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Summary. Two related systems of coupled modulation equations are studied and com- 
pared in this paper. The modulation equations are derived for a certain class of basic 
systems which are subject to two distinct, interacting, destabilising mechanisms. We 
assume that, near criticality, the ratio of the widths of the unstable wavenumber-intervals 
of the two (weakly) unstable modes is small--as, for instance, can be the case in double- 
layer convection. Based on these assumptions we first derive a singularly perturbed 
modulation equation and then a modulation equation with a nonlocal term. The reduc- 
tion of the singularly perturbed system to the nonloca] system can be interpreted as a 
limit in which the width of the smallest unstable interval vanishes. We study and com- 
pare the behaviour of the stationary solutions of both systems. It is found that spatially 
periodic stationary solutions of the nonlocal system exist under the same conditions 
as spatially periodic stationary solutions of the singularly perturbed system. Moreover, 
these solutions can be interpreted as representing the same quasi-periodic patterns in the 
underlying basic system. Thus, the 'Landau reduction' to the nonlocal system has no 
significant influence on the stationary quasi-periodic patterns. However, a large variety 
of intricate heteroclinic and homoclinic connections is found for the singularly perturbed 
system. These orbits all correspond to so-called 'localised structures' in the underlying 
system: They connect simple periodic patterns at x -+ + ~ .  None of these patterns can 
be described by the nonlocal system. So, one may conclude that the reduction to the 
nonlocal system destroys a rich and important set of patterns. 

1. Introduction 

In the weakly nonlinear stability theory of the evolution of patterns one classically 
considers systems like 

~ t = L R ~ P + N O p ) ,  l p ( x , y , t ) :  ]~x n X ~ X ~ +  ---'> ~ N, (1.l) 



372 A. Doelman and V. Rottsch~ifer 

R 

R2 

R1 

....... ! 5 / 
1 
t 

1 
1 

1 
! 
I 

k2 kl k 

Fig. 1. A critical curve with two local minima, one at (kt, Rt) and the 
other at (k2, R2). Here, R is fixed at a value above R~ and R2: There are 
two intervals of 'unstable waves.' The small parameter 6 corresponds to the 
ratio of the widths of these intervals. 

where LR (respectively N) is a linear (nonlinear) operator, R is a control, or bifurcation, 
parameter, and f2 is a bounded domain C R m. We refer to the review paper by Eckhaus 
[9] for a survey and some of  the numerous physical examples. This system is assumed 
to have a basic solution aP0(y). The linearised stability of  this solution is determined by 
setting 

7 r = ~o + f ( Y ) e  a'x+~', 

and solving, for any pair (k, R), an eigenvalue problem for f ( y )  with eigenvalues It = 
/z(k, R). Note that k is a scalar: We have assumed that n -- l in (1.1) (for simplicity, 
we will assume n = 1 throughout this paper). The neutral curve is defined as the set 
{Re #0(k, R) = 0}, where/z0(k, R) is the critical eigenvalue (that is, the eigenvalue with 
the largest real part) for a given pair (k, R). The basic solution ~P0 is linearly stable for 
R = R0 if Re/z0(k, R0) < 0 for all k. A bifurcation occurs if one increases R such that 
{R = const.} intersects the neutral curve at a minimum (kc, Rc) of this curve: A small 
interval of 'linearly unstable waves' appears for R > Rc (see Figure 1, where either kl 
or k2 plays the role of kc). To understand the behaviour of the solutions to (1.1) for R 
close to Rc, or R - Rc = re z, 0 < e << 1, one first shows that the nonlinear evolution of 
solutions close (=  O(e)) to 1/'0 is governed by the (complex) amplitude A(~, r)  of the 
linearly 'most unstable mode'  fc(y)e  i~kcx+u't), where f,.(y) is the critical eigenfunction 
at the eigenvalue/zo(kc, Re) = ittc; ~ and r are slow spatial and temporal variables. 
Then, one derives an equation for A(s e, r),  the so-called Ginzburg-Landau equation, 

1 
A r  = rlzRA - -~l~kkA~ + cAIA[ 2, (1.2) 

au °2u tt. Re), and c c C is the so-called Landau constant. where/z~ = ~(k~,  R~), #k~ = ~k2 ,~c, 
Note that Re/zR > 0 and Re#kk < 0 since the neutral curve can be approximated near 
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the minimum (kc, Re) by the parabola 

I Re/Xkk 
R = Rc - -  (k - kc) 2. (1.3) 

2 Re#R 

Details of this procedure are, for instance, given in [9]. Recently, a number of papers 
on the mathematical validity of the Ginzburg-Landau approximation have appeared; we 
refer to [2] for a survey and relevant references. The Landau equation associated with this 
nonlinear stability problem can be obtained from (l.2) by setting A(s e, r) = A(r).  This 
'Landau reduction' can be interpreted by saying that one neglects the width of the band 
of unstable waves centred around k = kc for R = Rc + re  2. Historically, the Landau 
equation was derived a decade earlier than the Ginzburg-Landau equation (see [30]). 

In this paper we consider a class of physical problems which have two distinct, 
interacting instability mechanisms at near-critical conditions. This means, in the above 
setting, that the neutral curve {Re/z0(k, R) = 0} has two local minima, (kl, Rl) and 
(k2, Rz), such that r Rl - R2[ is small (see Figure 1). So, if one chooses R close to criticality 
in this case, one expects two independent, interacting, 'linearly most unstable waves,' 
f l  (Y)e i~k~x+u't) near (kl, Rl) with complex amplitude A(s ~, r) and f 2 ( y ) e  i~k2x+u2t) near 
(k2, R2) with amplitude B(~, r). The nonlinear behaviour of patterns near criticality is 
then described by a coupled system of Ginzburg-Landau equations. 

When a neutral curve has more than one local minimum one does not expect that 
those minima occur for (approximately) the same value of the bifurcation parameter R. 
However, the relative position of the minima can very often be changed as a second 
parameter S is varied. Thus, by changing this second parameter S the neutral curve 
transforms from a curve with an absolute minimum in (kl, R l) to a curve with an absolute 
minimum (k2, R2) (or vice versa). If (kl, Rl) is the absolute minimum then we are in the 
above described classical case and the evolution of patterns near criticality is governed 
by (1.2); if (k2, R2) is the absolute minimum then the situation is again classical and is 
governed by a Ginzburg-Landau equation for B(~, r).  The two unstable modes interact in 
the transition region. This situation occurs in many applications and the coupled system 
of equations described above has been derived by many authors. We mention here some 
physical examples where two unstable modes can interact: double-layer convection [25], 
[24], [ 18]; crystal-growing experiments (where the convective and morphological modes 
can interact) [13], [26], [21]; gasless combustion [19]; sand ripple formation [31]. The 
coupled system of modulation equations has, for instance, been derived in [ 19], [17], 
[221. 

In Section 2 we will give a short sketch of the derivation of the coupled system 
in the case of (nonresonantly) interacting instability mechanisms. The model problem 
considered in this paper is assumed to have a reflection symmetry in the one-dimensional 
unbounded variable x. Therefore, all coefficients in the coupled system of modulation 
equations will be real: 

{ A t  = r A  + A ~  + A( t t lAI  2 + ctlBI2), (1.4) 
Br s B  + D B ~  + B(tzIBI 2 + c21AI2), 

where r and s measure the distance between R and Rl.z (see Section 2 for more details). 
By rescaling, we have simplified the coefficients of the linear terms. Due to the reflec- 
tion symmetry--which for instance occurs naturally in convection experiments--the 
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~-variable is not moving (it is independent of  t). This is a consequence of the fact that all 
eigenvalues/z(k, R) are real. If  this is not the case, then the A and B amplitudes will be 
travelling with the group speed of the linearly unstable waves. This speed is in general 
not the same for the A- and B-modes, so the interaction of the A and B patterns cannot 
be described by (1.4). In this case one has to apply some kind of averaging formalism in 
order to derive a so-called mean field Ginzburg-Landau equation; see for instance [17], 
[19], and [23] for a validity result. 

Here, we focus on the significance of the diffusion parameter D (> 0) in (1.4): 
D measures the relative widths of  the bands of unstable modes just above the minima 
(k~, R l) and (k2, R2). More precisely, as in (1.2), the diffusion coefficients are determined 

321 z c t .  by - ~  t,~1,2, RI.2),  which measure the curvature of  the neutral curve at the minimum (see 
(1.3)). We have rescaled the diffusion coefficient in the A-equation to 1: D measures 

02 a2u (k, the ratio of ~ (k2, R2) and TU,  ,, Rj ). Thus, D >> 1 means that the neutral curve near 
(k2, R2) is much 'sharper,' or narrower, than near (kl, RI) (see Figure 1 and Section 2 
for more details). This occurs for instance naturally in experiments on double-layer 
convection (where the depth of the layers differs significantly) and in experiments on 
crystal-growth (see [13], [25[, and [22], [18] for a discussion). If  this is the case one can 
introduce, apart from e ~ ~/IRt - R2[, a second small parameter 0 < 6 << 1 by setting 
D = ~ and write down a singularly perturbed system, 

[ A~ = rA + A~ + A(tllAI 2 + QIB]2), (1.5) 
Br sB ÷ ~ B ~  + B(tzlBI 2 + c21AI2). 

There is another, equivalent, way of interpreting this singular term: Both instability 
mechanisms are associated with a natural spatial scale at which the patterns evolve. In 
this paper we consider the case in which the magnitudes of these scales differ significantly. 
Due to the rescaling we can say that the natural scale associated with A is ~, while it 
is 3~ for B: B(~, r )  only varies very slowly on the G-scale. Returning to the above 
interpretation this means that the width of the (k2, R2)-parabola (see (1.3)) is 0 (3)  
compared to the width of the (kl, Rl)-parabola (Figure 1). In this situation it is natural 
to apply the above-described Landau reduction for B: B(~, r )  = B(r) .  In Section 2 we 
show that (1.5) then reduces to the following nonlocal system: 

At = rA + A~ + A(q IAI 2 + cl IBI2), 
l ( 1 . 6 )  

B~ sB + B(tzIBI 2 + c2 limM--,~ ~-~ fffM [Al2d~ )" 

We shall also show that this reduction is only valid when A(~, r )  (and B(r ) )  satisfy an 
extra solvability condition, 

'f" czB IA12 - lim - -  IAI2d eiX~d~ = O(~ 2) for K = O(~). 

(1.7) 
This condition cannot be satisfied by all solutions of  (1.6) (see Section 3.2). The idea of 
a Landau reduction has also been applied by Metzener and Proctor [22] in their analysis 
of  the evolution of patterns at 'disparate scales.' Note that our approach is not exactly the 
same as in [22]: There k2, instead of D, has been taken as a smal! parameter. In Section 2 
we relate our approach to the one in [22]. Some fundamental properties of  a modulation 
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equation with a nonlocal term, such as the existence, uniqueness, regularity of solutions, 
and the dimension of attractors, have been studied in [7]. 

The main goal of this paper is to understand the impact of this Landau reduction for 
B on the patterns described by (1.5). We focus on the analysis of the stationary solutions 
of (1.5) and (1.6). First we search for spatially periodic solutions. For both systems, 
the analysis is based on the fact that the (stationary) equation for A is integrable when 
B is fixed at a constant value (see [4] for references to the stationary problem of the 
(uncoupled) 'real' Ginzburg-Landau equation). Thus, the stationary problem associated 
with (1.5) is a (singularly) perturbed integrable system; periodic orbits in the fast field 
can be found by constructing a Poincar6 map. We find that both systems have a similar set 
of periodic solutions which exists under the same conditions on the parameters and, most 
importantly, which describe--up to 0(5)  corrections--the same family of quasi-periodic 
patterns in the basic system. The most important difference between the quasi-periodic 
patterns described by (1.5) and (1.6) is that IBI is periodic with an 0(8) amplitude 
around a certain value b in (1.5), while the corresponding solution described by (1.6) has 
I BI - b. Thus, the above Landau reduction for the B-mode has no significant influence 
here. 

By introducing polar coordinates for A and B it is possible to write the stationary 
singularly perturbed problem as a four-dimensional ODE with two fast directions, x and 
y corresponding to A, and two slow directions, z and w corresponding to B: 

2 = y ,  
~- - - X  "~ X ( X  2 - -  ClZ2), 

(1.8) 
~ = ~ w ,  

fv = ~ ( - s z  + z ( z  2 - c2x2)) ,  

where we have scaled (r, tt, t2) in (1.5) to (1, - 1 ,  - 1 )  (thus we chose tl,e < 0, as 
occurs most frequently in applications); the 'dot' refers to differentiation with respect 
to 'time' t, where t is now a rescaled version of 4- The reduction from the expected 
eight-dimensional system to a four-dimensional system is due to the phase invariance 
in the equations for A and B and to the fact that there are two integrals, f2~ and f22, in 
the full system. These integrals are uncoupled, in the sense that they are identical to the 
integrals of the uncoupled equations for A and B (see Section 4 and [4]). In deriving 
(1.8) we chose f21 = ~22 = 0: This only simplifies the analysis of the four-dimensional 
system. Apart from other solutions, both 'most stable' (see [20]) Stokes-wave solutions, 
(A = const., B _---- 0) and (B = const., A -- 0), satisfy f21 ----- f22 = 0 and are thus 
described by (1.8). This four-dimensional system can be analysed (for instance) by the 
geometric theory for singularly perturbed systems, originally developed by Fenichel 
[11]; see also the contribution of Jones to [|]. Using the results of Fenichel we establish 
the existence of two so-called slow, invariant manifolds l't and Ft. We find a very rich 
structure of heteroclinic and homoclinic orbits which 'jump up and down' between Fl 
and Ft. More precisely, there are four critical points on the slow manifolds: Pt, Qt EFt 
and Pr, Qr ~ Fr. For any N > 0 there are N ' (N)  different 'N-jump'  heteroclinic or 
homoclinic orbits which connect two of the above four points and which consist of N + 1 
slow parts near Fl or [ ' r  and N jumps through the fast field. The number N ' (N)  can be 
explicitly calculated: N ' (N)  = 4x  the (N + 2)-th Fibonacci number (see Theorems 1 
and 2 in Sections 5.2 and 5.3). These results are obtained by carefully tracking the three- 
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dimensional stable and unstable manifolds of F/, Fr and the two-dimensional stable and 
unstable manifolds of PI,r, QI,r through the fast field and near the slow manifolds. The 
Hamiltonian structure of (1.8) (see Section 4) is a key ingredient of the proof of our 
results. Based on the methods developed in [6] we are also able to show the existence 
of homoclinic orbits which do not jump immediately from Ft to Fr (or vice versa), but 
remain in the fast field for a 'longer time' (see Theorem 3). 

These orbits all correspond to so-called 'localised structures' in the underlying system: 
they connect simple, spatially periodic patterns at x ~ -4-oo. Such localised structures 
can be stable in the uncoupled Ginzburg-Landau equation (see for instance [28] for 
a survey). However, none of these patterns can be described by the nonlocal reduction 
(1.6). There are two reasons for this. The first reason is that the most important ingredient 
of the construction of the heteroclinic and homoclinic orbits is the existence of the 
slow manifolds Ft and Fr. These manifolds can (of course) not exist in the Landau 
reduction since B, and thus z and w in (1.8), cannot evolve slowly. However, there exist 
a small number of heteroclinic orbits in the stationary problem associated with (1.6) 
which do have a counterpart in (1.8): The orbits only remain near Ft,r for an 0(8)- 
distance. These 'localised patterns' cannot be described by the Landau reduction due to 
a second, independent reason: They do not satisfy the extra solvability condition (1.7); 
see Section 3.2. 

Thus we conclude that the reduction to a Landau approach for B destroys a rich and 
important set of patterns. 

We end this introduction with a short sketch of the structure of this paper. In Section 2 
we derive equations (1.4), (1.5), and (1.6), with extra condition (1.7). We also pay 
some attention to the problem studied by Metzener and Proctor [22] and relate it to our 
approach. Section 3 is devoted to the derivation and analysis of the stationary problem 
associated with the nonlocal problem (1.6). The stationary problem associated with the 
singularly perturbed problem is studied in Sections 4 and 5: In Section 4 we show the 
existence of (fast) periodic solutions using a Poincar6 map and in Section 5 we employ the 
ideas of geometric singular perturbation theory. We end the paper with a short discussion. 

2. The Derivation of the Equations 

We consider the following model problem: 

O---~=Ltc,s,r(~)+N(~) where ap(x, t): II~×R + ---~ R, (2.1) 
3t 

which is a simplification of (1.1) since we restrict ourselves to a one-dimensional problem 
without a bounded y-variable. Furthermore we assume, as in the introduction, that there 
is a reflection symmetry x ~ - x  in (2.1) and that the basic solution ¢0 - 0. Here, the 
linear operator depends on three bifurcation-parameters R, S, and T. The 'eigenvalue' 
#(k, R) as defined in the introduction is in this case equal to the symbol of the linear 
operator LR,S.T : 

LR,S,T(e i~x) ---- #(k, R; S, T)e ikx. (2.2) 

We consider this very simple model in order to simplify the derivation of the modulation 
equation as much as possible. Introducing transversal y-dimensions will merely increase 
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the technical difficulties. The validity of  the Ginzburg-Landau equation (1.2) for systems 
like (2.1) has been proved in [12]. 

As in the introduction, we define the neutral curve {Re#(k, R) = 0}. Here, we will 
study the case that this curve has two minima: (kl, R~) and (k2, R2) ,  with k2 < kl. The 
neutral curve near (k,, Rl) can be scaled such that 

R = l + (k - 1) 2 + h.o. t . ,  (2.3) 

locally; thus (kl, RI) = (1, 1) (compare with the general expression (1.3)). The two 
conditional parameters S and T can now be interpreted. By changing T, the relative 
position of R2 with respect to R~ = 1 can be adjusted. The relative width of the critical 
curve, or the band of unstable waves, at kl = 1 and at k 2 is changed by S. The neutral 
curve near (k2, R2) can be written as 

R = R2 + D ( k  - k2) 2 + h.o. t . ,  (2.4) 

and thus D = D ( S )  measures the relative widths of  the (1, 1)- and (k2, Rz)-parabolas. 
The object of nonlinear (stability) theory is to describe the nonlinear evolution of the 

perturbation for R close to the critical value Re. If O ( R  - R I )  5 ~ O ( R  - -  R2) one derives 
a single uncoupled Ginzburg-Landau equation (1.2) in the weakly nonlinear stability 
analysis, either near (1, 1) if 1 < R2 or near (k2, R2) if 1 > R2. Coupling occurs if we 
assume that 

R -  1 = r e  2, R - Rz = se 2, 0 < e  << 1. (2.5) 

This can be seen as follows: One models the perturbation of the basic solution as slow 
modulations of  the critical waves, e ix and e ik2x, and their complex conjugates, 

7t(x,  t) = eA(~ ,  r )e  i~ + EB(~,  r )e  ik2~ + c.c.  + O(e2), 

where A and B are unknown 'amplitudes' of the slow space and time variables ~ --- ex  

and r -- g2t. The nonlinear terms in (2.1) will generate harmonics of  these simple linear 
waves. Thus, the e 2, e3-terms are constructed from a product of  the two most unstable 
waves, e ix and e ik2x, 

~ ( X ,  t) = eiX[eA q- ~'2~b12--~-- ~3@13 q-- . . . ]  
e i ~ x [ e B  + e21l t l2+ e3~13  + . . . ]  

e2~b02 + . . .  
e 2ix[Fz~b22q - - . . ]  + c . c .  (2 .6 )  

e2ik2x [~.21/e22 ql_ . . . ]  

e ix(l+k2) [62 d/) 12--[- • • • ] 
e i~<l-k2} [E 2qjlz+ "" "] 

Here the A, B,  ~ij, lltij, ¢l)ij, and qJij are functions of  ~ and r for every i, j E N. All 
scalings are classical; see for instance [9]. The validity of this expansion is proven in 
[10] for the case that there is one minimum. 

This expansion is valid as long as there are no low-order resonances between kl = 1 
1 and k2. It is clear that for k2 5 ~ ½ all above interaction terms are different. For k2 = 

some of  these terms coincide. As a consequence one has to choose other temporal and 
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spatial scales and quadratic terms will appear in the governing evolution equations (see 
[24] and [31 ] for physical examples). This is called 'resonance';  we will not discuss this 

I on the O(e3)-level. Since in more detail in this paper. Resonance also occurs for k2 = 
the dominant terms of  the modulation equations are determined at the O(e3)-level there 
are no other resonant values of  k2. 

The idea behind the derivation of  the modulation equation is simple: One substi- 
tutes the expansion for ~p into (2.1), and one expands and then gathers terms of  the 
form eae ix~b'+b:k2), a, bt, b2 ~ N. The equations at the a -- 2-level can be solved: The 
functions in expansion (2.6) can all be expressed in terms of  A and B. The solvability 
conditions for 4t3 and ~13 at the levels a = 3, bt = 1, b2 = 0, and a --- 3, bl = 0, 
b2 = 1 yield, after some trivial rescalings, the coupled system (1.4) for A and B given 
in the introduction. 

In this paper we study the situation in which the local parabola near (k~, R2), (2.4), 
is very narrow with respect to (2.3) (see the introduction and Figure 1); thus we assume 
that 

1 
D = - -  with 0 < ~ << I. (2.7) 82 

This automatically yields the singularly perturbed system (1.5) given in the introduction. 

The appearance of  the singular term ~ ~:B can also be understood directly from the 

derivational point of  view: The width of  the (k2, R2)-parabola at R = R2 + O(e 2) is 
O(e*), so the natural spatial scale associated with the B-mode is ~2 = e*x = 6~. Thus, 
B evolves on a slow spatial scale, compared to A. Therefore, it is natural to assume a 
'Landau ansatz' for B: B = B(r) ,  that is, B is independent of  ~, as has been done in 
[22]. This Ansatz means that we approximate the (k2, R2)-parabola by a line. Repeating 
the above derivation process we see that this Landau reduction has no influence on the 
equation for A. However, the equation for ~Pt3 (see expansion (2.6)) now reads 

~k2~ [ OB ] LR,S,T(~t3e ) = Ott--ff-fr (o~2B + a 3 B I B I  2 +ot4BIAI 2) e ik2x, (2.8) 

where the at  . . . . .  of 4 are the nonscaled counterparts of  the constants in (1.4). This 
equation can be written as 

Ln.s.T(~t3eikZX)e-ik2x = f(~, r)  + g(r ) ,  (2.9) 

where f (~, r)  = -or4 B] A I 2 is the only term which depends on ~. We define the averages 

lPl3(r ) --- lim ~pl3(s e, r)d~, 
t a ~  2M m 

f ( r )  = lim 1 [ m  - -  f ( ~ ,  r ) d ~ ,  
m - ~  2M J_M 

and separate f and lpl 3 into a part which only depends on r and a part which still depends 
on both ~ and r:  

lp|3(¢, r)  = ~13('C) + koch, "C), 

f ( ~ , r )  = f ( r ) + F ( s  e , r ) .  
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Note that although we of course assume that 013 and f are bounded on N, these 
averages do not automatically exist for all ~'~3 and f .  However, we shall see that ~Pl3 and 
f exist for the functions studied here (see Section 3.2). We substitute these expressions 
into (2.9) and obtain 

L t'~'-7-2--eikZXXe - ik2x  L t t l l e i k z x x e  - ik2x  - -  R,S, TtU/13 ! Jr- R.S,rt ) = ( f  + g) + F(~, r). (2.10) 

Because ~Pl3 only depends on r,  the first term of this expression can be calculated as 

LR.s.T(tPl3eik2X)e -ik2x = /z(k2, R2)~rI3 = 0. 

Thus we get 

LR,s,r(~eik2x) e-ik2x = (7 + g) + F. (2.11) 

Taking the above-defined average on both sides leads to the following solvability 
equation: 

;3 B 1 f_M cq~r  =a2B+ot3BIBI2 +a4B  lim - -  IAI2d~. 
M---~o~ 2M M 

This equation follows from (2.11); however, it is not a sufficient condition to solve (2.11): 
The equation for • is still left. Writing qJ and F as (formal) Fourier integrals, we have 

F( ) #(k2 + eK, R ) ~ ( K )  - F(K)  eir~dK = O, 
oo 

(2.12) 

in the sense of distributions. Now we note that//(k2 4- eK, R) = O(e 2) if IKI = 0 (6 )  
(since the local neutral (k2, R2)-parabola is only of O (6) width). Thus we see that (2.12) 
cannot be solved for a bounded O(1) solution • if fi '(K) :/: O(e 2) for Ig l  = 0(6) .  
This yields a second solvability condition on F = f - 7 = °t4BIAI 2 - 7 ,  

i f  M #) f zB  [A[ 2 -  lira - -  IAlZd e i r td tg=O+h.o . t . ,  (2.13) 

for tKt <_ 0(6). Observe that (2.11) can now be solved. After rescaling, the above 
analysis leads to the nonlocal system (1.6) given in the introduction, where again tl, t2, 
r, s, cl, and c2 have exactly the same values as in (1.5); extra condition (2.13) coincides 
with (1.7). In [3] a proof has been given of the asymptotic validity of  a Ginzburg-Landau 
equation with an extra nonlocal term combined with some additional conditions for a 
certain version of the Poiseuille flow problem. Note that intuitively the relation between 
the singularly perturbed system and the nonlocal system is quite simple: 6 has become so 
small that one is forced to assume that B cannot be a function of~  (at the highest order). 
This has no influence on the equation for A~ in (1.5). However, the B~  has to disappear 
in the B~-equation, and one has to eliminate the ~-dependence of the IAlZ-term. 

Remark 2.1. The above derivation of the nonlocal system (1.6) is not completely rig- 
orous. In order to improve this, one should work with the Fourier transform ~ of 7-', the 
solution of (2,1), and interpret it as a distribution; see for instance [ 12] and [3]. 
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Remark 2.2. In their analysis of pattern evolution with disparate scales, Metzener and 
Proctor [22] do not use the relative width of  the local parabolas as small parameter, but 
the second critical wavenumber k2:k2 = a << 1 = kl. If this is the case, it is easy to 
show that the width of  the (k2, R2)-parabola must also be small, so the above derivation 
covers this case. Note that we assume--as  in [22]--that  the (k2, R2)-parabola yields a 
classical Ginzburg-Landau equation if we omit the A-mode (see the introduction); in 
other words, we assume that #(0,  RI) > 0 and O(1) (see [18] for a short discussion). 
In this remark we sketch the extra complications encountered by taking a small. If one 
derives the coupled system in this case, one finds that, if a >> e, 

a A a 2 A _)f_ g-fr = rA  + A(tIIA[ 2 + ~-}'2[BI2), 
O B ~d~ ~b 2 B ?2 

sB + 7r-~- ~ + B(t2IBI 2 + 71A12). 
(2.14) 

Thus, the coupling terms AIBI 2 and BIAI 2 must also be large, O ( ~ ) .  This is due 

to the fact that the terms e i ( l+a)x  in the expansion of  ~ (see (2.6)) are now close to 
the critical wave e i*. Thus, solving the equations for q~t2, qq2, (2.6), yields terms like 

AB.A-B O ( ~ ) .  This case is much harder to study than the case above. Therefore, we i,TigE~, i5 -- 
focus in this paper on the assumption that k2 = O(1), D = ~ ,  ~ << 1. 

Moreover, one encounters many other complications in deriving and studying the 
appropriate equations as the relative magnitudes of e and cr change. For instance, for 
e = O(a )  the system becomes (at leading order) 

aa = rA + 82A -~T + c A ( B e  iL~ + -Be- iL~) ,  
aB l (2.15) 
-aT sB  + al l imM+~ ~ f_ta M IAl2e-iL~des, 

where k2 = a = eL. In the derivation of  these last equations the magnitude of  the 
perturbation had to be taken of  order 6 2 instead of e. Solutions of  the above system can 
be found explicitly and it can be checked that these solutions are unstable. From this it 
follows that although one first has to take the perturbations of  magnitude O(e2), they 
will grow to a magnitude of  O (e). This leads to a rather complicated system. The above 
example (2.15) is just included to indicate the complications caused by decreasing a 
further. Deriving and analysing the full set of  equations for every possible combination 
of  the magnitude of  e relative to that of a is a task we will not pursue in this paper. We 
refer to [29] in which such a complete nonlinear stability analysis has been performed 
for what is, in a sense, a simpler case: a weakly, periodically driven, system. There, five 
essentially different types of modulation equations have been derived. 

In [22] a different system has been proposed to describe the weakly nonlinear evolution 
of  patterns at 'disparate scales.' This system is in some sense a combination of  (1.6) and 
(2.15), 

aa /zA - IAIZA + ag~r + A ( B e  ix + B 'e - iX) ,  
= (2.16) 

-ff~aB vB clBIZB - s lima4--,~ I fffM I a l2e- ix  dX.  

In order to give a foundation to this system one has to assume relations between the 
parameters of  (1.6) and (2.15) and e (see [ 18]): That is the only way to have quadratic and 
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cubic terms of the same magnitude. Since these parameters are in principle completely 
independent of e this assumption will be violated in general. Therefore, one will not 
find this system if one pursues the above-sketched task of deriving all relevant 'generic' 
equations. 

3. The Nonlocal System 

From now on we focus on the analysis of nonlocal system (1.6) and singularly perturbed 
system (1.5). We will study and compare the solutions of these systems. System (1.6) 
can be considered as a limit of (1.5); thus we expect that some classes of solutions 
represent similar patterns in the underlying basic system. The most simple solutions are 
the stationary solutions, which we will study here. The stationary solutions are certainly 
of a physical relevance, for instance in the convection context where stable stationary 
patterns exist (see Section 6). We first determine the ODE associated with the stationary 
solutions of (1.6), 

{ o2A _rA_A(t t lAle+CllB[2) ,  
~2 -- (3.1) f~ l A l Z d ~ )  . 0 = B(s + t2tBt 2 + cz limM-~oo 2-~ 

Thus, there are two possible values for B: 

1. B = 0 ,  

2. 1012 - s  -c2 I f M  = - -  + C(A), where C(A) = lim IAl2d~. 
12 t2 M---~ ~ ~ M 

The first case leads to the stationary uncoupled Ginzburg-Landau equation for A (which 
is integrable; see below and [4]). The second case leads to the following equation for A: 

02Ao~ 2 - ( - r  + Cl (s + QC(A)))  A - 

To reduce the number of unknown variables we introduce polar coordinates. Let 

A = pie i°' , (3.2) 

where p~ and 01 depend on s e. We insert these expressions into the equation for A, separate 
the real and complex parts and find 

Because 

32Pl ~ t301"t2 
" ~  - -  t l l t ' ~  ) = ( - - r  + ~2 ( s  + c z C ( p l ) ) ) p l  - -  t l P ~ ,  

"~Pl 301 ~ ~ B201 ~-~- ~-  -r- ~'1 a-~- = 0 .  

1 a { 2001~ Opl 001 0201 
Pl c3~ ~ P l - ~ - )  = 2 O~ 0---~ + p' O~ -----T' 

we find that 

(3.3) 
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and therefore introduce the integral ~'~1, 

2 001 
Pl ~ = ~2~. 

Substituting this into (3.3) leads to 

OZP~ ( _ r  + Q (s +c2C(p l ) ) )p~  _ t l p ~  + f2~ 
O ~ 2 = t 2 P--~I " 

(3.4) 

To simplify the calculations, we set in system (3.4) r = l, tl ----- - l, t2 = - I. Note 
that this can be obtained by straightforward rescalings with additional assumptions on 
the signs of  r, tl, t2. These assumptions are so that the equation is directly related to 
the single Ginzburg-Landau equation mostly studied in the literature. Furthermore we 
assume that ~21 = 0. Taking f21 = 0 simplifies the analysis. However, for ~ ~ 0 the 

~2 ~0~ 00, = 0. This analysis is in essence the same. Because f2~ = Pl ~- ,  f21 = 0 implies that 
yields that 01 does not depend on ~; thus 01 is a constant. Therefore, due to the phase 
shift invariance in (1.6), one can say that we restrict ourselves to studying real solutions 
of this system. We refer to [4] for a detailed discussion of  the relation between f2 = 0 
and S2 7~ 0 in the single real Ginzburg-Landau case. 

3.1. Stationary Solutions o f  the Nonlocal Equations 

We introduce x = pl in (3.4) with ~'21 = 0, r = 1, tl = -- 1, and t2 = - 1, 

£ = - ( l + c t ( s + c z C ( x ) ) ) x + x  3 with C ( x ) =  lira 1 x2dt ,  (3.5) 
M--,~ 2M M 

where the dot means differentiating with respect to ' t ime' t = ~. We are only interested 
in bounded solutions of these equations since A, where IAI = Pl = x, must remain 
bounded. Moreover C(x) is only defined for bounded x. First we set C(x) = C, where 
C is a fixed constant. System (3.5) then becomes 

2 ---- - a x  + x 3 where a = 1 + cl (s + c2C). (3.6) 

We will describe the phase portrait of this equation in some detail, because later on 
we will come across this equation again. For a < 0, (3.6) has only one critical point, 
(0, 0), which is a saddle point. This shows that there are no bounded solutions, except 
for the trivial critical point. For a > 0, the system has three critical points: (0, 0) and 
(-+-,,/-S, 0). In this case (0, 0) is a centre point and (-t-x/a, 0) are saddle points. There exist 
two heteroclinic connections between the two saddle points. Inside this heteroclinic loop 
there are bounded periodic solutions and outside all orbits are unbounded. This means 
that bounded solutions of (3.6) will always lie inside the heteroclinic cycle formed by the 
two connections. These solutions are periodic (see Figure 2). System (3.6) is integrable 
with integral or energy k: 

1 2  ~ 1 4 k =  ~y  + ax 2 - - ~ x  , where y = 2. (3.7) 
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x 

Fig. 2. The phase portrait for the equation ; / =  - a x  + x  3 
where a > 0. 
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It is possible to determine C (x) explicitly for a periodic solution of (3.6), with period 
To. Note that 

2M for°  l fr°x2dt  C(x)  = lim x 2dt  = - -  (3.8) 
M-+ oo 2 M To To 

for a periodic solution x. Hence 

X 2 C(x) for° x2d' f*_', ~ dx 
- -  - -  ( 3 . 9 )  

fro dt  f~_', ~' dx' 

by changing variables, where G(x,  k) = v/2k - ax 2 + ix4. Here - v ' a  < - X l  < 0 < 

xj < ~ are the intersection points of  the solution x, on the energy level set k, with 
y = 0. Introduce X = x 2 and Xj = x~, then 

C(x)  - Ti (k) where Ti(k) = f 
X i d X  

To(k)' ~ 2 k X  - a X  2 + ½X 3" (3.10) 

This is a contour integral in the complex plane around the interval [0, Xl] on the real 
axis. We define 

Tl (k) 
x (k)  --  . (3.11) T0(k) 

Because x is a periodic solution which lies inside the heteroclinic cycle, the k-value of 
x lies between 0 and aa . I  2 Below we will show that X is a monotonic function of k, so 
we can conclude that 0 < X < a (since X(0) = 0 and limk~¼a2 x(k)  = a). Although 
this result is a special case of  a more general result proved in [4], we will sketch the 
derivation of  the monotonicity result: x (k )  is an important quantity which will also 
appear in subsequent sections. Note that 

T OTi qr, 8To 
OX O T1 lo-~T - -  *1 "~ 

~k ak 7"0 rg 
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We define Gl(k, X) = v/2kX - a X  2 + 1X3 and define 

f X idX  
Ji (k) = ( G ~ , X ) ) 3  ' 

which yields that 

OX -To J2 + TiJi 
(3.12) 

Rewriting T/(k) into these Ji(k)'s leads to the following relation for every i >_ 0: 

1 
Ti = 2kJi+l - aJi+2 + 7 Ji+3. 

Z 
(3.13) 

Since 

for every i > 1, we also find 

f d XidX 

dX (G~(k, X)) 
= 0  

(l 
k ( 2 i -  l ) J i + ( 1 - i ) a J i + l +  ~ i -  Ji+2 =0 .  (3.14) 

Setting in (3.13) i = 0, 1 and in (3.14) i = i,  2 leads to a system of  four equations from 
which Jl and ,/2 can be solved. Substitution of these expressions into (3.12) gives 

OX _ 1_ 4k) (ax2 Ok 4k(a 2 - 8kX + 4ka). 

We define f ( k )  = 4k(a 2 - 4k) and P(X) = a x  2 - 8kx + 4ka, and see that f ( k )  > 0 
for 0 < k < l a2 ,  which is exactly the interval we are studying. There are no solutions of 
P(X) = 0 and so, because a > 0, P(X)  > 0 for every X. Combining this finally results 

0X in -ff > 0. This yields that 0 < X (k) < a,  where X (k) = 0 corresponds to the centre 
point (0, 0) and X (k) = a to the heteroclinic orbit. Since C(x)  = X (k) one observes that 
bounded solutions can only exist if 0 < C(x) < a. We can now explicitly solve (3.5): 
For a given value of a = 1 + cj (s + c2C) in (3.6) we see that the bounded orbits have 
values of  C ranging from 0 to a;  thus if 

C(x) q. (0, 1 -I- cl (s "1- c2C(x))), (3.15) 

we see that one bounded orbit of  system (3.6) is selected as the solution of  system (3.5). 
Again C(x) = 0 corresponds to the selection of  the centre point (0, 0) and C(x) = 
l + cl(s + c2C(x)), i.e., C(x) -- i+,,,s, to the selection of a heteroclinic orbit. Recall  

1--CLC2 
that IBI 2 = s + c2C(x), which relates the value of IBI to every C(x). Thus, the nonlocal 
system (1.6) only has bounded stationary solutions (A(~),  B) with 'average '  C(A) if 
0 < C(A) < 1 + cl(s + c2C(A)) and IB] 2 = s + c2C(A) > O. 
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3.2. Applying the Solvability Condition 

The two boundaries of the interval given by (3.15) determine, in a sense, the bifurcations 
at which the periodic solutions of  (3.5) (dis)appear. As already noted above, the periodic 
solution shrinks into a critical point at C ( x )  = 0. The other boundary, at C ( x )  l+c,.~ 

- -  1_CLC2 
determines a global bifurcation at which the periodic orbit merges with a heteroclinic 
cycle of  (3.5). From the derivation of the system we also obtained an extra condition 
(1.7) which the solutions have to satisfy. As can be easily seen, the critical points of the 
system do satisfy the condition. This is also true for the periodic solutions as long as their 
period is not too large. This can be seen as follows. Note that (1.7) determines the Fourier 
transform of the (periodic) function I A I  2 - C ( A ) .  This is of course a discrete spectrum 

2yrn with 'peaks '  at K = -~0' n = + 1, =t=2 . . . . .  where To is the period of I A 12. Observe that 
there is no peak at K = 0 due to the subtraction ' - C ( A ) ' .  Since To becomes unbounded 
a s k  1" ~al 2 (see [4]), we see that the n = +1 peaks approach the K = O(6) region if 

1 2 In other words, the periodic orbits satisfy the extra condition (1.7) as k approaches ~a . 

long as To -¢ O(~).  The periodic orbits with a very long period do not satisfy (l.7). The 
same is true for the heteroclinic orbits: They do not satisfy (1.7) (this can be checked 
by using the explicit expression (5.3) given in Section 5.1). Thus, we conclude that the 
only stationary solutions described by the Landau reduction are the solutions with I AI = 
constant or IAI is periodic with O ( I )  period. All other solutions of  system (1.6) do not 
satisfy solvability condition (1.7). 

Furthermore, we note that the 'average'  described in Section 2 is defined for all 
solutions of  the stationary problem associated with (1.6). 

4. The Singularly Perturbed System: Periodic Solutions 

In this section we will study the stationary solutions of  the singularly perturbed system. 
The stationary problem associated with the singularly perturbed system reads 

82A nzJ-g-U -- - r A  - A ( h  IAI 2 + cl IBI2), 

TU = 6 2 ( - s B  - B(t21BI2 + c2tA[2))" 
(4.1) 

As in Section 3, we introduce polar coordinates for A and B, 

A = pl eiO~ , B = p2 eiO~. 

Then the system becomes 

- r p l  - Pl (tl p2 + Cl p2) + f~] o~ 
- -  = ~ 2 ( - s p 2  - p2(t2p~ + c~p~) + ~) ,  

P2 

(4.2) 

where ~ l  and (22 are mtegrals, similar to ~'21 in Section 3:f21 = p~ a0, and 8(22 = ~2 = 

pZ2a°2-~. Note that ~-aB = 0(3) ;  thus ~ has to be of  0(3) ,  which implies that g22 is 0(3) :  

f22 ---- 3(22. We will study the bounded solutions of  singularly perturbed system (4.2) 
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where, as for the nonlocal system, we set for simplicity faj = ~ 2  = 0 (and r = 1, 
tl = t 2  = - -  1 ). This implies that Jot a02 = 0 and thus that 01 and 02 are constants. 

Note that the Stokes waves, (A = constant, B = 0) and (A = 0, B = constant), are on 
the fal = ~2 = 0 level set. 

aos, = x where the dot means differentiation with Next we introduce x = pl and y = a~ 
respect to ' t ime '  t = ~; equivalently we write z = P2 and 3w = k, 

3~ ~ y ,  

) = - x  + x (x  2 - clz2), 

~ = 3 w ,  
tO = 3(--SZ + Z(Z 2 -- C2X2)) .  

(4.3) 

Thus, x and y can be considered as the fast (=O(1))  moving coordinates and z and w as 
the slow (=0 (3 ) )  coordinates. The system contains a lot of  useful symmetries: (4.3) is 
equivariant under 

{x-+ - x ,  y--+ - y } ,  {x--+ - x ,  t--+ - t ,  w--+ - w } ,  {x--+ - x ,  t--+ - t ,  Z--+ - z } ,  
{Z--+-Z, W--+-w} ,  { y - + - y , t - + - t ,  w - + - w } ,  { y - - + - y , t - - + - t , Z - - + - Z } .  

(4.4) 

System (4.3) can be considered as a Hamiltonian system. We introduce the arbitrary 
rescalings x = o~£, y = a ~ ,  z = /3~ ,  and w = /3 tb ,  for a , /3  > 0. This gives 

2. 
X ~ - y ,  

y = - -X nt- 3~(0~23~ 2 --  C l f l2~2) ,  

z = 3t~, 
t~) n- 3(--S~r + ~(/~2~2 __ C2012~2)).  

(4.5) 

The Hamiltonian H which could belong to this system must be of  the form 

H = ~(x2 q- y2 q- 3sz2 + 3~2)  -- l°12ff4 -- ~/32~4 '}- 

where m still has to be determined. This implies that we must impose that cj/32 = 3c20t 2, 

which yields that 

f12 3C 2 
m 

Ot 2 C 1 
when sign(cl)  = sign(cz). 

Thus, it is possible to rescale (4.3) so that it becomes a Hamiltonian system. This rescaling 
t~ 2 

has to satisfy ~ = O(3), which means that O(1) solutions in the Hamiltonian system 
correspond to solutions of  (4.3) of which either the pair (x, y) or the pair (z, w) (or both) 
is not O(1).  However, amplitude A in (1.5) corresponds to (x, y) and B to (z, w) and 
both A and B must be O(1),  due to the structure of the derivation process. Therefore we 
will not write (4.3) as a Hamiltonian system, but we will use that the energy is conserved. 
Note that the expression for the energy contains only even powers of x, y, z, and w. In 
the case that sign(cl)  = - sign(c2) it is also possible to rescale (4.3) to a Hamiltonian 
system. 
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Before we study the perturbed system we are interested in the dynamics of the un- 
perturbed system. Setting 3 = 0 leads to 

{~ = Y' 2) 
= - - X  q'- X ( X  2 - -  C I Z  . 

(4.6) 

Here z = z0 and w = wo where zo and w0 are constants of motion, because setting 
6 = 0 implies that ~ = 0 and tb = 0. The above system can also be written as 

= - ( 1  + c l z ~ ) x + x  3. (4.7) 

This is the same as equation (3.6) with a = 1 + cjz~, which we already studied in 
Section 3. I. Therefore the same results as for (3.6) can be obtained. 

Next we consider the critical points of the perturbed system. Here the critical points 
are given with their characterisation, where the first part is the characterisation in the 
fast directions and the second in the slow directions (that is, the first pair of eigenvalues 
is O(1), the second pair 0(3)).  

(0, 0, 0, 0) for s > 0 centre/centre, 
for s < 0 centre/saddle, 

(0, 0, ±~,rs-, 0) for scl + 1 < 0 saddle/saddle, 
for SCl + 1 > 0 centre/saddle, 

(+1 ,0 ,  0, 0) for c2 + s < 0 saddle/saddle, 
for c2 + s > 0 saddle/centre, 

+ ~ O, + ~ O) for 2 ( c 2 + s ) ( 1 + c , c 2 )  
- - V  ~ '  V 1 - c W 2 '  1--c,c2 < 0 saddle/centre, 

for 2(c2+s)0+,,,c2) > 0 saddle/saddle. 
I --ctc 2 

These critical points only exist when the expressions under the square root are positive. 
So the second two critical points only exist for s > 0 and the last four critical points 

cjs+l s+c2 only exist for ~ > 0 and ~ > 0. These critical points give rise to solutions of 
the original system. The first critical point gives the trivial solution, the second gives the 
Stokes wave A = 0 and B 4- q/-se i02 where 02 is a constant; the third gives another Stokes 
wave A = -4-e iOL and B = 0 with 01 a constant. The last four critical points correspond to 

± ~ e  i°' and B = - t - . ~ e  w~ with 01 and 02 constants. the mixedpa t t emsA_= V ~  v ~ c.c~ 

The heteroclinic and homoclinic orbits of  Section 5 will have their origins and destinies 
at one or two of these four points. 

4.1. Periodic Solutions 

The singularly perturbed system possesses two time scales: (x, y) are the fast variables 
and (z, w) are the slow variables. In the nonlocal system there is no slow behaviour. 
When studying behaviour which is dominated by the fast field in the singularly perturbed 
system, we have to take ~ and ~b almost 0, which implies that B is 'almost '  independent 
of ~. Recall that this is exactly the condition which is imposed on B when deriving the 
nonlocal system. Therefore we expect to observe approximately the same behaviour for 
solutions which remain in the fast field of the singularly perturbed system as for the 
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solutions of the nonlocal system. In this subsection we will study the solutions of (4.3) 
which are dominated by the fast field. We will focus on the periodic solutions. We expect 
to find approximately the same existence conditions (and solutions) as for the nonlocal 
system. In the next section we will study solutions to (4.3) which consist of fast and slow 
parts. These solutions cannot exist in the nonlocal system. 

We will construct solutions to (4.3) by using the fact that the unperturbed limit ~ = 0 
is completely integrable: 

with the three integrals 

i y '  

= - x  + x ( x  2 - clz2), 

0, 

(4.8) 

l( x214 ) k = ~ y2 + - ~x  + cjx2z 2 kl = Z, k2 = w. (4.9) 

The behaviour of fast periodic solutions of (4.3) is dominated by the unperturbed system, 
since the solutions to (4.3) remain 0(3) close to solutions of (4.8) for O(1) time. Thus, 
a fast periodic solution to (4.3) will be 0(6) close to a periodic solution of (4.8): We 
can study the existence of periodic solutions of the singularly perturbed system by 
constructing and approximating a Poincar6 map which measures the changes in the k, z, 
and w-values for a solution of the perturbed system. This Poincar6 mapping is defined 
as follows: 

P(k,  k~, k2) = (k + A K ( k ,  kl,  k2), kt + AK~(k, kl, k2), k2 + AK2(k, k~, k2)) 

= ( k + A K ( k , z , w ) , z + A K l ( k , z , w ) , w + A K 2 ( k , z , w ) ) .  (4.10) 

The quantities AK(k0, z0, w0), AKI (k0, z0, w0), and AK2(ko, zo, w0) measure the accu- 
mulated change in the slow variables k, z, and w from a solution of the perturbed system. 
Due to reasons which will become clear later on we define the Poincar6 map in a some- 
what nonstandard way. The Poincar6 map is defined by a solution which consists of two 
parts which are joined together. The first part starts on the cross section {x = 0, y > 0}, 
travels forwards in time and ends by intersecting the cross section {x = 0, y < 0}. The 
time it takes this solution to intersect with the cross section {x = 0, y < 0} is denoted 
by T~. The other part travels backwards in time and ends by intersecting {x --- 0, y < 0} 
(see Figure 3). The time it takes this solution to intersect with {x = 0, y < 0} is denoted 
by T_~. Here (k0, z0, w0) is the initial value of these solutions; hence k0 is so that x0 = 0 
and y0 > 0. The accumulated change of the integral k over this orbit is given by 

f r~ AK(k0, zo, wo) ---- k(x~, y~, z~, w~) dr, 
T~ 

where (x~ (t), y~ (t), z~ (t), w~ (t)) is the above-constructed solution of the perturbed sys- 
tem. The quantities AKi and AK2 can be expressed in the same way. Substituting the 
expression for k, (4.9), gives 

F AK(ko, zo, wo) = 8 clx~wsz~ dt. 
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Fig. 3. The construction of the Poincar6 map. The thin 
lines represent solutions to the unperturbed problem (4.6) 
in the plane {z = zo, w = Wo}. The thick line is the 
projection of a solution of (4.1) on the plane {z = zo, w = 
W0}, 
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The solution (x~(t), y~(t), z~(t), w~(t)) can be approximated with O(6)-error  by the so- 
lution (xo(t), yo(t), z0, w0) of the unperturbed system with energy k = ko which starts on 
the cross section {x = 0, y < 0} with the same initial data as (xr(t) ,  y~(t), z~(t), w~(t)); 

l T±~ can be approximated by ~ i T 0 ,  the period of  the solution (xo(t), yo(t), zo, wo). 
Therefore [,To 

AK(ko,  zo, wo) = 6 ClX~wozo dt + 0(82). 
J - ' r o  

We define G(k, z, x) = ~/2k - x 2 4- ½x 4 - clx2z 2. Note that this is nearly the same 

function as defined in Section 3.1. Transforming the coordinates leads to 

f xl X 2 dx 
AK(ko, zo, wo) =26ClWoZo -G(ko, zo, x) +0(82)"  

- - X  I 

Here - ~  + c t  z~ < - x l  < 0  < x l < V/I + c l z  2 are the intersection points w i t h y  = 0  

of  the solution with k = ko, We set X = x e and X~ = x~; then, 

AK(ko,  zo, wo) = 6clwozoTl(ko, zo) + 0(82) ,  (4.11) 

where 

f X i dX 
T~(k, ~) 

v/21,x - x2  + ½x3 - c~x2z~ 

This contour integral around the interval [0, Xi]  is again very similar to the one defined 

in Section 3.1. In the same way we obtain 

AKI(ko,  zo, wo) = 6woTo(ko, zo) + O(62), 
AK2(k0, z0, wo) ----- --rzo((s - z~)To(ko, zo) ÷ c2Tl (ko, z0)) 4- 0(82).  (4.12) 
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A solution is periodic if A K  = A K l  = AK2 = 0. Since To(k, z) and Tl (k, z) are strictly 
positive, this yields 

c~wozo + 0 ( 6 )  = 0, 

w0 + 0 (5 )  = 0, (4.13) 

zo((s - z~)To(ko, zo) + c2Tt(ko, zo)) + 0 ( 6 )  = O. 

This seems to lead to two possibilities: 

1. zo = 0 ( 6 )  and w0 = O(3),  

2. w0 = 0 ( 6 )  and (s - Z2o)To(ko, zo) + c2Tt(ko, zo) = 0 ( 6 ) .  

However, (4.13) is a singular system in the limit 3 --~ 0. Thus we cannot solve this 
system for 3 = 0 by applying the implicit  function theorem and concluding that there 
is a solution to the perturbed system 0 ( 6 )  near the 3 = 0 solution. On the contrary: 
one must expect that the solution of  the full problem will be much more complicated. 
Nevertheless, we will now show that the above two 'singular '  solutions are correct. 

Approximating the solution of  the perturbed system by a solution of  the unperturbed 
system throws away too much of  the dynamics of the system; thus we have to look at the 
expressions without approximating the solution. The exact expressions for A K ,  AKI ,  

and AK2 are 

/_7, 
AK(ko,  z0, wo) = 6 clx~w~z6 dt ,  

T_~ 

A K l ( k o ,  zo, wo) = 6 w~dt ,  
T_~ F' 

AK2(k0, z0, wo) = 6 ( - s z ~  + z~ - czx~z~) dt .  
T_~ 

We note that w~(t) -- 0 and z~(t) =- 0 if z0 = wo = 0. Thus A K ( k o , 0 , 0 )  = 
AKl(k0,  0, 0) = AK2(ko, 0, 0) = 0. Therefore periodic solutions exist. This can also 
be seen by noting that if z = w = 0, the dynamics of (4.3) are described by 

Y = - x  + x 3. 

This leads to periodic solutions in the (z, w) = (0, 0)-plane. These solutions are also 
solutions of  the unperturbed system. 

We now consider the second possible solution to (4.13). On the cross section we have 
x0 = x(0) = 0. Let ' s  again consider w0 = w(0) = 0; thus ~(0) = 0. It can be shown for 
a solution (x~, y~, z~, w~) of  (4.3) with these initial conditions that x~(t) (resp. z~(t)) is 
an odd (resp. even) function o f t .  This can be done by inductively checking that x(0)  = 0 
and ~(0) = 0 in (4.3) yields that x(2")(0) = 0, zl2"+J)(0) = 0 for every n. From the fact 

that x is odd it follows that T s  = 1"6. Because z is even, w = ~ is odd. Thus 

f 2 AK(k0,  z0, w0) = 6 clx~ w~z~ dt  -- 0, 
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since x2wrz6 is an odd function of t. Analogously, since w~ is odd, 

AKj(k0,  zo, wo)=--O. 

We still have to use the solution of  the unperturbed system to approximate A K 2 ;  see  

(4.12). Thus, a periodic solution with initial data x0 = z0 = 0 must satisfy 

Z0 = 0  or (Z~ -s)To(ko, zo) -C2Tl(ko, zo) : 0 .  

This is equivalent to X (k0, z0) = z~-~ where X is in essence the function defined in (3.11). 

In Section 3.1 we showed that X 6 [0, a],  where a in (3.6) corresponds to 1 + ClZ 2 in 
(4.7), and that X is a monotonically increasing function of k from 0 to a = I + c~z 2. 

Since s, c~, and c2 are known from the equations, an interval for z0 can be determined 

so that X (ko, zo) = z°2-~ holds, 
C 2  

0 <  z2--s 
_ < 1 ÷ C l Z  2. (4.14) 

C2 

As in the case for the existence of solutions of the nonlocal system, there are, for different 
values of  the coefficients, different intervals for z0 where periodic solutions exist. 

4.2. The Relation with the Nonlocal System 

Since we expected similar conditions for the existence of  periodic solutions for the 
singularly perturbed system as for solutions of  the nonlocal system, we are now going 
to compare the conditions for this existence. Recall that in the nonlocal system bounded 
solutions exist for B ---- 0 and for IBI 2 = s + c2C(x) where C ( x )  c (0, 1 + CI(S ÷ 

c2C(x) ) ) .  In the singularly perturbed system there exist periodic solutions for z = 0 and 

for z with 0 < z2-s < 1 + clz  2. In Section 4 we set B = p2 ei°2 and we introduced z 
- -  C 2  - -  

by P2 = z. This implies that B = 0 is the same as z = 0. Thus the first possibilities for 
the existence of  the periodic solutions coincide, which of  course is not surprising since 
the nonlocal system (1.6) and the singularly perturbed system (1.5) are exactly the same 
for the subcase B = 0. The other two cases are somewhat more difficult to compare but 
finally these appear to be essentially the same. Since I BI = z in the singularly perturbed 
case and IBI 2 = s + c2C(x )  in the nonlocal case, both existence conditions (3.15) and 
(4.14) can be compared by substituting z 2 = s + c2 C ( x )  into (4.14) to obtain 

s + c 2 C ( x ) - s  
0 < ( =  C ( x ) )  < 1 ÷ Cl(S + c2C(x ) ) .  

62 

This is exactly the condition (3.15) for the existence of  bounded periodic solutions for 
the nonlocal system. This yields that bounded solutions of the nonlocal system and 
fast periodic solutions of  the singularly perturbed system exist exactly under the same 
conditions. 

Moreover, there is a direct relation between these two families of  periodic solutions. 
The construction of the periodic solutions in the nonlocal case of  Section 3.1 shows that 
these solutions are exactly the same as the uniquely defined periodic solutions of  the 
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unperturbed system of the singularly perturbed case which survive the perturbation. In 
other words, for any periodic solution of the nonlocal system there is a fast periodic 
solution of  the singularly perturbed system which is 0 (8)  close. The difference can be 
seen most clearly by comparing B in both cases: B = constant in the nonlocal case, 
while I BI varies periodically with an 0(8)  amplitude around that same constant in the 
singularly perturbed case. 

5. Heteroclinic and Homoclinic Orbits 

In this section we will focus on heteroclinic and homoclinic orbits. From the analysis 
in the fast field we might expect that there exists a heteroclinic cycle for the extreme 

value z2-~ = 1 + ClZ 2, similar to the heteroclinic orbits found for the nonlocal system 
C2 

in Section 3.1. However, we have to be careful here: Using the Poincar6 map (4.10) we 
can only hope to connect the one-dimensional strong unstable/stable manifolds of the 

critical points ~-4- ~ 0 + ~ 0). Simple geometric counting arguments sug- 
" V l-c~c2' ' V l-c~.2' 

gest that such connections can only exist as codimension 3 phenomena. However, using 
the Hamiltonian character and the symmetries (4.4) we will see in this section that these 
orbits always exist for c2 = 0. For c2 ¢ 0 there also are heteroclinic orbits; this is neces- 
sary since the periodic orbit has to disappear into some kind of heteroclinic/homoclinic 
structure, but these orbits will consist of  fast and slow parts. 

We focus on solutions of (4.3) which do consist of distinct slow and fast parts. A 
solution evolves slowly if it is close to a so-called slow manifold of the system. A slow 
manifold is an invariant manifold on which the flow is O (8)-slow. The existence of  these 
manifolds follows from the theory originally developed by Fenichel (see [11] and refer- 
ences there, or [ 1 ]). There it is shown that a manifold of critical points of  the unperturbed 
limit 8 ---> 0, with a normally hyperbolic structure persists under the perturbation as a 
slow manifold. These slow manifolds play an important role in the organisation of the 
total flow induced by the singularly perturbed system. In this section we will construct 
various families of  heteroclinic and homoclinic orbits which are (exponentially) close to 
these slow manifolds except for a number of ' jumps'  through the fast field. These hete- 
roclinic and homoclinic solutions are especially important as solutions of the full PDE 
(4.3) since they correspond to so-called 'localised structures' such as fronts or pulses. 
These localised structures are again very important for understanding the dynamics of 
the solutions of the PDE. We refer to [28] and the references given there for an extensive 
discussion of  the existence and stability of  these solutions in the single Ginzburg-Landau 
equation. 

5.1. The Slow Manifolds Ft and Fr 

Before we apply the theory of Fenichel we note that we can find another explicit slow 
manifold just by setting A = 0 in (1.5) or, equivalently, x = y = 0 in (4.3). This is 
also an invariant manifold on which the flow is slow; however, its existence cannot be 
deduced from the general theory. By (4.6) we find that the eigenvalues of the critical 

point (0, 0) are given by ~.± = -t-i~/l + clz 2. Thus, the manifold x = y = 0 can never 
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Fig. 4. The flow on the slow manifolds for (a) s + c2 > 0 and (b) s + c2 < 0. 
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be globally normally hyperbolic ( it can be normally hyperbolic for certain values of 
z if cl < 0). However, the slow manifold exists since we have an explicit expression: 
{x = y = 0}. The flow on this manifold is given by 

~ = S Z ( - s z + z 3 ) .  

Thus we note that there are two slow heteroclinic orbits between the fixed points 
(0, 0, +.v/~, 0) if s > 0. There is another trivial but nonslow invariant manifold which 
will play a role in the forthcoming analysis: B = 0, or z = w = 0 in (4.3). We already 
encountered this manifold in the previous section. 

Setting 6 = 0 in the singularly perturbed system leads to two globally normally 
hyperbolic manifolds of  critical points defined by x 2 = 1 + c l z  2 and y = 0; see (4.6). 

Note that the eigenvalues of  the critical points (+VII + c l z  2, 0) in (4.6) are given by 

~.± = -I-x/2(l + cl z2), and thus the invariant manifolds are globally normally hyperbolic, 
but only for cl > 0 are they unbounded. Thus, by the work of Fenichel [11] we know 
that for ~ ~ 0, sufficiently small, there are nearby (=0(3))  invariant slow manifolds on 
which the flow is 0(6) .  We denote these slow manifolds by F/, for x < 0, and by I'r, for 
x > 0. The highest order approximation of the flow on the slow manifolds is given by 

= 6( - ( s  + c2)z + (1 - clc~)zS), 
( 5 . 1 )  

since x 2 = 1 + cl z 2 + O (6) (see also [ 1 ]). There are several possibilities for the structure 
of  the phase space on F /and  Fr. The system has the following critical points: (0, 0) and 

-4- ~ 0 ) f o r  s+,.2 V ~ '  ~ > 0. The critical point (0, 0) is for s + c2 > 0 a centre point 

and for s + c2 < 0 a saddle point while for s + c2 > 0 the ¢+ ~ 0) are saddle 
\ W 1--¢'1 C2 

points and for s + c2 < 0 the points are centre points, One is tempted to conclude that 
the possible phase space is as in Figure 4. However (5.1) only gives an approximation of 
the flow up to 0(6)  (in fact, the highest order correction turns out to he 0(62)). On the 
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other hand, we know that the system has a Hamiltonian structure; thus there are only a 
limited number of  possibilities for the exact, integrable behaviour of  the flow on the slow 
manifold. We use two ingredients to conclude that the topological structure of the flow 
on the slow manifold must be exactly as in Figure 4. First we see that the critical points 
o n  I~l,r cannot undergo any local bifurcations (since "new" critical points on Ft,r are also 
critical points of the full system and we already found all critical points). Second, we 
use the symmetry {z ---> - z ,  w --+ - w }  to establish the character of the heteroclinic and 
homoclinic connections. We focus in this section on the case s -I- c2 > 0. However, this 
choice is not at all essential; we will summarise the analogous results for s + c2 < 0 at 
the end of Section 5.3 in Remark 5.1. We denote the saddle point on F/ (resp. Fr) with 
z > 0 by Pt (resp. Pr) and with z < 0 by Qt (resp. Or), 

o) PI,r, QI,r = -4- 1 - c lc2 '  1 --cj--c2' 

As a direct consequence of the structure of the flows on Fl,r (Figure 4), we conclude that 
there exist two distinct slow heteroclinic connections between Pt and Qt and between 
Pr and Qr (for s + c2 > 0). 

The slow manifolds Ft and I'r possess stable and unstable manifolds, W ' ( F t )  and 
W"(FI), resp. WS(l"~) and WU(Fr) (see again [111 and[l]). These manifolds consist of 
points (x0, Y0, z0, w0) such that the orbits F0(t) through these points satisfy 

lim dist(Ft,r - y0(t)) = 0, 
t---~ ± o o  

where the + (resp. - )  corresponds to the stable (resp. unstable) manifold. Note that 
W u's (Fl,r) merge with the manifold of stable and unstable manifolds of  the (degenerate) 

critical points (-I-~/1 + c l z  2, O, z, 0), z 6 R, of the unperturbed limit (4.6). In this paper 
we restrict our attention to those parts of  W u's (FI,r) which merge with the heteroclinic 
cycles which exist in the unperturbed limit (see Figure 5). In other words, we do not 
pay attention to those parts of WU'S(Fl,r) which are unbounded in the limit 6 $ 0. Thus 
W"(Ft) = W ~ (F~) and WU(Fr)  ---- Ws(Ft) in the limit ~ $ 0. These identities fail to hold 
as soon as 8 -7: 0. However, since all W""(F/.~) are three-dimensional (and the space 
is four-dimensional) we expect to find two-dimensional intersections W" (Fi) N W s (l-'r) 
and W"(Fr)  A W'(FI) .  

By using the Melnikov method for slowly varying systems, the separation and thus 
the intersection of these stable and unstable manifolds can be calculated. See for example 
[27], [32]. The method is derived for the case that the unperturbed limit has homoclinic 
orbits, but the extension to the heteroclinic case is straightforward. Assuming that 6 ¢ 0, 
sufficiently small, the distance between W"(FI) and W' (Fr )  is calculated at the cross 
section {x = 0, y > 0}. We define y~' and y~ as the intersection points of orbits on 
W"(Ft), resp. WS(Fr) ,  with {z = z0, w = w0} on {x = 0}. The solutions y~u(t) = 
(x~' (t), y~' (t), z~ (t), w~' (t)) in W" (Ft) and V~ ~ (t) = (x~ (t), y~ (t), z~ (t), w~ (t)) in W s (Fr) 
of (4.3) are determined by the initial condition y~'s(o)  (0, "'" = y6 ,z0, wo); y0(t) = 
(xo(t) ,  y0(t), z0, w0) is the heteroclinic solution of  the unperturbed system with y0(0) = 

1 2 = (0, : ~"2a, z0, w0) where a 1 + c l z  g. There is an explicit expression for this solution: 

(x0(t), yo(t))  = (,¢/2b tanh(bt), 4'2b2(1 - tanh2(bt))), (5.3) 
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Fig. 5. A three-dimensional sketch of the four-dimensional phase space of the unper- 
turbed system. The two-dimensional slow manifolds Ft and Fr are represented by curves. 
The positions of the critical points of the perturbed system are also indicated. 
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1 /  

where b = ~ / 2 ( 1  + c,z~). As usual in Melnikov theory, we define the following time- 

dependent distance function: 

( ~(x~(t)-x~(t)) ) ( yo(t) ) 
A(t, Zo, wo) = ~(y~(t) y~(t)) A --xo(t) + x3(t) - ClXO(t)Z 2 ' 

where the wedge product represents the scalar cross-product in the plane. The distance 
between WU(Ft) and WS(Fr) in the {z = z0, w = w0}-plane is given by A(0, z0, w0). 
Similar to the derivation of the Melnikov function for periodically driven systems, one 
shows (see [27]) that for (4.3), 

A(O, zo, wo) d=ef A(ZO, wo) 

f _ ~ (  0 ) (  yo(t) ) 
= ~ --2clxo(t)Zo~(t) A --xo(t) + x3(t) -- clxo(t)z 2 dt, 

d ~z ~z ~'0~ = 0; thus ~z 0z ~t~ is a solution of  97 ~ = wo with ~ ,  , where ~ , ,  ~ = wot. The separation 
is then given by 

F A(z0, w0) = - 2 c t  wozo txo(t)yo(t) dt, (5.4) 
o o  

where (xo(t), yo(t)) is the heteroclinic solution of  the unperturbed system. Substituting 
this expression into (5.4) results in 

F A(Z0, tOO) = --4Cl wOZO b3 t tanh(bt)(l - tanh2(bt))dt.  (5.5) 

Since 

f ~  1 t tanh(bt)(1 - tanh2(bt)) dt - -  b 2 ,  



396 A. Doelman and V. Rottsch~ifer 

/ 

Fig. 6. The intersection of the two-dimensional man- 
ifolds W~'(F/) n {x = 0, y > 0} and WS(F~) n / x  = 
0, y > 0} forcl  < 0andc2 < 0. Parts of the one- 
dimensional curves W"(PI, Q/) N {x = 0, y > 0} C 
W"(FI) N {x = 0, y > 0} and W~(P~, Q~) n {x = 
0, y > 0} C WS(F~)n{x = 0, y > 0} are also shown. 

we obtain (in leading order) 

A(w0, z0) = -2Cl  w0z0v/2(l + qz~).  (5.6) 

This yields that W" (F t )N W s (F r )N  {x = 0, y > 0} is 0 ( 6 )  close to either the {w0 = 0}- 
plane or the {z0 = 0}-plane. See Figure 6 for a sketch of this intersection. Using the 
symmetries (4.4) one derives a similar expression for W'~(Ft) N W"(F~) n x  = 0, y < 0. 

So far, we have found a number of  trivial heteroclinic connections, such as those found 
in the invariant planes {x = y = 0} and {z = w = 0}. Note that the former pair between 
the points ( -  1,0, 0, 0) E FI and ( 1,0, 0, 0) 6 F~ corresponds to the zeros of (5.6) at z0 = 
w0 = 0 fo r  W"(FI)NW*(F~)N{x = 0} and W*(Ft)NW"(Fr)N{x = 0}. Two additional 
pairs of  heteroclinic orbits are found in Ft and F~. These orbits connect Pt to Qt, resp. 

F wherel im,_,  ,,co) ~t" (resp. . (o) (t), YQtPI I ,  , o c  g p t Q t [  ) Pr to Qr ; we denote these orbits as yp, Q, .C0) (t) 6 
: Y (0) . .  (0) Y~)e,(t)) Qt (resp. Pt), and analogously erQr(t), yQrer(t) 6 Fr- The flow on these 

orbits is, of course, everywhere 0(6).  

5.2. The Fundamental Heteroclinic Orbits 

Next, we will construct heteroclinic orbits between the points Pl,r, Ql,r which consist 
of  distinct slow and fast parts. Based on these orbits we will construct multijump orbits. 
We will do that by analysing the intersections of the stable and unstable manifolds of  
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these points with the {x = 0}-plane. These manifolds are subsets of WS,"(Fl, Fr). The 
'toffee'-like structure in l't formed by the unstable manifolds of Pt and Qt will be mapped 
by the flow on W"(PI) O W"(Qt)  to a topologically similar structure which is contained 
in W" (I"D A {x = 0} (moreover, the z- and w-coordinates are only 0(6)  modified by the 
fast field). Thus, by (5.6), there will be four intersection points with W'~(F,) ~ {x = 0} 
(two near z0 = 0 and two near w0 ---- 0). Note that all four intersections are transversal. 
These intersection points correspond to orbits which are biasymptotic to Ft and F,. By 
construction, they satisfy limt~_c~ ---- Pt or Qt. These orbits are all on the same energy 
level set as Pl and Qt. Thus, by the Hamiltonian structure of the flow, they can only 
be asymptotic to orbits on F, with that same energy: the stable and unstable manifolds 
of P, and Qr. This indicates that the four orbits are heteroclinic connections between 
P/, Ql and P,, Q,. A similar argument yields four connections which travel from F~ to 
Ft. However, we have to use the symmetries (4.4) of the system to get a more precise 
result: 

Theorem 1. For any s, c j, and c2 which satisfy 

l + C l S  > 0 ,  1 -CLC2 > 0, a n d s + c 2 > O ,  

eight heteroclinic orbits of  the following type exist (in (4.3)): 

( 1 } ¢ ~  ~ - ( I )  
y ~ ( t )  with lim,--,-oo YLR~'~ L,  ltmt--,oo VLR(t) = R 

and L --~ Pt, QI; R = P~, Qr. 

y ~ ( t )  with l imt~_~ y ~ ( t )  = R, l i m , , ~ y ~ ( t ) = L  

and L = Pt, Qt; R = Pr, Qr. 

(5.7) 

AII eight orbits consist of  three parts: two slow parts near either F I or F r and one 'jump' 
through the fast  field. 

Note that condition (5.7) just ascertains the existence of the critical points Pt,~, Qt,r in 
the case s + c2 > 0, Schematic sketches of all eight orbits are given in Figures 7, 8, 
and 9. 

(1) (I)  Proof First we prove the existence of Y~'I 0, (t). The existence of the three orbits Vet Q/(t), 
y~l)e(t), and y~l~,(t)• follows from the symmetries {x ~ - x ,  y --~ -y} ,  {z 
- z ,  w + -w} ,  and {t ~ - t ,  y ~ - y ,  w ~ - w } .  Second, we turn our attention 
to proving the existence of y~l)p, (t). The remaining three orbits follow from this one by 
using the symmetries. 

Let yp(t) = (xp(t), yp(t), Zp(t), Wp(t)) be a solution of (4.3) on W"(Pt)  which is 
exponentially close to F/between the points Pt and p = (Px, P,., Pz, P~) c W"(PI)  f~ 
W"(Qt)  f3 F/(thus, yp leaves F/ 0(5) near p). Note that W"(PI) A W'~(QI) N Ft is the 

above-defined 'trivial' heteroclinic orbit Y ~e~,. We denote by yp (0) the (first) intersection 
of yp with the {x = 0}-plane: yp(O) = (0, ye(0), Zp(0), wp(O)). Using the symmetries 
(4.4) we define the orbits yfl (t ) = ( - x p ( - t  ), y p ( - t  ), - Zp ( - t  ), Wp ( - t  ) ) and yp  (t ) = 
( - X p ( - t ) ,  y p ( - t ) ,  Zp( - t ) ,  - W p ( - t ) ) .  Note that lim,__,~ yfl(t) = Or, l imt+~ yp:(t) = 
Pr, and that y~(0) = (0, yp(O), -zp(O),  wp(0)), yp'(0) = (0, yp(0), zp(O), -wp(O)) .  
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( 1 )  ( I )  ( I )  ( 1 )  Fig. 7. A schematic sketch of the four one-jump orbits yp Q ~P Q YQ e~ and yQ p . 

• / r '  r ~ ~ . . r 

The slow parts are exponentially close to the heteroclinic cycles on Fir  (the thin hnes). 
The fast parts ' jump' through the full four-dimensional phase-space, 0(8) close to 
the {z = 0}-hyperplane. These orbits exist for every c2. 

Fig. 8. A schematic sketch of the four one-jump orbits Fp~prtt), Fprp~(t), • 

and y~)a, (t) for c2 > 0 which ' jump' 0(8) close to the {w = 0}-hyperplane. 
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Fig. 9. A schematic sketch of the four orbits Yp~pr (t), YprPt (t), yQ~O~ (t), and YQrQ~ (t) for 
c2 < 0 which 'jump' 0(8) close to the {w = 0}-hyperplanc. 

Thus, the symmetries of  (4.3) yield a heteroclinic solution between P/and Qr (resp. Pr) 
if we can choose p such that zp(O) = 0 (resp. wp(O) = 0), since then yp (resp. yp )  
coincides with yp at t = 0. 

The fast field between p and (0, yp (0), Zp (0), wp (0)) only has an O (8) influence on the 
slow (z, w)-coordinates Ofyp: zp(O) is 0(8) close to the z-coordinate Pz o f p  6 F/. Since 
Pz can be varied between the z-coordinates of  Pt and Qt (5.2), we see that there must be a 
Pz such that Ye* = Yp* is a heteroclinic solution between PI and Qr of the type described 
by the Theorem. By the symmetries {x ~ - x ,  y ~ - y } ,  {z --+ - z ,  w ~ - w } ,  and 
{t --, - t ,  y ~ - y ,  w ~ - w } ,  three distinct, symmetric counterparts of Ye* can be 

constructed. Thus, we have proved the existence of  the solutions YPt(l)Qr' YPr(t)Qt' YQt(1)Pr' and 
(1) YQrPt described in the Theorem (see Figure 7). 

One has to be more careful in constructing the other four orbits. First we have to 
construct a connection between Pl and Pr by determining a p such that yp(t) and yp( t )  
can be identified. Thus, we have to find a p ~ W u (PI) N W s (Qt) N FI such that Wp (0) = O. 
However, the w-coordinate of  p, wp does not change sign. Since the w-coordinates of 
Pt and Qt are 0 and wp(O) is 0(8) close to wp, we can only expect to find a heteroclinic 
connection between PI and Pr if we choose p O(6) close to Pt or Q/. It is possible to 
compute Wp (0) up to O (82) accuracy for these values of  p by the Poincar6 map P (4.10). 
We set k = 0 and (z, w) = the coordinates of  P / o r  Q/(5.2)  in (4.l), where we have 
to change the interval of  integration (-T~, Tr) into ( - o c ,  0). This way P measures the 
accumulated change in k, z, w on the one-dimensional (purely) strong unstable manifolds 
of Pt and Qi between F/and  {x = 0}. Note that all three integrals converge and that AK 
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and AKI are 0 + 0(32); the computation of AK2 yields 

VIi +_ ,/ , + (5.8) wp(O) = :k~/23c2 1 - -  C L C 2 ¥ 1  +SCI' 

where the + (resp. - )  sign corresponds to p = PI (resp. Qt). Note that c2 is the only 
parameter which has influence on the sign of wp(O). However, by (5.8), we observe 
that for all c2 -¢ 0, we(0) has to change sign (at least) once if p is varied from Pt to 
Qt. Moreover, if c2 = 0 we see that (~, tb) decouple from the (x, ~) in (4.3): There 
are exact (integrable) connections between the one-dimensional strong stable/unstable 
manifolds of  ,°I and P~ if z = the z- coordinate of  /'t in (5.2). Thus there exists a 
p c W"(Pt) N W'~(Qt) f3 Ft such that wp(O) = 0, and for this p: yp = y ; .  We 
conclude that there exists a heteroclinic orbit between Pt and P~ for all c2 such that 
(5.7) holds. As in the previous case, we can construct from this orbit, gp(1)p~ (t), three 

symmetrical counterparts, YPIP, (t), y('~Q,Q, (t), and y~')o,(t)by applying the symmetries 
{x ~ - x ,  y --+ - y } ,  {z ~ - z ,  w --+ - w } ,  and {t ~ - t ,  y ~ - y , z  --~ -z} .  This 
concludes the proof of  the Theorem (see Figures 8, 9). [] 

At this point we can compare the behaviour of the 'localised structures' in the nonlocal 
and in the singularly perturbed system. We ignore, just for the moment,  the fact that we 
derived the extra condition (1.7). Remember  that the heteroclinic orbits found in Sec- 
tion 3.1 do not satisfy the extra condition (I.7). First, we note that the solutions (l) YPIQ~' 
y ( l )  y ( l )  , t / (1)  , P,O,' Q, Pr and Qr,O which intersect {x = 0} at z = O, cannot have a counterpart in the 
nonlocal system, simply because the w-coordinates of  these solutions are O (l)  during 
the fast ' jump'  while all solutions of  the nonlocal system must correspond to w = ~ = 0. 
The other four solutions have a w-coordinate of 0 (8)  during the jump. Moreover, the 
jumps take place 0 (8)  near Pt and Pr (or Q / a n d  Qr) and it is easy to check that the 
jumps are O (8) close to the two pairs of nonlocal, integrable heteroclinic orbits found in 

(1) Section 3.1. Thus, it is natural to conclude that Ye, er (t), ?/el)e, (t), ?,,J,)Qr (t), and gJr)Q, (t) 
are the counterparts of  the nonlocal heteroclinic orbits. 

However, this conclusion can only be justified if the coupling coefficient, c2, in the 
B-equation, is positive. This follows from (5.8): The jump of the connection yp(t) takes 
place O(6) near Pt if cz > 0. Thus all four heteroclinic orbits are as in Figure 8: They 
are O (6) close to the purely fast connections of  the unperturbed or the nonlocal problem. 
The parts of  the orbits near Fj and Fr are only of an 0(8)  length. If c2 < 0 the connection 

(1) ye~pr(t) makes its jump 0(3)  near the unperturbed, fast connections between Qt and 
Qr. The solution follows W"(Pt) ~ W~(Q,) ¢q F, from P, almost (0 (3 ) )  up to Qt. The 
same happens in/near Fr (see Figure 9). Analogously, the unperturbed fast connections 
between Pt and Pr correspond to heteroclinic orbits from Q / t o  Qr of  the perturbed 
system. Moreover, the w-coordinate of these solutions becomes O (1) during their (long) 
stays near Ft and Ft. Note that this significant distinction between the cases c2 > 0, 
c2 < 0 also has its impact on the periodic orbits found in Section 3.1 : These solutions will 
have to merge with the heteroclinic cycles {gp(1)pr (t), yp(1)p~ (t)} and {y~l)Q (t), gQ[)Ot (t)} 

as z0 approaches -t-~/(c2 + s)/(1 - clc2), the z-coordinates of  PI.~, Qt,r (see (5.2)). For 
c2 < 0 the periodic orbits with z0 > 0 (resp. z0 < 0) will 'grow'  large, slow parts 
(exponentially) close to Ft and F~ which follow the cycle {g~t)Q (t), ~t)Q,(t)}, (resp. 
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{V~l)e~ (t), Y~l~, (t)})as z0 approaches x/(c2 + s)/(1 - c, c2) (see Figure 9). In a sense one 
can interpret this as a four-dimensional 'canard-like' behaviour (see [8]), since this O(1) 
change in the periodic orbits takes place for an exponentially small change in z0. Thus, 
a significant part of the structure of the solutions disappears in the transition from the 
nonlocal system to the singularly perturbed system if c2 < O. 

5.3. Multijump Heteroclinic Orbits 

In this subsection we will study the possible existence of 'multijump' heteroclinic orbits, 
that is, heteroclinic solutions connecting two of the critical points PI.r, Qt.r by various 
jumps through the fast field alternated with slow parts near Ft, Ft. These solutions cannot 
have a counterpart in the nonlocal limit. We will find that they can only exist for c2 < 0. 
First we focus on orbits which only make jumps from Fi to Fr, or vice versa, without 
following the periodic flow of the fast field for more than half a circuit. Later, we will 
construct orbits from F~ (or Fr) to itself which make one complete circuit through the 
fast field. 

Before we formulate the Theorem on the existence of multijump orbits of the first 
type we give a construction of one of the most simple multi-=2-jump heteroclinic orbits 
in the case c2 < 0 and show that this construction cannot work if c2 > O. 

We consider the part of the two-dimensional unstable manifold W" (PD on which the 
orbits approach Pt (as t ~ - o c )  'from the right' tangential to the trivial heteroclinic orbit 
y¢o) Thus, as in the definition of W" (Ft), we only consider those parts of W .... p,Q,. ( PI,,.Qt.,- ) 
which merge with the family of heteroclinic connections in the limit 6 ~, O. For simplicity 
we also denote this subset of WU(FD by W"(PD. In the sequel we will use similar 
restrictions on the 'full' manifolds W""~(Pt.r, Qt,,-), also without adapting the notation. 

(1) t By the above Theorem we know that W"(PD intersects WS(pr): This is the orbit Vp, p~ ( ) 
which has, if c2 < 0 (resp. c2 > 0), (z, w)-coordinates 0(3) close to those of Qt (resp. 
Pt) during its jump through the fast field. 

First we consider the case c2 < 0. Let £1 C W" (/'1) N {x = 0} be a (one-dimensional) 
neighbourhood of V~IP~ N {x = 0}; £1 intersects W~(Pr) transversally (by (5.6)). Define 
for q ~/21 the orbit through q by )/q(t) G W u (PD. Thus when q0 = £ 1  n W s (Pr), ~/q0 = 

y{l)p, pr. The orbit yq will follow yqo along Fr for an O (1) distance, if q is exponentially 
close to q0- Such an orbit yq will leave the neighbourhood of Fr exponentially close to 
W"(QD since y q9 c W~(Pr)andW~(Qr)NFr = W'~(P~)OF~ (see Figure 9). We take El 
of exponentially short length; £1 is divided into two distinct parts by WS(F~) N {x = 0} 
with q0 = Yp(1)pr n {x = 0} as separatrix. Therefore, the two-dimensional manifold U(£1 ) 
of orbits yq through £1 is separated into two pans, an 'inner' and an 'outer' part, by the 
three-dimensional stable manifold Ws(F~) of Fr before it approaches F~. Orbits yq(t) 
on the outer part of .T'(£1) will again leave the neighbourhood of Fr in the direction 
opposite to F/(their x-coordinates increase): They cannot return to either Fi or Fr and 
become unbounded. Orbits on the inner part of U(£1) will follow W ~ (F~)--where we 
use the restricted definition (see above)--and return to the {x = 0}-hyperplane. The 
flow near l"r twists U ( £ j )  such that the inner part leaves the neighbourhood of Fr as a 
'sheet' exponentially close to W~(Qr). We refer to [14] and especially [15] (since this 
paper applies to system (l.5) for a general treatment of the deformation of manifolds 
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near slow manifolds; see also [1]). Thus, the intersection 5r(£1) n {x = 0}, after the 
(first) passage through a neighbourhood of  Fr, consists of a curve exponentially close 
to the curve W"(Qr) N {x = 0} C W"(Fr)  N [ x  = 0}. By Theorem 1 we know that 
WU(Qr) n {x = 0} intersects the two-dimensional manifold WS(F/) n {x = 0} twice 
transversally (the orbit (I) YQrP, near {z 0} [Figure 7] and the orbit (l) {w 0} ~ YQrQt near = 

(1) [Figure 9]). Now we note that the orbit Yqo = YP~Pr already 'touches down' on Fr (or 
better: approaches F~ exponentially close) O (3) close to Qr. Thus, Yq0 is exponentially 

close to y(l)Q~p, and YQrQtO) for certain parts of O (1) length of these orbits (near Fr). As a 
consequence, we know that the curve 5r(£~ ) n {x = 0} must be extended along the entire 
length of  W"(QD n {x = 0} (except for an 0(3)  part), and that it thus has to intersect 

(1) ( ] )  W~(FD n {x = 0} twice, exponentially close to VQrP, and YQr Q," This yields that there 
are two orbits on .7-(£~) which are asymptotic to Ft. We again apply the argument that 
system (4.3) has a Hamiltonian structure, so that the 'energy' H is conserved on orbits: 
-7-(£1) can only intersect W'(FD along W'~(Pt) or WS(Qt). 

So we conclude that there exist two two-jump orbits, which consist of five parts: a 
slow part near Fz, a fast jump, a slow part near Fr, a second jump, and a third slow part 
near F/: the heteroclinic orbit yp(ZJ) and the homoclinic orbit y~2~ol ). By the symmetries 
(4.4) we can create a family of eight distinct two-jump homoclinic orbits and four two- 
jump heteroclinic orbits. Note that there thus exist, for instance, two different homoclinic 

(2,1) (2,2) 
two-jump orbits to Pt, ~'e,e, and },'pip, , related to each other by the symmetry {y --> 
- y ,  t ---> - t ,  w ---> - w }  (see below). 

Before we extend the above argument to 3, 4 . . . .  -jump heteroclinic and homoclinic 
orbits we consider the case c2 > 0. The above construction is impossible in this case. 
The construction is based on the orbit y(pl)p. This orbit exists also for c2 > 0, but now, as 
we already noted above, this orbit only has parts of O (3) length near the slow manifolds 
(Figure 8). Thus, the intersection of .7"(/21) with {x = 0} (after passing Fr) is also 
only of 0(3)  length and cannot intersect W'(F/ )  n {x = 0}: "-%"(•1) n W s ( F I )  = {~. 
Of course one could try to construct two-jump orbits based on one of the one-jump 
orbits which jump near {z = 0} after following a trivial heteroclinic orbit on F/ for 

(~) (this is no restriction, due half its length (Figure 7). Let's for instance consider yp, Q~ 

_ O) has to the symmetries (4.4)). It is only possible to construct a two-jump orbit if Ye~Qr 
parts exponentially close to one of  the two one-jump connections which depart from Pr 

(1) (since Wu(P~) n Fr = W'~(Qr) n Fr). It is clear that YPr Q~ is the only possible candidate 

(see Figure 7). More precisely, a two-jump combining (1) and - (l) YP, Qr ypr O~ is possible if the 

' touch-down' point of y(pl)Qr on Fr has a z-coordinate which is larger than the z-coordinate 

(~) . Note that these two orbits are related to each other by of the 'take-off'  point of  yp~ Q~ 
the symmetry {x --+ - x ,  y --~ -y} .  Since the w-coordinate of  both orbits is (strictly) 
negative during the jump through the fast field we find by (4.3) that the z-coordinate of  
both orbits decreases monotonically. Thus, the touch-down point is 'below' the take-off 
point: There cannot be a two-jump orbit if c2 > 0. However, in Theorem 3 we shall 
show, using a different argument, that there exists a solution connecting Pt and Qt with 
two slow parts near Ft and no slow parts near Fr: It makes a complete circuit through 
the fast field and does not touch down o n  F r .  

A priori one would assume that the one-jump orbits which jump near the {z = 0}- 
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plane can be used to construct other, new two-jump orbits in the case c2 < 0. By the 
above arguments it is possible to construct a two-jump orbit which is exponentially close 

(1) (I) to ypiQ, until it takes off from F~ to follow the one-jump orbit yp~p. However, the thus 

constructed two-jump homoclinic solution to PI is the symmetric counterpart yp(2~) of  

the above-constructed orbit yp(2),l ) under the symmetry {y --~ - y ,  t --~ - t ,  w --~ - w } .  
We can now formulate the Theorem on N-jump orbits: 

Theo rem 2. Assume that c2 < 0 and s and cl are such that (5.7) holds. Then, for any 
N > 2, there are JV'(N) distinct N-jump heteroclinic or homoclinic orbits y(sU'k)(t) 
between the critical points S, T ~ {Pt, P~, Qt, Qr}; k denotes the fact that there can 
be more than one orbit between S and T. The number JV'(N) satisfies the recurrence 
relation 

J V ' ( N ) = A f ( N - 1 ) + J V ' ( N - 2 )  with J V ' ( I ) = 8 ,  A f ( 2 ) =  12. (5.9) 

These orbits consist of N + 1 slow passages near F/.~ alternated by N jumps through the 
fast field and are all exponentially close to the 'skeleton' spanned by the fundamental 
one-jump solutions constructed in Theorem 1. 

Proof The three-jump orbits are based on the two-jump orbits, just as the two-jump 
orbits are based on the one-jump orbits. We will start by constructing the orbits y(p3S)(t) 
and ~,'(3' I) (t)" P, Pr , the other three-jump orbits can be found by the symmetries (4.4). We 

consider, for instance, the heteroclinic orbit Ye~Ql(e'J)"'tt)" Let £2 be an exponentially small, 
(2,1)... one-dimensional neighbourhood of ~/p,Q, tt) fq {x = 0} in f ( E l )  N {x = 0}, after 

the first passage of U ( E I )  of Fr (where .7"(El) is defined above); £2 will play a role 
similar to 121 in the above construction of the two-jump orbits. We define .T'(£2) C 
.T'(El) as the manifold of  orbits through E2; 5r(£2) is separated into two parts by 

. ( 2 , 1 ) . / . - ,  WS(FD with yp, Q~ t~) as separatrix. Thus, .T'(£2) is split and twisted by the slow flow 
near Fz: It becomes a sheet exponentially close to W"(Pt) when it again leaves the 
neighbourhood of Ft. The intersection .T'(£2) A {x = 0} after the passage of FI consists 
of a curve exponentially close to the first intersection of Wu(PD with {x = 0} and of 
the same length as W"(Pt) N {x = 0} (up to O(~t)-terms). Therefore, f ( £ 2 )  N {X = 0} 

intersects W '~ (I ' r)  N {X = 0} tWO times transversally: an intersection exponentially close 
(1) to g(el)Qr(t) N {x = 0} and another exponentially close to yp, er(t) A {x = 0}. By the 

Hamiltonian character of  the flow we know that these intersections must correspond to 
the three-jump orbits y(3~J)(t) and y(3.1)(t) 

P I P r  " 

It is clear that this construction can be repeated for all N: Based on ye(~b~ ) (t) we define 

£3 C .T'(£2) (q {x = 0}, exponentially close to the third intersection of y(e3~ol)(t) with 
{x = 0}. The manifold .~-(E3) gets twisted and separated near Fr so that it intersects 
Ws(FD A {x = 0}, after its passage of F~, two times: the four-jump orbits ×e(~;ol)(t) and 

F(4'l)'t~ i 1 2. p~Q~ ~, ) ,  = , 

Note that the number A/'(N) of  N- jump orbits increases quite rapidly with N. Let 's 
construct iV'(2) from A/'(I) = 8 (Theorem 1). If ?,(l) jumps through the fast field near 
{w = 0} then we have shown above that one can construct two two-jump orbits based 
on this one: one which makes its second jump near {z = 0} and one which makes its 
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second jump again near {w = 0}. If },(l) jumps near {z = 0}, then there only exists one 
two-jump orbit based on this ),(1), which makes its second jump near {w = 0}. Thus, 
the four one-jump orbits near {w = 0} lead to eight two-jump orbits; four of  them make 
their last jump near {w = 0}, the other four make their last jump near {z = 0}. The 
four one-jump orbits near {z = 0} lead to four two-jump orbits with a second jump near 
{w = 0}. Thus, as we already found by the symmetries (4.4), A/'(2) = 12, since all these 
orbits are distinct, by construction. 

This method of counting can be used for every transition from N to N + 1. Define 
W(N), resp. Z(N), the number of  N-jump orbits of W, resp. Z ,  type (by definition) 
which make their final jump through the fast field near {w = 0}, resp. {z = 0}. By 
the above construction, every W-orbit  yields one W-type orbit and one Z- type  orbit; a 
Z-orbi t  yields a W-orbit; thus, 

W ( N  + 1) = W ( N )  + Z(N), 
Z(N + 1) W ( N ) .  

Since A/'(N) = W(N) + Z(N) we recover (5.9). Note that .N'(N) = 4pN+2 , where PN 
is the N-th Fibonacci number. Thus N ( N )  ~ ½ (1 + 4'5)A/'(N - 1) for large N. [] 

Note that the closure of the set of intersections of all N- jump orbits with {x ---- 0} 
is a Cantor set of  exponentionally small dimension. This can be seen as follows. We 

(1) take the intersection point I (I) of  the orbit yp, pr(t) and {x --- 0} as the base for the 

construction of a part of  this Cantor set; I (~) is the (transversal) intersection of the curves 
W"(Pt) A {x = 0} and Ws(Pr) A {x = 0} in the three-dimensional space {x = 0} (see 
Figure 6). By the construction of the orbits ye, e,(t)c2) and  yp~a,(t)(2) (Theorem 2) we know 

that there exist two points 1 (2) 1.2 ~ W"(PD N {x = 0}, exponentially close to i(1) These 
(2) points are the first intersections of  y (e2)e, (t) and yp, a~ (t) with {x = 0}. Analogously, there 

! (2) are two points -3,4 E WS(pr) ("1 {x = 0} exponentially close to I (l), corresponding to 
(2) the second intersections of y~y~r(t ) and y G ~ ( t )  with {x = 0}. These four new points 

again are 'surrounded' by intersection points 1~ 3) of three-jump orbits. The construction 

of these new points is identical to the construction of the #2) points from the point 

i~1). Note that the ratio of  the distance between (for i n s t a n c e )  1~2) and the new points 

a r o u n d  i~2), and the distance between l(l) and  i~2) is exponentially small. Thus we can 

proceed by constructing the points i~4), 1/(5), etc. Note that at any step one has to 'zoom 
in' exponentially 'deep'  to obtain the next level. The closure of this infinite collection 
of points {I)N)}N=I,...,~;j=L....jN (where clearly ju ~ ~X~ as N ~ cx~) forms a Cantor 
set of  exponentially small (but positive) dimension. Such a set exists near any of the 
eight base points formed by the intersections of  one of  the fundamental one-jump orbits 
(Theorem 1) and {x = 0}. The union of these eight sets again forms a Cantor set. 

There are of course more points in this (uncountable) set than the N-jump heteroclinic/ 
homoclinic orbits. One can, for instance, construct many types of  different periodic orbits 
between F /and  Fr ,  which consist of  alternating slow and fast parts. Thus, these periodic 
orbits differ significantly from those found in Section 4.1. None of them can have a 
counterpart which can be described by the nonlocal system. Note that these periodic 
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orbits correspond to limit points of the above-described Cantor set in the {x = 0}- 
hyperplane. One of the simplest periodic orbits of this type consists of four parts: a slow 

.(1) 
(u , a fast part near the fast jump of ~'e,e~, part exponentially close to Ft and to y~el)e~ f~ yQ, Q, 

a slow part near F~ and )/(J) (u (see Figure 9). e~e, AV~l~)Q,, and the sec°nd fast jump near yQ, Q, 
So far we have studied orbits which only make jumps directly from I"t to F,, or vice 

versa. Now we want to construct orbits which make one complete circuit through the 
fast field. Here we focus, for simplicity, on constructing a heteroclinic orbit from P/to 
Q/which has two slow parts both near Fz alternated by one 'double' jump which makes 
a complete circuit through the fast field. This orbit only can be constructed for cj < 0, 
where the sign of c2 is arbitrary. For cl > 0 the above orbit generally does not exist. Using 
the symmetries (4.4) in system (4.3), one can obtain from this orbit other heteroclinic 
orbits which have two slow parts near Ft or Fr connected by a fast 'double' jump. The 
idea of the proof of the following theorem is based on the methods developed in [6]. 

Theorem 3. Assume that c l < 0 and s and c2 are such that (5.7) holds. Then, there exist 
four  heteroclinic orbits ~d) ca) FptQ, (t), FOtpl(t ), Fp(d~ (t), and F~a)e~ (t). These orbits consist o f  
two slow parts which are both near FI (or Fr), alternated by a complete circuit (or a 
'double ' jump) through the fastfield. 

~a) "t'" the other three orbits can be found by applying the Proof We only construct yp, Qt {, ), 
symmetries (4.4). Let/24 C w u ( e l )  (7 {x = 0} be a (one-dimensional) neighbourhood 

.(D 
of  YPIar ('~ {X = 0}; /24 intersects W~(Qr) transversally. Define for p 6 £4 the orbit 

¢~ (t) through p by ye(t) 6 Wu(PI). Thus for Po = /24 r7 W~(Qr), ypo(t) = YPtOr . If we 
take Pt c /24 exponentially close to Po, the orbit will follow ypo along P~ for an O( l )  
distance. Such an orbit yp. will leave the neighbourhood of F~ exponentially close to 
WU(Qr) and will still be exponentially close to WU(Qr) at its next intersection with 
the hyperplane {x = 0}; we denote this intersection point by q~. At this intersection, 
it will be 'outside' Ws(F/). Here, an orbit is said to be outside WS(Ft) when, after the 
passage near Fl, it leaves the neighbourhood of F¢ in the direction opposite to Fr (its 
x-coordinate decreases): It cannot return to Ft or Fr and becomes unbounded. On the 
other hand an orbit is inside WS(Ft) when it does return to the {x = 0}-hyperplane. 
In other words, an 'inside' orbit leaves the neighbourhood of Ft near the structure of 
heteroclinic connections between Ft and F~ which exist in the limit 3,1, 0. The fact that 
an orbit is 'outside' or 'inside' is determined by (5.6) and thus by the sign of cs. Now 
we take P2 c / 2 4  at an O(1) distance from P0, where the z-coordinate of p2, p~ is larger 
than the z-coordinate of P0. Here we also make sure that p~ is not at O(3) distance from 
the z-coordinate of Pt. This assures that the next intersection of Yp2 with {x = 0} is 
inside W s (F/); this intersection point is denoted by q2. Note that Ym (t) only approaches 

Fr O(4"~)-close. We denote the two-dimensional manifold of orbits yp through/24 by 
.7:'(£4). From the above it follows that the next intersection of 5t(/24) with the hyperplane 
{x = 0} contains a curve connecting ql and q2. Since ql is outside W~(Ft) and q2 is 
inside W~(Ft), there exists a p* c /~4 SO that the orbit through p* intersects WS(Fi). 
Due to the Hamiltonian structure of the flow we know that p* must be on W~(Qt). Thus 

(d) we constructed a heteroclinic cycle yp, = YP, Q, with two slow parts near FI and one 

fast complete circuit. From the fact that the point ye~l)e~ N {x --- 0} is not in the interval 
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[Pz, pc] C £4, we see that, for c2 < O, the above orbit is not the one we constructed in 
(2 )  . .  ( d )  

Theorem 2, gPtal" lIP, Q, does not come closer to F~ than O(v/~). [] 

We can show by analogous analysis that such an orbit as constructed above is generally 
not found for ci < 0. Again let P0 = Y~,Qr f3 {x = 0}. Then the orbit through a point 
on W"(PI) fq {x = 0} which is exponentially close to P0 is at its next intersection with 
the {x = 0}-hyperplane exponentially close to W" (Qr) and is inside W ¢ (['l). However, 
the orbit through a point which is at O(1) distance from P0 (and with a z-coordinate 
which now has to be chosen smaller than p(~) is at its next intersection with {x = 0} also 
inside W '~ (Ft). Thus, the line between these points does, in general, not intersect W ~ (Ft) 
(compare to the 'inside' and 'outside' cases defined in [6]). This implies that such an 
orbit as constructed in the above theorem generally does not exist for c~ > 0. 

Remark 5.1. In all the above theorems we assumed that s + c2 > 0. However, for 
s + c2 < 0 similar statements hold. Recall that in this case the integrable flow o n  Fl,r 
has a 'figure 8' structure: There are two homoclinic orbits to the points (:t:1,0, 0, 0) on 
FI.r (Figure 4). The points Pt.r, QI.r have become centre points (on Fi.r). Analogous to 
Theorem 1 one can prove that there exist eight heteroclinic orbits between the critical 
points (+  1,0, 0, 0) ~ Ft,~ which consist of two slow parts near Ft and F~, alternated by 
one fast jump. There also exist N-jump homoclinic orbits, independent of  the signs of  
the coefficients. However, the number of N-jumps is not the same as before. There are 
two two-jump orbits and, for every N ___ 3, there exists only one N-jump orbit. Thus 
choosing s -t-c2 < 0 reduces the number of  heteroclinic and homoclinic orbits drastically, 
although the general behaviour remains the same. 

6. Discussion 

In this paper we derived and studied two different types of  modulation equations which 
describe the same physical phenomena. Pattern formation in a reflection-symmetric 
system which is subject to two interacting destabilising mechanisms is described by 
two nonlinearly coupled Ginzburg-Landau equations (1.4). If  the natural spatial scales 
associated to those mechanisms differ significantly (see Figure 1 ) one can either describe 
the behaviour near criticality by a singularly perturbed modulation equation ( 1.5), or one 
can apply a so-called Landau reduction and derive a nonlocaI modulation equation (I .6); 
see also Metzener and Proctor [22] for the application of this idea. As a necessary 
consequence of  the derivation process we showed that there is an extra, again nonlocal, 
solvability condition in the nonlocal case (1.7). 

Our main goal has been to compare the set of  solutions described by the singularly 
perturbed equation to that of  the nonlocal system. We restricted ourselves to the sta- 
tionary solutions. Note that it is natural to expect stationary patterns in systems with a 
reflection symmetry, such as convection experiments. For instance, consider the theoret- 
ical and analytical study of double-layer convection by Rasenat et al. [25]: Under certain 
conditions these experiments can be described by the equations studied in this paper (see 
for instance the neutral curve in Figure 6 in [25]); the experiments performed for this 
paper exhibit stationary patterns (although the patterns can certainly be nonstationary). 

Of course it could be expected that the singularly perturbed equation has a richer 
set of  solutions than the nonlocal reduction. However, in Section 3 we have shown that 
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the nonlocal system, combined with the extra condition (1.7), cannot describe any other 
patterns than purely (spatially) periodic, or quasi-periodic with only two independent 
frequencies. These patterns are also described by the singularly perturbed system, but 
this system also governs a very complicated set of 'localised' patterns, corresponding 
to heteroclinic and homoclinic solutions. These types of patterns are important in the 
dynamics of the uncoupled Ginzburg-Landau equation (see for instance [28]). 

The large families of 'multijump' and 'complete circuit' orbits found in Section 5 only 
make up a small part of the entire set of possible solutions which have an alternating slow- 
fast structure. The heteroclinic and homoclinic orbits found in Section 5 correspond to 
only a very small subset of the Cantor sets formed by the intersections W u," (Pi ,r ,  Ql,r) 1"3 

{x = 0}, which we only briefly discussed in that section. Moreover, we did not pay any 
attention to connections between the slow manifolds Ft and 1-' r which are not on the 
'energy'-level of the critical points P/.r, Ql.r. By the methods developed in this paper 
it is also possible to show the existence of orbits which connect, through the fast field, 
corresponding periodic orbits on FI and F r .  Furthermore, the essence of the analysis also 
works for other values of the f2i-integrals (see Section 4) than ~2~ ---- ~2 = 0. 

This is another aspect of the paper: We have shown that the singularly perturbed 
Hamiltonian system (1.8) has a very intricately structured phase-space. Moreover, we 
have been able to unravel much of the structure of this phase-space using in essence 
topological, or geometrical, methods. These methods are based on the ideas described 
for instance in [11], [1], and [6]. 

Thus, the geometrical methods have enabled us to show that the reduction of the 
singularly perturbed system to the nonlocal system destroys a very large set of 'iocalised' 
patterns. 

Finally we make just one short remark about the stability of patterns as described by 
the modulation equations, (1.5) and (1.6). We did not pay any attention to that aspect 
in this paper. There is much literature on this. We refer to Matkovsky and Volpert [20] 
where the stability of purely periodic patterns to systems like (1.4), and thus (1.5), has 
been studied. The same ideas can be used to study corresponding solutions to (1.6). We 
have not done this in this paper because the analysis is rather straightforward, while 
the results depend in a complicated manner on the values of the coefficients in the 
equations. The stability of the quasi-periodic and 'localised' patterns is a much more 
complicated issue. Only recently has the instability of stationary quasi-periodic patterns 
to the uncoupled real Ginzburg-Landau equation been proved in [5]. Note that the quasi- 
periodic solutions found in this paper correspond directly to the quasi-periodic solutions 
studied in [5]. There are many stability/instability results on 'localised' patterns in an 
uncoupled Ginzburg-Landau equation. These results only exist for patterns which are 
much less complicated than most of the ones constructed in this paper. Here, we only 
refer to [28] and the recent paper [16], in which the approach is also geometrical, and 
the references given there. 
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