atomic JBW-algebra
factors M . For this we need the notion of so called trace class elements. These are
elements x ∈ M that can be written as

x =
∞∑

k=1

λk pk,

where (pk)k is a sequence of pairwise orthogonal atoms in M and (λk)k ⊆ R

satisfies
∑∞

k=1 |λk | < ∞. The set of trace class elements will be denoted by Mtr , and
a trace can be define on Mtr by

tr(x) :=
∞∑

k=1

λk .

The trace does not depend on the representation of x , so it is well defined on Mtr;
see [3, Definition 5.65] and the paragraph below for more details. Given x ∈ M , we
consider the JB-subalgebra JB(x, e) of M generated by x and e, which is isomorphic
to a space of continuous functions. Hence, in JB(x, e) the modulus |x | of x exists. The
trace norm of x ∈ Mtr is defined by

‖x‖tr := tr(|x |) =
∞∑

k=1

|λk |.
It follows from [3, Proposition 5.66] that Mtr equipped with the trace norm is a

Banach space. The pre-dual M∗ of M is isometrically isomorphic to Mtr . In particu-
lar, for all finite-dimensional factors and spin factors, the pre-dual is the same space
equipped with the trace norm. For the self-adjoint bounded operators on a real, com-
plex, or quaternionic Hilbert space, the pre-dual is identified with the three analogues
of trace class operators.
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