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Summary. Two related systems of coupled modulation equations are studied and com-
pared in this paper. The modulation equations are derived for a certain class of basic
systems which are subject to two distinct, interacting, destabilising mechanisms. We
assume that, near criticality, the ratio of the widths of the unstable wavenumber-intervals
of the two (weakly) unstable modes is small—as, for instance, can be the case in double-
layer convection. Based on these assumptions we first derive a singularly perturbed
modulation equation and then a modulation equation with a nonlocal term. The reduc-
tion of the singularly perturbed system to the nonlocal system can be interpreted as a
limit in which the width of the smallest unstable interval vanishes. We study and com-
pare the behaviour of the stationary solutions of both systems. It is found that spatially
periodic stationary solutions of the nonlocal system exist under the same conditions
as spatially periodic stationary solutions of the singularly perturbed system. Moreover,
these solutions can be interpreted as representing the same quasi-periodic patterns in the
underlying basic system. Thus, the ‘Landau reduction’ to the nonlocal system has no
significant influence on the stationary quasi-periodic patterns. However, a large variety
of intricate heteroclinic and homoclinic connections is found for the singularly perturbed
system. These orbits all correspond to so-called ‘localised structures’ in the underlying
system: They connect simple periodic patterns at x — £00. None of these patterns can
be described by the nonlocal system. So, one may conclude that the reduction to the
nonlocal system destroys a rich and important set of pattems.

1. Introduction

In the weakly nonlinear stability theory of the evolution of patterns one classically
considers systems like

¥ = Ly + N(¥), Y,y 1) R x Q@ x Rt - RV, (1.1)
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Fig. 1. A critical curve with two local minima, one at (k,, R|) and the
other at (k;, R;). Here, R is fixed at a value above R, and R,: There are
two intervals of ‘unstable waves.” The small parameter & corresponds to the
ratio of the widths of these intervals.

where Ly (respectively N) is a linear (nonlinear) operator, R is a control, or bifurcation,
parameter, and €2 is a bounded domain C R™. We refer to the review paper by Eckhaus
[9] for a survey and some of the numerous physical examples. This system is assumed
to have a basic solution ¥y(y). The linearised stability of this solution is determined by
setting

¥ = Yo + fy)eTH,

and solving, for any pair (k, R), an eigenvalue problem for f(y) with eigenvalues y =
u(k, R). Note that k is a scalar: We have assumed that n = 1 in (1.1) (for simplicity,
we will assume n = 1 throughout this paper). The neutral curve is defined as the set
{Re uo(k, R) = 0}, where po(k, R) is the critical eigenvalue (that is, the eigenvalue with
the largest real part) for a given pair (k, R). The basic solution s is linearly stable for
R = Ry if Reug(k, Ry) < O for all k. A bifurcation occurs if one increases R such that
{R = const.} intersects the neutral curve at a minimum (k., R.) of this curve: A small
interval of ‘linearly unstable waves’ appears for R > R, (see Figure 1, where either k;
or ky plays the role of k.). To understand the behaviour of the solutions to (1.1) for R
closeto R.,or R — R, = re?, 0 < ¢ « 1, one first shows that the nonlinear evolution of
solutions close (= O(e)) to Yy is governed by the (complex) amplitude A(&, 7) of the
linearly ‘most unstable mode’ f.(y)e'**+#) where f.(y) is the critical eigenfunction
at the eigenvalue ug(k., R.) = iu.; € and t are slow spatial and temporal variables.
Then, one derives an equation for A(&, 1), the so-calied Ginzburg-Landau equation,

1
A, =rugA — EukkAgg + cA|AP%, (1.2)

where g = g—‘;(kc, RY), ik = ZZT‘Z‘(kC, R.),and ¢ € C is the so-called Landau constant.
Note that Repg > 0 and Repy < 0 since the neutral curve can be approximated near



Singularly Perturbed and Nonlocal Modulation Equations 373
the minimum (k., R.) by the parabola

(k — k)2 (1.3)

Details of this procedure are, for instance, given in [9]. Recently, a number of papers
on the mathematical validity of the Ginzburg-Landau approximation have appeared; we
refer to [2] for a survey and relevant references. The Landau equation associated with this
nonlinear stability problem can be obtained from (1.2) by setting A(§, t) = A(t). This
‘Landau reduction’ can be interpreted by saying that one neglects the width of the band
of unstable waves centred around k = k. for R = R. + re?. Historically, the Landau
equation was derived a decade earlier than the Ginzburg-Landau equation (see [30]).

In this paper we consider a class of physical problems which have two distinct,
interacting instability mechanisms at near-critical conditions. This means, in the above
setting, that the neutral curve {Re ug(k, R) = 0} has two local minima, (k;, R;) and
(k2, R2), suchthat|R| — R} is small (see Figure 1). So, if one chooses R close to criticality
in this case, one expects two independent, interacting, ‘linearly most unstable waves,
Fi(y)e'®<Fimd near (ky, Ry) with complex amplitude A(&, T) and f;(y)e'®2¥+#2) near
{k2, Ry) with amplitude B(&, 7). The nonlinear behaviour of patterns near criticality is
then described by a coupled system of Ginzburg-Landau equations.

When a neutral curve has more than one local minimum one does not expect that
those minima occur for (approximately) the same value of the bifurcation parameter R.
However, the relative position of the minima can very often be changed as a second
parameter § is varied. Thus, by changing this second parameter S the neutral curve
transforms from a curve with an absolute minimum in (k;, R|) to a curve with an absolute
minimum (k,, R;) (or vice versa). If (k;, R}) is the absolute minimum then we are in the
above described classical case and the evolution of patterns near criticality is governed
by (1.2); if (k2, R;) is the absolute minimum then the situation is again classical and is
governed by a Ginzburg-Landau equation for B(€, t). The two unstable modes interact in
the transition region. This situation occurs in many applications and the coupled system
of equations described above has been derived by many authors. We mention here some
physical examples where two unstable modes can interact: double-layer convection [25],
[24], [18]; crystal-growing experiments {(where the convective and morphological modes
can interact) [13], [26], [21]; gasless combustion [19]; sand ripple formation [31]. The
coupled system of modulation equations has, for instance, been derived in {19}, [17],
[22].

In Section 2 we will give a short sketch of the derivation of the coupled system
in the case of (nonresonantly) interacting instability mechanisms. The model problem
considered in this paper is assumed to have a reflection symmetry in the one-dimensional
unbounded variable x. Therefore, all coefficients in the coupled system of modulation
equations will be real:

[At:rA+A55+A(111A|2+C113‘2)~ (1.4)

B, = sB + DBy + B(ts| B> + 2] A?),

where r and s measure the distance between R and R ; (see Section 2 for more details).
By rescaling, we have simplified the coefficients of the linear terms. Due to the reflec-
tion symmetry—which for instance occurs naturally in convection experiments—the
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&-variable is not moving (it is independent of t). This is a consequence of the fact that all
eigenvalues p(k, R) are real. If this is not the case, then the A and B amplitudes will be
travelling with the group speed of the linearly unstable waves. This speed is in general
not the same for the A- and B-modes, so the interaction of the A and B patterns cannot
be described by (1.4). In this case one has to apply some kind of averaging formalism in
order to derive a so-called mean field Ginzburg-Landau equation; see for instance [17],
[19], and [23] for a validity result.

Here, we focus on the significance of the diffusion parameter D (> 0) in (1.4):
D measures the relative widths of the bands of unstable modes just above the minima
(k1, Ry) and (k;, R;). More precisely, as in (1.2), the diffusion coefficients are determined
by %ZT‘Z‘ (k1 2, Ry 2), which measure the curvature of the neutral curve at the minimum (see
(1.3)). We have rescaled the diffusion coefficient in the A-equation to 1: D measures

the ratio of %zk%(kz, R») and %27‘2‘(1(], R}). Thus, D >>> 1 means that the neutral curve near
(k2, R») is much ‘sharper,’ or narrower, than near (k;, R;) (see Figure 1 and Section 2
for more details). This occurs for instance naturally in experiments on double-layer
convection (where the depth of the layers differs significantly) and in experiments on
crystal-growth (see [13], [25], and {22], [18] for a discussion). If this is the case one can
introduce, apart from ¢ ~ /|R| — Rz|, a second small parameter 0 < § < 1 by setting
D= alz and write down a singularly perturbed system,

Ar =rA+ Ags + A(UIAP + ¢ B,

1.5
B, = sB + % Bss + B(to} B + 2l AP). (13

There is another, equivalent, way of interpreting this singular term: Both instability
mechanisms are associated with a natural spatial scale at which the patterns evolve. In
this paper we consider the case in which the magnitudes of these scales differ significantly.
Due to the rescaling we can say that the natural scale associated with A is £, while it
is 8¢ for B: B(&, t) only varies very slowly on the £-scale. Returning to the above
interpretation this means that the width of the (k;, R;)-parabola (see (1.3)) is O(8)
compared to the width of the (k, R,)-parabola (Figure 1). In this situation it is natural
to apply the above-described Landau reduction for B: B(§, t) = B(t). In Section 2 we
show that (1.5) then reduces to the following nonlocal system:

{Ar =rA+ Age + A(LIAP + cl|BP), (1.6)

B. = 5B + B(t:| B> + 2 limy o 557 [ 3 1A12dE).

We shall also show that this reduction is only valid when A(£, t) (and B(t)) satisfy an
extra solvability condition,

o M
B /_w <|A|2 - Jim_ ﬁ va |A;2d§) eXde = 0(e?)  for K = 0@3).

(1.7)
This condition cannot be satisfied by all solutions of (1.6) (see Section 3.2). The idea of
a Landau reduction has also been applied by Metzener and Proctor [22] in their analysis
of the evolution of patterns at ‘disparate scales.” Note that our approach is not exactly the
same as in [22]: There k,, instead of D, has been taken as a small parameter. In Section 2
we relate our approach to the one in [22]. Some fundamental properties of a modulation
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equation with a nonlocal term, such as the existence, uniqueness, regularity of solutions,
and the dimension of attractors, have been studied in [7}.

The main goal of this paper is to understand the impact of this Landau reduction for
B on the patterns described by (1.5). We focus on the analysis of the stationary solutions
of (1.5) and (1.6). First we search for spatially periodic solutions. For both systems,
the analysis is based on the fact that the (stationary) equation for A is integrable when
B is fixed at a constant value (see [4] for references to the stationary problem of the
(uncoupled) ‘real’ Ginzburg-Landau equation). Thus, the stationary problem associated
with (1.5) is a (singularly) perturbed integrable system; periodic orbits in the fast field
can be found by constructing a Poincaré map. We find that both systems have a similar set
of periodic solutions which exists under the same conditions on the parameters and, most
importantly, which describe—up to O(8) corrections—the same family of quasi-periodic
patterns in the basic system. The most important difference between the quasi-periodic
patterns described by (1.5) and (1.6) is that {B| is periodic with an O{8) amplitude
around a certain value b in (1.5), while the corresponding solution described by (1.6) has
|B| = b. Thus, the above Landau reduction for the B-mode has no significant influence
here.

By introducing polar coordinates for A and B it is possible to write the stationary
singularly perturbed problem as a four-dimensional ODE with two fast directions, x and
y corresponding to A, and two slow directions, z and w corresponding to B:

X =y,
v = —x + x(x% —¢1Z2),
yi——:Bw ( ) (1.8

W = 8(—sz+ z(z* — c2x?)),

where we have scaled (r, ¢, ;) in (1.5) to (1, —1, —1) (thus we chose 7;, < 0, as
occurs most frequently in applications); the ‘dot’ refers to differentiation with respect
to ‘time’ z, where ¢ is now a rescaled version of £. The reduction from the expected
eight-dimensional system to a four-dimensional system is due to the phase invariance
in the equations for A and B and to the fact that there are two integrals, 2, and 2, in
the full system. These integrals are uncoupled, in the sense that they are identical to the
integrals of the uncoupled equations for A and B (see Section 4 and [4]). In deriving
(1.8) we chose 2; = Q, = 0: This only simplifies the analysis of the four-dimensional
system. Apart from other solutions, both ‘most stable’ (see [20]) Stokes-wave solutions,
(A = const,, B = 0) and (B = const.,, A = 0), satisfy Q; = £, = 0 and are thus
described by (1.8). This four-dimensional system can be analysed (for instance) by the
geometric theory for singularly perturbed systems, originally developed by Fenichel
{11]; see also the contribution of Jones to [1]. Using the resuits of Fenichel we establish
the existence of two so-called slow, invariant manifolds T'; and I",. We find a very rich
structure of heteroclinic and homoclinic orbits which ‘jump up and down’ between I’
and I',. More precisely, there are four critical points on the slow manifolds: P;, Q; € I}
and P,, Q, € T,. For any N > O there are N/ (N) different ‘N-jump’ heteroclinic or
homoclinic orbits which connect two of the above four points and which consist of N 41
slow parts near [, or I', and N jumps through the fast field. The number N (N) can be
explicitly calculated: N'(N) = 4x the (N + 2)-th Fibonacci number (see Theorems t
and 2 in Sections 5.2 and 5.3). These results are obtained by carefully tracking the three-
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dimensional stable and unstable manifolds of I';, ", and the two-dimensional stable and
unstable manifolds of P, ,, Q;, through the fast field and near the slow manifolds. The
Hamiltonian structure of (1.8) (see Section 4) is a key ingredient of the proof of our
results. Based on the methods developed in [6] we are also able to show the existence
of homoclinic orbits which do not jump immediately from T; to I, (or vice versa), but
remain in the fast field for a ‘longer time’ (see Theorem 3).

These orbits all correspond to so-called ‘localised structures’ in the underlying system:
they connect simple, spatially periodic patterns at x — 00. Such localised structures
can be stable in the uncoupled Ginzburg-Landau equation (see for instance [28] for
a survey). However, none of these patterns can be described by the nonlocal reduction
(1.6). There are two reasons for this. The first reason is that the most important ingredient
of the construction of the heteroclinic and homoclinic orbits is the existence of the
slow manifolds I'; and T',. These manifolds can (of course) not exist in the Landau
reduction since B, and thus z and w in (1.8), cannot evolve slowly. However, there exist
a small number of heteroclinic orbits in the stationary problem associated with (1.6)
which do have a counterpart in (1.8): The orbits only remain near I'; . for an O(3)-
distance. These ‘localised patterns’ cannot be described by the Landau reduction due to
a second, independent reason: They do not satisfy the extra solvability condition (1.7);
see Section 3.2,

Thus we conclude that the reduction to a Landau approach for B destroys a rich and
important set of patterns.

We end this introduction with a short sketch of the structure of this paper. In Section 2
we derive equations (1.4), (1.5), and (1.6), with extra condition (1.7). We also pay
some attention to the problem studied by Metzener and Proctor {22] and relate it to our
approach. Section 3 is devoted to the derivation and analysis of the stationary problem
associated with the nonlocal problem (1.6). The stationary problem associated with the
singularly perturbed problem is studied in Sections 4 and 5: In Section 4 we show the
existence of (fast) periodic solutions using a Poincaré map and in Section 5 we employ the
ideas of geometric singular perturbation theory. We end the paper with a short discussion.

2. The Derivation of the Equations

We consider the following model problem:

z—‘f =Lps7(¥)+N(@)  where ¥ (x,1): R x Rt > R, @.1)

which is a simplification of (1.1) since we restrict ourselves to a one-dimensional problem
without a bounded y-variable. Furthermore we assume, as in the introduction, that there
is a reflection symmetry x — —x in (2.1) and that the basic solution ¥, = 0. Here, the
linear operator depends on three bifurcation-parameters R, S, and T. The ‘eigenvalue’
wu(k, R) as defined in the introduction is in this case equal to the symbol of the linear
operator Lz s 7:

Lgs7(e™) = uk, R; S, T)e™. (2.2)

We consider this very simple model in order to simplify the derivation of the modulation
equation as much as possible. Introducing transversal y-dimensions will merely increase
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the technical difficulties. The validity of the Ginzburg-Landau equation (1.2) for systems
like (2.1) has been proved in [12].

As in the introduction, we define the neutral curve {Reu(k, R) = 0}. Here, we will
study the case that this curve has two minima: (k;, R,) and (k;, Ry), with k; < k. The
neutral curve near (k|, R;) can be scaled such that

R=1+4k-1>+hout., (2.3)

locally; thus (ky, R;) = (1, 1) (compare with the general expression (1.3)). The two
conditional parameters S and 7 can now be interpreted. By changing T, the relative
position of R, with respect to R; = 1 can be adjusted. The relative width of the critical
curve, or the band of unstable waves, at k; = 1 and at k5 is changed by S. The neutral
curve near (k,, Ry) can be written as

R=R,+ Dk —k))* +hoit., (2.4)

and thus D = D(S) measures the relative widths of the (1, 1)- and (k,, R;)-parabolas.

The object of nonlinear (stability) theory is to describe the nonlinear evolution of the
perturbation for R close to the critical value R.. If O(R — R)) # O(R — R;) one derives
a single uncoupled Ginzburg-Landau equation (1.2) in the weakly nonlinear stability
analysis, either near (1, 1) if I < R; or near (k;, R;) if | > R,. Coupling occurs if we
assume that

R—1=re R — R; = s¢?, 0<e<l. (2.5)

This can be seen as follows: One models the perturbation of the basic solution as slow
modulations of the critical waves, ¢'* and e***, and their complex conjugates,

U(x, 1) = €A(E, 1) +eB(&, 1)e’* +c.c. + O(e?),

where A and B are unknown ‘amplitudes’ of the slow space and time variables £ = ex
and T = £%¢. The nonlinear terms in (2.1) will generate harmonics of these simple linear
waves. Thus, the £2, ¢3-terms are constructed from a product of the two most unstable
waves, ¢'* and ¢'%2*,

Y, D)= e [cA+ 2@+ ¢+ -]
e [eB +e* Y+ Y + -]

g+ -

eZiX[€2¢22_+_ .

eZikQX[62w22_+_ -
eix(l+k2)[€2¢l2+ .
eéx(l—kz)[slwlz_{_ .

+c.c. 2.6)

[ S W i S

Here the A, B, ¢;;, ¥;;, ®;;, and W;; are functions of £ and t for every i, j € N. All
scalings are classical; see for instance [9]. The validity of this expansion is proven in
[10] for the case that there is one minimum.

This expansion is valid as long as there are no low-order resonances between ky = 1
and k;. It is clear that for k, # % all above interaction terms are different. For k, = %

some of these terms coincide. As a consequence one has to choose other temporal and
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spatial scales and quadratic terms will appear in the governing evolution equations (see
[24] and [31} for physical examples). This is called ‘resonance’; we will not discuss this
in more detail in this paper. Resonance also occurs for k; = % on the O(e*)-level. Since
the dominant terms of the modulation equations are determined at the O (e*)-level there
are no other resonant values of k.

The idea behind the derivation of the modulation equation is simple: One substi-
tutes the expansion for ¢ into (2.1), and one expands and then gathers terms of the
form g%e*®1+5:k) g b b, € N. The equations at the @ = 2-level can be solved: The
functions in expansion (2.6) can all be expressed in terms of A and B. The solvability
conditions for ¢3 and |3 at the levelsa = 3,6, = 1, b, = 0,anda = 3, b, = 0,
b, = 1 yield, after some trivial rescalings, the coupled system (1.4) for A and B given
in the introduction.

In this paper we study the situation in which the local parabola near (k;, R;), (2.4),
is very narrow with respect to (2.3) (see the introduction and Figure 1); thus we assume
that

D= 315 with 0<dxl. 2.7
This automatically yields the singularly perturbed system (1.5) given in the introduction.
The appearance of the singular term alz‘?;Tf can also be understood directly from the

derivational point of view: The width of the (k;, R;)-parabola at R = R, + O(¢?) is
O (g8), so the natural spatial scale associated with the B-mode is & = £6x = §§. Thus,
B evolves on a slow spatial scale, compared to A. Therefore, it is natural to assume a
‘Landau ansatz’ for B: B = B(t), that is, B is independent of &, as has been done in
[22]. This Ansatz means that we approximate the (k,, R;)-parabola by a line. Repeating
the above derivation process we see that this Landau reduction has no influence on the
equation for A. However, the equation for v|5 (see expansion (2.6)) now reads

. 9B .
Lgsr(ze™) = [a. 57 ~ @B+ a3B|B|* + a4BIAI2)] e, (2.8)
where the «|, ..., o4 are the nonscaled counterparts of the constants in (1.4). This

equation can be written as

Lgsr(Yie’™e ™ = f(& 1) + g(1), (2.9)

where f(£, T) = —a4B|A|? is the only term which depends on &. We define the averages

M

Y13(1)

Il

3
<
>
~—~
o
-
S’
S
oo

M.—>oo 2M J_y
— _ 1M
7o = Jim [ e e,

and separate f and v3 into a part which only depends on 7 and a part which still depends
on both & and t:

Y13, 1) = Yia(r) + W(E, 1),
f&, 1) = f(x)+ F&, ).
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Note that although we of course assume that ;3 and f are bounded on R, these
averages do not automatically exist for all ¥3 and f. However, we shall see that /3 and
f exist for the functions studied here (see Section 3.2). We substitute these expressions
into (2.9) and obtain

Lrsr(ize™)e ™ + Lpsr(We)e ™ = (f+ o) + F(§.1).  (2.10)
Because /3 only depends on 7, the first term of this expression can be calculated as

Lp.sr@se™)e ™" = u(ky, R)Y13 = 0.
Thus we get

Lrsr(We e % = (f + g) + F. 2.1

Taking the above-defined average on both sides leads to the following solvability
equation:

M
B B+ o3BIB* + auB li : |A|*dE
—_ = —_— .
ay 3t 2 a3 (471 Ml_{ﬂoo e

This equation follows from (2.11); however, it is not a sufficient condition to solve (2.11):
The equation for ¥ is stll left. Writing W and F as (formal) Fourier integrals, we have

f (p,(kz teK, RYW(K) — ﬁ(K)) eKEdK =0, 2.12)

o0

in the sense of distributions. Now we note that u(k; + ¢K, R) = O(£?) if |[K| = O(8)
(since the local neutral (k;, R;)-parabola is only of 0(8) width). Thus we see that (2.12)
cannot be solved for a bounded O (1) solution V¥ if F(K) # 0(€?) for |K| = O(5).
This yields a second solvability conditionon F = f — f = a4B|A*> — ¥,

sz]w (|A[ = Jim —/ |A|2d§> eXdE =0+ hout., (2.13)

o0

for 1K} < O(8). Observe that (2.11) can now be solved. After rescaling, the above
analysis leads to the nonlocal system (1.6) given in the introduction, where again ¢, t5,
r, s, 1, and ¢; have exactly the same values as in (1.5); extra condition (2.13) coincides
with (1.7). In [3] a proof has been given of the asymptotic validity of a Ginzburg-Landau
equation with an extra nonlocal term combined with some additional conditions for a
certain version of the Poiseuille flow problem. Note that intuitively the relation between
the singularly perturbed system and the nonlocal system is quite simple: § has become so
small that one is forced to assume that B cannot be a function of £ (at the highest order).
This has no influence on the equation for A, in (1.5). However, the By has to disappear
in the B;-equation, and one has to eliminate the £-dependence of the |A[?-term,

Remark 2.1. The above derivation of the nonlocal system (1.6) is not comgletely rig-
orous. In order to improve this, one should work with the Fourier transform v of v, the
solution of (2.1), and interpret it as a distribution; see for instance [12] and [3].
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Remark 2.2. In their analysis of pattern evolution with disparate scales, Metzener and
Proctor [22] do not use the relative width of the local parabolas as small parameter, but
the second critical wavenumber k,: ky, = o « | = k). If this is the case, it is easy 10
show that the width of the (k;, R»)-parabola must also be small, so the above derivation
covers this case. Note that we assume—-as in {22]—that the (k;, R,)-parabola yields a
classical Ginzburg-Landau equation if we omit the A-mode (see the introduction); in
other words, we assume that (0, R;) > 0 and O(1) (see [18] for a short discussion).
In this remark we sketch the extra complications encountered by taking o small. If one
derives the coupled system in this case, one finds that, if o > &,

A 3°A 2, ¢ 2

=L =rA+ 55 + AWGA 4 2B,

g; rA+ ijfzaz-; (1‘ ‘ ) UZ‘EZi )2 (214)
2 = sB+ 458 + BwIB? + 51AP).

Thus, the coupling terms A|B|? and B|A|*> must also be large, 0(%). This is due
to the fact that the terms ¢/'*+7)% in the expansion of ¥ (see (2.6)) are now close to

the critical wave '*. Thus, solving the equations for &3, ¥,, (2.6), yields terms like

%’;—ﬁ) = 0(#). This case is much harder to study than the case above. Therefore, we

focus in this paper on the assumption that k; = O(1), D = 3'7 § K1

Moreover, one encounters many other complications in deriving and studying the
appropriate equations as the relative magnitudes of ¢ and o change. For instance, for
& = O(o) the system becomes (at leading order)

88 = rA+ 24 4 cA(Be't + Be '), @15

3B — $B +a) limpo o 5i [ 3y 1 AP 10 dE, '
where k; = 0 = ¢L. In the derivation of these last equations the magnitude of the
perturbation had to be taken of order 2 instead of ¢. Solutions of the above system can
be found explicitly and it can be checked that these solutions are unstable. From this it
follows that although one first has to take the perturbations of magnitude O(£?), they
will grow to a magnitude of O (¢). This leads to a rather complicated system. The above
example (2.15) is just included to indicate the complications caused by decreasing o
further. Deriving and analysing the full set of equations for every possible combination
of the magnitude of ¢ relative to that of o is a task we will not pursue in this paper. We
refer to [29] in which such a complete nonlinear stability analysis has been performed
for what is, in a sense, a simpler case: a weakly, periodically driven, system. There, five
essentially different types of modulation equations have been derived.

In[22] a different system has been proposed to describe the weakly nonlinear evolution
of patterns at ‘disparate scales.’ This system is in some sense a combination of (1.6) and
(2.15),

34— PA — |APA + TA + A(BeX + Bre™i¥),

; 2.16
% = vB—C|B|2B—slimM_,wﬁf_MMMFe—,de' (2.16)

In order to give a foundation to this system one has to assume relations between the
parameters of (1.6) and (2.15) and ¢ (see [18]): That is the only way to have quadratic and
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cubic terms of the same magnitude. Since these parameters are in principle completely
independent of ¢ this assumption will be violated in general. Therefore, one will not
find this system if one pursues the above-sketched task of deriving all relevant *generic’
equations.

3. The Nonlocal System

From now on we focus on the analysis of nonlocal system (1.6) and singularly perturbed
system (1.5). We will study and compare the solutions of these systems. System (1.6)
can be considered as a limit of (1.5); thus we expect that some classes of solutions
represent similar patterns in the underlying basic system. The most simple solutions are
the stationary solutions, which we will study here. The stationary solutions are certainly
of a physical relevance, for instance in the convection context where stable stationary
patterns exist (see Section 6). We first determine the ODE associated with the stationary
solutions of (1.6),

W= rA— A@IAP +clBP), A
0 = B(s + 0B + 2 limyooo o [0 1A12dE).

Thus, there are two possible values for B:
1. B=0,
2. 18P = % 4+ Z2¢(A), where C(A) = lim — fM |A[2dE
. =—+—= , W = lim — .
t %) M—oo 2M [_y
The first case leads to the stationary uncoupled Ginzburg-Landau equation for A (which

is integrable; see below and [4]). The second case leads to the following equation for A:

oA + s+ e2C(A) ) A= nAlAP

— =-r+— — .

rE f ST 1

To reduce the number of unknown variables we introduce polar coordinates. Let
A=pe®, (3.2)

where p| and 6, depend on £. We insert these expressions into the equation for A, separate
the real and complex parts and find

2 N
= p G = (r+ S s +aCD)e —hp, 33)
2%% + pl‘;ng' =0.
Because
1 d a0 dp, 90 9%
(i) = e
p1 0 3 9t 0§ 0§
we find that

3 (L8600
E(”'E)‘O
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and therefore introduce the integral §2,,

a6
P = Q.
9
Substituting this into (3.3) leads to
3%p < C Q7
5 =|-rt—=G +C2C(Pl))> pr—hp+— (3.4
982 fz Yoo
To simplify the calculations, we set in system (3.4)r =1, fy = —1, £, = —1. Note

that this can be obtained by straightforward rescalings with additional assumptions on
the signs of r, 1), £,. These assumptions are so that the equation is directly related to
the single Ginzburg-Landau equation mostly studied in the literature. Furthermore we
assume that Q, = 0. Taking 2, = 0 simplifies the analysis. However, for | # 0 the
analysis is in essence the same. Because Q, = plza—i‘, @, = 0 implies that %ﬂ = 0. This
yields that 6, does not depend on £; thus 6, is a constant. Therefore, due to the phase
shift invariance in (1.6), one can say that we restrict ourselves to studying real solutions
of this system. We refer to [4] for a detailed discussion of the relation between 2 = 0

and €2 # 0 in the single real Ginzburg-Landau case.

3.1. Stationary Solutions of the Nonlocal Equations

We introduce x = o in (3 4) withQ, =0, r =1,y =—1,and , = — 1,

l M
Fi=—(l4+a+aCo)x+x> with Cx)= lim ——/ x2dt, (3.5)
oM J_y

M—ooxc

where the dot means differentiating with respect to ‘time’ t = £. We are only interested
in bounded solutions of these equations since A, where |A| = p; = x, must remain
bounded. Moreover C(x) is only defined for bounded x. First we set C(x) = C, where
C is a fixed constant. System (3.5) then becomes

i=—ax+x’ where a=1+c (s +c20). 3.6)

We will describe the phase portrait of this equation in some detatl, because later on
we will come across this equation again. For a < 0, (3.6) has only one critical point,
(0, 0), which is a saddle point. This shows that there are no bounded solutions, except
for the trivial critical point. For a > 0, the system has three critical points: (0, 0) and
(£+/a, 0). In this case (0, 0) is a centre point and (£+/a, 0) are saddle points. There exist
two heteroclinic connections between the two saddle points. Inside this heteroclinic loop
there are bounded periodic solutions and outside all orbits are unbounded. This means
that bounded solutions of (3.6) will always lie inside the heteroclinic cycle formed by the
two connections. These solutions are periodic (see Figure 2). System (3.6) is integrable
with integral or energy &:

1 1
k = Ey2 + Eax"- - Zx“, where y = . (3.7
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y

-~
L "’

Fig. 2. The phase portrait for the equation ¥ = —ax + x>
wherea > 0.

It is possible to determine C (x) explicitly for a periodic solution of (3.6), with period
Ty. Note that

2M [T 1 [
Ckx)= li 2dt = — 2dt 3.8
) = hm 2MT0/ x TO/O * (38)

for a periodic solution x. Hence

fTo x*dt f:q G(x B dx
foro dt f_xl. G(x 3 dx’

by changing variables, where G(x, k) = \/2k — ax? + %x“. Here —va < —x; <0 <

X| < J/a are the intersection points of the solution x, on the energy level set k, with
y = 0. Introduce X = x% and X, = x?, then

Clx)=

(3.9

Cx)= T'—(k—) where T; (k) = X dX

To(k) f\/zkx—ax2 1xs

(3.10)

This is a contour integral in the complex plane around the interval (0, X,] on the real
axis. We define

T, (k)
To(k)
Because x is a periodic solution which lies inside the heteroclinic cycle, the k-value of
x lies between 0 and 1 a . Below we will show that x is a monotonic function of k, so
we can conclude that 0 < x < a (since x(0) = 0 and llkaZaz x (k) = a). Although
this result is a special case of a more general result proved in [4], we will sketch the
derivation of the monotonicity result: x{k) is an important quantity which will also
appear in subsequent sections. Note that

x(k) = (3.11)

x_ 3TN _DRE-TiF
ok kT Ty
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We define G, (k, X) = \/2kX — aX? + 1 X3 and define

XidX
Ji(k) = f =,
(G1(k, X))’
which yields that
] —Tad, + T\ J
9IX _ _O_HL‘ (3.12)
3k T¢
Rewriting 7; (k) into these J; (k)’s leads to the following relation for every i > 0:
1
T, =2Jiyy —aliya + 51i+3- (3.13)
Since
% d XdX _0
dX (G\(k, X))
forevery i > 1, we also find
. 1. 3
k(21 - 1)], + (1 - i)d.],;H + (El — Z) J,'+2 =0. (314)

Setting in (3.13)i = 0, 1 and in (3.14) i = 1, 2 leads to a system of four equations from
which Jy and J; can be solved. Substitution of these expressions into (3.12) gives

ax 1

ﬁ = m(axz — 8k x + 4ka).

We define f(k) = 4k(a®> — 4k) and P(x) = ax® — 8kx + 4ka, and see that f(k) > 0
for0 <k < %az, which is exactly the interval we are studying. There are no solutions of
P(x) = 0and so, because a > 0, P(x) > 0 for every . Combining this finally results
in ‘Z—’,: > 0. This yields that 0 < x (k) < a, where x (k) = O corresponds to the centre
point (0, 0) and x (k) = a to the heteroclinic orbit. Since C(x) = x (k) one observes that
bounded solutions can only exist if 0 < C(x) < a. We can now explicitly solve (3.5):
For a given value of a = 1 4+ ¢ (s + ¢;C) in (3.6) we see that the bounded orbits have
values of C ranging from 0 to a; thus if

Cx)e (0,14 ci(s+c2C(x))), (3.15)

we see that one bounded orbit of system (3.6) is selected as the solution of system (3.5).
Again C(x) = 0 corresponds to the selection of the centre point (0, 0) and C(x) =
14+ (s +Cx)),ie., Cx) = %, to the selection of a heteroclinic orbit. Recall
that | B|? = s + c,C(x), which relates the value of | B| to every C (x). Thus, the nonlocal
system (1.6) only has bounded stationary solutions (A(§), B) with ‘average’ C(A) if

0<CA) <14 (s+aC(A)) and]Bl2 =s+cC(A) > 0.



Singularly Perturbed and Nonlocal Modulation Equations 385

3.2. Applying the Solvability Condition

The two boundaries of the interval given by (3.15) determine, in a sense, the bifurcations
at which the periodic solutions of (3.5) (dis)appear. As already noted above, the periodic
solution shrinks into a critical point at C (x) = 0. The other boundary, at C(x) = 1':%
determines a global bifurcation at which the periodic orbit merges with a heteroclinic
cycle of (3.5). From the derivation of the system we also obtained an extra condition
(1.7) which the solutions have to satisfy. As can be easily seen, the critical points of the
system do satisfy the condition. This is also true for the periodic solutions as long as their
period is not too large. This can be seen as follows. Note that (1.7) determines the Fourier
transform of the (periodic) function |A|> — C(A). This is of course a discrete spectrum
with ‘peaks’ at K = Z’T’—O", n==1, 2, ..., where Ty is the period of |A|2. Observe that
there is no peak at K = 0 due to the subtraction ‘—C(A)’. Since T becomes unbounded
as k 1 ta® (see [4]), we see that the n = +1 peaks approach the K = O(8) region if
k approaches iaz. In other words, the periodic orbits satisfy the extra condition (1.7) as
long as Ty # 0(%). The periodic orbits with a very long period do not satisfy (1.7). The
same is true for the heteroclinic orbits: They do not satisfy (1.7) (this can be checked
by using the explicit expression (5.3) given in Section 5.1). Thus, we conclude that the
only stationary solutions described by the Landau reduction are the solutions with |A| =
constant or |A| is periodic with O(1) period. All other solutions of system (1.6) do not
satisfy solvability condition (1.7).

Furthermore, we note that the ‘average’ described in Section 2 is defined for all
solutions of the stationary problem associated with (1.6).

4. The Singularly Perturbed System: Periodic Solutions

In this section we will study the stationary solutions of the singularly perturbed system.
The stationary problem associated with the singularly perturbed system reads

5= —rA = A@IAP +al BI), @
58 = 8°(=sB — B(n|Bi* + aalA]). '
As in Section 3, we introduce polar coordinates for A and B,
A= pe?, B = pge’PZ.
Then the system becomes
2 QI
%—pz' = —rpi — pi(ip! +crp) + =F,
N . (4.2)
= 82(=sm — ;a2 + c20]) + 29),

where , and £, are integrals, similar to £2; in Section 3: 2| = pf%—i‘ and 8 = Q, =
pg% Note that % = 0($); thus ‘% has to be of O(8), which implies that £2; is O (8):

Q, = 8. We will study the bounded solutions of singularly perturbed system (4.2)
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where, as for the nonlocal system, we set for simplicity | = Q =0@ndr =1,
ty = t; = —1). This implies that % = ‘;ﬁ = 0 and thus that 8; and 6, are constants.

Note that the Stokes waves, (A = constant, B = 0) and (A = 0, B = constant), are on
the 2, = 2, = 0 level set.

Next we introduce x = p; and y = % = x where the dot means differentiation with
respect to ‘time’ t = &; equivalently we write z = p; and dw = 2,

= y’

= —x+x(x?—c2%),

= $w,

W = 8(—sz + 2(z2 — cax?)).

SO R B

(4.3)

Thus, x and y can be considered as the fast (=0 (1)) moving coordinates and z and w as
the slow (=0(8)) coordinates. The system contains a lot of useful symmetries: (4.3) is
equivariant under

x> —x,y>—y}, x—-—-xt-o>—-t,w>-w}, {x—>—xt—->—-127—>-2}
{z—=>—z,w—>—w}, {y—> -y, t—>—rt,w—>—-w}, [y—>-—-yt—>—t,z7—>—2z}
4.4)
System (4.3) can be considered as a Hamiltonian system. We introduce the arbitrary
rescalings x = ax, y = «y, z = 7, and w = pw, fora, B > 0. This gives

=7,

S T w232 222

yL— :r+x(ozx ca1B°z%), 4.5)
= sw,

W = 8(—sZ + 2(B°7% — cre%3?)).

The Hamiltonian A which could belong to this system must be of the form

1 - - - - l B 1 _ L
H= 5062 + y2 +8s2° + 8u’) — Za2x4 - Zﬂ2Z4 + mi%z?,

where m still has to be determined. This implies that we must impose that ¢, 82 = 8c,a?,
which yields that

,32 36‘2 . .
= =—, when sign(c|) = sign(cy).
o Cy

Thus, itis possible to rescale (4.3) so that it becomes a Hamiltonian system. This rescaling
has to satisfy g—z = 0($), which means that O (1) solutions in the Hamiltonian system
correspond to solutions of (4.3) of which either the pair (x, y) or the pair (z, w) (or both)
is not O(1). However, amplitude A in (1.5) corresponds to (x, y) and B to (z, w) and
both A and B must be O(1), due to the structure of the derivation process. Therefore we
will not write (4.3) as a Hamiltonian system, but we will use that the energy is conserved.
Note that the expression for the energy contains only even powers of x, y, z, and w. In

the case that sign(c;) = — sign(cy) it is also possible to rescale (4.3) to a Hamiltonian
system.



Singularly Perturbed and Nonlocal Modulation Equations 387

Before we study the perturbed system we are interested in the dynamics of the un-
perturbed system. Setting § = 0 leads to

X =y,

y = —x +x(x? - C]Z(z)). (4.6)

Here z = zp and w = wy where zg and wy are constants of motion, because setting
3 = O implies that z = 0 and w = 0. The above system can also be written as

x =—(1 +clz(2))x +x3. 4.7

This 1s the same as equation (3.6) witha = 1 + c;zé, which we already studied in
Section 3.1. Therefore the same results as for (3.6) can be obtained.

Next we consider the critical points of the perturbed system. Here the critical points
are given with their characterisation, where the first part is the characterisation in the
fast directions and the second in the slow directions (that is, the first pair of eigenvalues
is O(1), the second pair O ($)).

0,0,0,0) for s >0 centre/centre,
for s <0 centre/saddle,
(0,0, +./5,0) for sc;+1<0 saddle/saddle,
for sc;+1>0 centre/saddle,
(£1,0,0,0) for ¢c;+s5 <0 saddle/saddle,
for c;+s5s>0 saddle/centre,

(/2 0, + /2 ) for Hatdltac) - gaddle/centre,
)¢ 1—cjen l—cyea

for Hataltan) > g saddle/saddle.
These critical points only exist when the expressions under the square root are positive.
So the second two critical points only exist for s > 0 and the last four critical points
only exist for % > (} and lsftfi—z > (. These critical points give rise to solutions of
the original system. The first critical point gives the trivial solution, the second gives the
Stokes wave A = O and B % /se¢'” where 6, is a constant; the third gives another Stokes
wave A = +¢'® and B = 0 with 8, a constant. The last four critical points correspond to

the mixed patterns A = + %em' and B =+ l%t%e"ez with 6, and 6, constants.
The heteroclinic and homoclinic orbits of Section 5 will have their origins and destinies

at one or two of these four points.

4.1. Periodic Solutions

The singularly perturbed system possesses two time scales: (x, y) are the fast variables
and (z, w) are the slow variables. In the nonlocal system there is no slow behaviour.
When studying behaviour which is dominated by the fast field in the singularly perturbed
system, we have to take z and w almost 0, which implies that B is ‘almost’ independent
of £. Recall that this is exactly the condition which is imposed on B when deriving the
nonlocal system. Therefore we expect to observe approximately the same behaviour for
solutions which remain in the fast field of the singularly perturbed system as for the
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solutions of the nonlocal system. In this subsection we will study the solutions of (4.3)
which are dominated by the fast field. We will focus on the periodic solutions. We expect
to find approximately the same existence conditions (and solutions) as for the nonlocal
system. In the next section we will study solutions to (4.3) which consist of fast and slow
parts. These solutions cannot exist in the nonlocal system.

We will construct solutions to (4.3) by using the fact that the unperturbed limit § = 0
is completely integrable:

X =y,
. 2.2
y = mxhabt —azy, (4.8)
z=0,
w =0,
with the three integrals
1 1
k:i(y2+x2—§x4+c|x2 2), kh =1z, k = w. 4.9

The behaviour of fast periodic solutions of (4.3) is dominated by the unperturbed system,
since the solutions to (4.3) remain O(8) close to solutions of (4.8) for O(1) time. Thus,
a fast periodic solution to (4.3) will be O(8) close to a periodic solution of (4.8): We
can study the existence of periodic solutions of the singularly perturbed system by
constructing and approximating a Poincaré map which measures the changes in the &, z,
and w-values for a solution of the perturbed system. This Poincaré mapping is defined
as follows:

Pk, ky,ky) = (k+ AK(k, ky, ko), by + AK((k ki ko), ky + AKq(k Ky, ko))
= (k+AK(k, z,w), 2+ AK (k, z, w), w + AKa(k, z, w)). (4.10)

The quantities A K (kq, 29, wo), AK| (kg, 20, wo), and AK;(ko, zo, wo) measure the accu-
mulated change in the slow variables &, z, and w from a solution of the perturbed system.
Due to reasons which will become clear later on we define the Poincaré map in a some-
what nonstandard way. The Poincaré map is defined by a solution which consists of two
parts which are joined together. The first part starts on the cross section {x = 0, y > 0},
travels forwards in time and ends by intersecting the cross section {x = 0, y < 0). The
time it takes this solution to intersect with the cross section {x = 0, y < 0} is denoted
by Ts. The other part travels backwards in time and ends by intersecting {x = 0, y < 0}
(see Figure 3). The time it takes this solution to intersect with {x = 0, y < 0} is denoted
by T_;. Here (ko, zo, wo) is the initial value of these solutions; hence kg is so that xg = 0
and yo > 0. The accumulated change of the integral k over this orbit is given by
L
AK (ko, zg, wo) = f k(xs, ys, 25, ws) di,
—T;

where (x5(2), ys(t), z5(¢), ws(¢)) is the above-constructed solution of the perturbed sys-
tem. The quantities AK; and AK, can be expressed in the same way. Substituting the
expression for k, (4.9), gives

T;

AK (ko, zo, wo) = & / cixjwszs dt.
~T.;
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Fig. 3. The construction of the Poincaré map. The thin
lines represent solutions to the unperturbed problem (4.6)
in the plane {z = zo, w = wg)}. The thick line is the
projection of a solution of (4.1) on the plane {z = zo, w =
wo}‘

The solution (x5{¢), ys{t), zs(t), ws(t)) can be approximated with O (8)-error by the so-
lution (xq(¢), yo(t), zo, wo) of the unperturbed system with energy k = ko which starts on
the cross section {x = 0, y < 0} with the same initial data as (x5(¢), ys(¢), z5(t), ws(1));
7.5 can be approximated by i%TO, the period of the solution (xo(2), yo(f). Zo, Wo).
Therefore

1T
AK (ko, zo, wo) = 3f cixiwozodt + O(8%).

—%To

We define G(k,z,x) = \/2}( —x2+ %x“ — ¢1x%z2. Note that this is nearly the same
function as defined in Section 3.1. Transforming the coordinates leads to
o x?dx

AK (ko, 20, wo) = 28 — = 4 0(8).
(ko, 2o, wo) Clwozof_)rI Glko 20.7) (8%

Here — /1 + ¢1z2 < —x1 <0 < x1 < /1 + ¢z} are the intersection points with y = 0

of the solution with k = kq. We set X = x? and X, = x{; then,

AK (k. 20, wo) = Sciwozo T tko, 20) + O(8%), 4.11)
where
_ f "dX
\/2kX - X2 4 %X3 — X222

This contour integral around the interval [0, X ] is again very similar to the one defined
in Section 3.1. In the same way we obtain

Ti(k,2)

AK kg, 20, wo) = SwoTo(ko, 20) + O(8?),

4.12
AK;(kg, 7o, wo) = —820((s — z3) To(ko, 20) + ¢2T1 ko, 20)) + O(8%). “.12)
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A solution is periodic if AK = AK; = AK; = 0.Since Ty(k, z) and T, (k, ) are strictly
positive, this yields

cwoze + O) = 0,
wg+ OB) = 0, (4.13)
20((s — z3) To(ko, z0) + c2T i (ko, 20)) + O(8) = 0.

This seems to lead to two possibilities:

1. zo = O($) and wy = O(),
2. wo = O(8) and (s — z3) To(ko. 20) + 2Tt (ko, 20) = O(8).

However, (4.13) is a singular system in the limit 8 — 0. Thus we cannot solve this
system for § = 0 by applying the implicit function theorem and concluding that there
is a solution to the perturbed system O(8) near the § = 0 solution. On the contrary:
one must expect that the solution of the full problem will be much more complicated.
Nevertheless, we will now show that the above two ‘singular’ solutions are correct.

Approximating the solution of the perturbed system by a solution of the unperturbed
system throws away too much of the dynamics of the system; thus we have to look at the
expressions without approximating the solution. The exact expressions for AK, AKy,
and AK> are

Ts
AK (ko, zo, wo) 5/ CIX§W5Z5 dt,

7

T;
AK,(kg, 29, wp) = Sf w; dt,
—Ts

T;
AKy(ko, 29, wo) = Sf (—sz5 + 73 — c2x525) dt.
—T_s

We note that ws(¢t) = 0 and z5(t) = 0if zp = wg = 0. Thus AK (ky,0,0) =
AK(ko,0,0) = AK,(kg, 0,0) = 0. Therefore periodic solutions exist. This can also
be seen by noting that if z = w = 0, the dynamics of (4.3) are described by

X =—x +x3.

This leads to periodic solutions in the (z, w) = (0, 0)-plane. These solutions are also
solutions of the unperturbed system.

We now consider the second possible solution to (4.13). On the cross section we have
xo = x(0) = 0. Let’s again consider wg = w(0) = §; thus 2(0) = 0. It can be shown for
a solution (xs, ys, 25, ws) of (4.3) with these initial conditions that xs(r) (resp. z5(r}) is
an odd (resp. even) function of ¢. This can be done by inductively checking that x (0) = 0
and z(0) = 0 in (4.3) yields that x®"(0) = 0, z?"*D(0) = 0 for every n. From the fact
that x is odd it follows that T_; = T;. Because z is even, w = Z is odd. Thus

i
AK (kg, 20, wp) = 5/ cixfwszsdr =0,

—%Ts
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since xfwgz,; is an odd function of ¢. Analogously, since w; is odd,
AK | (ko, 29, wp) =0

We still have to use the solution of the unperturbed system to approximate AK»; see
(4.12). Thus, a periodic solution with initial data xq = zp = 0 must satisfy

20=0 or (25 — $)To(ko, 20) — €2Ti (ko, 20) = 0

This is equivalent to x (ko, zo0) = Z‘Z’Li where x is in essence the function defined in (3.11).
In Section 3.1 we showed that x € [0, a], where a in (3.6) corresponds to 1 + c1z%in
(4.7), and that x is a monotonically increasing function of k from0Qtoa = 1 + c1z2.
Since s, ¢y, and ¢, are known from the equations, an interval for zy can be determined

2_¢
so that x(kg, zg) = Z"T holds,

2

0<2 22 <1462 (4.14)
2

As in the case for the existence of solutions of the nonlocal system, there are, for different
values of the coefficients, different intervals for zy where periodic solutions exist.

4.2. The Relation with the Nonlocal System

Since we expected similar conditions for the existence of periodic solutions for the
singularly perturbed system as for solutions of the nonlocal system, we are now going
to compare the conditions for this existence. Recall that in the nonlocal system bounded
solutions exist for B = 0 and for |B|*> = s + ¢,C(x) where C(x) € (0,1 + ¢;(s +
c2C(x))). In the singularly perturbed system there exist periodic solutions for z = 0 and
for z with 0 < ZL“ 1 + ¢)122. In Section 4 we set B = pre'® and we introduced 7
by p> = z. This implies that B = 0 is the same as z = 0. Thus the first possibilities for
the existence of the periodic solutions coincide, which of course is not surprising since
the nonlocal system (1.6) and the singularly perturbed system (1.5) are exactly the same
for the subcase B = 0. The other two cases are somewhat more difficult to compare but
finally these appear to be essentially the same. Since | B| = z in the singularly perturbed
case and |B)? = s + ¢,C(x) in the nonlocal case, both existence conditions (3.15) and
(4.14) can be compared by substituting z% =5 + ¢;C(x) into (4.14) to obtain

0= TS el < 1 terts +aC).
2

This is exactly the condition (3.15) for the existence of bounded periodic solutions for
the nonlocal system. This yields that bounded solutions of the nonlocal system and
fast periodic solutions of the singularly perturbed system exist exactly under the same
conditions.

Moreover, there is a direct relation between these two families of periodic solutions.
The construction of the periodic solutions in the nonlocal case of Section 3.1 shows that
these solutions are exactly the same as the uniquely defined periodic solutions of the



392 A. Doelman and V. Rottschifer

unperturbed system of the singularly perturbed case which survive the perturbation. In
other words, for any periodic solution of the nonlocal system there is a fast periodic
solution of the singularly perturbed system which is O(8) close. The difference can be
seen most clearly by comparing B in both cases: B = constant in the nonlocal case,
while | B[ varies periodically with an O(8) amplitude around that same constant in the
singularly perturbed case.

5. Heteroclinic and Homoclinic Orbits

In this section we will focus on heteroclinic and homoclinic orbits. From the analysis
in the fast field we might expect that there exists a heteroclinic cycle for the extreme

2_
value Z"‘—zy = | + ¢z, similar to the heteroclinic orbits found for the nonlocal system
in Section 3.1. However, we have to be careful here: Using the Poincaré map (4.10) we
can only hope to connect the one-dimensional strong unstable/stable manifolds of the

critical points (£ l“_‘:: .0, £, /722, 0). Simple geometric counting arguments sug-
gest that such connections can only exist as codimension 3 phenomena. However, using
the Hamiltonian character and the symmetries (4.4) we will see in this section that these
orbits always exist for ¢c; = 0. For ¢; # 0 there also are heteroclinic orbits; this is neces-
sary since the periodic orbit has to disappear into some kind of heteroclinic’homoclinic
structure, but these orbits will consist of fast and slow parts.

We focus on solutions of (4.3) which do consist of distinct slow and fast parts. A
solution evolves slowly if it is close to a so-called slow manifold of the system. A slow
manifold is an invariant manifold on which the flow is O (8)-slow. The existence of these
manifolds follows from the theory originally developed by Fenichel (see [11] and refer-
ences there, or [1]). There it is shown that a manifold of critical points of the unperturbed
limit § — 0, with a normally hyperbolic structure persists under the perturbation as a
slow manifold. These slow manifolds play an important role in the organisation of the
total flow induced by the singularly perturbed system. In this section we will construct
various families of heteroclinic and homoclinic orbits which are (exponentially) close to
these slow manifolds except for a number of ‘jumps’ through the fast field. These hete-
roclinic and homoclinic solutions are especially important as solutions of the full PDE
(4.3) since they correspond to so-called ‘localised structures’ such as fronts or pulses.
These localised structures are again very important for understanding the dynamics of
the solutions of the PDE. We refer to [28] and the references given there for an extensive
discussion of the existence and stability of these solutions in the single Ginzburg-Landau
equation.

5.1. The Slow Manifolds T, and T,

Before we apply the theory of Fenichel we note that we can find another explicit slow
manifold just by setting A = 0 in (1.5) or, equivalently, x = y = 0 in (4.3). This is
also an invariant manifold on which the flow is slow; however, its existence cannot be
deduced from the general theory. By (4.6) we find that the eigenvalues of the critical

point (0, 0) are given by Ay = %iy/1 + ¢ z2. Thus, the manifold x = y = 0 can never
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Fig. 4. The flow on the slow manifolds for (a) s + ¢; > 0and (b) s +¢; < 0.

be globally normally hyperbolic ( it can be normally hyperbolic for certain values of
z if ¢; < 0). However, the slow manifold exists since we have an explicit expression:
{x = y = 0}. The flow on this manifold is given by

7 =8%(-sz+4 7).

Thus we note that there are two slow heteroclinic orbits between the fixed points
0,0, £./5,0) if s > 0. There is another trivial but nonslow invariant manifold which
will play a role in the forthcoming analysis: B = 0, or z = w = 0 in (4.3). We already
encountered this manifold in the previous section.

Setting § = O in the singularly perturbed system leads to two globally normally
hyperbolic manifolds of critical points defined by x2=1+c¢z% and y = 0; see (4.6).
Note that the eigenvalues of the critical points (£/1 + ¢;z2, 0) in (4.6) are given by
A+ = £+/2(1 + ¢, z?), and thus the invariant manifolds are globally normally hyperbolic,
but only for ¢; > 0 are they unbounded. Thus, by the work of Fenichel [11] we know
that for § # 0, sufficiently small, there are nearby (=0 (8)) invariant slow manifolds on
which the flow is O(8). We denote these slow manifolds by I';, for x < 0,and by I, , for
x > 0. The highest order approximation of the flow on the slow manifolds is given by

{ Z = dw, 5.1)

W = 8(—(s + )z + (1 — cye)2?),

since x2 = 1 4+¢1z2+ O(8) (see also [1]). There are several possibilities for the structure
of the phase space on I'; and I',. The system has the following critical points: (0, 0) and

(+,/ %’ 0) for T% > 0. The critical point (0, 0) is for s + ¢; > 0 a centre point

and for 5 + ¢y < 0 a saddle point while for s + ¢; > 0 the (£ l‘iz—z 0) are saddle

—c|C

points and for s 4 ¢, < 0 the points are centre points. One is tempted to conclude that
the possible phase space is as in Figure 4. However (5.1) only gives an approximation of
the flow up to O(8) (in fact, the highest order correction turns out to be 0(82)). On the
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other hand, we know that the system has a Hamiltonian structure; thus there are only a
limited number of possibilities for the exact, integrable behaviour of the flow on the slow
manifold. We use two ingredients to conclude that the topological structure of the flow
on the slow manifold must be exactly as in Figure 4. First we see that the critical points
on ['; , cannot undergo any local bifurcations (since “new” critical points on I'; , are also
critical points of the full system and we already found all critical points). Second, we
use the symmetry {z - —z, w — —w} to establish the character of the heteroclinic and
homoclinic connections. We focus in this section on the case s + ¢; > 0. However, this
choice is not at all essential; we will summarise the analogous results for s + ¢, < 0 at
the end of Section 5.3 in Remark 5.1. We denote the saddle point on I'; (resp. I',) with
z > 0 by P (resp. P,) and with z < O by Q, (resp. Q,),

1 /
Pl.rv Ql,r =|x a9t 0, ste ,0). (5.2)
1—C|C2 1—C1C2

As a direct consequence of the structure of the flows on I'; . (Figure 4), we conclude that
there exist two distinct slow heteroclinic connections between P; and Q; and between
P, and Q, (fors + ¢; > 0).

The slow manifolds I'; and I, possess stable and unstable manifolds, W*(I';) and
WH(T')), resp. W*(I',) and W*(T',) (see again [11] and[1]). These manifolds consist of
points (xo, yo, zg, wo) such that the orbits y4(¢) through these points satisfy

lim dist(I';, — y (1)) =0,
t—+o00

where the + (resp. —) corresponds to the stable (resp. unstable) manifold. Note that
W*3(T'; ;) merge with the manifold of stable and unstable manifolds of the (degenerate)
critical points (£+v/1 + ¢122, 0, z, 0), z € R, of the unperturbed limit (4.6). In this paper
we resltrict our attention to those parts of W**(T"; ,) which merge with the heteroclinic
cycles which exist in the unperturbed limit (see Figure 5). In other words, we do not
pay attention to those parts of W**(T; ;) which are unbounded in the limit § | 0. Thus
w*(Ty) = W*(TI',) and W*(I',) = W*(I';) in the limit § | 0. These identities fail to hold
as soon as 8 # 0. However, since all W**(I';,) are three-dimensional (and the space
is four-dimensional) we expect to find two-dimensional intersections W*(I";) N W*(T',)
and W*(T',) N W*(T')).

By using the Melnikov method for slowly varying systems, the separation and thus
the intersection of these stable and unstable manifolds can be calculated. See for example
[27], [32]. The method is derived for the case that the unperturbed limit has homoclinic
orbits, but the extension to the heteroclinic case is straightforward. Assuming that § # 0,
sufficiently small, the distance between W (I";) and W*(T",) is calculated at the cross
section {x = 0,y > 0}. We define y; and y; as the intersection points of orbits on
W (), resp. W*(I',), with {z = z9, w = wg} on {x = 0}. The solutions y{‘(t) =
(Xl (), Y4 (1), 250, wi () in W) and y3 (1) = (3 (0), ¥3(0), 23(0), wy(0)) in W (T,)
of (4.3) are determined by the initial condition y;"*(0) = (0, y;*, zo, wo); yo(t) =
(x0(2), yo(1), zo, wo) is the heteroclinic solution of the unperturbed system with y,(0) =
O, %\/ia, 20, wo) wherea = 1 + clzg. There is an explicit expression for this solution:

(xo(1), Yo(t)) = (v/2btanh(br), v2b*(1 — tanh?(b1))), (5.3)
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Fig. 5. A three-dimensional sketch of the four-dimensional phase space of the unper-
turbed system. The two-dimensional slow manifolds I'; and T, are represented by curves.
The positions of the critical points of the perturbed system are aiso indicated.

where b = %‘ /2(1 + clz%). As usual in Melnikov theory, we define the following time-
dependent distance function:

k]
~ %ug(z)—xg(r))) ( Yo(t) )
Alt, 20, wo) ‘( P 5r0 — i) )M\ —xo0) + 20 — exo0z )

where the wedge product represents the scalar cross-product in the plane. The distance
between W*(I";) and W*(T",) in the {z = zo, w = wp}-plane is given by A(0, zg, wo).
Similar to the derivation of the Melnikov function for periodically driven systems, one
shows (see [27]) that for (4.3),

def
A0, zg, wo) = A(zp, wo)

_ /°° ( 0 ) R Yo(t) ) dr
oo \ —201x0(t)20 5 (1) —xo(t) + x3(0) —cixo)zf )

where g—g(t) is a solution of j—t% = wqy with %(0) = (; thus % = wyt. The separation

is then given by

e .9}

A(zo, wo) = —ZClwoZO/ 1xg(1) yo(t) dt, (5.4

—00
where (xg(t), yo(t)) is the heteroclinic solution of the unperturbed system. Substituting
this expression into (5.4} results in

A(zg, wp) = —4c|wozob3/ t tanh(b1)(1 — tanh?(br)) dt. (5.5)
—00

Since

o0 |
/ t tanh(bt)(1 — tanh?(bt)) dt = o

[e°]
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Fig. 6. The intersection of the two-dimensional man-
ifolds W (I'pN{x =0,y > 0}and W (T, ) N{x =
0,y > 0} for ¢, < 0and ¢; < 0. Pants of the one-
dimensional curves W“(P;, 0))N{x =0,y > 0} C
W) Nix =0,y > 0land WI(P,Q,)N{x =
0,y > 0} ¢ W, )N{x =0, y > 0} are also shown.

we obtain (in leading order)

A(wo, z0) = —2c1wozo/ 2(1 + c1z). (5.6)

This yields that W*(TC)NW ()0 {x =0, y > 0} is O(8) close to either the {wq = 0}-
plane or the {zg = 0}-plane. See Figure 6 for a sketch of this intersection. Using the
symmetries (4.4) one derives a similar expression for W (I)) nW*(I',)Nx =0,y < 0.

So far, we have found a number of trivial heteroclinic connections, such as those found
in the invariant pianes {x = y = 0} and {z = w = 0}. Note that the former pair between
the points (—1,0,0,0) € T;and (1,0, 0, 0) € T, corresponds to the zeros of (5.6)at zo =
wy = 0 for WH(T)NW*H(T,)N{x = 0} and WH(T,)NWH*([,)N{x = 0}. Two additional
pairs of heteroclinic orbits are found in T'; and T',. These orbits connect P; to Oy, resp.

P, to Q,; we denote these orbits as y,(,?)Ql (1), ygf),,, () € I';, where lim,_, y,&%/ (1) (resp.

ygf),,l (1)) = O, (resp. P;), and analogously y;,?)Q,(t), yg)’)},r (t) € T',. The flow on these

orbits is, of course, everywhere O(8).

5.2. The Fundamental Heteroclinic Orbits

Next, we will construct heteroclinic orbits between the points P; ., @, which consist
of distinct slow and fast parts. Based on these orbits we will construct multijump orbits.
We will do that by analysing the intersections of the stable and unstable manifolds of
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these points with the {x = 0}-plane. These manifolds are subsets of W**(I";, I';). The
‘toffee’-like structure in I'; formed by the unstable manifolds of P, and Q; will be mapped
by the flow on W*(P;) U W*((Q) to a topologically similar structure which is contained
in W*(T')) N{x = 0O} (moreover, the z- and w-coordinates are only O{8) modified by the
fast field). Thus, by (5.6), there will be four intersection points with W?(I",) N {x = 0}
(two near zo = 0 and two near wg = 0). Note that all four intersections are transversal.
These intersection points correspond to orbits which are biasymptotic to I'; and I',. By
construction, they satisfy lim,_, _o, = P, or Q,. These orbits are all on the same energy
level set as P; and ;. Thus, by the Hamiltonian structure of the flow, they can only
be asymptotic to orbits on I', with that same energy: the stable and unstable manifolds
of P, and Q,. This indicates that the four orbits are heteroclinic connections between
Pi, @y and P,, Q,. A similar argument yields four connections which travel from I, to
I';. However, we have to use the symmetries (4.4) of the system to get a more precise
result:

Theorem 1. For any s, c|, and c; which satisfy
l4+¢s >0, 1 —c¢icp >0, and s +cy > 0, (5.7)

eight heteroclinic orbits of the following type exist (in (4.3)):
4] . N [08] _ : e} _
YiriD with lim, ooy, g () =L, lim, o ¥, g (1) = R

and L = P, Qp; R=P, 0,.

| . . .
Y () with lim,_ _o y,(elZ(t) =R, lim, o g (6) = L

andL:P,, Q[; R=Pr» Qr~

All eight orbits consist of three parts: two slow parts near either Uy or ', and one ‘jump’
through the fast field.

Note that condition (5.7) just ascertains the existence of the critical points P, ,, Q;, in
the case s 4+ ¢, > 0. Schematic sketches of all eight orbits are given in Figures 7, 8,
and 9.

Proaf. First we prove the existence of y ;,{I )Q (#). The existence of the three orbits y ,(,I )Q[ o,

Vg:)P,(t)’ and yg,),,l(t) follows from the symmetries {x —» —x,y — —y}, {z —

—-zZ,w - —w},and {t > —1,y > —y, w — —w}. Second, we turn our attention
to proving the existence of y;,ll},, (1). The remaining three orbits follow from this one by
using the symmetries.

Let y,(t) = (x,(2), yp(¢), 2,(t), w,(¢)) be a solution of (4.3) on W*(P;) which is
exponentially close to I'; between the points £ and p = (px, py, Pz, Pw) € W/(PH N
W*(Q;) N T (thus, y, leaves [; O(8) near p). Note that W*(P;) N W¥(Q;) N T is the
above-defined ‘trivial’ heteroclinic orbit y ;,%[ . We denote by y,(0) the (first) intersection
of y, with the {x = O}-plane: y,(0) = (0, y,(0), z,(0), w,(0)). Using the symmetries
(4.4) we define the orbits Y (0) = (=x,(=1), yp(—1), —2,(—1), wp(—1)) and Y, (1) =
(=xp (1), yp(=1), 2p(—1), —w,(—1)). Note that lim, .o ¥ (1) = Q. lim o0 ¥ (1) =
P, and that y;(0) = (0, y,(0). =z, (0), wp(0)), v,/ (0) = (0, y,(0), 2,(0), —w, ().



398 A. Doelman and V. Rottschifer

Fig. 7. A schematic sketch of the four one-jump orbits y;II’Q, , y;,: )Q:’ yé'[)},,, and Vél,)Pr

The slow parts are exponentially close to the heteroclinic cycles on I'; , (the thin lines).
The fast parts ‘jump’ through the full four-dimensional phase-space, O(8) close to
the {z = 0}-hyperplane. These orbits exist for every c;.

Fig. 8. A schematic sketch of the four one-jump orbits y,‘,/[},' ), y,‘,,l ;’: (t)s ¥p,0. (s

]

and yé")Q[ (t) for c; > 0 which ‘jump’ O($) close to the {w = 0}-hyperplane.
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Qi ) Qr
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Fig. 9. A schematic sketch of the four orbits VP, 1), y,‘,r] },[ ), yé'l)Q' (1), and yé’r)Ql (1) for
¢, < 0 which ‘jump’ O(3) close to the {w = 0}-hyperplane.

Thus, the symmetries of (4.3) yield a heteroclinic solution between P; and Q, (resp. P,)
if we can choose p such that z,(0) = O (resp. w,(0) = 0), since then ylf (resp. ypw)
coincides with y, at ¢ = 0.

The fast field between p and (0, y,(0), z,(0), w,(0)) only hasan O () influence on the
slow (z, w)-coordinates of y,: z,(0) is O(8) close to the z-coordinate p, of p € I';. Since
P can be varied between the z-coordinates of P; and Q, (5.2), we see that there must be a
p; such that y,» = 7, is a heteroclinic solution between P, and @, of the type described
by the Theorem. By the symmetries {x - —x,y — —y}, {z > —z, w — —w}, and
{t > —t,y - —y,w — —w}, three distinct, symmetric counterparts of y,» can be

constructed. Thus, we have proved the existence of the solutions VI(’/”QH yl(’,”Qn Vél, )P', and

y(er)Pl described in the Theorem (see Figure 7).

One has to be more careful in constructing the other four orbits. First we have to
construct a connection between P, and P, by determining a p such that y,(r) and y,," (1)
canbe identified. Thus, we haveto finda p € W*(P)NW*(Q;)NT; such that w,(0) = 0.
However, the w-coordinate of p, w, does not change sign. Since the w-coordinates of
P, and Q; are 0 and w,(0) is O(8) close to w),, we can only expect to find a heteroclinic
connection between P; and P, if we choose p O(8) close to P, or Q;. It is possible to
compute w, (0) up to O(8?) accuracy for these values of p by the Poincaré map P (4.10).
We set k = 0 and (z, w) = the coordinates of P, or Q; (5.2) in (4.1), where we have
to change the interval of integration (—Tj3, T;) into (—o0, 0). This way P measures the
accumulated change in k, z, w on the one-dimensional (purely) strong unstable manifolds
of P, and @, between I'; and {x = 0}. Note that all three integrals converge and that AK
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and AK| are 0 + O(3?%); the computation of AK> yields

I .
wp(0) = £y |8 JIr (5.8)
Il —cicaV 1+ sc;

where the 4 (resp. —) sign corresponds to p = P; (resp. ;). Note that ¢, is the only
parameter which has influence on the sign of w,(0). However, by (5.8), we observe
that for all ¢; # 0, w,(0) has to change sign (at least) once if p is varied from P, to
Q). Moreover, if c; = 0 we see that (z, w) decouple from the (x, y) in (4.3): There
are exact (integrable) connections between the one-dimensional strong stable/unstable
manifolds of P; and P, if z = the z- coordinate of P; in (5.2). Thus there exists a
p € W(P) 0 Wi(Q;) N T such that w,(0) = 0, and for this p: y, = v’ We
conclude that there exists a heteroclinic orbit between P; and P, for all ¢; such that

(5.7) holds. As in the previous case, we can construct from this orbit, y,(,ll;,r (1), three

symmetrical counterparts, y,f,fi,/ (), yé‘,)Qy(t), and V((J‘,)Q, (1) by applying the symmetries

x - —x,y—> -y, {z— —zow—> —w),and {t > —t,y > —-y,z > —z}. This
concludes the proof of the Theorem (see Figures 8, 9). O

At this point we can compare the behaviour of the ‘localised structures’ in the nonlocal
and in the singularly perturbed system. We ignore, just for the moment, the fact that we
derived the extra condition (1.7). Remember that the heteroclinic orbits found in Sec-

tion 3.1 do not satisfy the extra condition {1.7). First, we note that the solutions )/(“

PQr
y,(,rl)Ql, Vél,)P,, and yg,),,l, which intersect {x = 0} at z = 0, cannot have a counterpart in the

nonlocal system, simply because the w-coordinates of these solutions are O(1) during
the fast ‘jump’ while all solutions of the nonlocal system must correspond tow = z = 0.
The other four solutions have a w-coordinate of O(§) during the jump. Moreover, the
jumps take place O(8) near P, and P, (or Q; and Q,) and it is easy to check that the
jumps are O(3) close to the two pairs of nonlocal, integrable heteroclinic orbits found in
Section 3.1. Thus, it is natural to conclude that y,‘,lll’p’ (1), Vl(’rl i,,(z), Vél,)g, (¢}, and ygr)Q,(t)
are the counterparts of the nonlocal heteroclinic orbits.

However, this conclusion can only be justified if the coupling coefficient, ¢,, in the
B-equation, is positive. This follows from (5.8): The jump of the connection y,(¢) takes
place O{8) near P, if ¢; > 0. Thus all four heteroclinic orbits are as in Figure 8: They
are O (8) close to the purely fast connections of the unperturbed or the nonlocal problem.
The parts of the orbits near I'; and I', are only of an O(8) length. If ¢; < 0 the connection
y}(,{li,r (t) makes its jump O(8) near the unperturbed, fast connections between ¢J; and
Q.. The solution follows W*(P;) N W*(@;) N T, from P, almost (O(8)) up to Q,. The
same happens in/near I', (see Figure 9). Analogously, the unperturbed fast connections
between P; and P, correspond to heteroclinic orbits from @; to Q, of the perturbed
system. Moreover, the w-coordinate of these solutions becomes O (1) during their (long)
stays near ['; and I",. Note that this significant distinction between the cases ¢; > 0,
¢; < Oalso has its impact on the periodic orbits found in Section 3.1: These solutions will

have to merge with the heteroclinic cycles [yf(’,ll)", ™), yl(,,l},,(t)} and [yg,)Q, (1), Vé',)g, )}

as zg approaches +./(c; + s)/(1 — c¢|c3), the z-coordinates of P, ,, Q;, (see (5.2)). For

¢ < 0 the periodic orbits with zg > 0 (resp. zop < 0) will ‘grow’ large, slow parts

(exponentially) close to ['; and ', which follow the cycle {y(Ql,)Q,(t), yg,)Q[ ()} (resp.
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{y,(,}),{ ), yg}[ (1)) as zg approaches /(cy + 5)/(1 — ¢,c3) (see Figure 9). In a sense one

can interpret this as a four-dimensional ‘canard-like” behaviour (see [8]), since this O(1)
change in the periodic orbits takes place for an exponentially small change in zo. Thus,
a significant part of the structure of the solutions disappears in the transition from the
nonlocal system to the singularly perturbed system if ¢; < Q.

5.3. Multijump Heteroclinic Orbits

In this subsection we will study the possible existence of ‘multijump’ heteroclinic orbits,
that is, heteroclinic solutions connecting two of the critical points P, ., Q;, by various
jumps through the fast field alternated with slow parts near I';, [",. These solutions cannot
have a counterpart in the nonlocal limit. We will find that they can only exist for ¢, < 0.
First we focus on orbits which only make jumps from I'; to I",, or vice versa, without
following the periodic flow of the fast field for more than half a circuit. Later, we will
construct orbits from I'; (or [',) to itself which make one complete circuit through the
fast field.

Before we formulate the Theorem on the existence of multijump orbits of the first
type we give a construction of one of the most simple multi-=2-jump heteroclinic orbits
in the case ¢; < 0 and show that this construction cannot work if ¢; > 0.

We consider the part of the two-dimensional unstable manifold W*(P;) on which the
orbits approach P; (ast — —oo) ‘from the right” tangential to the trivial heteroclinic orbit
y,(,?)Q,. Thus, as in the definition of W*(I';), we only consider those parts of W™“(P; , Q; ,)
which merge with the family of heteroclinic connections in the limit § | 0. For simplicity
we also denote this subset of W*(I')) by W*(P)). In the sequel we will use similar
restrictions on the ‘full’ manifolds W*-*(P, ., Oy ,), also without adapting the notation.
By the above Theorem we know that W*(P;) intersects W* (P,): This is the orbit y,(,lll),, t)
which has, if ¢; < 0 (resp. ¢; > 0), (z, w)-coordinates O(8) close to those of Q; (resp.
P;) during its jump through the fast field.

First we consider the case ¢; < 0.Let £, C W*(P,)N{x = 0} be a (one-dimensional)
neighbourhood of yf,,ll),, N {x = 0}; £, intersects W* (P, ) transversally (by (5.6)). Define
for g € L, the orbit through g by y,(t) € W*(P,)). Thus when go = L1 N W (P), g, =
y;,ll}.r. The orbit y, will follow y,, along I, for an O(1) distance, if g is exponentially
close to go. Such an orbit y, will leave the neighbourhood of I, exponentially close to
WH*(Q,) since yq, € W*(P,)and W*(Q,)NT, = W*(P,)NT, (see Figure 9). We take £,
of exponentially short length; £, is divided into two distinct parts by W*(I",) N {x = 0}
withgg = ;/;,,l,),r N{x = 0} as separatrix. Therefore, the two-dimensional manifold F (L)
of orbits y, through £, is separated into two parts, an ‘inner’ and an ‘outer’ part, by the
three-dimenstonal stable manifold W*(T',) of T, before it approaches I',. Orbits y, ()
on the outer part of F (L)) will again leave the neighbourhood of I', in the direction
opposite to I'; (their x-coordinates increase): They cannot return to either I'; or I', and
become unbounded. Orbits on the inner part of 7(L£,) will follow W*(T",)—where we
use the restricted definition (see above)—and return to the {x = 0}-hyperplane. The
flow near I, twists F(L£,;) such that the inner part leaves the neighbourhood of I', as a
‘sheet’ exponentially close to W*(Q,). We refer to [14] and especially [15] (since this
paper applies to system (1.5) for a general treatment of the deformation of manifolds
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near slow manifolds; see also [1]). Thus, the intersection F(L£;) N {x = 0}, after the
(first) passage through a neighbourhood of T',, consists of a curve exponentially close
to the curve W*(Q,) N {x = 0} C W*(T',) N {x = 0}. By Theorem 1 we know that
W*(Q,) N {x = 0} intersects the two-dimensional manifold W*(I';) N {x = 0} twice
transversally (the orbit ygr),,[ near {z = 0} [Figure 7] and the orbit Vél,)Qf near {w = 0}

{Figure 9]). Now we note that the orbit Yoo = y,(,ll,),r already ‘touches down’ on I, (or
better: approaches I', exponentially close) O(8) close to Q,. Thus, y,, is exponentially

close to y(Ql')Pl and Vg,)Q: for certain parts of O (1) length of these orbits (near I',). As a
consequence, we know that the curve F(£,) N{x = 0} must be extended along the entire
length of W¥(Q,) N {x = 0} (except for an O(8) part), and that it thus has to intersect
W?(I'y) N {x = 0} twice, exponentially close to Vél,)ﬂ and Vg,)gr This yields that there
are two orbits on F (L) which are asymptotic to I';. We again apply the argument that
system (4.3) has a Hamiltonian structure, so that the ‘energy’ H is conserved on orbits:
F(Ly) can only intersect W*(I";) along W*(P;) or W*(Qy).

So we conclude that there exist two two-jump orbits, which consist of five parts: a
slow part near I';, a fast jump, a slow part near I',, a second jumy, and a third slow part
near I';: the heteroclinic orbit y;,lz'Q][) and the homoclinic orbit y}(,, 1;:). By the symmetries
(4.4) we can create a family of eight distinct two-jump homoclinic orbits and four two-
jump heteroclinic orbits. Note that there thus exist, for instance, two different homoclinic
two-jump orbits to P, y},{z,‘,: ) and y}lzﬁ’, related to each other by the symmetry {y —
-y, t > —t,w — —w]} (see below).

Before we extend the above argument to 3, 4, . . .-jump heteroclinic and homoclinic
orbits we consider the case ¢; > 0. The above construction is impossible in this case.
The construction is based on the orbit y ,(,Il },,' . This orbit exists also for c; > 0, but now, as
we already noted above, this orbit only has parts of O(8) length near the slow manifolds
(Figure 8). Thus, the intersection of F(L£;) with {x = 0} (after passing I',) is also
only of O(8) length and cannot intersect W*(I';) N {x = 0}: F(Ly) N W) = 0.
Of course one could try to construct two-jump orbits based on one of the one-jump
orbits which jump near {z = 0} after following a trivial heteroclinic orbit on I'; for
half its length (Figure 7). Let’s for instance consider y,(,ll)Q' (this is no restriction, due

to the symmetries (4.4)). It is only possible to construct a two-jump orbit if y,(,ll)Q, has
parts exponentially close to one of the two one-jump connections which depart from P,
(since W*(P.)NT, = W*(Q,)NT,). Itis clear that y(” is the only possible candidate

PO
)

(see Figure 7). More precisely, a two-jump combining y,(,,l)Qr and yp ,, is possible if the

‘touch-down’ point of y,(,,”Qr on I', has a z-coordinate which is larger than the z-coordinate

of the ‘take-off” point of y,(,rl)Q[. Note that these two orbits are related to each other by
the symmetry {x — —x, y — —y)}. Since the w-coordinate of both orbits is (strictly)
negative during the jump through the fast field we find by (4.3) that the z-coordinate of
both orbits decreases monotonically. Thus, the touch-down point is ‘below’ the take-off
point: There cannot be a two-jump orbit if ¢; > 0. However, in Theorem 3 we shall
show, using a different argument, that there exists a solution connecting P; and Q; with
two slow parts near I'; and no slow parts near T, : It makes a complete circuit through
the fast field and does not touch down on T, .

A priori one would assume that the one-jump orbits which jump near the {z = 0}-
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plane can be used to construct other, new two-jump orbits in the case ¢; < 0. By the
above arguments it is possible to construct a two-jump orbit which is exponentially close

to y,(,”Q until it takes off from I', to follow the one-jump orbit y,(,:;,l. However, the thus

constructed two-jump homoclinic solution to P; is the symmetric counterpart y,(,lz;,f) of

the above-constructed orbit y,(,,z,‘,f " under the symmetry {y — —y,t - —f,w — —w}.
We can now formulate the Theorem on N-jump orbits:

Theorem 2. Assume that c; < 0 and s and c, are such that (5.7) holds. Then, for any
N > 2, there are N(N) distinct N-jump heteroclinic or homoclinic orbits ys(_l\;‘k)(t)
between the critical points S, T € (P, P;, Q;, Q,); k denotes the fact that there can
be more than one orbit between S and T. The number N (N) satisfies the recurrence
relation

NWN)=NN-D+NN -2 with  N(1) =8, NQ) =12. (5.9

These orbits consist of N + | slow passages near T, alternated by N jumps through the
fast field and are all exponentially close to the ‘skeleton’ spanned by the fundamental
one-jump solutions constructed in Theorem |.

Proof. The three-jump orbits are based on the two-jump orbits, just as the two-jump
orbits are based on the one-jump orbits. We will start by constructing the orbits y(3 ) (1)

and y(3 I)(t) the other three-jump orbits can be found by the symmetries (4.4). We
consider, for instance, the heteroclinic orbit y(z )(t) Let £, be an exponentially small,

one-dimensional neighbourhood of y(ZQl)(t) N{x = 0} in F(Ly) N {x = 0}, after
the first passage of F(L,) of I', (where F(L,) is defined above); £, will play a role
similar to £, in the above construction of the two-jump orbits. We define F(L£;) C
F(L)) as the mamfold of orbits through £,; F(L,) is separated into two parts by
W?*(T;) with Ye, Q)(t) as separatrix. Thus, F(£;) is split and twisted by the slow flow
near [';: It becomes a sheet exponentially close to W“(P;) when it again leaves the
neighbourhood of I';. The intersection F(L£;) N {x = 0} after the passage of I'; consists
of a curve exponentially close to the first intersection of W*(P;) with {x = 0} and of
the same length as W*(P;} N {x = 0} (up to O(8)-terms). Therefore, F(L;) N {x = 0}
mtersects W*(I',) N {x = O} two times transversally: an 1nlersect10n exponentially close
to VP, (t) N {x = 0} and another exponentially close to y,,, (&) N {x = 0}. By the
Hamiltonian character of the flow we know that these intersections must correspond to
the three-jump orbits y, Ql)(t) and y(3 l)(t)

It is clear that this construction can be repeated for all N: Based on y(3 )(t) we define

L3 C F(Ly) N {x = 0}, exponentially close to the third intersection of ya 1)(t) with
{x = 0}. The manifold F (L) gets twisted and separated near I, so that it intersects
W?(I'y) N {x = 0}, after its passage of [',, two times: the four-jump orbits y,(,f,‘,:)(t) and
Yoo (B, i=1,2.

Note that the number A'(N) of N-jump orbits increases quite rapidly with N. Let’s
construct A/'(2) from N'(1) = 8 (Theorem 1). If ¥V jumps through the fast field near
{w = 0} then we have shown above that one can construct two two-jump orbits based
on this one: one which makes its second jump near {z = 0} and one which makes its
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second jump again near {w = 0}. If ') jumps near {z = 0}, then there only exists one
two-jump orbit based on this ¥ !, which makes its second jump near {w = 0}. Thus,
the four one-jump orbits near {w = 0} lead to eight two-jump orbits; four of them make
their last jump near {w = 0}, the other four make their last jump near {z = 0}. The
four one-jump orbits near {z = 0} lead to four two-jump orbits with a second jump near
{w = 0}. Thus, as we already found by the symmetries (4.4), A/ (2) = 12, since all these
orbits are distinct, by construction.

This method of counting can be used for every transition from N to N + 1. Define
W(N), resp. Z(N), the number of N-jump orbits of W, resp. Z, type (by definition)
which make their final jump through the fast field near {w = 0}, resp. {z = 0}. By
the above construction, every W-orbit yields one W-type orbit and one Z-type orbit; a
Z-orbit yields a W-orbit; thus,

W(N + 1) = W(N) + Z(N),
Z(N+1) = WN).

Since N(N) = W(N) + Z(N) we recover (5.9). Note that A'(N) = 4py,2, where py
is the N-th Fibonacci number. Thus A/ (N) = %(1 + VSN(N — 1) for large N. O

Note that the closure of the set of intersections of all N-jump orbits with {x = 0}
is a Cantor set of exponentionally small dimension. This can be seen as follows. We
take the intersection point 7" of the orbit y}pll,),r (t) and {x = 0} as the base for the
construction of a part of this Cantor set; I is the (fransversal) intersection of the curves
W*(P) N {x = 0} and W*(P,) N {x = 0} in the three-dimensional space {x = 0) (see
Figure 6). By the construction of the orbits yI(,,z,),l(t) and y},lzzgl(t) (Theorem 2) we know

that there exist two points 11(22) e WH(P) N {x = 0}, exponentially close to 1" These

points are the first intersections of y}(,lzl)pl (t) and y,(,lz)Q/ (t) with {x = 0}. Analogously, there

are two points 13(33 € WS(P,) N {x = 0} exponentially close to 1", corresponding to
: ; @ @

the second intersections of yp , (f) and Yo.p,

again are ‘surrounded’ by intersection points / ].(3) of three-jump orbits. The construction

(1) with {x = 0}. These four new points

of these new points is identical to the construction of the Ij(z) points from the point

IV Note that the ratio of the distance between (for instance) / ](2) and the new points
around / 1(2), and the distance between /") and I 1(2) is exponentially small. Thus we can

proceed by constructing the points / @ I,(5 ), etc. Note that at any step one has to ‘zoom
in” exponentially ‘deep’ to obtain the next level. The closure of this infinite collection
set of exponentially small (but positive) dimension. Such a set exists near any of the
eight base points formed by the intersections of one of the fundamental one-jump orbits
(Theorem 1) and {x = 0). The union of these eight sets again forms a Cantor set.
There are of course more points in this (uncountable) set than the N -jump heteroclinic/
homoclinic orbits. One can, for instance, construct many types of different periodic orbits
between I'; and I",, which consist of alternating slow and fast parts. Thus, these periodic
orbits differ significantly from those found in Section 4.1. None of them can have a
counterpart which can be described by the nonlocal system. Note that these periodic
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orbits correspond to limit points of the above-described Cantor set in the {x = 0}-
hyperplane. One of the simplest periodic orbits of this type consists of four parts: a slow

part exponentially close to I'; and to y;,,',),' N yg, )Q:’ a fast part near the fast jump of y;,[l},r,

aslow partnear I, and y ,(,[l,),r N yg )Q[, and the second fast jump near yg,)Q[ (see Figure 9).

So far we have studied orbits which only make jumps directly from Ty to I',, or vice
versa. Now we want to construct orbits which make one complete circuit through the
fast field. Here we focus, for simplicity, on constructing a heteroclinic orbit from P, to
Q, which has two slow parts both near I'; alternated by one ‘double’ jump which makes
a complete circuit through the fast field. This orbit only can be constructed for ¢; < 0,
where the sign of ¢; is arbitrary. For¢; > 0 the above orbit generally does not exist. Using
the symmetries (4.4) in system (4.3), one can obtain from this orbit other heteroclinic
orbits which have two slow parts near I'; or ', connected by a fast ‘double’ jump. The
idea of the proof of the following theorem is based on the methods developed in [6].

Theorem 3. Assume that ¢, < Oand s and ¢, are such that (5.7) holds. Then, there exist
four heteroclinic orbits y,(,[dél ), ygj)ﬁ (1), y;,:”Q’ (t), and yg{),,, (t). These orbits consist of
two slow parts which are both near Ty (or T',), alternated by a complete circuit (or a

‘double’ jump) through the fast field.

Proof.  We only construct y,(,ldé[ (1); the other three orbits can be found by applying the
symmetries (4.4). Let £, ¢ W*(P;) N {x = 0} be a (one-dimensional) neighbourhood
of V;’,l()z, N {x = 0}; L4 intersects W*(Q,) transversally. Define for p € £, the orbit

through p by y,(t) € W*(P,). Thus for py = L5 N W(Q,), ¥, (1) = vjyp (t). If we
take p, € L4 exponentially close to pg, the orbit will follow y,,; along ", for an O(1)
distance. Such an orbit y, will leave the neighbourhood of I', exponentially close to
WH(Q,) and will still be exponentially close to W*((Q,) at its next intersection with
the hyperplane {x = 0}; we denote this intersection point by g;. At this intersection,
it will be ‘outside’ W*(I";). Here, an orbit is said to be outside W*(I';) when, after the
passage near [y, it leaves the neighbourhood of I'; in the direction opposite to I', (its
x-coordinate decreases): It cannot return to I'; or I', and becomes unbounded. On the
other hand an orbit 1s inside W*(I";) when it does return to the {x = 0}-hyperplane.
In other words, an ‘inside’ orbit leaves the neighbourhood of I'; near the structure of
heteroclinic connections between [, and I', which exist in the limit § | 0. The fact that
an orbit is ‘outside’ or ‘inside’ is determined by (5.6) and thus by the sign of ¢;. Now
we take p> € L4 atan O(1) distance from py, where the z-coordinate of p,, pj is larger
than the z-coordinate of pg. Here we also make sure that pj is not at O(8) distance from
the z-coordinate of P;. This assures that the next intersection of y,, with {x = 0} is
inside W*(T';); this intersection point is denoted by g,. Note that yp, (t) only approaches
', O(/8)-close. We denote the two-dimensional manifold of orbits ¥, through £, by
F(L4). From the above it follows that the next intersection of F(L£4) with the hyperplane
{x = 0} contains a curve connecting ¢, and g,. Since g is outside W*(I';) and g is
inside W*¥(I';), there exists a p* € L4 so that the orbit through p* intersects W*(I';).
Due to the Hamiltonian structure of the flow we know that p* must be on W*(Q,). Thus

we constructed a heteroclinic cycle yp» = y;,"%] with two slow parts near I'; and one

fast complete circuit. From the fact that the point y,(,ll;,, N {x = 0} is not in the interval
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[p1, p2] C L4, we see that, for c; < 0, the above orbit is not the one we constructed in

Theorem 2, V;’IZ)Q/: y;,f’él does not come closer to I', than 0(«/;5_). O

We can show by analogous analysis that such an orbit as constructed above is generally
not found for ¢; < 0. Again let py = yp g, N (x = 0}. Then the orbit through a point
on W*(P;) N {x = 0} which is exponentially close to py is at its next intersection with
the {x = 0}-hyperplane exponentially close to W*(Q,) and is inside W*(I';). However,
the orbit through a point which is at O(1) distance from p (and with a z-coordinate
which now has to be chosen smaller than p§) is at its next intersection with {x = 0} also
inside W*(I')). Thus, the line between these points does, in general, not intersect W* (I';)
(compare to the ‘inside’ and ‘outside’ cases defined in [6]). This implies that such an
orbit as constructed in the above theorem generally does not exist for ¢; > 0.

Remark 5.1. In all the above theorems we assumed that s + ¢, > 0. However, for
§ + ¢ < O similar statements hold. Recall that in this case the integrable flow on I,
has a ‘“figure 8" structure: There are two homoclinic orbits to the points (£1, 0, 0, 0) on
I';.» (Figure 4). The points P;,, Q;, have become centre points (on I';,). Analogous to
Theorem 1 one can prove that there exist eight heteroclinic orbits between the critical
points (£1, 0,0, 0) € I';, which consist of two slow parts near I'; and I, alternated by
one fast jump. There also exist N-jump homoclinic orbits, independent of the signs of
the coefficients. However, the number of N -jumps is not the same as before. There are
two two-jump orbits and, for every N > 3, there exists only one N-jump orbit. Thus
choosing s +c, < Oreduces the number of heteroclinic and homoclinic orbits drastically,
although the general behaviour remains the same.

6. Discussion

In this paper we derived and studied two different types of modulation equations which
describe the same physical phenomena. Pattern formation in a reflection-symmetric
system which is subject to two interacting destabilising mechanisms is described by
two nonlinearly coupled Ginzburg-Landau equations (1.4). If the natural spatial scales
associated to those mechanisms differ significantly (see Figure 1) one can either describe
the behaviour near criticality by a singularly perturbed modulation equation (1.5), or one
can apply a so-called Landau reduction and derive a nonlocal modulation equation (1.6);
see also Metzener and Proctor [22] for the application of this idea. As a necessary
consequence of the derivation process we showed that there is an extra, again nonlocal,
solvability condition in the nonlocal case (1.7).

Our main goal has been to compare the set of solutions described by the singularly
perturbed equation to that of the nonlocal system. We restricted ourselves to the sta-
tionary solutions. Note that it is natural to expect stationary patterns in systems with a
reflection symmetry, such as convection experiments. For instance, consider the theoret-
ical and analytical study of double-layer convection by Rasenat et al. [25]: Under certain
conditions these experiments can be described by the equations studied in this paper (see
for instance the neutral curve in Figure 6 in [25)); the experiments performed for this
paper exhibit stationary patterns (although the patterns can certainly be nonstationary).

Of course it could be expected that the singularly perturbed equation has a richer
set of solutions than the nonlocal reduction. However, in Section 3 we have shown that
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the nonlocal system, combined with the extra condition (1.7), cannot describe any other
patterns than purely (spatially) periodic, or quasi-periodic with only two independent
frequencies. These patterns are also described by the singularly perturbed system, but
this system also governs a very complicated set of ‘localised’ patterns, corresponding
to heteroclinic and homoclinic solutions. These types of patterns are important in the
dynamics of the uncoupled Ginzburg-Landau equation (see for instance [28]).

The large families of ‘multijump’ and ‘complete circuit’ orbits found in Section 5 only
make up a small part of the entire set of possible solutions which have an alternating slow-
fast structure. The heteroclinic and homoclinic orbits found in Section 5 correspond to
only a very small subset of the Cantor sets formed by the intersections W** (P, ,, Q;,)N
{x = 0}, which we only briefly discussed in that section. Moreover, we did not pay any
attention to connections between the slow manifolds I'; and I", which are not on the
‘energy’-level of the critical points P, ,, O, ,. By the methods developed in this paper
it is also possible to show the existence of orbits which connect, through the fast field,
corresponding periodic orbits on I'; and I',. Furthermore, the essence of the analysis also
works for other values of the €2;-integrals (see Section 4) than 2, = €, = 0.

This is another aspect of the paper: We have shown that the singularly perturbed
Hamiltonian system (1.8) has a very intricately structured phase-space. Moreover, we
have been able to unravel much of the structure of this phase-space using in essence
topological, or geometrical, methods. These methods are based on the ideas described
for instance in [11], [1], and [6].

Thus, the geometrical methods have enabled us to show that the reduction of the
singularly perturbed system to the nonlocal system destroys a very large set of ‘localised’
patterns.

Finally we make just one short remark about the stability of patterns as described by
the modulation equations, (1.5) and (1.6). We did not pay any attention to that aspect
in this paper. There is much literature on this. We refer to Matkovsky and Volpert [20]
where the stability of purely periodic patterns to systems like (1.4), and thus (1.5), has
been studied. The same ideas can be used to study corresponding solutions to (1.6). We
have not done this in this paper because the analysis is rather straightforward, while
the results depend in a complicated manner on the values of the coefficients in the
equations. The stability of the quasi-periodic and ‘localised’ patterns is a much more
complicated issue. Only recently has the instability of stationary quasi-periodic patterns
to the uncoupled real Ginzburg-Landau equation been proved in {5]. Note that the quasi-
periodic solutions found in this paper correspond directly to the quasi-periodic solutions
studied in [5]. There are many stability/instability results on ‘localised’ patterns in an
uncoupled Ginzburg-Landau equation. These results only exist for patterns which are
much less complicated than most of the ones constructed in this paper. Here, we only
refer to [28] and the recent paper [16], in which the approach is also geometrical, and
the references given there.
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