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CD8+ T cell-mediated recognition of peptide-major histo-
compatibility complex class I (pMHCI) molecules involves
cooperative binding of the T cell receptor (TCR), which confers
antigen specificity, and the CD8 coreceptor, which stabilizes
the TCR/pMHCI complex. Earlier work has shown that the
sensitivity of antigen recognition can be regulated in vitro by
altering the strength of the pMHCI/CD8 interaction. Here, we
characterized two CD8 variants with moderately enhanced af-
finities for pMHCI, aiming to boost antigen sensitivity without
inducing non-specific activation. Expression of these CD8
variants in model systems preferentially enhanced pMHCI
antigen recognition in the context of low-affinity TCRs. A
similar effect was observed using primary CD4+ T cells trans-
duced with cancer-targeting TCRs. The introduction of high-
affinity CD8 variants also enhanced the functional sensitivity of
primary CD8+ T cells expressing cancer-targeting TCRs, but
comparable results were obtained using exogenous wild-type
CD8. Specificity was retained in every case, with no evidence of
reactivity in the absence of cognate antigen. Collectively, these
findings highlight a generically applicable mechanism to
enhance the sensitivity of low-affinity pMHCI antigen recog-
nition, which could augment the therapeutic efficacy of clini-
cally relevant TCRs.

CD8+ T cells recognize peptide fragments bound to surface-
expressed major histocompatibility complex class I (MHCI)
molecules via somatically rearranged T cell receptors (TCRs).
This process of antigen recognition triggers an array of effector
functions, including direct cytotoxicity, which act synergisti-
cally to eliminate infected or transformed cells from the body.
Autoreactive or cancer-targeting TCRs typically display low to
moderate affinities for cognate pMHCI, whereas pathogen-
specific TCRs typically display high affinities for cognate
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pMHCI (1, 2). CD8 acts as a coreceptor that can substantially
enhance the sensitivity of antigen recognition in the context of
low-affinity TCR/pMHCI interactions, whereas high-affinity
TCR interactions are often sufficient to elicit activation
without contribution from CD8 (3, 4).

CD8 is a glycoprotein that exists as a homodimer (CD8αα)
or a heterodimer (CD8αβ). CD8+ T cells predominantly ex-
press CD8αβ, which is a more effective coreceptor than
CD8αα (5–7). CD8αβ binds to a largely invariant region of the
pMHCI complex at a site distinct from the TCR and stabilizes
the TCR/pMHCI interaction (8, 9). The pMHCI/CD8 inter-
action is characterized by low solution binding affinities (mean
KD = 145 μM for CD8αα) (10), enabling antigen specificity to
be conferred by the TCR and tuned by CD8 (11). This latter
function is mediated distinctly by CD8α, which interacts with
p56lck to facilitate antigen-driven signal transduction directly
(12, 13), and CD8β, which contains palmitoylation sites that
promote colocalization of the TCR complex with kinase-rich
areas of the cell membrane to facilitate antigen-driven signal
transduction indirectly (7, 14).

The biological role of CD8 has been investigated extensively
using panels of MHCI mutations that alter the strength of the
pMHCI/CD8 interaction (11, 12, 15–17). These studies clearly
showed that decreasing the affinity of the pMHCI/CD8
interaction impaired antigen sensitivity (11, 12) and that
increasing the affinity of the pMHCI/CD8 interaction
enhanced antigen sensitivity (15). Affinity increases beyond a
certain threshold nonetheless resulted in non-specific antigen
recognition (16, 17). These observations led to the concept of a
pMHCI/CD8 therapeutic affinity window (17). Accordingly, it
was predicted that engineered CD8 variants with supra-
physiological affinities for the pMHCI complex below the
threshold for non-specific activation, nominally �KD >27 μM,
would enhance the sensitivity of antigen recognition via low-
affinity TCRs. In the present study, we tested this notion
experimentally using model systems and further investigated
the translational feasibility of such an approach using primary
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EDITORS’ PICK: High-affinity CD8 enhances pMHCI antigen sensitivity
human CD4+ and CD8+ T cells transduced with clinically
relevant cancer-targeting TCRs.
Results

Design of high-affinity CD8 variants

To predict candidate mutations that might enhance the
strength of the pMHCI/CD8 interaction without exceeding the
affinity threshold for non-specific activation, we focused on
previously defined interaction points between the human
leukocyte antigen (HLA) heavy chain α3 domain (Asp223–
Asp227) and CD8α (Ser53) at the binding interface between
HLA-A*0201 (HLA-A2) and CD8αα (18) (Fig. 1A). The crystal
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structure of murine CD8αβ in complex with H-2Dd suggests
that the CD8α1 chain in the homodimer is replaced with the
CD8β chain in the heterodimer (19), which makes only Ser53
in the human CD8α2 chain relevant to the interaction with
HLAα3. Alongside visual inspection of the interface using
PyMOL software, the BUDE Alanine Scan (BAlaS) web tool
was used to direct the mutagenesis strategy (20, 21). Using this
approach as a guide, we replaced Ser53 (counting positionally
from the first amino acid after the CD8 leader sequence) with
amino acids bearing polar side-chains of increasing size,
namely threonine (S53T), asparagine (S53N), and glutamine
(S53Q), thereby progressively reducing the interaction dis-
tance between the corresponding side-chains and the
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HLA-A2α3 domain residue Asp227. In addition, we replaced
Ser53 with glycine (S53G), an amino acid with the simplest
side-chain, with the intention of abolishing the site-specific
interaction between CD8α and the HLA-A2α3 domain res-
idue Asp227 (Fig. 1A).

Functional and biophysical analysis of CD8 variants

To determine if any of the CD8 variants described above
improved antigen sensitivity, we introduced CD8αβ containing
either wild-type or mutated forms (S53G, S53T, S53N, or
S53Q) of the CD8α chain into Jurkat cells alongside an HLA-
A2-restricted TCR specific for the RLARLALVL epitope (RLA
TCR) derived from the cancer-associated antigen 5T4 (resi-
dues 18–25). RLA TCR+ CD8αβ+ Jurkat cells were purified via
fluorescence-activated cell sorting (FACS) to express compa-
rable levels of TCR and CD8β (Fig. 1B). It was notable in this
context that the S53Q variant impacted the intensity of
staining with antibodies directed against CD8α (clone RPA-
T8) (Fig. S1A) and that the S53Q and S53T variants
impacted the intensity of staining with antibodies directed
against CD8αβ (clone 2ST8.5H7) (Fig. S1B). The activation of
RLA TCR+ CD8αβ+ Jurkat cells in response to C1R HLA-A2
cells pulsed with serial dilutions of the cognate peptide was
then assessed by measuring the upregulation of CD69,
expressing functional sensitivity as the decimal cologarithm of
the half-maximal efficacy concentration (pEC50). In direct
comparisons with wild-type CD8, incorporation of the S53N
variant improved the antigen sensitivity of RLA TCR+ CD8αβ+

Jurkat cells by almost an order of magnitude, and counterin-
tuitively, a similar effect was observed with S53G (Fig. 1C).

To probe the mechanistic basis of these observations, we used
surface plasmon resonance to measure the binding affinities of
the CD8αα variants S53G and S53N for HLA-A2 refolded
around three different clinically relevant peptide epitopes,
namely preferentially expressed antigen of melanoma
(PRAME)425–433 SLLQHLIGL (SLL), PRAME100–108 VLDGL
DVLL (VLD), and Wilms’ tumor protein 1 (WT1)126–134
RMFPNAPYL (RMF). In line with the functional data, the
CD8αα variants bound SLL/HLA-A2 with higher equilibrium
affinities (S53G, KD = 80.3 μM; S53N, KD = 34.5 μM) than wild-
type CD8αα (KD = 100.5 μM) (Table 1, Fig. 1, D–F). Similar
results were obtained with VLD/HLA-A2 (Table 1, Fig. S1C),
and despite a lower overall affinity range, similar patterns were
observed with RMF/HLA-A2 (Table 1, Fig. S1D).

High-affinity CD8 variants enhance the sensitivity of antigen
recognition via low-affinity TCRs

Mathematical modeling predicts that the scope for
enhancement by the CD8 coreceptor varies widely across
Table 1
Surface plasmon resonance affinity measurements for wild-type (WT) CD
VLD/HLA-A*0201, and RMF/HLA-A*0201

CD8αα HLA-A*0201 SLLQHLIGL HLA-A*0201 VL

CD8αα WT KD = 100.5 μM KD = 99.2 μM
CD8αα S53G KD = 80.3 μM KD = 77.6 μM
CD8αα S53N KD = 34.5 μM KD = 34.0 μM
different ligands due to non-linear relationships between ki-
netic parameters and functional sensitivity, such that near-
optimal antigen recognition in the absence of CD8 is only
minimally augmented or even diminished by the pMHCI/
CD8 interaction (22–24). The high-affinity CD8 variants
S53G and S53N would therefore be expected to enhance the
process of antigen recognition preferentially in the context of
low-affinity TCRs. We tested this idea initially using an HLA-
A2-restricted TCR specific for the heteroclitic ELAGIGILTV
epitope (MEL5 TCR) derived from the melanoma-associated
antigen Melan-A/MART-1 (residues 27–35). The equilibrium
binding affinities of the MEL5 TCR for the cognate epitope
(ELA, KD = 17 μM) and various altered peptide ligands
(APLs), including ELTGIGILTV (3T, KD = 82 μM) and
FATGIGIITV (FAT, KD = 3 μM), were reported previously
(25, 26).

For the purposes of this study, we sequentially transduced
the TCRβ chain-deficient JRT3-T3.5 cell line with the MEL5
TCR and CD8αβ containing either wild-type or mutated forms
(S53G or S53N) of the CD8α chain and purified MEL5 TCR+

CD8αβ+ JRT3-T3.5 cells via FACS to express comparable
levels of TCR and CD8β (Fig. S1, E–H). It was again notable
that the S53N variant impacted the intensity of staining with
antibodies directed against CD8αβ (clone 2ST8.5H7)
(Fig. S1G), akin to S53Q and S53T. The activation of MEL5
TCR+ CD8αβ+ JRT3-T3.5 cells in response to C1R HLA-A2
cells pulsed with serial dilutions of the 3T, ELA, or FAT pep-
tides was then assessed by measuring the upregulation of
CD69. In direct comparisons with wild-type CD8, incorpora-
tion of the S53G or S53N variants improved the antigen
sensitivity ofMEL5 TCR+ CD8αβ+ JRT3-T3.5 cells for the low-
affinity ligand 3T and the intermediate-affinity ligand ELA but
not for the high-affinity ligand FAT (Fig. 2, A–G). These
findings aligned with the data obtained using the RLA TCR,
which exhibited a relatively low equilibrium binding affinity for
RLA/HLA-A2 (KD = 45 μM) (Fig. S2, A and B).
High-affinity CD8 variants enhance the functional recognition
of cancer cells via clinically relevant TCRs

To probe the biological relevance of these findings in the
context of physiological antigen presentation, we introduced
CD8αβ containing either wild-type or mutated forms (S53G or
S53N) of the CD8α chain into a JE6.1 reporter cell line
alongside either the HLA-A2-restricted 1E9 TCR or the HLA-
A2-restricted KL14 TCR. This reporter system was designed to
enable sensitive measurements of TCR-mediated activation via
NFAT-driven expression of cyan fluorescent protein (CFP)
and/or NFκB-driven expression of green fluorescent protein
(GFP) (27, 28). The 1E9 TCR was isolated from an allogeneic
8αα and the CD8αα variants S53G and S53N versus SLL/HLA-A*0201,

DGLDVLL HLA-A*0201 RMFPNAPYL Average KD

KD = 193.0 μM KD = 131 μM
KD = 171.0 μM KD = 109.6 μM
KD = 76.3 μM KD = 48.2 μM

J. Biol. Chem. (2023) 299(8) 104981 3
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Figure 2. High-affinity CD8 variants enhance the sensitivity of antigen recognition via low-affinity TCRs. A–C, representative titration curves showing
the activation of MEL5 TCR+ CD8αβ+ JRT3-T3.5 cells in response to C1R HLA-A2 cells pulsed with serial dilutions of the 3T (A), ELA (B), or FAT peptides (C)
assessed by measuring the upregulation of CD69. MEL5 TCR+ CD8αβ+ JRT3-T3.5 cells were transduced with CD8αβ containing either wild-type (WT) CD8α
(red) or mutated forms of CD8α, namely S53G (teal) or S53N (purple). D–F, functional sensitivity of MEL5 TCR+ CD8αβ+ JRT3-T3.5 cells expressed as the
decimal cologarithm of the half-maximal efficacy concentration (pEC50) for each of the conditions shown in A–C. Significance was determined using a one-
way ANOVA with Dunnett’s post hoc test to compare each variant versus wild-type CD8 (n = 5). Data are derived from five separate experiments. G, data
summary shown as baseline-corrected pEC50 values relative to wild-type CD8. MFI, geometric mean fluorescence intensity.
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HLA-A2-restricted repertoire specific for the SLFLGILSV
epitope (SLF) derived from the B cell lineage marker CD20
(residues 188–196) (29), and the KL14 TCR was isolated from
an autologous HLA-A2-restricted repertoire specific for the
SLLMWITQC epitope (SLL) derived from the cancer-testis
antigen CTAG1/NY-ESO-1 (residues 157–165) (30).
Although the corresponding solution affinities remain un-
known, the 1E9 TCR has been characterized as relatively an-
tigen insensitive, preferentially recognizing target cell lines that
express high levels of CD20 (29, 31), and likewise, the KL14
TCR has been characterized as relatively antigen insensitive,
requiring high exogenous concentrations of the cognate pep-
tide to mediate optimal functional responses against target cell
lines displaying HLA-A2 (30).
4 J. Biol. Chem. (2023) 299(8) 104981
1E9 TCR+ CD8αβ+ JE6.1 reporter cells and KL14 TCR+

CD8αβ+ JE6.1 reporter cells were purified via FACS to express
comparable levels of truncated nerve growth factor receptor
(NGFR), a downstream expression marker in the retroviral
construct, and CD8α (Fig. 3, A and C). The activation of 1E9
TCR+ CD8αβ+ JE6.1 reporter cells in response to targets
expressing CD20 (ALL CM and K562 HLA-A2+CD20) and
KL14 TCR+ CD8αβ+ JE6.1 reporter cells in response to targets
expressing CTAG1 (UM3 and U266) was assessed by
measuring the upregulation of CFP and GFP (Fig. 3, B and D).
In direct comparisons with wild-type CD8, incorporation of
the S53G or S53N variants enhanced the activation of 1E9
TCR+ CD8αβ+ JE6.1 reporter cells cocultured with target cell
lines expressing CD20 (Fig. 3B), whereas only marginal
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differences in activation were observed among KL14 TCR+

CD8αβ+ JE6.1 reporter cells cocultured with target cell lines
expressing CTAG1 (Fig. 3D).
High-affinity CD8 variants enhance tetramer binding to
primary CD4+ and CD8+ T cells transduced with cognate TCRs

In further experiments, we isolated peripheral blood
mononuclear cells (PBMCs) from three healthy adult donors
and purified CD4+ and CD8+ T cells via magnetic separation.
We then transduced these lineage-defined subsets with the
1E9 TCR, the KL14 TCR, or an HLA-A2-restricted TCR
specific for the NLVPMVATV epitope (CMV TCR) derived
from the human cytomegalovirus (HCMV) protein pp65
(residues 495–503), which exhibits a relatively high equilib-
rium binding affinity for NLV/HLA-A2 (KD = 6.3 mM at 25�C)
(32). Transduced CD4+ and CD8+ T cells were enriched via
magnetic separation based on expression levels of the murine
TCRβ constant region (mTCR) and subsequently transduced
with vectors encoding CD8αβ containing either wild-type or
mutated forms (S53G or S53N) of the CD8α chain alongside
the expression marker NGFR. The uptake of fluorescent
tetrameric antigens from solution was measured via flow
cytometry and expressed as the fold change in geometric mean
fluorescence intensity among cells expressing high levels of
NGFR versus cells lacking expression of NGFR.

The high-affinity variants S53G and S53N only marginally
enhanced tetramer staining among CD8+ T cells expressing
J. Biol. Chem. (2023) 299(8) 104981 5
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the CMV TCR relative to wild-type CD8. In contrast, the S53G
variant enhanced tetramer staining among CD8+ T cells
expressing the KL14 TCR relative to wild-type CD8, and the
S53G and S53N variants both enhanced tetramer staining
among CD8+ T cells expressing the 1E9 TCR relative to wild-
type CD8 (Fig. 3E). All three coreceptor constructs enhanced
tetramer staining among CD4+ T cells, which lack endogenous
CD8. The S53N variant also enhanced tetramer staining
among CD4+ T cells expressing the 1E9 TCR relative to wild-
type CD8 (Fig. 3F).

Overexpression of CD8 enhances the functionality of primary
CD8+ T cells transduced with cancer-targeting TCRs

To extend these findings, we examined the effector func-
tions of primary CD8+ T cells transduced as above with CD8αβ
containing either wild-type or mutated forms (S53G or S53N)
of the CD8α chain alongside the 1E9 TCR, which has been
shown to exhibit relatively weak recognition of target cell lines
expressing low levels of CD20 (29, 31). Transduced cells were
purified via FACS to express high levels of NGFR, thereby
maximizing the expression ratio of exogenous versus endoge-
nous CD8 (Fig. S3A). The introduction of either wild-type or
mutated CD8 enhanced the production of interferon (IFN)-γ
by 1E9 TCR-transduced primary CD8+ T cells cocultured with
K562 HLA-A2+CD20 cells but not with K562 HLA-A2 cells,
indicating an effect specific for CD20 (Fig. S3B). Similarly, the
introduction of either wild-type or mutated CD8 enhanced the
production of IFN-γ by KL14 TCR-transduced primary CD8+

T cells cocultured with UM3 cells, U266 cells, or Raji HLA-
A2+CTAG1 cells but not with Raji HLA-A2 cells, indicating
an effect specific for CTAG1 (Fig. S3C). No differences in the
magnitude of these effects were observed among the different
forms of CD8 (Fig. S3, B and C).

High-affinity CD8 variants enhance the functionality of
primary CD4+ T cells transduced with cancer-targeting TCRs

In light of these results, we performed similar experiments
with primary CD4+ T cells, thereby eliminating the potentially
confounding effects of competition between exogenous and
endogenous CD8. Primary CD4+ T cells expressing CD8αβ
containing either wild-type ormutated forms (S53G or S53N) of
the CD8α chain alongside the 1E9 TCR were generated as
described above and purified via FACS to express high levels of
NGFR and CD8α (Fig. S3D). In direct comparisons with wild-
type CD8, incorporation of the S53G or S53N variants
enhanced the production of IFN-γ by 1E9 TCR-transduced
primary CD4+ T cells cocultured with K562 HLA-
A2+CD20 cells but not with K562 HLA-A2 cells, and incorpo-
ration of the S53N variant enhanced the production of IFN-γ by
1E9TCR-transducedprimaryCD4+Tcells coculturedwithALL
CM cells, consistent with an effect specific for CD20 (Fig. 4, A
and B). Similar effects were observed using other readouts of
activation, namely the production of interleukin (IL)-2 (3/3
donors; Fig. 4, C andD) and proliferation (2/3 donors; Fig. S3E).
The introduction of either wild-type or mutated CD8 also
enhanced the production of IFN-γ by KL14 TCR-transduced
6 J. Biol. Chem. (2023) 299(8) 104981
primary CD4+ T cells cocultured with UM3 cells, U266 cells,
or Raji HLA-A2+CTAG1 cells but not with Raji HLA-A2 cells,
indicating an effect specific for CTAG1 that was nonetheless
comparable among the different forms of CD8 (Fig. 4, E and F).

Collectively, these data showed that high-affinity variants of
CD8, designed and engineered to remain below the equilib-
rium binding threshold for non-specific activation, selectively
enhanced the functional recognition of clinically relevant
pMHCI antigens via low-affinity TCRs.
Discussion

Mutagenesis studies focused on key contact points in the
MHCIα3 domain have demonstrated a critical role for CD8 in
the process of TCR-mediated pMHCI antigen recognition (11,
12, 15–17, 33). In contrast, relatively few studies have
addressed the impact of analogous mutations in CD8, at least
in human systems, which limits the utility of such information
for the purposes of translational immunotherapy (34, 35). We
addressed this knowledge gap by designing and testing a panel
of high-affinity CD8 variants biophysically and functionally to
optimize the sensitivity of pMHCI antigen recognition in the
context of clinically relevant TCRs.

A relatively small increase in the affinity of the pMHCI/CD8
interaction was afforded by the CD8α variant S53G (KD =
80.3 μM), which nonetheless improved the antigen sensitivity
of low-affinity TCRs in cotransduction experiments relative to
wild-type CD8, consistent with data generated using reciprocal
mutations in the MHCIα3 domain (15). This effect was further
enhanced by the CD8α variant S53N, which afforded a greater
increase in the affinity of the pMHCI/CD8 interaction (KD =
34.5 μM), akin to a previously described compound mutation
(C33A/S53N) (36). The ability of the S53G variant to enhance
the affinity of the pMHCI/CD8 interaction was initially
counterintuitive, because it had been designed to remove the
interacting side-chain of Ser53. However, the difference in
equilibrium binding affinity was only �20 μM relative to wild-
type CD8, which equates to �0.5 kJ M−1, making accurate
prediction almost impossible. It was also apparent that the
side-chain of Ser53 slightly destabilized the pMHCI/CD8
complex, likely due to a combination of conformational en-
tropy and strain effects and a rebalancing of entropy/enthalpy
compensation. Accordingly, removal of this side-chain
potentially enabled flexibility in the protein backbone, facili-
tating a conformational change that strengthened the inter-
action with pMHCI. It is notable that our biophysical data
were generated using soluble CD8αα, whereas the functional
experiments were performed using transduced CD8αβ. How-
ever, the biophysical measurements reported here are likely
extendable, given that murine CD8αα and murine CD8αβ bind
with similar affinities to pMHCI (10).

Our experiments with APLs showed that high-affinity CD8
variants improved the recognition of weak agonists but not
optimal agonists, at least in the context of the MEL5 TCR. A
generic tuning effect that preferentially enhances the recog-
nition of affinity-limited pMHCI antigens would potentially be
very useful in the setting of cancer immunotherapy. Most
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Figure 4. High-affinity CD8 variants enhance the functionality of primary CD4+ T cells transduced with cancer-targeting TCRs. A–D, primary CD4+ T
cells expressing CD8αβ containing either wild-type (WT) CD8α (red) or mutated forms of CD8α, namely S53G (teal) or S53N (purple), alongside the 1E9 TCR
were cocultured with a panel of cell lines lacking or expressing CD20. The panels show representative IFN-γ (A) or IL-2 production (C) from a single donor
(triplicate measurements) or IFN-γ (B) or IL-2 production (D) from each of three donors. E and F, primary CD4+ T cells expressing CD8αβ containing either
wild-type (WT) CD8α (red) or mutated forms of CD8α, namely S53G (teal) or S53N (purple), alongside the KL14 TCR were cocultured with a panel of cell lines
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from each of two donors. Data are shown as mean ± SD (A–F). Significance was determined using a one-way ANOVA with Dunnett’s post hoc test to
compare each variant versus wild-type CD8. TCM, T cell medium.

EDITORS’ PICK: High-affinity CD8 enhances pMHCI antigen sensitivity
cancer-associated antigens are derived from self-proteins,
which shape thymic selection, leading to the deletion of
high-affinity cognate TCRs. As a consequence, cancer-
associated antigen recognition in the periphery is dominated
by low-affinity TCRs. The use of high-affinity CD8 variants
could bypass this limitation without incurring unpredictable
off-target reactivity, which is an inherent risk of alternative
strategies based on affinity maturation (37–39).

We explored the potential utility of this approach in primary
CD4+ and CD8+ T cells transduced with clinically relevant
TCRs targeting either CD20 or CTAG1 (NY-ESO1). The
introduction of either wild-type or high-affinity CD8 variants
J. Biol. Chem. (2023) 299(8) 104981 7
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into primary CD8+ T cells enhanced the sensitivity of antigen
recognition to a similar degree, suggesting that coreceptor
expression levels were a key determinant of activation (40, 41).
The observation that the high-affinity CD8 variants afforded
little improvement beyond that achieved using wild-type CD8
could be explained by competition with endogenous CD8.
Strategies designed to knock down endogenous CD8 could
offer a solution to this problem, although it might be difficult
to match natural expression levels using viral delivery. Alter-
natively, a CRISPR-Cas9 homology-directed repair strategy
incorporating point mutations could be a feasible option,
ideally in conjunction with a molecular tag for bulk verification
(42).

High-affinity CD8 variants could also be introduced into
primary CD4+ T cells, which have been shown to be effective
vehicles in the setting of cancer immunotherapy. In our ex-
periments, this approach revealed the potential of high-affinity
CD8 variants to enhance antigen sensitivity, although the
magnitude of this effect appeared to depend on the
cotransduced TCR. Differences in the nature of antigen
engagement likely underpinned this observation, but further
studies will be required to define the precise biophysical and
structural determinants of an optimal response (3, 4). TCR-
transduced CD4+ and CD8+ T cells are already being used in
clinical trials (43–45), some of which have also been engineered
to coexpress CD8 (NCT04044859, NCT03326921). The use of
high-affinity CD8 variants is eminently compatible with such
approaches and could further enhance the efficacy of protocols
in which bulk CD3+ T cells are transduced to express cancer-
targeting TCRs.

Xenograft models of hematological malignancies and
solid tumors are generally used to evaluate novel thera-
peutic strategies but provide limited information regarding
the safety of any particular intervention (38, 39). Syngeneic
mouse models are similarly limited in terms of applica-
bility, because murine CD8 binds with a higher affinity to
pMHCI (KD = 49 μM) than human CD8 (KD = 145 μM).
However, it will be essential to examine the potential off-
target effects associated with the use of high-affinity CD8
variants prior to translation, especially given the preferen-
tial enhancement of antigen recognition in the context of
low-affinity TCR/pMHCI interactions, which could feasibly
induce autoimmunity (24). We observed no such effects in
the absence of cognate antigen, but in vitro screens for
reactivity against cell lines derived from healthy and ma-
lignant tissues combined with the use of combinatorial
peptide libraries to identify relevant autoantigens would
be required at a minimum to exclude this possibility
(39, 46, 47).

TCR engineering is a rapidly emerging approach to cancer
immunotherapy (43–45). In this study, we characterized the
biophysical and functional properties of two high-affinity
CD8 variants, S53G and S53N, both of which operated
within the therapeutic affinity window (17) to enhance the
sensitivity of pMHCI antigen recognition in the context of
low-affinity TCRs. Accordingly, our findings could provide a
generically applicable strategy to augment the therapeutic
8 J. Biol. Chem. (2023) 299(8) 104981
efficacy of cancer-targeting TCRs, clinical trials of which have
already started to incorporate wild-type CD8.

Experimental procedures

Ethics

This study was approved by the Institutional Review Board
of the Leiden University Medical Center (3.4205/010/FB/jr)
and the METC-LDD (HEM 008/SH/sh). Informed consent
was obtained from all participants in accordance with the
principles of the Declaration of Helsinki.

Samples

PBMCs were isolated from healthy donors via standard
density gradient centrifugation and cryopreserved at the Leiden
University Medical Center Biobank for Hematological Diseases.

Parental cell lines

C1R HLA-A2 cells, Jurkat cells, and J.RT3-T3.5 cells were
cultured in RPMI medium supplemented with 10% fetal bovine
serum (FBS), 1% penicillin/streptomycin, and 1% L-glutamine
(Lonza). The generation of C1R HLA-A2 cells was described
previously (15). JE6.1 Jurkat cells, K562 A2 cells, K562 HLA-
A2+CD20 cells, Raji HLA-A2 cells, Raji HLA-A2+CTAG1
cells, and U266 cells were cultured in Iscove’s Modified Dul-
becco’s Medium (IMDM) supplemented with 10% FBS, 1%
penicillin/streptomycin, and 1.5% L-glutamine (Lonza). ALL
CM cells were cultured in IMDM containing serum-free sup-
plement and 1% penicillin/streptomycin as described previ-
ously (48). UM3 cells were cultured in IMDM supplemented
with 20% FBS, 1% penicillin/streptomycin, 1.5% L-glutamine,
and 10 ng/ml IL-6 (Lonza). HEK 293T cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) supplemented
with 10% FBS, 1% penicillin/streptomycin, 1% L-glutamine, and
1 mM HEPES (Lonza). Phoenix Ampho cells were cultured in
IMDM supplemented with 10% FBS, 1% penicillin/strepto-
mycin, and 1% L-glutamine (Lonza).

Soluble protein expression and surface plasmon resonance

CD8α chain sequences were codon-optimized for expres-
sion in E. coli and cloned into pGMT7. Point mutations for
variant generation were introduced using a QuikChange II
Site-Directed Mutagenesis Kit (Agilent). Soluble CD8αα was
produced as described previously (36). CD8αα was concen-
trated after exchange into the running buffer (0.005% poly-
sorbate 20 in PBS). Surface plasmon resonance experiments
were performed using a CM5 sensor chip (GE Healthcare)
activated via N-hydroxysuccinimide/1-ethyl-3-(3-dimethyla
minopropyl)-1-carbodiimide hydrochloride (NHS/EDC)
coupling with streptavidin (0.2 mg/ml in 10 mM acetate).
The following biotinylated monomers were bound to the
chip: D227K/T228A-A2-RLARLALVL, WT-A2-SLLMWITQC,
WT-A2-VLDFAPPGA, and WT-A2-RMFPNAPYL. Serial di-
lutions of CD8αα were flowed over the chip at a rate of
10 μl/min. Response curves were aligned in time. Reference
responses were subtracted using BIAEvaluation software
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(Biacore AB). Biophysical characterization of the RLA TCR
was performed as described previously (3). TCRα and TCRβ
sequences were obtained using a template-switch anchored
RT-PCR (49).

Design of point mutations in CD8α

The crystal structure of HLA-A*0201 in complex with
CD8αα (PDB ID 1AKJ) was uploaded to the BAlaS web tool, an
interactive application linked with the Bristol University
Docking Engine (BUDE) Alanine Scan (BudeAlaScan) (20, 21).
The two CD8α chains were selected as ligands, the HLA-
A*0201 α1, α2, and α3 domains and β2-microglobulin were
selected as receptors, and the mutagenesis strategy was
informed by outputs listed as the predicted difference in
binding affinity for each amino acid change (ΔΔG).

Viral vector constructs and virus production

Lentiviral vectors encoding CD8αβ were described previ-
ously (24). Point mutations yielding the CD8 variants S53T,
S53Q, S53N, and S53G were introduced into lentiviral vectors
using a Q5 Site-Directed Mutagenesis Kit (New England
Biolabs). For retroviral expression, the CD8α and CD8β
chains, separated by a P2A cleavage site (Genewiz), were
cloned into an MP71 vector containing an IRES sequence and
a downstream expression marker (truncated NGFR). The
TCRα and TCRβ chains of the RLA TCR were partly muri-
nized (50) and cloned into pSF.EF1α. The MEL5 TCR lenti-
viral construct was described previously (24). The 1E9 TCR,
the KL14 TCR, and the CMV TCR were partly murinized and
cloned into MP71 (29). Lentiviral particles were produced in
HEK 293T cells via cotransfection of the relevant pSF.EF1α
plasmid with pMDL/pRRE, pRSV-Rev, and pCMV.VSV-G
using Turbofect Transfection Reagent (Thermo Fisher Sci-
entific). Supernatants were concentrated using Lenti-X
Concentrator (Takara). Retroviral particles were produced
similarly in Phoenix Ampho cells via cotransfection of the
relevant MP71 plasmid with pCL-Ampho.

Jurkat cell lines

MEL5 TCR+ CD8+ J.RT3-T3.5 cells were described pre-
viously (24). Jurkat cells expressing the RLA TCR and
variant or wild-type CD8 were generated similarly and
standardized for comparable expression levels via FACS.
JE6.1 Jurkat cells were described previously (27). Reporter
cells expressing comparable levels of the 1E9 TCR or the
KL14 TCR and variant or wild-type CD8 were generated via
cotransduction of JE6.1 Jurkat cells and subsequent purifi-
cation via FACS.

Transduction of primary human T cells

CD4+ and CD8+ T cells were isolated from thawed PBMCs
via magnetic separation using CD4 and CD8 MicroBeads,
respectively (Miltenyi Biotec). Freshly isolated cells were acti-
vated with phytohemagglutinin (0.8 μg/ml, Thermo Fisher
Scientific) in the presence of irradiated autologous PBMCs and
cultured for 48 h in IMDM supplemented with 5% human AB
serum, 5% FBS, 1% penicillin/streptomycin, 1.5% L-glutamine
(all from Lonza), and 100 IU/ml IL-2 (Novartis). Cells were
then transduced with retroviral particles containing the 1E9
TCR, the KL14 TCR, or the CMV TCR via spinoculation on
non-treated, retronectin-coated culture plates (Takara Bio).
TCR-transduced cells were stained with anti-mouse TCRβ–
APC (clone H57-597, BioLegend) and enriched using Anti-
APC MicroBeads (Miltenyi Biotec). Enriched cells were
cultured for 7 to 10 days, restimulated, and transduced with
retroviral particles containing variant or wild-type CD8. TCR+

CD8+ populations were purified via FACS.

Coculture experiments

C1R HLA-A2 and Jurkat cell coculture experiments were
performed as described previously (24). Briefly, 1.5 × 105 C1R
HLA-A2 cells were pulsed with peptide for 1 h and cocultured
with 3 × 104 Jurkat cells for 6 h. Jurkat cell activation was
measured using flow cytometry to quantify the expression of
CD69. Similarly, 1.5 × 105 target cells were cocultured with
3 × 104 TCR+ CD8+ reporter Jurkat cells for 6 h. Jurkat cell
activation was measured using flow cytometry to quantify the
expression of CFP and GFP. Primary CD4+ or CD8+ T cells
were rested for 24 to 48 h after purification via FACS. Aliquots
of 1 × 103 primary CD4+ or CD8+ T cells were then cocultured
with 1 × 104 irradiated ALL CM cells or 5 × 103 irradiated
K562 HLA-A2 cells, K562 HLA-A2+CD20 cells, Raji HLA-A2
cells, Raji HLA-A2+CTAG1 cells, UM3 cells, or U266 cells for
16 to 18 h in IMDM supplemented with 5% human AB serum,
5% FBS, and 1% penicillin/streptomycin (Lonza). Supernatants
were collected and assayed using enzyme-linked immunosor-
bent assays to quantify IFN-γ and IL-2 (Diaclone). The cul-
tures were then supplemented with fresh medium containing
50 IU/ml IL-2 (Novartis), incubated for a further 5 days, and
resuspended in SYTOX Blue Dead Cell Stain (1:1,000, Thermo
Fisher Scientific). Proliferation was measured using iso-
volumetric flow cytometry to quantify viable cells defined by
the absence of SYTOX.

Antibodies and peptides

The following antibodies were used in the study: (i) anti-
human CD4–FITC (clone RPA-T4), anti-human CD69–
BV421 (clone FN50), and anti-mouse TCRβ–PE or TCRβ–
APC (clone H57-597) from BioLegend; (ii) anti-human CD8α–
PE-Cy7 (clone 53-6.7) from Thermo Fisher Scientific; (iii) anti-
human CD8β–eFluor 660 (clone SIDI8bee) from eBioscience;
(iv) anti-human CD8β–PE (clone 2ST8.5H7) and anti-human
NGFR–PE (clone C40-1457) from BD Biosciences; (v) anti-
human TCR Vβ12.1–PE (clone VER2.32.1) from Beckman
Coulter; and (vi) anti-human NGFR–APC (clone ME20.4)
from Cedarlane. Staining was performed for 15 min at room
temperature. All peptides were synthesized at >95% purity
using standard Fmoc chemistry (BioSynthesis).

Tetramers

The following tetramers were used in this study: HLA-A2-
SLFLGILSV (CD20), HLA-A2-SLLMWITQC (CTAG1), and
J. Biol. Chem. (2023) 299(8) 104981 9
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HLA-A2-NLVPMVATV (CMV). Each tetramer was used at a
final concentration of 50 ng/ml. Staining was performed for
30 min at 37 �C.
Flow cytometry
Data from Jurkat cells transduced with the MEL5 TCR or

the RLA TCR were acquired using an ACEA NovoCyte (Agi-
lent). Data from Jurkat reporter cells were acquired using a
Fortessa (BD Biosciences). Data from primary cells were ac-
quired using a Fortessa or an LSR II (BD Biosciences). Jurkat
cells transduced with the MEL5 TCR or the RLA TCR were
sorted using an Influx (BD Biosciences). Jurkat reporter cells
and primary CD4+ or CD8+ T cells were sorted using a
FACSAria (BD Biosciences).
Statistics

Functional assay data were processed using simultaneous
non-linear least square curve fitting and z-transformed where
necessary to eliminate interdonor variability. Functional
sensitivity was expressed as the decimal cologarithm of the
half-maximal efficacy concentration (pEC50). Jurkat model
system data were analyzed using a one-way ANOVA with
Dunnett’s post hoc test to compare each variant versus wild-
type CD8. Tetramer data were analyzed using a two-way
ANOVA with Dunnett’s post hoc test. All statistical tests
were performed using Prism (GraphPad).
Data availability
All data are contained within the manuscript.
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