
Synthetic gene network for entraining and amplifying cellular
oscillations
Hasty, J.; Dolnik, M.; Rottschäfer, V.; Collins, J.J.

Citation
Hasty, J., Dolnik, M., Rottschäfer, V., & Collins, J. J. (2002). Synthetic gene network for
entraining and amplifying cellular oscillations. Physical Review Letters, 88(14).
doi:10.1103/PhysRevLett.88.148101
 
Version: Publisher's Version
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/3731305
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/3731305


VOLUME 88, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 8 APRIL 2002

148101
Synthetic Gene Network for Entraining and Amplifying Cellular Oscillations

Jeff Hasty,1 Milos Dolnik,2 Vivi Rottschäfer,3 and James J. Collins1

1Center for BioDynamics and Department of Biomedical Engineering, Boston University, 44 Cummington Street,
Boston, Massachusetts 02215

2Department of Chemistry and Center for Complex Systems, Brandeis University, Waltham, Massachusetts 01655
3Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands

(Received 19 April 2001; published 22 March 2002)

We present a model for a synthetic gene oscillator and consider the coupling of the oscillator to a
periodic process that is intrinsic to the cell. We investigate the synchronization properties of the coupled
system, and show how the oscillator can be constructed to yield a significant amplification of cellular
oscillations. We reduce the driven oscillator equations to a normal form, and analytically determine the
amplification as a function of the strength of the cellular oscillations. The ability to couple naturally
occurring genetic oscillations to a synthetically designed network could lead to possible strategies for
entraining and/or amplifying oscillations in cellular protein levels.
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The flurry of genomic research has led to detailed lists
of the genes that are at the heart of cellular function. These
genes and their protein products form a complex web of in-
teractions, wherein the proteins serve to activate or repress
the transcription of the genes. The dissection and analy-
sis of the complex dynamical interactions involved in gene
regulation is thus a natural next step in genomic research,
and tools from nonlinear dynamics and statistical physics
will no doubt play an important role.

Although a theoretical framework for analyzing gene
networks has origins that date back nearly 30 years [1,2],
it is relatively recent that experimental progress has made
genetic networks amenable to quantitative analysis [3,4].
This progress has rendered feasible the notion of an
engineering-based approach to the study of gene networks
[5,6], whereby dynamical modeling tools are used in the
design of novel networks that can, in turn, be constructed
and studied in the laboratory. Recent examples of this
approach [7–9] have yielded observed network behavior
which is consistent with predictions that arise from
continuum dynamical modeling. Such an inherently re-
ductionist decoupling of a simple network from its native
and often complex biological setting can lead to valuable
information regarding evolutionary design principles [10],
and set the stage for a modular description of the regula-
tory processes underlying basic cellular function [11,12].
Additionally, this approach could have a significant impact
on postgenomic biotechnology. From the construction of
simple switches or oscillators, one can envision the design
of integrated biological circuits capable of performing
increasingly elaborate functions [13].

In this Letter, we describe a model for a synthetic gene
oscillator designed from common gene regulatory compo-
nents. We emphasize how the model equations can be used
to develop design criteria for robust oscillations, and cou-
ple the synthetic oscillator to an oscillating cellular pro-
cess. The synthetic oscillator design (Fig. 1) consists of
-1 0031-9007�02�88(14)�148101(4)$20.00
two plasmids, both containing the same promoter (denoted
P�

RM). On plasmid 1, the promoter controls the cI gene
and thus regulates the expression of the CI protein. On
plasmid 2, the promoter controls the lac gene, and thus
regulates the production of the Lac protein. Interesting
dynamics in the numbers of CI and Lac proteins arises due
to the influence of two of the binding configurations on the
transcriptional rate: (i) when a CI dimer is bound to OR2
and when OR3� is vacant (Fig. 1), the promoter is turned
“on,” that is, its gene is transcribed at an amplified rate,
and (ii) when a Lac tetramer is bound to OR3�, the pro-
moter is turned “off,” i.e., its gene is not transcribed.

Utilizing the reactions given in Table I and defining con-
centrations as our dynamical variables, the following rate
equations describe the evolution of the concentrations of
CI �X� and Lac �Y� monomers:

dX
dt

� 2 2k1X2 1 2k21X2

1 kt�D1 1 D1X2 1 aD1X2X2� 2 kxX ,

dY

dt
� 2 2k2Y2 1 2k22Y2

1 kt�D2 1 D2X2 1 aD2X2X2� 2 kyY ,

(1)

where X2 �Y2� is the concentration of CI (Lac) dimers and
the bracketed transcription terms are the concentrations
of the DNA and DNA-protein complexes for plasmids 1
(superscript 1) and 2 (superscript 2); see also Table I.

The protein multimers and the complexes can be elim-
inated by utilizing the inherent separation of time scales;
the multimerization processes are known to be governed
by rate constants that are extremely fast with respect to
cellular growth and transcription (Table I). This allows
for algebraic substitution [14] and leads to the following
set of equations:
© 2002 The American Physical Society 148101-1
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FIG. 1 (color). (a) Schematic for the
synthetic gene oscillator. The P�

RM pro-
moter is a mutant of the PRM promoter
that naturally exists in the virus l phage
[16]. In its natural state, the state of the
virus is regulated by CI dimers which
bind to the three operator sites OR1,
OR2, and OR3; in our design, the OR3
operator is replaced with an operator
region OR3� which has an affinity only
for Lac tetramers. The depicted position
of the Lac operator site is for illustrative
purposes only, since the ideal placement
of the operator may be upstream of OR1
and OR2. (b) The synthetic oscillator is
coupled to the host genome by inserting
the CI gene adjacent to an oscillating gene
product in the host.
dx

dt
�

1 1 x2 1 asx4

�1 1 x2 1 sx4� �1 1 y4�
2 gxx ,

ty
dy
dt

�
1 1 x2 1 asx4

�1 1 x2 1 sx4� �1 1 y4�
2 gyy .

(2)

The dimensionless variables are defined by x �
�K1K4�1�2X, y � �K2

2 K3K6�1�4Y , and t �
p

K1K4 ktm1t,
where m1 is the copy number concentration of plasmid 1.
Utilizing the parameter values given in Table I, this yields
X �nM� � 8x, Y �nM� � 84y, and t �min� � t�20 (for
a plasmid copy number concentration m1 � 50 nM). The
parameter a represents the degree to which the transcrip-
tion rate is increased when a CI dimer is bound to OR2,
and s is the affinity for a CI dimer binding to OR2 relative
to binding at OR1. The time scale for the variable y is
set by ty � �K2

1 K2
4 �K2

2 K3K6�1�4�m1�m2� � 0.1�m1�m2�,
and since the copy number can be chosen for a given
plasmid construct, ty is a design parameter. In this paper,
we set ty � 5, which is consistent with the utilization of
a high-copy plasmid �m1 � 50� for the cI gene and an
integrated lac gene �m2 � 1�. For these copy numbers, the
degradation rates are scaled such that kx � 20gx (min21)
and ky � 21gy (min21). We take these parameters as
tunable since degradation is a comparatively easy property
to manipulate externally. In the context of our synthetic
oscillator, the temperature-sensitive CI857 protein could
be utilized. This protein is stable at 30 ±C and becomes
increasingly incapable of binding to its DNA operator
sites as the temperature is increased to 42 ±C. The range
of the effective degradation rate from 30–42 ±C is over 2
orders of magnitude [15]. Likewise, for the Lac protein,
the concentration of isotropyl-b-D-thiogalactopyranoside
(IPTG), which binds to Lac tetramers, can be used to
induce a change in the effective Lac degradation by ren-
dering it unable to bind to its operator site. Importantly,
these manipulations are standard, and the values of gx

and gy utilized below are easily accessible.
148101-2
The plot in Fig. 2a indicates that oscillations are favored
when the degradation of CI is 2–3 times that of Lac, and
the bifurcation plot in Fig. 2b implies that the amplitude of
the oscillations will increase with increasing gy. In addi-
tion, we find that the Hopf bifurcation corresponding to the
upper branch in Fig. 2a is subcritical. This is highlighted
in Fig. 2b, where we observe the coexistence of oscillatory
and stable-state solutions for values of gy about 0.037. The
parameters a is responsible for the subcritical nature of the
bifurcation (Fig. 2c), indicating that the degree of P�

RM ac-
tivation by CI is the source of the coexistence region.

TABLE I. Synthetic network biochemical reactions. In the
DNA-protein equilibrium reactions, Di denotes the promoter
region of plasmid type i, where i � 1, 2. In deriving Eqs. (1)
and (2), the forward equilibrium constants are defined as
Kj � kj�k2j , and the conservation law is mi � Di 1 DiX2 1
DiX2X2 1 DiY4 1 DiX2Y4 1 DiX2X2Y4, where m1 (m2) is
the concentration of plasmid type 1 (2).

Equilibrium reactions Eq. constant (1�M) [Ref.]

2X % X2 K1 � 5 3 107 [16]
4Y % 2Y2 % Y4 K2 � 108, K3 � 107 [25]

Di 1 X2 % DiX2 K4 � 3 3 108 [16]
DiX2 1 X2 % DiX2X2 K5 � sK4; s � 2 [16]

Di 1 Y4%DiY4 K6 � 2 3 1013 [26]
DiX2 1 Y4 % DiX2Y4 K7 � K6

DiX2X2 1 Y4 % DiX2X2Y4 K8 � K6

Production: Plasmid 1 Rate constant

D1 ! D1 1 X kt � 4 min21 [27]
D1X2 ! D1X2 1 X kt � 4 min21 [27]

D1X2X2 ! D1X2X2 1 X akt ; a � 11 [16]

Production: Plasmid 2 Rate constant

D2 ! D2 1 Y kt � 4 min21 [27]
D2X2 ! D2X2 1 Y kt � 4 min21 [27]

D2X2X2 ! D2X2X2 1 Y akt ; a � 11 [16]
148101-2
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FIG. 2. Analysis of the oscillator equations (2). (a) The os-
cillatory region grows with increased protein degradation rates.
(b) The Hopf bifurcation corresponding to the lower (upper)
boundary in (a) is supercritical (subcritical). (c) The source of
the subcritical bifurcation is the degree of activation. (d) The
dominant Arnol’d tongue is found around the autonomous pe-
riod of 147. Within this resonance region, the period of the
oscillations is entrained, and is equal to the external periodic
force. (e) For a system poised just outside the oscillatory re-
gion, the predominant response is 1:1 phase locking. If not
plotted, parameters are fixed at s � 2, a � 11, gx � 0.105,
gy � 0.036 (d), and gy � 0.038 (e).

We now turn to the employment of an intrinsic cellular
process as a means of interacting with the synthetic net-
work. We suppose there is a process in the host genome
that involves oscillations in the production of protein U,
and that the production of U is given by �u � u0 sinvt.
Examples of such a process include mechanisms related
to the cell division cycle or cellular motility (as in the pe-
riodic motion of flagella). In order to couple the oscilla-
tions of U to our network, the gene encoding CI is inserted
adjacent to the gene encoding U (Fig. 1b). Then, since
U is being transcribed periodically, the co-transcription of
CI will lead to an oscillating source term in Eqs. (2), i.e.,
�x � f�x, y� 2 gxx 1 e sin�vt�, where f�x, y� is the non-
linear term in Eqs. (2).

We utilize the numerical bifurcation and continuation
package CONT [17] to determine the boundaries of the ma-
jor resonance regions. These boundaries are depicted in the
parameter-space plots of Figs. 2d and 2e, where the period
of the drive is plotted versus the drive amplitude for two
cases: one where the synthetic network is designed with
parameters just inside the oscillatory region (Fig. 2d), and
one where the network lies outside the oscillatory region
(Fig. 2e). In the former case, the resonance regions in
Fig. 2d form the so-called Arnol’d tongues, which display
an increasing range of the locking period as the amplitude
148101-3
of drive is increased. Outside the Arnol’d tongue regions,
complex periodic and quasiperiodic solutions exist. In the
latter case, we see that there is a large region of 1:1 phase
locking with two small regions representing other types of
simple periodic solutions.

We now consider the use of resonance in an oscilla-
tory cellular process, and seek a strategy for amplifying
its amplitude [18,19]. We focus on a network designed
with parameter values just outside the oscillatory region,
and study the degree to which the synthetic oscillator will
respond with oscillations that are significantly greater than
the drive amplitude. Viewed in this way, the synthetic net-
work is effectively amplifying an internal cellular signal.
We define the output gain by g � Ax�e, where Ax is the
amplitude of the resulting oscillations in the variable x.
We are interested in the response of the synthetic network
when its parameters are such that, without the drive, it is
poised near a Hopf bifurcation. We therefore reduce the
driven equations through the derivation of a normal form,

�A � � 1
2m 1 ikc�A 1 cAjAj2 1 hAjAj4 1 e sin�vt�

3 �c00 1 c10A 1 c01Ā 1 c20A2 1 c11jAj
2

1 c02Ā2 1 hot� , (3)

where A is a complex amplitude and the coefficients are
functions of the parameters in Eqs. (2). We note that, for
e � 0, the normal form reduces to the standard form for a
Hopf bifurcation, and is to fifth order since the bifurcation
is subcritical, i.e., Re�c� . 0. Our reduction utilizes a pre-
viously reported normal form derivation [20], generalized
to account for the periodic drive.

We envision designing the network so that its natural
frequency is near that of the drive, with 1:1 phase locking
between the drive and response. We therefore substitute
A � Rei�v1d�t into Eq. (3) and utilize the fact that d ø 1.
For a given set of parameters, the gain will depend on
e in a nonlinear fashion, and the normal form analysis
provides a method of explicitly calculating the gain as a
function of the drive amplitude. This calculation involves
determining Ax as a function of e, and the overall strategy
is to first determine Ax as a function of R, then R as a
function of e, i.e., we seek A�R�e��. This is accomplished
in two steps: (i) we first utilize the transformation that
reduces Eqs. (2) (with drive) to the normal form Eq. (3)
to obtain the amplitude of the resulting oscillations Ax

in terms of R, and (ii) we then substitute A � Rei�v1d�t

into Eq. (3), yielding R in terms of e. In Figs. 3a and 3b,
we compare the results of this calculation with the direct
numerical simulation of Eqs. (2) with drive. We observe
that there is an initial detuning-dependent climb in the gain,
followed by a crossover to a scaling region common to
all plots. In the scaling region, the theoretical calculation
gives g � e24�5, and this can be directly attributed to the
subcritical nature of the Hopf bifurcation.

In this Letter, we have shown how tools from nonlin-
ear dynamics can be used to design a genetic oscillator
148101-3
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FIG. 3. Nonlinear amplification of intrinsic cellular oscilla-
tions. Results for the gain as a function of the drive amplitude
generated from both the normal form analysis and direct simula-
tion of Eqs. (2) with drive are presented for several “detuning”
values, where Dg � �gy 2 gc

y ��gc
y and Dv � �v 2 v0��v0

measure the amount the system is detuned from the critical
point and resonance, respectively. (a) Numerical simulations
for Dw � 0 and Dg � 0 (circles), 0.1 (squares), and 0.2 (di-
amonds). The theoretical curves are indistinguishable for the
three values of Dg . (b) Numerical simulations for Dg � 0 and
Dv � 0.01 (circles), 0.1 (squares), and 0.2 (diamonds). The
theoretical curves correctly identify the trend away from scaling
as the detuning is increased. The fixed parameters used for these
plots are gx � 0.105, t � 5, and a � 11.

network. We have described the coupling of the network
to a periodic process that is intrinsic to the cell, and an-
alyzed the resulting behavior in the context of synchro-
nization. Such coupling could lead to possible strategies
for entraining or inducing network oscillations in cellular
protein levels, and prove useful in the design of networks
which interact with cellular processes that require amplifi-
cation or precise timing. Fluctuations in expression states
are inherent in gene regulatory networks [8,21–24], and
significant variations in oscillatory phases and amplitudes
were observed in the previous synthetic oscillator study
[8]. Importantly, since our proposed synthetic oscillator is
designed to faithfully entrain to a cellular periodic process,
such inherent fluctuations in the synthetic network will be
suppressed.

We thank Farren Isaacs for discussions relating to
the specific design of the CI-Lac synthetic network, and
William Blake, David McMillen, and Mads Kaern for ad-
ditional insightful discussions. This work was supported
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