
Adaptive appointment scheduling with periodic updates
Mahes, R.; Mandjes, M.R.H.; Boon, M.

Citation
Mahes, R., Mandjes, M. R. H., & Boon, M. (2024). Adaptive appointment scheduling with
periodic updates. Computers & Operations Research, 161. doi:10.1016/j.cor.2023.106437

Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3731307

Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3731307

Computers & Operations Research 161 (2024) 106437

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Adaptive appointment scheduling with periodic updates
Roshan Mahes a,b,∗,1, Michel Mandjes a,b,c,d,1, Marko Boon c,e

a Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
b Amsterdam Business School, Faculty of Economics and Business, University of Amsterdam, Amsterdam, the Netherlands
c Eurandom, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
d Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, the Netherlands
e Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands

A R T I C L E I N F O

Dataset link: https://adaptiveschedule.eu.pyth
onanywhere.com/download/service_times.csv

Keywords:
Service systems
Appointment scheduling
Phase-type distribution

A B S T R A C T

The classical paradigm in appointment scheduling is to rely on ‘a priori schedules’, determined by minimizing
the given cost function; the corresponding arrival times are then announced to the clients, and not adjusted
while serving them. The idea of the present paper is to reduce the cost by periodically updating the schedule
(and notifying the clients about this), based on the current state of the system. Evaluation of the objective
function is done highly efficiently and accurately by approximating the service times by their phase-type
counterparts. The resulting method is computationally inexpensive, thus facilitating frequent evaluation and
periodic adaptation of schedules ‘on the fly’. A computational study illustrates the performance of the method,
including an assessment of the impact of the rescheduling frequency and the variability of the service times. The
most prominent conclusion is that typically, even with relatively few updates, costs can be reduced drastically.
Our experiments, however, also reveal that one can construct instances for which increasing the rescheduling
frequency does not guarantee a cost reduction; we provide an in-depth analysis of the remarkable phenomenon.
The work has broad application potential, e.g., in healthcare and for delivery companies.
1. Introduction

In many service systems appointment scheduling plays a pivotal
role. A schedule is (in its most basic form) an increasing sequence of
arrival times 𝑡1,… , 𝑡𝑛 at which the 𝑛 clients are supposed to arrive
at the service facility. These times should be chosen such that the
interests of the service provider and the clients are properly balanced.
It is customary to measure the service provider’s cost in terms of her
idle time, and the clients’ (aggregate) cost in terms of the sum of their
waiting times. Our goal is to find a schedule that optimally balances
the interests of both the service provider and her clients. On the one
hand, the service provider wishes to efficiently run the system, in the
sense that there is always a client in service. On the other hand, it is
desired that the clients are provided a sufficiently high level of service,
i.e., the waiting times should be as low as possible. Minimizing a cost
function that encompasses both these idle times and waiting times over
the arrival times provides us with an optimal schedule.

Classically, one works with what could be called ‘a priori sched-
ules’: by minimizing the given objective function the arrival times
𝑡1,… , 𝑡𝑛 are determined, these are announced to the clients, and not
adjusted while delivering the service. It is clear that with the advent of

∗ Corresponding author at: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
E-mail address: a.v.mahes@uva.nl (R. Mahes).

1 Their research is partly funded by the NWO Gravitation project NETWORKS, grant number 024.002.003.

technologies that facilitate sending out notifications in real time, one
can potentially do much better. When the service provider is behind
schedule, she may want to postpone later appointments, whereas when
she is ahead of schedule there is an incentive to bring them forward, so
as to avoid excessive idle and waiting times. The idea is that one could,
for instance periodically, adapt the schedule to reduce idle times and
waiting times. The main goal of our paper is to develop a framework
with which one can assess the potential gains of this type of adaptive
scheduling, expressed in terms of a reduction of the cost function.

Typical examples of settings where appointment schedules are used
can be found in the healthcare and parcel delivery context. In the
healthcare setting, there is a service location (i.e., a clinic or medical
practice) that is visited by patients. In the delivery context, idle time
corresponds to the scenario that the deliverer arrives at the client’s
location before the announced time, while waiting time is the time
a client has to wait after this scheduled time. The model dynamics
featured in our work should be seen as a simplification of reality; our
study mainly serves the goal of assessing the potential gain that can
be achieved by updating schedules. This means that various domain-
specific aspects are intentionally left out, such as (in the healthcare
vailable online 25 September 2023
305-0548/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2023.106437
Received 18 March 2023; Received in revised form 22 September 2023; Accepted 2
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2 September 2023

https://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
mailto:a.v.mahes@uva.nl
https://doi.org/10.1016/j.cor.2023.106437
https://doi.org/10.1016/j.cor.2023.106437
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2023.106437&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 161 (2024) 106437R. Mahes et al.
context) no-shows, walk-ins, availability of certain equipment, etc., and
(in the delivery context) the fact that in practice one typically works
with delivery windows rather than with delivery times.

In the setup we consider in this paper, the cost function we focus
on is the sum of the mean idle times and the mean waiting times, but
in principle, one could work with any cost function that is based on
distributional properties of the idle times and waiting times (second
moments, certain quantiles, etc.). Even though our approach allows
us to reschedule at any time we want, for reasons of transparency we
mainly consider periodic updates (i.e., the update epochs are equidis-
tant in time). We in addition analyze alternative mechanisms, such
as rescheduling after each client’s start of service and rescheduling
after each client arrival. Other practically relevant extensions that
we consider are ones in which we impose restrictions on the set of
admissible adapted schedules. This includes a study of the setting in
which one cannot adjust the appointments that lie in a given time
interval immediately after the update (e.g., within the first 30 min. after
the rescheduling epoch).

We proceed by discussing the problem at a more technical level.
At any rescheduling epoch, the state information that is available is
(i) the number of clients who are currently waiting, (ii) the elapsed
service time of the client in service (if any), and (iii) the number of
clients who have not entered the system yet. We consider the (natural)
setting in which we are not given the full service-time distributions,
but just their means and variances. Following the approach advocated
in e.g., Kuiper et al. (2015, 2022) and Tijms (1994), we identify phase-
type distributions with this mean and variance. Phase-type distributions
have various attractive properties, most notably they can be used to fit
any distribution on [0,∞) arbitrarily closely (Asmussen, 2003, Theorem
III.4.2) and they allow for relatively straightforward computations.
They are defined as the absorption time of a suitably constructed
continuous-time Markov chain with a given initial distribution 𝜸 and
transition rate matrix 𝑇 .

The framework developed thus combines two attractive features. In
the first place, as pointed out above, whereas in the existing litera-
ture one predominantly focuses on static schedules, we here focus on
adaptive schedules. We propose a procedure to update the appointment
schedule, typically leading to a substantial reduction of the objective
function. In the second place, our approach works with service-time
distributions with any mean and variance, whereas in many appoint-
ment scheduling studies, exponentially distributed service times are
assumed (Pegden and Rosenshine, 1990; Stein and Côté, 1994). This
exponentiality assumption is often imposed to ease the analysis; indeed,
the memoryless property facilitates symbolic computation of the objec-
tive function. The idea is that, by using a phase-type fit, still a relatively
explicit evaluation is possible, i.e., in terms of a matrix-valued recursive
scheme for the mean waiting and idle times, in the spirit of the one
presented in Wang (1997).

Contributions. The paper has three main contributions. In the first place,
we propose an adaptive scheduling framework, through which one can
assess the gain due to rescheduling. More specifically, in the setup
considered the schedule is periodically updated based on the state
information available, viz. the number of clients in the system and the
elapsed service time of the client in service (if any), besides the number
of clients still to be scheduled.

In the second place, so as to determine the adapted schedule, a
prerequisite is that we are able to compute the objective function given
the state information. An important property that we rely upon is that
the residual service time (given that the elapsed service time is, say,
𝑢) is again of phase type. The main implication of this fact is that
the complexity of determining a schedule update is as high as the
complexity of evaluating a static (i.e., a priori determined) schedule.
We point out how the parameters of the phase-type distribution of the
residual service time can be determined; concretely, it has the same
2

transition rate matrix 𝑇 as the service time itself, but an adjusted initial
distribution 𝜸. We in addition show how the methodology developed
in Wang (1997), which assumes homogeneous service times, can be
generalized so as to also cover heterogeneous service times.

In the third place, we have performed a series of numerical exper-
iments that primarily aim at quantifying the efficiency gain that can
be achieved by adaptive scheduling (that is, relative to working with
the static schedule). We provide a publicly available web tool by which
adaptive schedules can be determined in real time. In our experiments
we in particular study the impact of the rescheduling frequency. Gen-
erally, the more often the schedule is adapted the higher the gain,
as expected; remarkably, even with relatively few updates, typically
a substantial gain is achieved. One has to be careful though, in that
one can construct instances in which a higher rescheduling frequency
negatively impacts the gains; we provide an in-depth analysis of this
counterintuitive phenomenon. We in addition investigate how the gain
depends on (i) the variability of the service times and (ii) the cost
function (in terms of the weight associated with the mean idle times
relative to that of the mean waiting times). Then we consider several
more realistic variants of our basic adaptive scheduling procedure.
Most notably we assess the variant in which one cannot adjust the ap-
pointments that were scheduled directly after the rescheduling epoch.
Also, an extra cost component is introduced to penalize deviations
from the previously given schedule. Finally, we perform a comparison
with the dynamic-programming-based rescheduling technique of Mahes
et al. (2023), the most important conclusion being that our adaptive
scheduling approach performs just slightly worse despite the fact that
in the approach of Mahes et al. (2023) one optimizes over a larger
decision space.

Literature. We proceed by providing a brief account of the literature
in this area. We do not aim to provide an exhaustive overview; see
e.g., Ahmadi-Javid et al. (2017) for a comprehensive, and relatively
recent, survey. In Ahmadi-Javid et al. (2017), the authors distinguish
between three levels: the strategic level (concerning design decisions,
such as the choice of the number of servers), the tactical level (con-
cerning planning decisions, such as the allocation of capacity to patient
groups), and the operational level (e.g., focusing on determining the
precise schedules). The theme of the current paper, the adaptation of
schedules, clearly belongs to the operational measures but is hardly
covered by Ahmadi-Javid et al. (2017).

The static scheduling problem, in which a schedule is determined
a priori and not adapted, has been studied intensively. A methodol-
ogy to find the optimal static schedule under specific distributional
assumptions was presented in Wang (1997), while an extension to
multiple servers can be found in Kuiper and Lee (2022). Various real-
istic features have been incorporated into the appointment scheduling
problem. For example, in Chen and Robinson (2014) and Erdoğan and
Denton (2013) one studies a combination of both routine clients that
are assigned an appointment time in advance, and last-minute clients,
seeking an appointment on the same day. A highly general framework,
modeled as a nonlinear integer program, simultaneously covering no-
shows, non-punctuality, and walk-ins, can be found in Zacharias and
Yunes (2020). Another substantial part of the literature focuses on the
client sequencing problem, i.e., optimizing the order of arrivals of the
clients (which is assumed to be fixed in the framework studied in our
paper) (Berg et al., 2014; Mak et al., 2015). Concretely, ordering the
clients in increasing variance of their service-time distributions appears
to be the most common rule to produce a good sequence (de Kemp
et al., 2021; Kong et al., 2016). The exact optimal sequencing policy is
still unknown when there are three or more clients (Mak et al., 2014).

The present paper is related to the dynamic programming approach
developed in Mahes et al. (2023). There a setting is studied where at
each client arrival the arrival time of the next client is determined. It
is shown that this results in a significant reduction in cost as compared
to static scheduling. In the current paper, we comment on the perfor-
mance of the adaptive scheduling approach relative to the one of Mahes

et al. (2023).

Computers and Operations Research 161 (2024) 106437R. Mahes et al.

f
t
m
r

2

i
o
s
a
o
o
i
f

2

i
T
t
𝐵
O
t

i
c

w

𝑓

w
r

o
a
g
s
t
s

f

Unlike in our work, the term ‘adaptive appointment scheduling’ is
in the literature frequently referring to updating schedules by sequen-
tially finding an available time slot adapted to the clients’ needs. For
example, Wang and Fung (2014, 2015) and Wang and Gupta (2011)
dynamically learn clients’ preferences as appointment requests come
in, while Erdoğan et al. (2015) uses stochastic integer programming
and Doğru and Melouk (2019) proposes a simulation optimization
approach. In all these papers, existing appointments are not modified
when a schedule gets updated, rather available slots are filled according
to some policy.

Even though most work on appointment scheduling focuses on
healthcare applications, it can be applied in a substantially broader
context. Other settings in which it can be applied include that of clients
and a consulting professional, automobiles and a service center, and
legal cases and a courtroom (Robinson and Chen, 2003). Over the past
few years, due to the increasing presence of delivery services of various
sorts, there has been a strong focus on appointment scheduling in a
spatial setting, i.e., involving a routing component. These problems
are intrinsically hard, as they combine all complications arising in
appointment scheduling with those of the traveling salesman problem,
see e.g., Liu et al. (2019) and Zhan et al. (2021). Moreover, during the
delivery process, the driver might choose to take a different path from
the prescribed route, a challenge addressed in Ghosh et al. (2023). In
addition, Decerle et al. (2018) considers a routing and scheduling prob-
lem with time window constraints, based on the clients’ availability.
A way to assign such time windows before creating a vehicle routing
schedule is described in e.g., Spliet and Desaulniers (2015) and Spliet
and Gabor (2014).

Organization. The structure of this paper is as follows. In Section 2 we
ormally define the cost function and the objective. The evaluation of
his cost function is described in Section 3. The performance of the
ethod is assessed in Section 4. The paper is concluded with some final

emarks.

. Adaptive scheduling procedure

In this section, we formally describe the problem that is considered
n this paper, as well as the algorithm that we propose. The structure
f the section is as follows. In Section 2.1 we describe an auxiliary
cheduling problem that will form the main building block of our
lgorithm. A crucial step is that we express our cost function in terms
f the clients’ mean sojourn times. Then, in Section 2.2, we describe
ur algorithm, in which we adapt the schedule at equidistant points. It
s worth noting that in Section 3 we will point out how the objective
unction, featured in the algorithm, can be evaluated.

.1. An auxiliary scheduling problem

We start by explaining a specific static scheduling problem that will,
n Section 2.2, serve as the basis of our adaptive scheduling algorithm.
o this end, we consider a sequence of 𝑛 ∈ N clients with service
imes represented by the non-negative, independent random variables
1,… , 𝐵𝑛; note that these are not necessarily identically distributed.
ur goal is to find a schedule 𝑡1,… , 𝑡𝑛, where 𝑡𝑖 represents the arrival

ime of the 𝑖-th client (i.e., we implicitly require 0 ⩽ 𝑡1 ⩽ ⋯ ⩽ 𝑡𝑛).
In this paper, we optimize an objective function that balances the

nterests of both the clients and the service provider. Concretely, we
onsider the following optimization problem:

min
𝑡1 ,…,𝑡𝑛

𝑓 (𝑡1,… , 𝑡𝑛 ∣ 𝑘, 𝑢), (1)

ith, for 𝜔 ∈ (0, 1),

(𝑡1,… , 𝑡𝑛 ∣ 𝑘, 𝑢) ∶= 𝜔
𝑛
∑

𝑖=1
E𝐼𝑖 + (1 − 𝜔)

𝑛
∑

𝑖=1
E𝑊𝑖,

here 𝐼𝑖 and 𝑊𝑖 are the idle and waiting time associated with client 𝑖,
3

espectively; we refer to Fig. 1 for an illustration. Note that the entries
Fig. 1. Key quantities in appointment scheduling. Figure courtesy of Kuiper (2016).

f the sequences (E𝐼𝑖)𝑛𝑖=1 and (E𝑊𝑖)𝑛𝑖=1 are implicit functions of the
rrival times 𝑡1,… , 𝑡𝑛. In the conventional version of this problem, the
oal is to select 𝑡1,… , 𝑡𝑛 that minimize the above cost function. The
etting of our auxiliary scheduling problem, however, is different in
he sense that at every rescheduling epoch, we are given the following
tate information:

◦ The number of clients 𝑘 ∈ {0, 1,… , 𝑛} who have already entered
the system at time 0. This thus means that, if 𝑘 > 0, then 𝑡1 = ⋯ =
𝑡𝑘 = 0. It is clear that also if 𝑘 = 0, then we should take 𝑡1 = 0:
bearing in mind the objective function that we wish to minimize,
it is pointless to let client 1 enter after time 0.

◦ The value of the elapsed service time 𝑢 of client 1 if 𝑘 > 0 (if
𝑘 = 0, then we set 𝑢 ≡ 0). This means that the remaining service
time of the client in service is distributed as 𝐵1−𝑢 conditional on
𝐵1 > 𝑢. As we hold 𝑢 fixed (in this subsection), we will sometimes
denote this remaining service time simply by 𝐵1 (or by 𝐵1(𝑢), to
stress the dependence on 𝑢).

◦ In total, there are 𝑛 clients that remain to be served, of which the
first 𝑘 already entered the system. This means that there are 𝑛−𝑘
clients to be scheduled.

It turns out to be convenient to somewhat rewrite the objective
unction. Let 𝑆𝑖 the sojourn time of client 𝑖, i.e., her waiting time 𝑊𝑖

increased by her service time 𝐵𝑖. Note that the time at which client
𝑖 leaves the system is equal to the sum of all service and idle times
corresponding to all clients up to and including this client. Hence, for
𝑗 = 1,… , 𝑛,
𝑗
∑

𝑖=1
𝐵𝑖 +

𝑗
∑

𝑖=1
𝐼𝑖 = 𝑡𝑗 + 𝑆𝑗 ;

a pictorial illustration of this fact is provided by Fig. 1. The above
entails that we can express the (expected) waiting and idle times in
terms of the (expected) sojourn times: naturally, E𝑊1 = E𝐼1 = 0, and,
for 𝑖 = 2,… , 𝑛,

E𝑊𝑖 = E𝑆𝑖 − E𝐵𝑖, E𝐼𝑖 = 𝑡𝑖 + E𝑊𝑖 − (𝑡𝑖−1 + E𝑆𝑖−1),

the latter of which can be interpreted as the expected time difference
between the service completion of client 𝑖−1 and the start of service of
client 𝑖. As the expected service times E𝐵𝑖 are given numbers, we now
have rewritten our problem in terms of the expected sojourn times of
the clients only, a fact that we will extensively exploit in this paper. In
the sequel, we (informally) denote the above optimization procedure
by

𝚂𝚌𝚑𝚎𝚍𝚞𝚕𝚎(𝐵 ,𝐵 ,… , 𝐵 ∣ 𝑘, 𝑢) ↦ (𝑡 ,… , 𝑡),
1 2 𝑛 1 𝑛

Computers and Operations Research 161 (2024) 106437R. Mahes et al.

d
o
e
p

2

p
t
a

e
e
t
t
s

3

c

p
t

(
t
a
e
r
a
k
𝑓

e
m
v
I
s
S
w

v
S
p
a
c
1
T
(
p

𝑄

w
r
T

𝐵

i
b
e
t

t
a
a
n
p
t
m
M
m
M
c
t

where, as mentioned, the distribution of (the remaining part of) 𝐵1
epends on the elapsed service time 𝑢 of client 1. In Section 3 we point
ut how the routine Schedule can be evaluated; in Section 2.2 we
xplain how we can use Schedule in the key problem studied in this
aper, namely that of periodically adapting the appointment schedule.

.2. Periodically updating the schedule

The main idea is to update the schedule every 𝛥 time units, for some
redefined interval length 𝛥 > 0. At the 𝑚-th update, at time 𝜏𝑚 ∶= 𝑚𝛥,
he state information available is the number of clients 𝑘𝑚 in the system
t time 𝜏𝑚, as well as (if 𝑘𝑚 > 0) the elapsed service time 𝑢𝑚 of the

client in service. The underlying thought is that it allows us to respond
to situations in which we are ahead of or behind schedule. One would
expect that the smaller the value of 𝛥, the more frequently we adjust
the schedule, and the lower the cost; we explore this relationship in
great detail in the numerical experiments of Section 4.

Below we include pseudocode for our periodically updated sched-
ule. The main idea is to rerun the routine 𝚂𝚌𝚑𝚎𝚍𝚞𝚕𝚎, as was introduced
above, at the times 𝜏𝑚, with the current state information as input. It
uses the following functions:

◦ 𝙽𝚞𝚖𝚋𝚎𝚛𝙸𝚗𝚂𝚢𝚜𝚝𝚎𝚖(𝑡) provides the number of clients in the system
at time 𝑡 ⩾ 0, i.e., covering waiting clients (if any) as well as the
client in service (if any).

◦ 𝙽𝚞𝚖𝚋𝚎𝚛𝚂𝚎𝚛𝚟𝚎𝚍(𝑡) provides the number of service completions in
[0, 𝑡] for 𝑡 ⩾ 0.

◦ 𝙴𝚕𝚊𝚙𝚜𝚎𝚍(𝑡) provides the elapsed service time of the client in
service at time 𝑡 ⩾ 0 (and 0 if there is no client in service).

Algorithm 1 describes, in self-evident pseudocode, how we update
the schedule at the time epochs 𝜏𝑚. In the algorithm, the variable 𝑘
keeps track of the current number of clients in the system, 𝑢 denotes
the elapsed service time of the current client in service (if any, and
otherwise 𝑢 ∶= 0), and 𝓁 is the number of clients served so far. In
addition, 𝟏𝑖 is the all-ones vector of dimension 𝑖 ∈ N.
Algorithm 1: PeriodicAdaptiveScheduling(𝐵1,… , 𝐵𝑛, 𝛥)

Result: Periodically adapted schedule, with updates at times
𝜏𝑚 = 𝑚𝛥

1 Initialization: 𝑘0 ∶= 0; 𝑢0 ∶= 0; 𝓁0 ∶= 0; 𝑚 ∶= 0; 𝑡𝑛 ∶= ∞
2 while 𝑡𝑛 > 𝜏𝑚 do
3 (𝑡𝓁𝑚+1,… , 𝑡𝑛) ∶= 𝚂𝚌𝚑𝚎𝚍𝚞𝚕𝚎(𝐵𝓁𝑚+1,… , 𝐵𝑛 | 𝑘𝑚, 𝑢𝑚) + 𝜏𝑚 ⋅ 𝟏𝑛−𝓁𝑚
4 𝑚 ∶= 𝑚 + 1
5 𝑘𝑚 ∶= 𝙽𝚞𝚖𝚋𝚎𝚛𝙸𝚗𝚂𝚢𝚜𝚝𝚎𝚖(𝜏𝑚)
6 𝓁𝑚 ∶= 𝙽𝚞𝚖𝚋𝚎𝚛𝚂𝚎𝚛𝚟𝚎𝚍(𝜏𝑚)
7 𝑢𝑚 ∶= 𝙴𝚕𝚊𝚙𝚜𝚎𝚍(𝜏𝑚)
8 end

In the above description, for ease we let the 𝜏𝑚 correspond to
quidistant points in time, but it is clear that in principle non-
quidistant updates are possible, too. In particular, it is conceivable
hat early in the schedule, the amount of uncertainty is still modest, so
here is a good reason to take 𝜏1 relatively large. We do not explore
uch non-equidistant updates in this paper.

. Evaluation of the objective function

Now that we have described our adaptive scheduling approach, we
ontinue by pointing out how our objective function 𝑓 (𝑡1,… , 𝑡𝑛 ∣ 𝑘, 𝑢)

can be evaluated. In our setup, we suppose that we know the first two
moments of the service times, or, equivalently,
(

E𝐵1,… ,E𝐵𝑛
)

,
(

Var(𝐵1),… ,Var(𝐵𝑛)
)

.

We do so following a well-established approach: fitting so-called
hase-type distributed random variables (Kuiper et al., 2015, 2022), and
4

hen applying a technique in the spirit of the one developed in Wang I
1997) to compute the expected sojourn times E𝑆𝑖. A complication is
hat the procedure relied on in Kuiper et al. (2015, 2022) must be
dapted to incorporate the 𝑘 clients present at time 0, and if 𝑘 > 0 the
lapsed service time 𝑢 of the client in service. In Section 3.1 we briefly
ecall the way to map a pair (E𝐵𝑖,Var(𝐵𝑖)) on a phase-type distribution;
s we will see two special classes of phase-type distributions play a
ey role here. Section 3.2 describes how to evaluate the cost function
(𝑡1,… , 𝑡𝑛 ∣ 𝑘, 𝑢) for a given schedule (𝑡1,… , 𝑡𝑛) (where, evidently, the

components of this vector are non-decreasing), thus solving the above-
mentioned complication. In Section 3.3 we comment on minimizing the
cost function over (𝑡1,… , 𝑡𝑛).

3.1. Phase-type fit

If the service times would have been exponentially distributed, then
it would be relatively straightforward to devise a procedure to compute
the expected sojourn times E𝑆𝑖, essentially owing to the fact that the
number of clients in the system is a continuous-time Markov chain. For
an exponentially distributed service time 𝐵𝑖, the squared coefficient of
variation (in the sequel abbreviated to SCV)

S(𝐵𝑖) ∶=
Var(𝐵𝑖)
(E𝐵𝑖)2

quals 1, entailing that necessarily the mean and standard deviation
atch. In various application domains, however, data analysis has re-

ealed that service times substantially deviate from being exponential.
n particular, in medical applications (Çayırlı et al., 2006) often the
ervice times are relatively deterministic, reflected in the corresponding
CV being smaller than 1. Clearly, assuming exponential service times
ould provide suboptimal scheduling rules.

The above complication is remedied by working with specific con-
enient phase-type distributions by which we cover all values of the
CV. Phase-type distributions can be seen as generalizations of the ex-
onential distribution that still allow a fairly explicit analysis. Formally,
phase-type distribution can be characterized as follows. Consider a

ontinuous-time Markov chain {𝑋𝑡}𝑡⩾0 with state space 𝐸 = {1,… , 𝑑 +
}, where states 1,… , 𝑑 are transient and state 𝑑 + 1 is absorbing.
he initial state 𝑋0 ∈ {1,… , 𝑑} is sampled according to a probability
row) vector 𝜸 ∈ R𝑑 , i.e., its entries are non-negative and sum to 1. The
rocess has a transition rate matrix of the form

=
[

𝑇 𝒕
𝟎1×𝑑 0

]

,

ith 𝑇 ∈ R𝑑×𝑑 , 𝟎𝑖×𝑗 denoting an all-zeroes matrix of dimension 𝑖×𝑗, exit
ate vector 𝒕 ∶= −𝑇 𝟏𝑑 , and 𝟏𝑑 a 𝑑-dimensional all-ones (column) vector.
he time it takes to reach the absorbing state, i.e.,

∶= inf{𝑡 > 0 ∣ 𝑋𝑡 = 𝑑 + 1},

s called a phase-type distributed random variable with initial distri-
ution 𝜸 and subintensity matrix 𝑇 , denoted by 𝐵 ∼ PH𝑑 (𝜸, 𝑇). The
xponentially distributed times spent in each of the states 1,… , 𝑑 are
ypically referred to as phases, explaining the terminology ‘phase-type’.

The phase-type distribution owes its popularity to two features. In
he first place, as already mentioned above, they are attractive from

computational point of view: relying on standard tools from linear
lgebra, the corresponding densities and distribution functions can be
umerically evaluated. In the second place, any distribution on the
ositive halfline can be approximated arbitrarily closely by a phase-
ype distribution (Asmussen, 2003, Theorem III.4.2). As extensively
otivated in Tijms (1994), and used in e.g., Kuiper et al. (2015) and
ahes et al. (2023), two specific subclasses are of particular interest:
ixtures of Erlang distributions and hyperexponential distributions.
ore concretely, with these two subclasses, all values of the SCV are

overed, while at the same time, they have the attractive feature that
hey are low-dimensional (in terms of the number of parameters).
n particular, in the context of appointment scheduling, numerical

Computers and Operations Research 161 (2024) 106437R. Mahes et al.

i
p

—

E
p
[

𝐵

I
E
1
p
w

𝐾

I
i

𝑇

I
t

𝑇

a

u
t
r
P

t
b

𝐾
a
e

N
𝜇
r

𝛾

m
i

3

P
b
P

t
c
f
e
o
c
t

t
s
o
s
s
p

𝑝

o

i
𝑖
d
v

𝐹

w

𝑷

evaluation revealed that the error introduced by replacing the true
service-type distribution by these specific subclasses has turned out to
be negligible; cf. the findings reported in Kuiper (2016, pp. 110–111)
and Mahes et al. (2023).

We continue by briefly discussing mixtures of Erlang distributions
and hyperexponential distributions, and in particular, we describe how
to map the mean and SCV of a random variable 𝐵 on the correspond-
ng parameters. A more extensive account of this two-moment fit is
rovided in e.g., Kuiper et al. (2015, 2022).

Case 1: SCV smaller than 1. If the SCV is below 1, we approximate the
non-negative random variable 𝐵 by a mixture of Erlang distributions
(or: a weighted Erlang distribution). To this end, denote by E(𝐾, 𝜇) an
rlang distributed random variable with shape parameter 𝐾 and scale
arameter 𝜇, and by 𝑈 an independent uniform random variable on
0, 1]. Then, for some 𝐾 ∈ N, 𝜇 > 0 and 𝑝 ∈ [0, 1],

∼ E(𝐾, 𝜇)1{𝑈<𝑝} + E(𝐾 + 1, 𝜇)1{𝑈>𝑝}.

n other words: with probability 𝑝 the random variable 𝐵 equals an
rlang-distributed random variable with 𝐾 phases, and with probability
− 𝑝 an Erlang-distributed random variable with 𝐾 + 1 phases. The
arameters are uniquely determined (Mahes et al., 2023; Tijms, 1994):
e have

=
⌊

1
S(𝐵)

⌋

, 𝑝 =
(𝐾 + 1) S(𝐵) −

√

(𝐾 + 1)(1 −𝐾S(𝐵))
S(𝐵) + 1

, 𝜇 =
𝐾 + 1 − 𝑝

E𝐵
.

ndeed, 𝐵 is a phase-type distributed random variable. The correspond-
ng subintensity matrix 𝑇 ∈ R(𝐾+1)×(𝐾+1) is

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝜇 𝜇 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
0 −𝜇 𝜇

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅
⋅
⋅

⋅
⋅
⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 𝜇 0
−𝜇 𝜇(1 − 𝑝)

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 −𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

In addition, the initial distribution is given by 𝜸 = (1, 0,… , 0).

— Case 2: SCV larger than 1. If the SCV is above 1, we approximate the
non-negative random variable 𝐵 by a hyperexponential distribution.
For some 𝜇1, 𝜇2 > 0 and 𝑝 ∈ [0, 1], in self-evident notation,

𝐵 ∼ Exp(𝜇1)1{𝑈<𝑝} + Exp(𝜇2)1{𝑈>𝑝}.

Hence, 𝐵 now equals with probability 𝑝 an exponentially distributed
random variable with mean 𝜇−1

1 , and with probability 1−𝑝 an exponen-
tially distributed random variable with mean 𝜇−1

2 . To fit the mean and
SCV, the parameters are not uniquely determined. This can be solved
by imposing the balanced means condition (Kuiper et al., 2015; Tijms,
1994), i.e., 𝜇1 = 2𝑝𝜇 and 𝜇2 = 2(1 − 𝑝)𝜇 for some 𝜇 > 0. Using this, we
find

𝑝 = 1
2

⎛

⎜

⎜

⎝

1 +

√

S(𝐵) − 1
S(𝐵) + 1

⎞

⎟

⎟

⎠

, 𝜇1 =
2𝑝
E𝐵

, 𝜇2 =
2(1 − 𝑝)
E𝐵

.

t is left to characterize 𝐵 as a phase-type random variable. It is clear
hat the subintensity matrix 𝑇 ∈ R2×2 we have is

=
[

−𝜇1 0
0 −𝜇2

]

,

nd 𝜸 = (𝑝, 1 − 𝑝).
We proceed by explaining how these phase-type distributions are

sed in our framework. The main idea is to replace each of the service
imes 𝐵𝑖 by a phase-type distributed random variable, following the
ecipe described above, leading to a description of the form 𝐵𝑖 ∼
H𝑑𝑖 (𝜸𝑖, 𝑇𝑖). In case the number of clients in the system at an observa-

tion epoch 𝜏𝑚, previously denoted by 𝑘, is positive, however, we wish to
take into account the elapsed service time 𝑢 of the client in service. This
can be done by the following procedure; we again distinguish between
5

the service time being a mixture of Erlangs and hyperexponential.
It can be seen in both cases the distribution of 𝐵𝑖 − 𝑢 conditional
on 𝐵𝑖 > 𝑢, for some 𝑢 > 0, is still of phase type, with the same 𝑇𝑖 as
the one of 𝐵𝑖 itself, but with a different initial distribution which now
depends on the elapsed service time 𝑢 (therefore denoted by 𝜸𝑖(𝑢)). Let
the process {𝑋𝑡,𝑖}𝑡⩾0, for 𝑖 = 1,… , 𝑛, the (𝑑𝑖+1)-dimensional continuous-
time Markov chain corresponding to 𝐵𝑖 ∼ PH𝑑𝑖 (𝜸𝑖, 𝑇𝑖). Our objective is
o find an expression for the 𝑗-th entry of 𝜸𝑖(𝑢), in the sequel denoted
y 𝛾𝑖𝑗 (𝑢). Note that 𝛾𝑖𝑗 (𝑢) can be interpreted as P(𝑋𝑢,𝑖 = 𝑗 ∣ 𝐵𝑖 > 𝑢).

First consider the case that 𝐵𝑖 is mixed Erlang, say, with parameters
𝑖, 𝜇𝑖 and 𝑝𝑖 (so that 𝑑𝑖 = 𝐾𝑖+1). As argued in Mahes et al. (2023), and
s can be verified in a straightforward manner, the 𝑗-th entry of 𝜸𝑖(𝑢)
quals 𝛾𝑖𝑗 (𝑢) = 𝛾◦𝑖𝑗 (𝑢)∕𝛾

◦
𝑖 (𝑢), where

𝛾◦𝑖 (𝑢) ∶= P(𝐵𝑖 > 𝑢) =
𝐾𝑖
∑

𝑗=1
𝑒−𝜇𝑖𝑢

(𝜇𝑖𝑢)𝑗−1

(𝑗 − 1)!
+ (1 − 𝑝𝑖)𝑒−𝜇𝑖𝑢

(𝜇𝑖𝑢)𝐾𝑖

𝐾𝑖!
,

𝛾◦𝑖𝑗 (𝑢) ∶= P(𝑋𝑢,𝑖 = 𝑗, 𝐵𝑖 > 𝑢) = 𝑒−𝜇𝑖𝑢
(𝜇𝑖𝑢)𝑗−1

(𝑗 − 1)!
1{𝑗=1,…,𝐾𝑖}

+ (1 − 𝑝𝑖)𝑒−𝜇𝑖𝑢
(𝜇𝑖𝑢)𝐾𝑖

𝐾𝑖!
1{𝑗=𝐾𝑖+1}.

ow consider the case that 𝐵𝑖 is hyperexponential, say, with parameters
𝑖1, 𝜇𝑖2 and 𝑝𝑖 (so that 𝑑𝑖 = 2). Again writing 𝛾𝑖𝑗 (𝑢) ∶= 𝛾◦𝑖𝑗 (𝑢)∕𝛾

◦
𝑖 (𝑢), it is

eadily checked that

𝛾◦𝑖 (𝑢) ∶= P(𝐵𝑖 > 𝑢) = 𝑝𝑖𝑒
−𝜇𝑖1𝑢 + (1 − 𝑝𝑖)𝑒−𝜇𝑖2𝑢,

◦
𝑖𝑗 (𝑢) ∶= P(𝑋𝑢,𝑖 = 𝑗, 𝐵𝑖 > 𝑢) = 𝑝𝑖𝑒

−𝜇𝑖1𝑢1{𝑗=1} + (1 − 𝑝𝑖)𝑒−𝜇𝑖2𝑢1{𝑗=2}.

Observe that when the elapsed service time equals 0, in both the
ixed Erlang and hyperexponential case, we obtain that 𝜸𝑖(0) = 𝜸𝑖, as

t should.

.2. Computation of mean sojourn times

Our next task is to compute 𝑓 (𝑡1,… , 𝑡𝑛 ∣ 𝑘, 𝑢) given that 𝐵𝑖 ∼
H𝑑𝑖 (𝜸𝑖, 𝑇𝑖). As indicated earlier, if 𝑘 > 0, then 𝑢 ⩾ 0, and 𝐵1 is to
e understood as 𝐵1(𝑢) ∶= 𝐵1 − 𝑢 ∣ 𝐵1 > 𝑢, which is of the type
H𝑑1 (𝜸1(𝑢), 𝑇1).

Recall that we managed to rewrite the objective function in terms of
he expected values of the sojourn times 𝑆𝑖, 𝑖 = 1,… , 𝑛. As will become
lear below, we actually derive expressions for the full distribution
unction of the 𝑆𝑖, from which the means E𝑆𝑖 can be found in an
vident manner. The procedure presented borrows elements from the
ne developed in Wang (1997). Importantly, Wang (1997) covers the
ase of i.i.d. service times only; below we point out how it extends to
he case of heterogeneous (but still independent) clients.

Given the schedule 𝑡1,… , 𝑡𝑛, let 𝑥𝑖 ∶= 𝑡𝑖 − 𝑡𝑖−1 the 𝑖-th interarrival
ime, where we set 𝑥1 ∶= 𝑡1. Denote by 𝑁𝑖(𝑡) the number of clients in the
ystem at shifted time 𝑡 ∈ [0, 𝑥𝑖+1), that is, 𝑡 time units after the arrival
f client 𝑖. Also, let 𝑍𝑖(𝑡) be the phase the client in service is in at the
ame (shifted) time 𝑡. If the system is idle, i.e., if no client is in service,
et 𝑍𝑖(𝑡) = 0. Denote for 𝑖 = 1,… , 𝑛, 𝑘 = 1,… , 𝑖 and 𝑧 = 1,… , 𝑑𝑖−𝑘+1 the
robability that the system is in state (𝑘, 𝑧) at shifted time 𝑡 by
(𝑖)
𝑘𝑧(𝑡) ∶= P(𝑁𝑖(𝑡) = 𝑘,𝑍𝑖(𝑡) = 𝑧);

bserve that if 𝑁𝑖(𝑡) = 𝑘, then the index of the client in service is 𝑖−𝑘+1.
Note that we define this probability for all states except state (0, 0),

n which the system is idle, i.e., the only case in which at time 𝑡 the
-th client has been served. Using this observation, the sojourn-time
istribution 𝐹𝑖(𝑡) of the 𝑖-th client equals, with 𝟏𝑑 denoting an all-ones
ector of dimension 𝑑 ∈ N,

𝑖(𝑡) ∶= P(𝑆𝑖 ⩽ 𝑡) = 1 −
𝑖

∑

𝑘=1

𝑑𝑖−𝑘+1
∑

𝑧=1
𝑝(𝑖)𝑘𝑧(𝑡) = 1 − 𝑷 𝑖(𝑡) 𝟏∑𝑖

𝑘=1 𝑑𝑘
,

here we define the vector

(𝑡) ∶= lim
(

𝑝(𝑖) (𝑠),… , 𝑝(𝑖) (𝑠), 𝑝(𝑖) (𝑠),… ,
𝑖 𝑠↑𝑡 𝑖,1 𝑖,𝑑1 𝑖−1,1

Computers and Operations Research 161 (2024) 106437R. Mahes et al.

w
a
s
c
c
r

𝑽

w
t
i

𝑷

E

3

b
r
o
i
l
a
u
e
t
t
t
a
h
i

R
v
l
e
i
s
(

f
t
c
i
s

4

s
t
v
i
i

4

j
S
m
c
t
o
o

𝑝(𝑖)𝑖−1,𝑑2 (𝑠),… , 𝑝(𝑖)1,1(𝑠),… , 𝑝(𝑖)1,𝑑𝑖 (𝑠)
)

.

As the first client immediately gets served at time 𝑡1 = 0, it directly
follows that 𝑷 1(𝑡) = 𝜸1 exp(𝑽 1𝑡) and E𝑆1 = −𝜸1𝑽 −1

1 𝟏𝑑1 for 𝑡 ∈ [0, 𝑥2),
ith 𝑽 1 ∶= 𝑇1; see e.g., Neuts (1994). When the second client arrives
t time 𝑥2, two scenarios are possible. Either the first client is still in
ervice and the second client needs to wait, or the service of the first
lient has been completed (with probability 𝐹1(𝑥2)) and the second
lient immediately goes into service. The service process can now be
epresented by the subintensity matrix

2 ∶=
[

𝑇1 (−𝑇1𝟏𝑑1)𝜸2
𝟎𝑑2×𝑑1 𝑇2

]

;

hen checking the compatibility of the vectors and matrices, realize
hat 𝜸𝑖 represents a 𝑑𝑖-dimensional row vector, entailing that (−𝑇1𝟏𝑑1)𝜸2
s of dimension 𝑑1 × 𝑑2. We thus find for 𝑡 ∈ [0, 𝑥3),

2(𝑡) =
[

𝑷 1(𝑥2), 𝜸2𝐹1(𝑥2)
]

exp(𝑽 2𝑡),

E𝑆2 = −
[

𝑷 1(𝑥2), 𝜸2𝐹1(𝑥2)
]

𝑽 −1
2 𝟏𝑑1+𝑑2 ,

Continuing along these lines, we end up with the following recursive
procedure.

Proposition 1. Let 𝐵𝑖 ∼ PH𝑑𝑖 (𝜸𝑖, 𝑇𝑖) be the service time and let 𝑥𝑖 be the
interarrival time corresponding to client 𝑖 = 1,… , 𝑛. Set 𝐷𝑖 ∶=

∑𝑖
𝑘=1 𝑑𝑘.

Then, the sojourn-time distribution of client 𝑖 is given by

𝐹𝑖(𝑡) ∶= P(𝑆𝑖 ⩽ 𝑡) = 1 − 𝑷 𝑖(𝑡)𝟏𝐷𝑖
,

where, for 𝑡 ⩾ 0,

𝑷 𝑖(𝑡) ∶= 𝑮𝑖 exp(𝑽 𝑖𝑡).

Here, 𝑮1 ∶= 𝛾1 and 𝑽 1 ∶= 𝑇1, and, for 𝑖 = 2,… , 𝑛,

𝑮𝑖 ∶=
[

𝑷 𝑖−1(𝑥𝑖), 𝜸𝑖𝐹𝑖−1(𝑥𝑖)
]

,

𝑽 𝑖 ∶=

⎡

⎢

⎢

⎢

⎣

𝑽 𝑖−1
𝟎𝐷𝑖−2×𝑑𝑖

(−𝑇𝑖−1𝟏𝑑𝑖−1)𝜸𝑖

𝟎𝑑𝑖×𝐷𝑖−1
𝑇𝑖

⎤

⎥

⎥

⎥

⎦

.

The expected sojourn time of client 𝑖 equals

𝑆𝑖 = −𝑮𝑖𝑽 −1
𝑖 𝟏𝐷𝑖

.

.3. Optimizing the objective function

Now that we know how to evaluate the objective function, we
riefly comment on optimizing it over the schedule 𝑡1,… , 𝑡𝑛. A first
emark is that this optimization problem can be expressed in terms
f a convex programming problem, as has been rigorously established
n Kuiper et al. (2022); this in particular entails that there is just one
ocal minimum (which therefore is the global minimum as well). As
consequence, standard (quasi-)Newton minimization routines can be
sed to efficiently identify the minimum of 𝑓 (𝑡1,… , 𝑡𝑛 ∣ 𝑘, 𝑢) over time
pochs 𝑡1,… , 𝑡𝑛 such that 0 = 𝑡1 = ⋯ = 𝑡𝑘 ⩽ 𝑡𝑘+1 ⩽ ⋯ ⩽ 𝑡𝑛; here we set
he arrival times of the first 𝑘 clients to 0 as they already have entered
he system. Essentially all standard numerical packages have implemen-
ations of state-of-the-art minimization routines that can quickly and
ccurately determine the corresponding minimizer; in our software, we
ave used the Sequential Least Squares Programming (SLSQP) solver
mplemented in the open-source Python package SciPy.

emark 1. In our setup, appointment times can take continuous
alues, which is a leading paradigm in the appointment scheduling
iterature; see e.g., Kuiper et al. (2015), Kuiper and Lee (2022), Mak
t al. (2015) and Wang (1997) and many of the approaches discussed
n the overview (Ahmadi-Javid et al., 2017). In some practical single-
erver appointment systems, however, clients are assigned to time slots
i.e., intervals whose lengths are multiples of some given granularity,
6

or instance, five minutes). An elementary way to convert continuous-
ime schedules into slotted counterparts is by rounding off, but one
ould resort to more sophisticated procedures as well (e.g., by search-
ng a discrete set of gridpoints around the optimal continuous-time
chedule).

. Numerical evaluation

In this section, we assess the performance of our approach through a
eries of numerical experiments. We start by describing, in Section 4.1,
he interface of the applet we developed. Assessment of the standard
ariant is covered by Section 4.2, more practical variants are considered
n Section 4.3, and a comparison with alternative rescheduling methods
s given in Section 4.4.

.1. Applet

We have developed a user-friendly applet that optimizes our ob-
ective function using the open-source solver SLSQP mentioned in
ection 3.3. By this noncommercial applet, any user can adopt our
ethodology without having to do any coding. It enables users to

ompute the optimal schedule, essentially in real time, for any instance
he optimal schedule. Here, an instance is a combination of the number
f clients to be served 𝑛, the mean E𝐵𝑖 and SCV S(𝐵𝑖) of the service time
f each client 𝑖 = 1,… , 𝑛, the weight 𝜔 ∈ (0, 1), the state information,

viz. the number of clients in the system 𝑘 ∈ {0,… , 𝑛−1} and the elapsed
service time 𝑢 ≥ 0 of the client in service (if any). Note that this applet
allows a user to update her schedule not only periodically, but also at
any other desired time.

In practical situations, one may not want to adapt the appointments
that lie in the interval immediately after the rescheduling epoch (for
instance in situations in which clients may already be on their way to
the service location). To deal with this issue, we provide the option
to leave the schedule of all clients fixed until a certain time 𝜏 ≥ 0
(see Experiment 4). In this case, the user also enters the appointment
times of the clients to show up before time 𝜏 as generated by the
existing schedule, where the (current) time in which we observe the
state information is considered to be time 0. The interface of the
applet is displayed in Fig. 2. It can be accessed through https://
adaptiveschedule.eu.pythonanywhere.com.

4.2. Standard variant

In this subsection, we consider the standard variant of our model,
with the objective of quantifying the efficiency gain of our adaptive
method relative to static scheduling. It is important to note that the
value of the cost function for the adaptive approach cannot be directly
computed, as opposed to the cost of static scheduling. More precisely,

◦ the cost of the static schedule can be directly obtained by nu-
merically solving the optimization problem formulated in Eq. (1),
applying the techniques developed in e.g., Kuiper et al. (2015)
and Wang (1997), which is basically just executing Algorithm 1
with only one iteration of the while-loop;

◦ the adaptive schedule, however, is recomputed at the time epochs
𝜏𝑚 = 𝑚𝛥, and therefore depends on the precise state of the system
at these epochs. With our procedure, at every time epoch 𝜏𝑚, only
the cost of the remaining schedule is evaluated as if the schedule
will not be updated again.

To evaluate the cost of the adaptive schedule, we estimate the cost
of the adaptive approach relying on Monte Carlo simulation. We note
however, as discussed in greater detail in Appendix A, that in a few
simple cases (assuming exponentially distributed service times and a
low number of clients) a somewhat more explicit approach can be

followed.

https://adaptiveschedule.eu.pythonanywhere.com
https://adaptiveschedule.eu.pythonanywhere.com
https://adaptiveschedule.eu.pythonanywhere.com

Computers and Operations Research 161 (2024) 106437R. Mahes et al.
Fig. 2. Interface of applet.
We proceed by providing a more detailed discussion of the above-
mentioned simulation-based approach to evaluate the cost of the adap-
tive approach. In every simulation run the service times 𝐵1 up to 𝐵𝑛 are
sampled given their (phase-type) distributions, and at the epochs 𝜏𝑚 the
schedule is reevaluated, depending on the state information available
at these moments. In the end, given the final schedule, the realized
idle and waiting times, and therefore the value of the cost function for
this run can be computed using the Lindley recursion (Lindley, 1952).
The pseudocode for a simulation run can be found in Appendix B.
Performing a sizeable number of runs, and averaging the realized costs,
we can accurately estimate the cost corresponding to our adaptive
approach. In this section, we denote the cost of the static method by
𝐶stat , the cost of the adaptive method (with rescheduling time 𝛥) by
𝐶adapt (𝛥) and the efficiency gain by

𝛤 (𝛥) ∶=
𝐶stat − 𝐶adapt (𝛥)

𝐶stat
. (2)

For reasons of transparency, the experiments are organized such
that we vary the parameters as much as possible in an isolated manner.
This way, we obtain insight into the impact of each of these parameters
on the efficiency gain. Unless otherwise stated, experiments are based
on 𝑁 = 106 simulation runs and are performed on the National
Supercomputer Snellius supported by SURF (www.surf.nl).

Experiment 1 (Effect of the Parameters). We start by evaluating how
the rescheduling period 𝛥 affects the cost of the schedule. One would
expect that the cost of adaptive schedules decreases monotonically
in the rescheduling frequency (i.e., increases monotonically in the
rescheduling time 𝛥). While this expectation generally holds true, we
start by presenting an elementary instance in which this is not the case.

We first consider a situation of three clients with exponentially
distributed service times, where we normalize the mean service time
to 1. The number of clients 𝑛 is equal to 3, and the weight 𝜔 is equal
to 0.5 (i.e., the idle and waiting times are of equal importance). Note
that in this setting with the SCV of the service times being equal to 1,
due to the memoryless property of the exponential distribution, there
is no impact of the elapsed service time. As a result, the model can (to
7

Fig. 3. Cost of adaptive schedule for 𝑛 = 3 and 𝜔 = 0.5.

some extent) be analyzed explicitly. In Fig. 3, we assess the influence of
the rescheduling time 𝛥 on the cost by simulation. It is observed that in
this instance, the cost is not monotonically increasing. Also, for various
values of 𝛥 there are discontinuities. An extensive explicit analysis of
this counterintuitive behavior can be found in Appendix A.

Now we focus, in instances with a more realistic number of clients
𝑛, on the impact of the weight 𝜔 (i.e., the importance of the idle time
relative to the waiting time). In Table 1, we consider three values of
the weight 𝜔. The cost of static scheduling corresponds to the instance
𝛥 = ∞. The main conclusion from the table is that, in particular for low
𝛥 and 𝜔 there is a strong cost reduction. Even for 𝛥 = 8, the efficiency
gain is still around 10%, which is significant considering that in most
cases, the schedule will be updated only once (since there are fifteen
clients).

Additionally, it can be seen that both the sum of the idle times and
the sum of the waiting times substantially decrease each time we halve
the rescheduling time. We also observe that increasing the rescheduling
frequency has more impact on the waiting time than on the idle time.
When the waiting time is of higher importance than idle time, i.e., for
low values of the weight 𝜔, the waiting time of each of the clients can

http://www.surf.nl

Computers and Operations Research 161 (2024) 106437R. Mahes et al.

b
t
l
a
s

f
i
a
e
v
a

f
t

a
u

Table 1
Cost and efficiency gain of adaptive schedule, 𝑛 = 15.
𝜔 𝛥 0.5 1 2 4 8 ∞

0.2 ∑

E𝐼𝑖 3.79 8.15 13.08 16.11 15.72 16.95
∑

E𝑊𝑖 0.00 0.00 1.85 1.41 1.94 2.42
𝐶adapt(𝛥) 0.76 1.63 4.10 4.35 4.69 5.33
𝛤 (𝛥) 85.8% 69.4% 23.1% 18.4% 11.9% 0.0%

0.5 ∑

E𝐼𝑖 3.79 6.60 6.06 7.35 7.40 8.14
∑

E𝑊𝑖 0.00 2.09 3.71 5.06 6.13 6.95
𝐶adapt(𝛥) 1.89 4.35 4.89 6.20 6.76 7.55
𝛤 (𝛥) 74.9% 42.4% 35.2% 17.8% 10.4% 0.0%

0.8 ∑

E𝐼𝑖 1.05 1.81 2.15 2.47 2.76 2.98
∑

E𝑊𝑖 8.30 7.64 10.52 13.50 15.40 17.32
𝐶adapt(𝛥) 2.50 2.97 3.82 4.68 5.29 5.85
𝛤 (𝛥) 57.3% 49.2% 34.7% 20.1% 9.6% 0.0%

even be completely eliminated by rescheduling at a high frequency.
The benefit of frequent rescheduling (i.e., the gain) is more noticeable
when the relative importance of waiting time is higher. In those settings
rescheduling tends to avoid excessive waiting times, i.e., it will be less
likely that many clients are waiting in the system. In Fig. 4 we observe
that for any fixed rescheduling length 𝛥, the total cost of the schedule
depends effectively linearly on the number of clients to schedule.

Then, we examine the dependence of the number of times the
schedule gets updated and the cost of the schedule on the rescheduling
length 𝛥, for various values of the weight 𝜔. In Fig. 5 we observe for
homogeneous exponentially distributed service times that the number
of updates increases sharply as 𝛥 decreases. The higher the importance
of the waiting times (i.e., the lower 𝜔), the more often the schedule will
e updated, as can be reasoned as follows. When the weight assigned
o waiting time (i.e., 1 − 𝜔) increases, each appointment is given a
onger time interval. This means that the time it takes to execute all
ppointments (i.e., the makespan) goes up. As a result, the number of
chedule updates increases.

Table 1 has shown that, generally, increasing the rescheduling
requency (i.e., decreasing 𝛥) leads to a reduction in both the sum of
dle times and the sum of waiting times. However, this does not provide
ny insight into the effect on the individual idle and waiting times. To
xamine this behavior in greater detail, Figs. 6 and 7 present the mean
alues of idle and waiting time for each client, respectively, for 𝜔 = 0.2
nd 𝜔 = 0.8.

◦ In line with e.g., Kuiper (2016, Figure 2.9.b), we note that in
the static case (𝛥 = ∞), the mean idle times for clients exhibit a
dome shape, mimicking the optimal individual interarrival times.
Conversely, the mean waiting time increases with a client’s posi-
tion, i.e., clients scheduled later are expected to experience longer
waiting times; cf. Kuiper (2016, Figure 2.10.b).

◦ Overall, updating the schedule leads to shorter idle and waiting
times for future clients. This effect is particularly visible for
𝜔 = 0.8, as clients after the first rescheduling moment have
significantly lower mean idle and waiting times compared to the
static case. For 𝜔 = 0.2, although the average idle and waiting
times are generally lower than in the static case, a zigzag pattern
emerges in the mean idle and waiting times of future arrivals. This
can be attributed to ‘asynchronizations’, where the rescheduling
period does not align with the arrival of a client: when reschedul-
ing occurs just before a client’s arrival, the average idle time
is more likely to increase while the waiting time for this client
is likely to decrease, still resulting in notable cost savings for
that specific client. This zigzag effect becomes less pronounced
as the rescheduling frequency increases, eventually leading to a
relatively constant average idle and waiting time for all clients.

Fig. 8 shows the influence of the rescheduling time on the cost
or 𝜔 = 0.2 and 𝜔 = 0.8. While we again keep the mean service
imes equal to 1, we now also vary the SCV. It is observed that the
8

Fig. 4. Cost of adaptive schedule for 𝜔 = 0.5 and different values of 𝑛 and 𝛥.

Fig. 5. Number of updates of adaptive schedule for 𝑛 = 15.

cost is increasing in S(𝐵), which is in line with the findings of Mahes
et al. (2023). We have connected the dots, but clearly, between the
data points discontinuities can occur. While the figures show that at a
more global level increasing the scheduling frequency leads to a cost
reduction, it also displays the local non-monotone behavior that we
already encountered in the elementary instance above. We in particular
observe that for low values of 𝜔, the cost locally exhibits sharply
decreasing behavior. As shown in the appendix, the observed peaks (in
particular for high SCV values and 𝜔 = 0.2) are located at the scheduled
rrival times. In fact, the cost function is not continuous and makes
pward jumps at 𝑡1, 𝑡2,… . Therefore, it is better to choose an update

interval 𝛥 such that updates do not coincide with arrival epochs.
Additionally, the impact of the service time variability on the effi-

ciency gain is worth considering. Our experiments reveal that higher
values of E𝐵 or S(𝐵) correspond not only to higher cost but also to
larger efficiency gains. The gain being increasing in E𝐵 can be ex-
plained by the fact that longer service times lead to more rescheduling
opportunities, assuming a fixed rescheduling length 𝛥. The gain is
also increasing in S(𝐵): if there is a higher variability in the service
times, the effect of relatively extreme scenarios (i.e., many or no clients
in the system) can be neutralized more effectively when scheduling
adaptively.

Experiment 2 (Heterogeneous Service Times). While in the previous
experiment, we worked with homogeneous service times, in this ex-
periment we assess the impact of heterogeneity. First of all, we do this
in the setting of exponentially distributed service times (i.e., S(𝐵𝑖) = 1),
with different parameters (and 𝛥 = 3 and 𝜔 = 0.5 fixed). We consider a
situation in which the service times are ordered such that the mean
service times E𝐵𝑖 ∈ {0.5, 0.6,… , 1.5} (and hence the corresponding

variances) are increasing, three in which the service times are permuted

Computers and Operations Research 161 (2024) 106437R. Mahes et al.

r
c
t
h
(
b
t
T
s
w

Fig. 6. Mean idle and waiting time of each client 𝑖 = 2,… , 𝑛 for 𝜔 = 0.2, 𝑛 = 15, and different values of 𝛥.
Fig. 7. Mean idle and waiting time of each client 𝑖 = 2,… , 𝑛 for 𝜔 = 0.8, 𝑛 = 15, and different values of 𝛥.
Fig. 8. Cost of adaptive schedule for 𝑛 = 15 and 𝜔 = 0.2 (left) and 𝜔 = 0.8 (right).
4

r
t
s
s
t
T
o
a

andomly, and one in which the mean service times are ordered de-
reasingly. The results are depicted in Table 2. The experiments confirm
hat the cost is lower in the case of increasing mean service times (and
ence increasing variances), in line with the findings of de Kemp et al.
2021) and Kong et al. (2016). Secondly, we keep the E𝐵𝑖 = 1 fixed,
ut take the S(𝐵𝑖) ∈ {0.5, 0.6,… , 1.5}. Again, from Table 2 it is observed
hat the cost is the lowest when the variances of the jobs are increasing.
hese conclusions are particularly relevant in applications where the
ervice-time distributions can vary substantially, confirming that clients
ith short (expected) service times should be scheduled first.
9

w

.3. More practical variants

In reality, there are good reasons to keep the adapted schedule
elatively close to the existing one. Clients may be on their way to
he service facility, for instance, or may negatively perceive frequent
chedule updates. In this subsection, three mechanisms that deal with
uch considerations are proposed and evaluated. Each case starts with
he static schedule that is obtained by solving optimization problem (1).
hen, the schedule is updated using a policy based on the minimization
f a different objective function. Finally, to assess the cost of the
daptive schedules we use simulation, where in each simulation run the

eighted sum of the realized idle and waiting times is determined. As

Computers and Operations Research 161 (2024) 106437R. Mahes et al.
Table 2
Cost of adaptive schedule for 𝑛 = 11, 𝜔 = 0.5 and 𝛥 = 3. In the left table, we take
E𝐵𝑖 ∈ {0.5, 0.6,… , 1.5} equidistant, while in the right table the S(𝐵𝑖) ∈ {0.5, 0.6,… , 1.5}
are varied in the same manner.
S(𝐵𝑖) = 1 E𝐵𝑖 = 1

E𝐵𝑖 𝐶adapt(𝛥) S(𝐵𝑖) 𝐶adapt(𝛥)

Increasing 3.82 Increasing 3.76
Permutation 1 3.97 Permutation 1 3.88
Permutation 2 4.25 Permutation 2 4.02
Permutation 3 4.16 Permutation 3 4.02
Decreasing 4.26 Decreasing 4.08

before, when evaluating the cost of adaptive schedules we use 𝑁 = 106

simulation runs, unless otherwise stated.

Experiment 3 (Optimizing 𝛥 by Penalizing Adaptations). This experiment
discusses a way to determine a suitable update interval 𝛥. Clearly, in
practical situations, there are various reasons why one would wish to
avoid frequent adaptations. One could incorporate this in various ways,
for instance by penalizing the number of adaptations. A possible way
to achieve this is by choosing the rescheduling time 𝛥 such that, for
some given weight 𝛼 ∈ [0, 1], the new cost function

𝐶⋆
adapt (𝛥 ∣ 𝛼) ∶= 𝛼 𝐶adapt (𝛥) + (1 − 𝛼) 1

𝛥
is minimized. In our experiment, we consider the setting in which the
service times are independent identically distributed exponential ran-
dom variables, and the weight 𝜔 = 0.5 is held fixed. We are interested
in which 𝛥 minimizes the considered cost function for various values
of 𝛼. The results are shown in Fig. 9.

Fig. 9. Cost of adaptive schedule for different values of 𝛥 for 𝑛 = 15 clients, 𝜔 = 0.5,
and E𝐵 = 1 and S(𝐵) = 1. The simulations are each based on 𝑁 = 103 runs.

It is observed that the cost function is relatively flat around its
minimum. More importantly, a lower weight 𝛼 represents a more
substantial penalization for adaptations, and thus results in a higher
optimal rescheduling time, as expected.

Experiment 4 (Tradeoff with Fixed Interval). In this experiment, we
consider the variant in which the appointment times within a time
interval of length 𝜏 after each of the rescheduling epochs are held fixed.
This means that only the clients that are supposed to arrive at least 𝜏
time units later can undergo schedule updates. To make this variant
even more realistic, we also impose that these clients will still arrive at
least 𝜏 time units later. We call the cost 𝐶◦

adapt (𝛥 ∣ 𝜏). We again focus on
homogeneous exponential service times, with the weight 𝜔 = 0.5 being
fixed. In Fig. 10 we present the combination of 𝛥 and 𝜏 that leads to
the same cost, so as to obtain insight into the tradeoff between these
two parameters. The figure confirms an evident property: the higher the
fixed schedule time length 𝜏, the lower the rescheduling time 𝛥 should
be in order to achieve the same cost.

In Table 3, we present the gain 𝛤 (𝛥 ∣ 𝜏) achieved by adaptive
scheduling with a fixed schedule time length 𝜏 ∈ {0, 1, 2} over static
scheduling; this gain is quantified analogously to Eq. (2). Note that
10
Fig. 10. Contour plot of 𝐶◦
adapt (𝛥 ∣ 𝜏) for 𝑛 = 15 and 𝜔 = 0.5. The simulations are each

based on 𝑁 = 2500 runs.

Table 3
Efficiency gain 𝛤 (𝛥 ∣ 𝜏) of adaptive schedule, 𝑛 = 15.
𝜔 𝛥 0.5 1 2 4 8 ∞

0.2 𝜏 = 0 85.8% 69.4% 23.1% 18.4% 11.9% 0.0%
𝜏 = 1 33.2% 17.0% 14.4% 6.3% 4.0% 0.0%
𝜏 = 2 12.9% 11.2% 7.0% 4.3% 2.0% 0.0%

0.5 𝜏 = 0 74.9% 42.4% 35.2% 17.8% 10.4% 0.0%
𝜏 = 1 29.1% 23.7% 14.9% 9.8% 4.9% 0.0%
𝜏 = 2 14.7% 13.3% 9.3% 5.5% 3.4% 0.0%

0.8 𝜏 = 0 57.3% 49.2% 34.7% 20.1% 9.6% 0.0%
𝜏 = 1 31.5% 28.0% 19.9% 11.5% 5.6% 0.0%
𝜏 = 2 17.9% 17.4% 12.2% 8.5% 3.8% 0.0%

𝜏 = 0 corresponds with the standard variant of adaptive scheduling
as considered in Experiment 1. We conclude from the table that the
gain achieved can be substantial. At the same time, for evident reasons,
choosing 𝜏 relatively large rules out a strong cost reduction (compared
to static scheduling, that is).

Experiment 5 (Penalizing Deviations). We then consider a variant in
which deviations relative to the previous schedule are penalized. Con-
cretely, in self-evident notation, at any adaptation, we minimize the
objective function

ℎ(𝑡new
1 ,… , 𝑡new

𝑛 ; 𝑡old
1 ,… , 𝑡old

𝑛 ∣ 𝑘, 𝑢) ∶= 𝛼 𝑓 (𝑡new
1 ,… , 𝑡new

𝑛 ∣ 𝑘, 𝑢)

+ (1 − 𝛼)
𝑛
∑

𝑖=1
(𝑡new
𝑖 − 𝑡old

𝑖)2

for some weight 𝛼 ∈ [0, 1]. Working with homogeneous exponentially
distributed service times, Fig. 11 expresses the dependency of the
objective function on the weight 𝛼.

Fig. 11. Cost of adaptive scheduling using objective function ℎ for 𝑛 = 15 clients with
weight 𝜔 = 0.5 and 𝛥 = 3. The simulations are based on 𝑁 = 50, 000 runs.

Computers and Operations Research 161 (2024) 106437R. Mahes et al.

t
i
T
𝛽

𝜔

T
f
c

E

w

E

A
t

t
r
o
o
h
c
c
t
o
t
e
r

The case 𝛼 = 0 corresponds to penalizing any deviation from
the initial static schedule and thus leads to the same cost as of the
static schedule, i.e., 𝐶stat. The higher 𝛼, the deviations relative to the
previous schedule are penalized to a lesser extent, leading to more
flexible schedules and thus lower cost. We see that the cost when using
objective function ℎ gradually decreases to the scenario of rescheduling
after each 𝛥 = 3 time units without penalizing any deviation from the
old schedule. A reasonably smooth curve is already being achieved for
𝑁 = 50, 000 simulation runs.

Experiment 6 (Including Overtime). Various extensions are possible, for
instance, the one in which overtime is penalized. Overtime, for a given
horizon 𝑇 > 0, is defined as

𝑂𝑇 ∶= max

{ 𝑛
∑

𝑖=1
𝐵𝑖 +

𝑛
∑

𝑖=1
𝐼𝑖 − 𝑇 , 0

}

,

where ∑𝑛
𝑖=1 𝐵𝑖 +

∑𝑛
𝑖=1 𝐼𝑖 = 𝑡𝑛 + 𝑆𝑛 is to be interpreted as the session end

ime. In this setup, the problem of finding an optimal schedule could
nclude a penalty for the amount of time the horizon 𝑇 is exceeded.
his concretely means that the objective function becomes, for a weight
> 0,
𝑛
∑

𝑖=1
E𝐼𝑖 + (1 − 𝜔)

𝑛
∑

𝑖=1
E𝑊𝑖 + 𝛽 E𝑂𝑇 .

he overtime being increasing in 𝑡𝑛, the new term in the objective
unction gives an extra incentive to have low idle times. The term E𝑂𝑇
an be evaluated using the machinery presented above:

𝑂𝑇 = Emax{𝑡𝑛 + 𝑆𝑛 − 𝑇 , 0} = ∫

∞

0
P(𝑆𝑛 ⩾ 𝑡 − 𝑡𝑛 + 𝑇) d𝑡,

hich in the terminology of Proposition 1 equals

𝑂𝑇 = max{𝑡𝑛 − 𝑇 , 0} −𝑮𝑛 exp(𝑽 𝑛 max{𝑇 − 𝑡𝑛, 0})𝑽 −1
𝑛 𝟏𝐷𝑛

.

lso for this type of objective function, one could work with an adap-
ive scheduling approach, so as to reduce the objective function.

To demonstrate the impact of including overtime, Fig. 12 illustrates
he relationship between the cost and the horizon 𝑇 . The experiment
etains the same configuration as the previous one. As anticipated, the
bjective function is decreasing in the horizon 𝑇 : the higher the value
f 𝑇 , the lower the overtime, and hence the lower the cost. Setting a
igh horizon 𝑇 essentially corresponds to not imposing any overtime
onstraint, resulting in a cost function that disregards the overtime
omponent (i.e., resulting in 𝛽 = 0). Our numerical output shows that
he cost of the adaptive schedules appears to behave similarly to that
f the static schedule, with the absolute cost difference between the
wo showing an almost negligible dependency on the horizon 𝑇 . In the
xample, for small values of 𝑇 , adaptive scheduling leads to a 12% cost
eduction, whereas for large 𝑇 , this cost reduction is as high as 28%.

Fig. 12. Cost of static and adaptive scheduling with horizon 𝑇 for 𝑛 = 15 clients with
5

11

weight 𝜔 = 0.5 and 𝛥 = 3. The simulations are based on 𝑁 = 10 runs.
Table 4
Cost of adaptive and static schedule when rescheduling at each start of service, 𝑛 = 15
and E𝐵 = 1.
𝜔 S(𝐵) 0.25 0.5 0.75 1.0 1.25 1.5 1.75

0.2 𝐶adapt 2.22 3.29 4.14 4.94 5.68 6.36 7.00
𝐶stat 2.41 3.57 4.46 5.33 6.18 6.94 7.64
𝛤 7.9% 7.8% 7.2% 7.2% 8.0% 8.3% 8.4%

0.5 𝐶adapt 2.92 4.24 5.31 6.20 6.97 7.68 8.34
𝐶stat 3.61 5.22 6.45 7.55 8.49 9.33 10.09
𝛤 19.1% 18.8% 17.7% 17.8% 17.9% 17.7% 17.3%

0.8 𝐶adapt 1.94 2.81 3.55 4.14 4.66 5.14 5.58
𝐶stat 2.96 4.18 5.11 5.85 6.40 6.88 7.31
𝛤 34.4% 32.8% 30.5% 29.3% 27.1% 25.3% 23.6%

4.4. Comparison with alternative rescheduling methods

In this subsection, we compare our adaptive approach with a
number of alternative rescheduling schemes. We limit ourselves to
rescheduling only on moments when the system is not empty, making
it unlikely for the next client to be scheduled to show up right away
(as this would enforce immediate waiting time).

Experiment 7 (Rescheduling at Start of Service). First, we consider a
strategy in which one reschedules at every moment when a client’s
service starts. The results are presented in Table 4, where we vary
the value of the weight 𝜔 and the SCV. Here, 𝛤 is the gain achieved
by rescheduling as defined in Eq. (2). It is observed that in all cases,
substantial gains can be achieved. For a small value of 𝜔, the gain is
roughly constant, but a higher gain is achieved for SCVs further away
from 1. The higher the relative importance of the idle time, the more
can be gained by scheduling adaptively, in particular for small values
of the SCV.

Experiment 8 (Rescheduling at Arrivals). Suppose that one reschedules
at every moment that a client enters the system. This is in principle
the same mechanism as the one analyzed in Mahes et al. (2023), with
the crucial difference being that the dynamic programming approach
‘exploits’ the fact that when rescheduling one knows that there will be
more future rescheduling moments (so that the mechanism analyzed
in Mahes et al. (2023) necessarily leads to lower cost). While using
this knowledge yields truly optimal results, the enormous state space
makes real-time computations of schedules using the dynamic program-
ming approach computationally challenging. This experiment serves to
quantify the difference between both algorithms.

Denote by 𝐶dyn the cost of the dynamic programming method stud-
ied in Mahes et al. (2023). Then we define the loss of scheduling using
the proposed method, rather than scheduling following the dynamic
programming method of Mahes et al. (2023), by

𝓁 ∶=
𝐶adapt − 𝐶dyn

𝐶dyn
.

Also, let 𝛤 be the gain achieved by rescheduling. Find in Table 5 the
results for different values of 𝜔 and SCV. It is observed that scheduling
adaptively at each client arrival leads to nearly the same cost as the
theoretical optimum achieved by scheduling as in Mahes et al. (2023).
More specifically, the loss obtained by the proposed method is always
less than 3%, and therefore, can be considered negligible. This is good
news: when using our computationally inexpensive adaptive approach,
instead of the computationally heavy dynamic programming approach
of Mahes et al. (2023), hardly any efficiency is lost. In line with
the findings reported in Mahes et al. (2023), the gains achieved by
rescheduling at each client arrival are always substantial and more
pronounced when the values of 𝜔 and the SCV are high.

Computers and Operations Research 161 (2024) 106437R. Mahes et al.

4

m

E
a
p
d
t
t
t
t

f
a
o
t
E
a

s
w
a
𝛥
r
w
t

r
o
e
t
T

t
c
t
d
r
o
t

5

p
o
a
b
p
c
a
T
a
c
c

e
t
a

c
b

le.
Table 5
Cost of adaptive and dynamic schedule when rescheduling at each client arrival, 𝑛 = 15
and E𝐵 = 1. The simulations are based on 𝑁 = 106 runs.
𝜔 S(𝐵) 0.25 0.5 0.75 1.0 1.25 1.5 1.75

0.2 𝐶adapt 2.27 3.33 4.13 4.86 5.45 5.96 6.41
𝐶dyn 2.26 3.31 4.11 4.83 5.39 5.87 6.29
𝓁 0.6% 0.5% 0.6% 0.6% 1.1% 1.5% 1.8%
𝛤 5.6% 6.9% 7.2% 8.9% 11.8% 14.1% 16.1%

0.5 𝐶adapt 3.12 4.40 5.40 6.15 6.68 7.15 7.56
𝐶dyn 3.07 4.34 5.32 6.05 6.55 6.97 7.35
𝓁 1.7% 1.5% 1.4% 1.6% 2.0% 2.5% 2.8%
𝛤 13.6% 15.7% 16.4% 18.6% 21.2% 23.4% 25.1%

0.8 𝐶adapt 2.20 3.05 3.71 4.14 4.43 4.68 4.89
𝐶dyn 2.16 2.99 3.64 4.07 4.33 4.56 4.76
𝓁 2.7% 2.1% 1.9% 1.7% 2.2% 2.4% 2.6%
𝛤 25.1% 27.0% 27.5% 29.2% 30.8% 32.1% 33.1%

Fig. 13. Service-time distribution and corresponding phase-type fit.

.5. Using real-world data

The following experiment provides an illustrative example of our
ethod’s performance for a real-world data set.

xperiment 9 (Scheduling Arrivals for Parcel Delivery). The data avail-
ble consists of (anonymized versions of) 60 traces, stemming from a
arcel delivery company. A trace corresponds to a route along which a
river has delivered parcels. Using the first 50 traces we have estimated
he mean and variance of the service-time distribution (corresponding
o the travel time between two subsequent customers, increased by the
ime required to hand over the parcel). Then our algorithm is run on
he last 10 traces, i.e., the traces not used in the estimation.

Across the first 50 routes, a total of 4, 930 parcels have been success-
ully delivered. The service times associated with these deliveries have
n estimated mean of 2.152 min. and an estimated squared coefficient
f variation (SCV) of 0.738. Then the two-moment fit outlined in Sec-
ion 3.1 is employed. As we have an SCV smaller than 1, the weighted
rlang distribution is used. When fitting the mean and SCV, we arrive
t the parameters 𝐾 = 1, 𝜇 = 0.728, and 𝑝 = 0.433. Fig. 13 presents a

histogram of the distribution of the service times, accompanied by the
corresponding phase-type fit. The per-route number of parcels to be
delivered varies between 33 and 129, with an average of 98.6 parcels
per route.

Once the parameters of the service-time distribution have been de-
termined based on the data from the initial 50 routes, we can generate
chedules for the subsequent 10 routes. In our example, we have worked
ith a weight parameter of 𝜔 = 0.5 (signifying equal importance
ssigned to idle and waiting times). The schedules are updated every
= 15 min. A comparison is made between the cost incurred on these

outes using the adaptive approach on one hand, and the cost if one
ould not do any schedule updates on the other hand. The outcome of
12

his comparison is presented in Table 6.
The adaptive scheduling approach consistently leads to a substantial
eduction of the overall cost on all 10 routes, with an average gain of
ver 10%. By adapting the schedule for the rides that consist of an av-
rage of 101.5 parcels, approximately 21 updates are made, indicating
hat the schedule is adjusted after delivering roughly every 5 parcels.
he reduction in waiting times shows a similar relative decrease.

Intentionally, we kept this experiment as elementary as possible;
he main goal was to show our approach’s potential to reduce the
ost significantly. In our setup, all traces were ‘treated equally’, in
hat it was implicitly assumed that service times stem from the same
istribution, but one can further refine the approach by classifying
outes based on specific features (weather, driver, etc.). In that case,
ne estimates the mean and SCV of the per-class service times and uses
hese when generating schedules.

. Concluding remarks

In this work, we have introduced a methodology to generate ap-
ointment schedule updates at any time. Given the first two moments
f the clients’ service times, a phase-type fit is applied, thus facilitating
fast evaluation of the objective function, which is a weighted com-

ination of mean idle times and mean waiting times. In the update
rocedure that we propose, the cost function takes into account the
urrent state information, namely the number of clients in the system
s well as the elapsed service time of the client in service (if any).
he evaluation of the cost function that uses this state information,
s well as its optimization over the appointment times, have the same
omplexity as their counterparts pertaining to the conventional, static
ase.

Our results include an applet that can be used immediately to gen-
rate and update schedules. Experiments show that updating can lead
o substantially lower cost, even if we do not update very frequently
nd/or leave the first appointments in the current schedule unchanged.

We envisage various directions for follow-up research. First, the
ost function can be modified in various ways, a natural extension
eing a cost function that incorporates appointment windows rather

than appointment times. This can be useful, for example, in the context
of a service in which clients are served at home (such as home delivery
services). While in the present paper we have worked with mean idle
and waiting times, other functional forms are worth studying, too; one
can for instance consider a quadratic cost function to penalize large
outcomes more strongly.

Second, in this paper, we focused predominantly on updating the
schedule periodically, even though with the proposed framework a
schedule could in principle be updated at any time. One can therefore
think about the question when one should update (given the available
state information), for instance, if there is a maximum on the number
of updates.

CRediT authorship contribution statement

Roshan Mahes: Conceptualization, Methodology, Software, Writ-
ing – original draft. Michel Mandjes: Conceptualization, Methodology,
Writing – original draft. Marko Boon: Conceptualization, Methodol-
ogy, Software, Writing – original draft.

Data availability

The data used in Experiment 9 is available at https://adaptiveschedu
eu.pythonanywhere.com/download/service_times.csv.

https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv
https://adaptiveschedule.eu.pythonanywhere.com/download/service_times.csv

Computers and Operations Research 161 (2024) 106437R. Mahes et al.

c
i

S

𝑓

I
s
t
E
u
b
u
t

E

s

𝑓

T
−

w
s
T
c

c
f
𝑡

P

I

E

Table 6
Realized sums of waiting times and total cost of static and adaptive schedule (in minutes) for parcel delivery. The bottom row displays the
reduction (percentagewise) of the objective function.

Day 51 52 53 54 55 56 57 58 59 60 Mean
𝑛 115 103 104 96 84 86 84 116 115 112 101.5

Static ∑𝑛
𝑖=1 𝑊𝑖 161.82 35.92 61.39 112.71 12.68 71.55 87.16 29.77 53.05 37.36 66.34

𝐶stat 146.34 90.07 92.02 94.45 94.16 78.24 94.72 115.21 131.50 99.54 103.62

Adaptive #updates 25 21 22 21 16 18 17 24 23 23 21
∑𝑛

𝑖=1 𝑊𝑖 116.73 31.14 63.90 106.16 10.80 62.36 77.23 34.09 53.78 38.15 59.43
𝐶adapt(𝛥) 121.34 78.77 85.65 92.65 79.13 69.56 84.80 104.33 115.95 89.04 92.12

Gain 𝛤 (𝛥) 17.1% 12.5% 6.9% 1.9% 16.0% 11.1% 10.5% 9.4% 11.8% 10.5% 11.1%
s

E

S
f

E

T

𝑓

S

Appendix A. Optimizing the objective function: Special cases

In Section 3.3 we have described how to optimize the objective
function, so as to determine the optimal schedule. In Section 4, sev-
eral experiments are performed to assess the influence of each of the
parameters on the cost of the schedule. In Experiment 1, it is observed
that the shape of the cost as a function of 𝛥, the length of the update
interval, is rather complex. In particular, a remarkable conclusion is
that, counterintuitively, the cost is not monotone in 𝛥. To explain this
behavior, we analyze three relatively small systems with homogeneous
exponential service times with means E[𝐵𝑖] = 1 probabilistically, the
last of which corresponds to the instance featured in Experiment 1.

Case 1: 𝒏 = 𝟐, 𝒌 = 𝟎

The first case we study, is the simplest possible case, with 𝑛 = 2
lients. Although we start with an empty system (𝑘 = 0), the first client
s always scheduled at time 𝑡1 = 0, i.e., this case is the same as 𝑛 = 2,
𝑘 = 1. There remains only one more client to be scheduled, at time 𝑡2.
ince 𝐼1 = 𝑊1 = 0, the objective function simplifies to

(𝑡1, 𝑡2 ∣ 𝑘 = 0) = 𝜔E[𝐼2] + (1 − 𝜔)E[𝑊2].

n this setup, we can omit the variable 𝑢, used to indicate the elapsed
ervice time, because it is irrelevant due to the memorylessness of
he service times. We consider the standard variant, as described in
xperiment 1, where we periodically update the schedule each 𝛥 time
nits. The corresponding cost of the adaptive schedule will be denoted
y 𝐶𝑛,𝑘

adapt (𝛥). First, we consider the case 𝛥 → ∞, meaning that we never
pdate the schedule. For this simple case, we can explicitly compute
he expected idle times and waiting times:

E[𝐼2] = ∫

𝑡2

0
(𝑡2 − 𝑡)𝑒−𝑡d𝑡 = 𝑡2 − 1 + 𝑒−𝑡2 ,

[𝑊2] = ∫

∞

𝑡2
(𝑡 − 𝑡2)𝑒−𝑡d𝑡 = 𝑒−𝑡2 ,

o that the cost is given by

(𝑡1, 𝑡2 ∣ 𝑘 = 0) = 𝜔(𝑡2 − 1) + 𝑒−𝑡2 .

his expression is minimized for 𝑡2 = 𝑡opt
2 ∶= − log𝜔, resulting in cost

𝜔 log𝜔.
When analyzing the adaptive scheduling policy when 𝛥 is finite,

e first observe that when 𝛥 ⩾ 𝑡opt
2 , the first possibility to update the

chedule takes place only after the second (and last) client has arrived.
his implies that there are no more clients left to schedule and that the
ost will simply be equal to those when 𝛥 = ∞.

A more interesting situation arises when 𝛥 < 𝑡opt
2 , because now the

ost depends on whether or not the service time 𝐵1 has elapsed. Let us
irst consider the case where the service time 𝐵1 has elapsed at time
= 𝛥, which happens with probability

(𝐵1 < 𝛥) = 1 − 𝑒−𝛥.

n this case, the idle time is equal to 𝛥 − 𝐵1 with expectation

[𝐼2 ∣ 𝐵1 < 𝛥] =
E[(𝛥 − 𝐵1)𝟏{𝐵1<𝛥}] = 1 𝛥

(𝛥 − 𝑡)𝑒−𝑡d𝑡
13

P(𝐵1 < 𝛥) 1 − 𝑒−𝛥 ∫0 𝑓
Fig. 14. Cost versus 𝛥 for 𝑛 = 2, 𝑘 = 0 and 𝜔 = 0.2 with homogeneous exponential
ervice times.

= 𝛥 + 𝑒−𝛥 − 1
1 − 𝑒−𝛥

.

In the case where the service time 𝐵1 has not elapsed at time 𝑡 = 𝛥,
which happens with probability 𝑒−𝛥, due to the memoryless property of
the exponential distribution, the remaining cost is equal in distribution
to the cost at 𝑡 = 0. This gives us the following equation for the total
cost when 𝛥 < 𝑡opt

2 :

[𝐶2,0
adapt (𝛥)] = 𝜔P(𝐵1 < 𝛥)E[𝐼2 ∣ 𝐵1 < 𝛥] + P(𝐵1 > 𝛥)E[𝐶2,0

adapt (𝛥)].

olving this equation, finally, leads to the following elegant expression
or the total cost:

[𝐶2,0
adapt (𝛥)] =

⎧

⎪

⎨

⎪

⎩

𝜔
𝑒𝛥(1 − 𝛥) − 1

1 − 𝑒𝛥
, 𝛥 < − log𝜔,

−𝜔 log𝜔, 𝛥 ⩾ − log𝜔.
(3)

In Fig. 14 we have shown the cost for 𝜔 = 0.2. It can clearly be seen
that the cost increases until 𝛥 = 𝑡opt

2 = 1.609. For larger 𝛥 it remains
constant at the level 𝐶adapt (𝛥) = 𝐶adapt (∞) = 0.322.

Case 2: 𝒏 = 𝟑, 𝒌 = 𝟐

The next example concerns a system with three clients, two of which
are already present at time zero: 𝑡1 = 𝑡2 = 0. Only the third client
needs to be scheduled. Note that the waiting time of client 2 starts
immediately at time 𝑡 = 0 and will always equal 𝐵1, the service time of
the first client. Using Lindley’s recursion, we find

𝐼1 = 𝑊1 = 𝐼2 = 0, 𝑊2 = 𝐵1, 𝐼3 = max{𝑡3 − 𝐵1 − 𝐵2, 0},

𝑊3 = max{𝐵1 + 𝐵2 − 𝑡3, 0}. (4)

he objective function is equal to

(𝑡1, 𝑡2, 𝑡3 ∣ 𝑘 = 2) = 𝜔E[𝐼3] + (1 − 𝜔) (E[𝑊2] + E[𝑊3]). (5)

ubstitution of Eq. (4) in Eq. (5) gives, after deconditioning,
−𝑡3
(𝑡1, 𝑡2, 𝑡3 ∣ 𝑘 = 2) = (𝑡3 − 3)𝜔 + 𝑒 (𝑡3 + 2) + 1.

Computers and Operations Research 161 (2024) 106437R. Mahes et al.

d
t
E

E

w

s

t

E

t
a

s

C

c
i
t

𝐼

𝐼

𝐼

T

𝑓

T
a
T
c
c
r
3
i
w
o
g

i
c
d

This function is minimized for 𝑡3 = 𝑡opt
3 = −−1(−𝜔∕𝑒)−1, where −1(⋅)

enotes the branch at −1 of the Lambert-W function. For 𝜔 = 0.2,
he numerical value is equal to 𝑡opt

3 = 2.994 with corresponding cost
[𝐶3,2

adapt(∞)] = 1.249. As before, we note that

[𝐶3,2
adapt(𝛥)] = E[𝐶3,2

adapt(∞)] for 𝛥 ⩾ 𝑡opt
3 ,

hich we refer to as Case 1.
Case 2 (i.e., 𝛥 < 𝑡opt

3) is now more complex, since there are three
ubcases that we need to distinguish:

(2a) The service times 𝐵1+𝐵2 have elapsed at time 𝑡 = 𝛥. This happens
with probability

P(𝐵1 + 𝐵2 < 𝛥) = 1 − (1 + 𝛥)𝑒−𝛥,

which is simply the probability that an Erlang(2,1) random vari-
able is less than 𝛥. In this subcase, the idle time is 𝐼3 = 𝛥−𝐵1−𝐵2
and the third client should enter immediately. Since we also have
cost related to the waiting time 𝑊2, the total cost is

E[𝐶3,2
adapt(𝛥) ∣ 𝐵1 + 𝐵2 < 𝛥]

= 1
1 − (1 + 𝛥)𝑒−𝛥

× ∫

𝛥

0 ∫

𝛥−𝑏1

0

(

𝜔(𝛥 − 𝑏1 − 𝑏2) + (1 − 𝜔)𝑏1
)

𝑒−𝑏1𝑒−𝑏2d𝑏2d𝑏1

=
1 + (𝛥 − 3)𝜔 + 𝑒−𝛥

(

(3 + 2𝛥)𝜔 + (𝜔 − 1) 𝛥
2

2 − 1 − 𝛥
)

1 − (1 + 𝛥)𝑒−𝛥
.

(2b) Here, we consider the subcase 𝐵1 > 𝛥, which happens with
probability 𝑒−𝛥. Then we can reschedule and the cost is simply
equal to what we originally would have had plus the waiting time
of client 2 so far (equal to 𝛥):

E[𝐶3,2
adapt(𝛥) ∣ 𝐵1 > 𝛥] = (1 − 𝜔)𝛥 + E[𝐶3,2

adapt(𝛥)].

Obviously, the cost E[𝐶3,2
adapt(𝛥)] is still unknown at this stage, but

we can solve the simple equation to find them after the third and
last subcase.

(2c) This last subcase occurs when 𝐵1 < 𝛥 < 𝐵1 + 𝐵2, which happens
with probability

P(𝐵1 < 𝛥 < 𝐵1 + 𝐵2) = ∫

𝛥

0 ∫

∞

𝛥−𝑏1
𝑒−𝑏1𝑒−𝑏2 d𝑏2 d𝑏1 = 𝛥𝑒−𝛥.

The cost so far is equal to (1 − 𝜔) times the conditional waiting
time of client 2 so far:
1

𝛥𝑒−𝛥 ∫

𝛥

0 ∫

∞

𝛥−𝑏1
(1 − 𝜔) 𝑏1𝑒−𝑏1 𝑒−𝑏2 d𝑏2 d𝑏1 =

𝛥(1 − 𝜔)
2

.

Now the system has, at rescheduling epoch 𝑡 = 𝛥, reduced to
the system with 𝑛 = 2 clients with 𝑘 = 1 client already present
at the start. Therefore, the remaining cost after rescheduling is
equal to 𝐶2,1

adapt(𝛥) = 𝐶2,0
adapt(𝛥), which we already computed before

in Eq. (3).

Combining the two main cases leads to the following expression for
he cost:

[𝐶3,2
adapt (𝛥)]

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 + (𝛥 − 3)𝜔 +
(

𝑒𝛥(𝛥 − 1) + 1
1 − 𝑒𝛥

− 2
)

𝛥𝜔
1 − 𝑒𝛥

, 𝛥 < − log𝜔,

1 + (𝛥 − 3)𝜔 +
𝛥(log𝜔 − 2)

1 − 𝑒𝛥
𝜔, − log𝜔 ⩽ 𝛥 < 𝑡opt

3 ,

1 + 𝑒−𝑡
opt
3 + (𝑡opt

3 − 2)𝜔, 𝛥 ⩾ 𝑡opt
3 ,

(6)

with 𝑡opt
3 = −−1(−𝜔∕𝑒)−1. Fig. 15 shows a plot of the cost versus 𝛥 for

his model for 𝜔 = 0.2. Note the discontinuities at 𝛥 = 1.609, the optimal
rrival time of client 2 in the 𝑛 = 2, 𝑘 = 0 model, and at 𝛥 = 2.994, the
14

optimal arrival time of client 3 in the 𝑛 = 3, 𝑘 = 2 model.
Fig. 15. Cost versus 𝛥 for 𝑛 = 3, 𝑘 = 2 and 𝜔 = 0.2 with homogeneous exponential
ervice times.

ase 3: 𝒏 = 𝟑, 𝒌 = 𝟎

The final model in this appendix is the standard model with 𝑛 = 3
lients. This model is particularly relevant because it is the smallest
nstance where the cost may decrease while increasing the rescheduling
ime 𝛥 for certain intervals.

Lindley’s recursion gives the following expressions:

1 = 0, 𝑊1 = 0,

2 = max{𝑡2 − 𝐵1, 0}, 𝑊2 = max{𝐵1 − 𝑡2, 0},

3 = max{𝑡3 − 𝐵1 − 𝐵2 − 𝐼2 −𝑊2, 0}, 𝑊3 = max{𝐵1 + 𝐵2 + 𝐼2
+𝑊2 − 𝑡3, 0}.

he objective function is equal to

(𝑡1, 𝑡2, 𝑡3 ∣ 𝑘 = 0) = 𝜔(E[𝐼2] + E[𝐼3]) + (1 − 𝜔)(E[𝑊2] + E[𝑊3])

= 𝜔(𝑡3 − 2) + 𝑒−𝑡2 (1 − 𝜔) + 𝑒−𝑡3 (1 − 𝑡2 + 𝑡3) + 𝑒𝑡2−𝑡3 . (7)

his function can only be minimized numerically, yielding the optimal
rrival times 𝑡2 = 𝑡opt

2 ∶= 1.826 and 𝑡3 = 𝑡opt
3 ∶= 3.699 when 𝜔 = 0.2.

he corresponding cost is equal to 0.693. Instead of providing the
omplete analysis to find E[𝐶3,0

adapt(𝛥)], we immediately show how this
ost behaves as a function of 𝛥 by plotting them in Fig. 16. In the
ight panel we focus only on the cost in the interval 1.826 < 𝛥 <
.699, i.e., between the optimal arrival times of clients 2 and 3. This
s probably the most surprising part of Fig. 16, in particular the part
here the cost decreases as 𝛥 increases. This pattern has also been
bserved in Experiment 1 (in particular Fig. 3) and we would like to
ain more insight into this surprising behavior.

To analyze the cost in the interval 𝑡opt
2 < 𝛥 < 𝑡opt

3 , we first note that
n this interval, client 2 has arrived at time 𝑡2 = 1.826 and client 3 is
urrently scheduled at 𝑡3 = 3.699. To determine the cost, we need to
istinguish five different cases:

𝑖. 𝐵1 < 𝑡opt
2 and 𝑡opt

2 + 𝐵2 < 𝛥. In this case, both services have
finished and there is a conditional total idle time of 𝛥 − 𝐵1 − 𝐵2.
There are no waiting times so far. Client 3 can be scheduled
immediately and no further cost is going to occur.

𝑖𝑖. 𝑡opt
2 < 𝐵1 < 𝛥 and 𝐵1 + 𝐵2 < 𝛥. In this case, both services have

finished and there is a conditional total idle time of 𝛥 − 𝐵1 − 𝐵2.
Additionally, client 2 experienced a waiting time of 𝐵1 − 𝑡opt

2 .
Client 3 can be scheduled immediately and no further cost is
going to occur.

𝑖𝑖𝑖. 𝐵1 < 𝑡opt
2 and 𝑡opt

2 + 𝐵2 > 𝛥. In this case, client 2 had no waiting
time and there was an idle time of 𝑡opt

2 −𝐵1. To determine when
to optimally schedule client 3, note that the system now reduces
to the 𝑛 = 2, 𝑘 = 1 system (which is equivalent to 𝑛 = 2, 𝑘 = 0

discussed earlier).

Computers and Operations Research 161 (2024) 106437R. Mahes et al.

𝛥
𝑖
t
t
i
p

P

T

Fig. 16. Cost as a function of 𝛥, for 𝑛 = 3, 𝑘 = 0 and 𝜔 = 0.2, with homogeneous exponential service times. At the right, a zoomed-in version to focus on the interval 𝑡opt
2 < 𝛥 < 𝑡opt

3 .
𝜔

𝑖𝑣. 𝑡opt

2 < 𝐵1 < 𝛥 and 𝐵1+𝐵2 > 𝛥. In this case, client 2 had a waiting
time of 𝐵1 − 𝑡opt

2 and there was no idle time. As in Case 𝑖𝑖𝑖, the
system now reduces to the 𝑛 = 2, 𝑘 = 1 system.

𝑣. 𝐵1 > 𝛥. The conditional waiting time of client 2 is equal to 𝛥−𝑡opt
2

and the system reduces to the 𝑛 = 3, 𝑘 = 2 system discussed
before. This explains the discontinuity at 𝛥 = 2.994.

So why does the cost decrease in Fig. 16 between 𝛥 = 1.826 and
= 2.8? To understand this, we need to look at the five contributions

–𝑣 to the cost. Without going into too much detail, it can be verified
hat parts 𝑖𝑖𝑖 and 𝑣 are decreasing, while the others are increasing. In
his numerical example, the decrease of 𝑖𝑖𝑖 and 𝑣 is stronger than the
ncrease in 𝑖 + 𝑖𝑖 + 𝑖𝑣. Let us zoom in on Case 𝑖𝑖𝑖, which happens with
robability

(𝐵1 < 𝑡opt
2 , 𝐵2 > 𝛥− 𝑡opt

2) = ∫

𝑡opt
2

0 ∫

∞

𝛥−𝑡opt
2

𝑒−𝑏1𝑒−𝑏2 d𝑏2 d𝑏1 = 𝑒−𝛥
(

𝑒𝑡
opt
2 −1

)

.

he contribution of this case to the total cost in the interval 𝑡opt
2 < 𝛥 <

𝑡opt
3 is equal to

∫

𝑡opt
2

0 ∫

∞

𝛥−𝑡opt
2

𝜔(𝑡opt
2 − 𝑏1)𝑒−𝑏1𝑒−𝑏2 d𝑏2 d𝑏1

+ P(𝐵1 < 𝑡opt
2 , 𝐵2 > 𝛥 − 𝑡opt

2)E[𝐶2,0
adapt(𝛥)]

= 𝜔𝑒−𝛥
(

1 + 𝑒𝑡
opt
2 (𝑡opt

2 − 1)
)

+ 𝑒−𝛥
(

1 − 𝑒𝑡
opt
2

)

𝜔 log𝜔.

It is readily seen that this depends on 𝛥 only through the factor 𝑒−𝛥,
which is clearly decreasing exponentially.

The main takeaway message, however, is that the cost function
makes an upward jump whenever 𝛥 is equal to one of the clients’ arrival
times. This implies that rescheduling at arrival times is, in principle,
never optimal. The reason is that when scheduling at (or very soon
after) a client’s arrival, one loses the option to postpone the arrival if
needed. In many real-life applications, obviously, the situation is more
subtle, because it is not realistic (or not appreciated) to reschedule
clients right before they are supposed to arrive. In these cases, a trade-
off should be sought, for example by fixing appointment times within
a time interval of length 𝜏 after each rescheduling epoch, as discussed
in Experiment 4.

Appendix B. Pseudocode of the simulation

The following pseudocode has been used to simulate an experiment
where we periodically reschedule with rescheduling time 𝛥.
15
Algorithm 2: SimulateAdaptiveScheduling((E𝐵𝑖)𝑛𝑖=1, (S(𝐵𝑖))𝑛𝑖=1,
, 𝛥)
Result: Cost of periodically adapted schedule, with updates at

times 𝜏𝑚 = 𝑚𝛥
1 (𝐵1,… , 𝐵𝑛) ∶= 𝙶𝚎𝚗𝚎𝚛𝚊𝚝𝚎𝚂𝚎𝚛𝚟𝚒𝚌𝚎𝚃𝚒𝚖𝚎𝚜((E𝐵𝑖)𝑛𝑖=1, (S(𝐵𝑖))𝑛𝑖=1)
2 𝐵1,start = 0
3 𝐵1,end = 𝐵1
4 𝑚 = 0
5 (𝑡1,… , 𝑡𝑛) ∶= 𝚂𝚌𝚑𝚎𝚍𝚞𝚕𝚎((E𝐵𝑖)𝑛𝑖=1, (S(𝐵𝑖))𝑛𝑖=1, 𝜔 | 𝑘 = 1, 𝑢 = 0)
6 while 𝑡𝑛 > 𝜏𝑚 do
7 𝚊𝚛𝚛𝚒𝚟𝚊𝚕𝚜 = {𝑖 ∈ {1,… , 𝑛} ∶ 𝑡𝑖 ∈ (𝜏𝑚, 𝜏𝑚+1]}
8 for 𝑗 ∈ 𝚊𝚛𝚛𝚒𝚟𝚊𝚕𝚜 do
9 𝐵𝑗,start = max{𝐵𝑗−1,end, 𝑡𝑗}
10 𝐵𝑗,end = 𝐵𝑗,start + 𝐵𝑗
11 end
12 𝓁 ∶= max{𝚊𝚛𝚛𝚒𝚟𝚊𝚕𝚜} // last arrival
13 if 𝐵𝓁,end < 𝜏𝑚+1 then // system is idle
14 (𝑡𝓁+1,… , 𝑡𝑛) = 𝚂𝚌𝚑𝚎𝚍𝚞𝚕𝚎((E𝐵𝑖)𝑛𝑖=𝓁+1, (S(𝐵𝑖))𝑛𝑖=𝓁+1, 𝜔 | 𝑘 =

1, 𝑢 = 0)
15 else // a client is in service
16 𝚠𝚊𝚒𝚝𝚒𝚗𝚐_𝚌𝚕𝚒𝚎𝚗𝚝𝚜 = {𝑖 ∈ {1,… ,𝓁} ∶ 𝐵𝑖,start > 𝜏𝑚+1}
17 if 𝚠𝚊𝚒𝚝𝚒𝚗𝚐_𝚌𝚕𝚒𝚎𝚗𝚝𝚜 = ∅ then
18 𝑐 ∶= 𝓁 // client in service
19 else
20 𝑐 ∶= min{𝚠𝚊𝚒𝚝𝚒𝚗𝚐_𝚌𝚕𝚒𝚎𝚗𝚝𝚜} − 𝟷

21 end
22 𝑘 ∶= |𝚠𝚊𝚒𝚝𝚒𝚗𝚐_𝚌𝚕𝚒𝚎𝚗𝚝𝚜| + 1
23 𝑢 ∶= 𝜏𝑚+1 − 𝐵start,𝑐
24 (𝑡𝓁+1,… , 𝑡𝑛) = 𝚂𝚌𝚑𝚎𝚍𝚞𝚕𝚎((E𝐵𝑖)𝑛𝑖=𝓁+1, (S(𝐵𝑖))𝑛𝑖=𝓁+1, 𝜔 | 𝑘, 𝑢)
25 end
26 𝑚 ∶= 𝑚 + 1
27 end

// Lindley recursion
28 𝑊1 = 𝐼1 = 0
29 for 𝑖 = 2 to 𝑛 do
30 𝐿𝑖 ∶= (𝑡𝑖−1 +𝑊𝑖−1 + 𝐵𝑖−1) − 𝑡𝑖
31 𝑊𝑖 = max{𝐿𝑖, 0}
32 𝐼𝑖 = max{−𝐿𝑖, 0}
33 end
34 return 𝜔

∑𝑛
𝑖=1 𝐼𝑖 + (1 − 𝜔)

∑𝑛
𝑖=1 𝑊𝑖

Computers and Operations Research 161 (2024) 106437R. Mahes et al.
References

Ahmadi-Javid, A., Jalali, Z., Klassen, K., 2017. Outpatient appointment systems in
healthcare: a review of optimization studies. European J. Oper. Res. 258, 3–34.

Asmussen, S., 2003. Applied Probability and Queues, second ed. Springer, New York.
Berg, B., Denton, B., Erdoğan, S., Rohleder, T., Huschka, T., 2014. Optimal booking

and scheduling in outpatient procedure centers. Comput. Oper. Res. 50, 24–37.
Çayırlı, T., Veral, E., Rosen, H., 2006. Designing appointment scheduling systems for

ambulatory care services. Health Care Manage. Sci. 9, 47–58.
Chen, R., Robinson, L., 2014. Sequencing and scheduling appointments with potential

call-in patients. Prod. Oper. Manage. 23, 1522–1538.
de Kemp, M., Mandjes, M., Olver, N., 2021. Performance of the smallest-variance-first

rule in appointment sequencing. Oper. Res. 69, 1651–1959.
Decerle, J., Grunder, O., El Hassani, A., Barakat, O., 2018. A memetic algorithm for

a home health care routing and scheduling problem. Oper. Res. Health Care 16,
59–71.

Doğru, A., Melouk, S., 2019. Adaptive appointment scheduling for patient-centered
medical homes. Omega 85, 166–181.

Erdoğan, S., Denton, B., 2013. Dynamic appointment scheduling of a stochastic server
with uncertain demand. INFORMS J. Comput. 25, 116–132.

Erdoğan, S., Gose, A., Denton, B., 2015. Online appointment sequencing and scheduling.
IIE Trans. 47, 1267–1286.

Ghosh, M., Kuiper, A., Mahes, R., Maragno, D., 2023. Learn global and optimize local:
a data-driven methodology for last-mile routing. Comput. Oper. Res. 159, 106312.

Kong, Q., Lee, C., Teo, C., Zheng, Z., 2016. Appointment sequencing: Why the
smallest-variance-first rule may not be optimal. European J. Oper. Res. 255,
809–821.

Kuiper, A., 2016. Optimal Appointment Scheduling in Healthcare (Ph.D. thesis).
University of Amsterdam.

Kuiper, A., Kemper, B., Mandjes, M., 2015. A computational approach to optimized
appointment scheduling. Queueing Syst. 79, 5–36.

Kuiper, A., Lee, R., 2022. Appointment scheduling for multiple servers. Manage. Sci.
68, 7422–7440.

Kuiper, A., Mandjes, M., de Mast, J., Brokkelkamp, R., 2022. A flexible and optimal
approach for appointment scheduling in healthcare. Decis. Sci. J. 54, 85–100.
16
Lindley, D., 1952. The theory of queues with a single server. Math. Proc. Camb. Phil.
Soc. 48, 277–289.

Liu, R., Yuan, B., Jiang, Z., 2019. A branch-and-price algorithm for the home-caregiver
scheduling and routing problem with stochastic travel and service times. Flex. Serv.
Manuf. J. 31, 989–1011.

Mahes, R., Mandjes, M., Boon, M., Taylor, P., 2023. Adaptive scheduling in service
systems: a dynamic programming approach. European J. Oper. Res. 312, 605–626.

Mak, H., Rong, Y., Zhang, J., 2014. Sequencing appointments for service systems using
inventory approximations. Manuf. Serv. Oper. Manage. 16, 251–262.

Mak, H., Rong, Y., Zhang, J., 2015. Appointment scheduling with limited distributional
information. Manage. Sci. 61, 316–334.

Neuts, M., 1994. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. Courier Corporation.

Pegden, C., Rosenshine, M., 1990. Scheduling arrivals to queues. Comput. Oper. Res.
17, 343–348.

Robinson, L., Chen, R., 2003. Scheduling doctors’ appointments: optimal and
empirically-based heuristic policies. IIE Trans. 35, 295–307.

Spliet, R., Desaulniers, G., 2015. The discrete time window assignment vehicle routing
problem. European J. Oper. Res. 244, 379–391.

Spliet, R., Gabor, A., 2014. The time window assignment vehicle routing problem.
Transp. Sci. 49, 721–731.

Stein, W., Côté, M., 1994. Scheduling arrivals to a queue. Comput. Oper. Res. 21,
607–614.

Tijms, H., 1994. Stochastic Models: An Algorithmic Approach. Wiley, New York.
Wang, P., 1997. Optimally scheduling 𝑁 customer arrival times for a single-server

system. Comput. Oper. Res. 24, 703–716.
Wang, J., Fung, R., 2014. Adaptive dynamic programming algorithms for sequential

appointment scheduling with patient preferences. Artif. Intell. Med. 63, 33–40.
Wang, J., Fung, R., 2015. Dynamic appointment scheduling with patient preferences

and choices. Ind. Manage. Data Syst. 115, 700–717.
Wang, W., Gupta, D., 2011. Adaptive appointment systems with patient preferences.

Manuf. Serv. Oper. Manage. 13, 373–389.
Zacharias, C., Yunes, T., 2020. Multimodularity in the stochastic appointment

scheduling problem with discrete arrival epochs. Manage. Sci. 66, 744–763.
Zhan, Y., Wang, Z., Wan, G., 2021. Home service routing and appointment scheduling

with stochastic service times. European J. Oper. Res. 288, 98–110.

http://refhub.elsevier.com/S0305-0548(23)00301-5/sb1
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb1
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb1
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb2
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb3
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb3
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb3
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb4
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb4
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb4
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb5
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb5
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb5
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb6
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb6
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb6
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb7
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb7
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb7
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb7
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb7
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb8
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb8
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb8
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb9
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb9
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb9
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb10
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb10
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb10
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb11
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb11
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb11
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb12
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb12
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb12
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb12
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb12
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb13
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb13
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb13
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb14
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb14
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb14
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb15
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb15
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb15
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb16
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb16
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb16
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb17
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb17
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb17
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb18
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb18
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb18
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb18
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb18
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb19
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb19
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb19
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb20
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb20
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb20
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb21
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb21
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb21
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb22
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb22
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb22
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb23
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb23
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb23
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb24
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb24
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb24
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb25
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb25
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb25
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb26
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb26
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb26
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb27
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb27
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb27
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb28
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb29
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb29
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb29
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb30
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb30
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb30
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb31
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb31
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb31
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb32
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb32
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb32
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb33
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb33
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb33
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb34
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb34
http://refhub.elsevier.com/S0305-0548(23)00301-5/sb34

	Adaptive appointment scheduling with periodic updates
	Introduction
	Adaptive scheduling procedure
	An auxiliary scheduling problem
	Periodically updating the schedule

	Evaluation of the objective function
	Phase-type fit
	Computation of mean sojourn times
	Optimizing the objective function

	Numerical Evaluation
	Applet
	Standard variant
	More practical variants
	Comparison with alternative rescheduling methods
	Using real-world data

	Concluding Remarks
	CRediT authorship contribution statement
	Data availability
	Appendix A. Optimizing the objective function: Special cases
	Case 1: n=2, k=0
	Case 2: n=3, k=2
	Case 3: n=3, k=0

	Appendix B. Pseudocode of the simulation
	References

