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Abstract

For the Ginzburg-Landau equation (GL), we establish the existence and local uniqueness of two classes of multi-bump, self-similar, blow-up
solutions for all dimensions 2 < d < 4 (under certain conditions on the coefficients in the equation). In numerical simulation and via asymptotic
analysis, one class of solutions was already found; the second class of multi-bump solutions is new.

In the analysis, we treat the GL as a small perturbation of the cubic nonlinear Schrodinger equation (NLS). The existence result given here is a
major extension of results established previously for the NLS, since for the NLS the construction only holds for d close to the critical dimension
d=2.

The behaviour of the self-similar solutions is described by a nonlinear, non-autonomous ordinary differential equation (ODE). After
linearisation, this ODE exhibits hyperbolic behaviour near the origin and elliptic behaviour asymptotically. We call the region where the type
of behaviour changes the mid-range. All of the bumps of the solutions that we construct lie in the mid-range.

For the construction, we track a manifold of solutions of the ODE that satisfy the condition at the origin forward, and a manifold of solutions
that satisfy the asymptotic conditions backward, to a common point in the mid-range. Then, we show that these manifolds intersect transversely.
We study the dynamics in the mid-range by using geometric singular perturbation theory, adiabatic Melnikov theory, and the Exchange Lemma.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In various problems coming from physics, biology and chemistry the Ginzburg-Landau equation (GL) is found as a model
equation. It is derived in, for example, Rayleigh—Bénard convection, Taylor—Couette flow, nonlinear optics, models of turbulence,
superconductivity, superfluidity and reaction—diffusion systems; see [18,3,23,8,9] and the review article [2]. The GL can be viewed
as a normal form describing the leading order behaviour of small perturbations in ‘marginally unstable’ systems of nonlinear partial
differential equations defined on unbounded domains [16]. Thus, it is relevant for understanding the dynamics of ‘instabilities’. The
coefficients in the equation can be expressed in terms of the coefficients of the underlying system of PDEs; therefore, we study the
dynamics of the GL for a wide range of parameters.

We study the GL written in the following form:

* Corresponding address: Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands. Tel.: +31 71 52 77 113.
E-mail address: vivi@math.leidenuniv.nl.

0167-2789/$ - see front matter (©) 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.09.022


http://www.elsevier.com/locate/physd
mailto:vivi@math.leidenuniv.nl
http://dx.doi.org/10.1016/j.physd.2007.09.022

V. Rottschdfer / Physica D 237 (2008) 510-539 511

iaa—f+(1—ie)A@+(1+ibs)|<ﬁ|2¢=0, (1.1
where x € R?, ¢, b > 0 and ¢ > 0. The standard form of the GL as given in [16] can be obtained by rescaling.

Numerical simulations show that there exist sets of initial data for the GL such that the solutions become infinite in finite time
for 2 < d < 4; see [6,19]. Hence, a contraction of the wave packet takes place, and simultaneously the amplitude grows and blows
up. In nonlinear optics this phenomenon is called self-focusing and it is related to an extreme increase of the field amplitude. In
plasma physics it is called wave collapse.

In this article we study blow-up solutions to the GL as found in the numerical simulations and asymptotic analysis in [6]. We
assume ¢ < 1 such that Eq. (1.1) is a small perturbation of the well known nonlinear Schrodinger equation (NLS). Note that, after
setting ¢ = 0 in Eq. (1.1) the GL reduces to the NLS.

Blow-up solutions of the NLS have already been studied extensively; see [24] for a survey. The dimension d = 2 is the critical
dimension for the NLS; it distinguishes between integrable and blow-up behaviour. In the numerical simulations of [S] and [4],
radially symmetric, self-similar, multi-bump blow-up solutions for the NLS were found for d > 2. Here, multi-bump is related
to | ®| having several maxima. An asymptotic analysis was also given in [4]. The existence and local uniqueness of a radially
symmetric, monotone, self-similar blow-up solution has been proved for d close to 2 in [15,20]. And the multi-bump solutions have
been shown to exist, in [21], again for d close to 2.

Here, we extend and adjust the techniques of [15,20,21] to prove existence and local uniqueness of the blow-up solutions of the
GL as found numerically in [6]. The solutions found in [6] are radially symmetric and self-similar as in the case of the NLS. For the
NLS, they were studied using the method of dynamical rescaling, and we also use it here. This method exploits the asymptotically
self-similar behaviour of the solutions. Following [6], space, time, and & are scaled by factors of a suitably chosen norm of the
solutions, denoted by L(¢), which blows up at the singularity,

_ I _ ("1 _
£= 0. r:/O Sl e =LOD0D, (1.2)

The corresponding norm of the rescaled solution # remains constant in time, and as a consequence, the rescaled problem is no
longer singular. The rescaled solution u satisfies

e + (1 —ie) |:ugg + ugil + (1 +ibe)|u*u + ia(t)(Eu)e =0,

where
dL _ 1dL

a=—-L— = .
dt L dt

Self-similar blow-up behaviour, with L() — 0, arises when a(7) is a positive constant and u (£, t) = T Q (&) for some positive
w that depends on the solution. We have L(t) = /2a(T —t) and t = % log(T — t), and scaling T with % leads to the following
equation for Q:

d-1
§

Here the parameter a plays the role of a nonlinear eigenvalue. In [19], the constant w is left as an unknown; this does not affect the
solutions since it can be scaled out.

Moreover, the initial and asymptotic conditions for @, namely that ¢(x, 0) = @y(x) and that | §| vanishes as |x| — oo, lead to
the following initial and asymptotic conditions for Q:

Q:(0)=0, ImQ(0) =0, (1.4)
Q) — 0 as& — oo. (1.5)

a —18)[Q55+ Qs] — Q +iat Q) + (14ibe)|Q°Q = 0. (1.3)

Here we have exploited the phase invariance of the equation to define the phase of & at the origin. Alternatively, we could have
kept w as an unknown in (1.3) and set Q(0) = 1, as in [19].

In the numerics and asymptotics in [6], multi-bump solutions were found where |Q| has kK maxima on the real line. For every
2 < d < 4, k-solution branches are found in the (e, a)-plane on which a solution with £ maxima on (—o0, c0) exists. In Fig. 1(a),
which is a reproduction of Fig. 1.1 from [6], the branches for k = 1 and k = 2 where » = 0 and d = 3 are given. The branches
correspond to symmetric solutions with one maximum on the real line, k = 1, at £ = 0, and with two maxima, k = 2, on the real
line. The latter solutions (k = 2) have a minimum at £ = 0. The amplitudes | Q| of the solutions as found on the upper and lower
parts of both branches at ¢ = 0.1, the points indicated by the *’s, are given in Fig. 1(b), which is a reproduction of Fig. 1.2 from [6].

Every k-solution branch consists of two parts which coalesce. The solutions on the upper part of the branch are smooth
perturbations of the solutions found for the NLS. Note that the intersection point of this part of the branch with the ¢ = 0-axis
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Fig. 1. (a) The k = 1 solution branch, the solutions with one maximum on (—o0, 00), and the k = 2 solution branch, the solutions with two maxima on (—o0, 00),
plotted in the (e, a)-plane where d = 3 and b = 0. In (b), the solutions corresponding to the *’s are given. (b) Final-time profiles where the amplitude | Q| is plotted
as a function of the spatial variable & for ¢ = 0.1. The solutions correspond to the *’s in (a). This is a reproduction of Figs. 1.1 and 1.2 in [6].

corresponds exactly to the NLS solutions. However, solutions on the lower part of the branch are not a simple perturbation of the
solutions of the NLS.

There is a clear distinction between solutions for which k is even and ones for which it is odd. When k is odd the k-solution has
a maximum at & = 0; on the other hand for even k it does not.

In the numerical simulations, the maxima that lie away from & = 0 are found for a small in the range § = O(é) and just to the
leftof & = %, which is the point where the linearisation of (1.3) has a turning point. Thus, as a — 07, all these maxima are created
at || = oo. Furthermore, for k odd and d — 27 the form of | Q| close to & = 0 converges to the ground state solution of

d—1
Ree + TRg ~R+R*=0. (1.6)

In this article, we focus mainly on the solutions as found on the lower part of the k-solution branches. More specifically, we
construct the solutions for k even; the solutions with a minimum at £ = 0. This is one of the main points in which the analysis of
this article differs from and extends the studies in [21,20,15] (apart from the fact that the equation is different). There, solutions
with a maximum at £ = 0 were constructed for the NLS. So far, no analysis for the solutions with a minimum at & = 0 has been
performed.

For k even, we establish existence and local uniqueness of two classes of k-bump solutions for2 < d <4 and with0 < a < 1
as long as certain relations between a, d, b and ¢ hold. The second major extension of [21,20,15] is the fact that our proof holds
for every 2 < d < 4, whereas in the studies for the NLS [20,21] the dimension d must be taken algebraically close to d = 2:
d —2 = O(a') for some [ > 0. This extended result is possible because we focus mainly on solutions on the lower part of the
solution branches. These solutions are no simple perturbations of the solutions for the NLS. Nevertheless, for d algebraically close
to 2 the analysis here also yields the solutions on the upper part of the branches.

In the analysis, we find that the % maxima for £ > 0 (recall that the solution is symmetric) lie just to the left of £ = % and are
O(log %) apart. These maxima lie in the so-called mid-range, the interval & € [&, £max] Where &, = k& logal and &qax = #g
The two types of solutions that are constructed differ from one another in the value of | Q| at & = &yax. For solutions of type L, |Q|
is exponentially small at £ = &;,,x whereas for solutions of type R, |Q|(&max) is strictly (’)(a%). The solutions of type L are those
found in [6]. The solutions of type R have, to our knowledge, not been found in numerical simulations or asymptotic analysis so
far. Finally, the solutions of type L lie exponentially close to each other as do the solutions of type R.

Solutions with a maximum at & = 0, where k is odd, can also be found for the GL by combining the techniques from this article
and Section 4 of [21]. We do not give a proof here, but we will state the results in the next section.

Remark 1.1. Choosing a non-integer dimension as done here is equivalent to taking d = 2 and the power of the nonlinear term
equal to 20 for some positive o.

2. The main result and the strategy for its proof

In this section, we state the main theorem and the strategy that we take to prove it. The main result of this paper is
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Theorem 2.1. For each a > 0 sufficiently small, 2 < d < 4, and d, &, b and a related as in expressions (2.1) and (2.2), there exists
an no(a) such that, if 2 < n < no(a) and n is even, there exist 2n locally unique k = n solutions of the type studied here of the
problem given by Eq. (1.3) and the initial conditions (1.4) and boundary conditions (1.5). These symmetric solutions consist of n
maxima on the real line where maxima are found on 0 < & < Epax, With Emax = 2—a\/5. These maxima are strictly (’)(log(%))
apart. Of the 2n locally unique k = n solutions, n + 1 are characterized by the property that | Q (€max)| is exponentially small, and
they are said to be of type L. The other n — 1, said to be of type R, instead satisfy | Q(Emax)| = ca>/® — a8, for some positive

~ ~ . 1
constant ¢ and a positive function ¢ = ¢(c), and the last maximum occurs near Enax, where |Q| = V2ai(1 — %ﬁ) + hot.

We now give the restrictions under which this theorem holds. First of all, we aim for a balance in Eq. (1.3) between the terms
containing the parameter ¢, representing the perturbation away from the NLS giving the GL, and the terms containing the small
parameter a, and therefore, set

e = Ka, 2.1)

where K > O0and K = O(1).
Moreover, we assume when bounding ¢ in Section 7 that there exist constants ¢, ¢2, ¢, ¢ > 0, c3 and [ > % such thatd, ¢, b and
a satisfy

lcra(d — 2) — a6 + cyab| < caitle a. 2.2)

For every solution, the constants ¢; can be determined; they differ as k is varied. Moreover, restriction (2.2) can be made less
strict (replacing the exponentially small term by a term of O(a'!)), yielding fewer solutions in the theorem; see Remark 7.1. It is
remarkable that in this case, for every even k a k-solution can still be constructed.

Note that it is possible to choose a, d, ¢ and b in such a way that restriction (2.2) is satisfied. For example, if we focus on the
two-bump solutions in the case where b = 0, relation (2.2) reduces to

d-2 5‘ 82
)
WE

5 3 VIR <caitle s, (2.3)

see Lemma 7.2 and expression (7.3). And ¢, a and d can indeed be chosen such that this holds.

Remark 2.1. It will be shown that ng(a) increases as a decreases.

For solutions with a maximum at the origin, and hence, an odd number of maxima (n odd), a statement similar to Theorem 2.1 can
be proved. The result and assumptions only slightly change. Combination of the proofs given in this article and in Section 4 of [21]
leads to the existence of 4(n — 1) locally unique n-solutions for n odd. Moreover, the two different types of solutions in the theorem
still exist and they are characterised by the same properties. There exist 2n — 1 solutions of type L and the other 2n — 3 are of type
R. Assumption (2.1) still has to be satisfied whereas restriction (2.2) must be replaced by

G1a(d — 2) — éxe + E3ab| < éaitt, (2.4)

leading to a less strict condition on a, d, ¢ and b.

We study solutions of Eq. (1.3) with initial condition (1.4) and boundary condition (1.5). As in [6] and the studies for the
NLS [21,20,15], we replace the boundary condition (1.5) by a local asymptotic condition at £ — oo. For large &, it follows from
the boundary condition (1.5), |Q(£)| — 0, that the behaviour of the solutions is described by the linear part of Eq. (1.3):

d—
3

For this equation, there exists a pair of linearly independent solutions for large £ that are given by

1
(1 —iakK) [st + )Qs] ~ Q0 +iaEQ) =0. 2.5)

—1-4 @-1-5e —iat 2’“2
Qir~§ e, Qr~§" T+ : (2.6)
Solution Q5 is rapidly varying as |£| — oo, and has unbounded H !-norm. The solutions that we are looking for are slowly varying
solutions, and hence, their limiting profile for large & is a multiple of Q. The asymptotic expressions for Q; and its derivative
imply that

EQ§+<1+$>Q|—>O asé — o0 2.7)

must hold; see [6]. In the NLS limit this corresponds to solutions with finite Hamiltonian. From the fact that O decays at oo, it
follows that the boundary condition (1.5) is satisfied, and hence, condition (1.5) can be omitted. Therefore, we from now on study
Eq. (1.3) with the conditions (1.4) and (2.7).
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Fig. 2. The different points and intervals on the &-axis. As explained in Section 2, solutions on the manifolds M*° and M 0 are tracked to £max from oo and 0,
respectively, and it is shown that these manifolds have two families of transverse intersection points at &max. The multi-bump, self-similar, blow-up solutions of
Theorem 2.1 are found in these transverse intersections.

M

Fig. 3. A sketch of the manifold M° in the A-B plane at & = Epax.

The analysis of (1.3) is carried out by decomposing Q into amplitude and phase,

§ A
0¢)=AE)exp [i/O W(X)dX} , B) = f- (2.8)
Here, A is the amplitude, B its logarithmic derivative, and v is the gradient of the phase. Then, (1.3) reduces to
Ag = AB
p = U=DB + 92— B>+ ———[-(1 —a’bK»HA’> + 1 + aty +a’K(1 + £B)]
& 1+ a2K? (2.9)
(1 —-d)yy 2
=—— —2YyB— ——]1 B+ K((1+bA-—1-— ,
Ve : VB = sl +EB+ K +D) agy)]
where (1.4) and (2.7) are given by
B(0) =0, ¥ (0) =0, (2.10)
and
B ! 4 ! & (2.11)
~——, ~—— as& — oo. .
3 a&

This reduction from a four-dimensional system to a three-dimensional system is made possible by the fact that Eq. (1.3) is invariant
under phase shifts.

We prove Theorem 2.1 by analysing the solutions of Eq. (2.9) that satisfy the initial and asymptotic conditions (2.10) and (2.11).
We start with those solutions that satisfy (2.11). These form a three-dimensional manifold in the A—-B—y—£—d extended phase
space, and we denote this manifold by M°°, where the superscript co corresponds to the fact that they satisfy (2.11); the condition
at infinity. By tracking these solutions from oo back to § = &nax = 2_;/5 (see Fig. 2), we find that, at £yax, @ segment of the
manifold M is nearly a horizontal line segment that stretches out at least over the interval (0, @>/®] in the A coordinate with
B = —a'/* to leading order; see Fig. 3.

As a next step, we focus on the solutions of (2.9) that satisfy the initial condition (2.10). These solutions also form a three-
dimensional manifold, which we denote by M 0 1n two stages, we track the solutions on M 0 from & =010 & = &nax; see Fig. 2.
First, in Section 4, we pull M 0 forward to E=& =k log(%), for some k; > 0. Then, in Sections 5 and 6, we track the solutions

on MO further forward from & = &, to & = &nqax; this is the interval in which the bumps lie. We introduce a ‘slow” independent
variable n = a§ and the shifted phase variable ¢ = v + % in (2.9). Under the assumption that |¢| < az (this strict inequality is
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proved in Section 7), the leading order system becomes

As = AB
2

n

1—d
BEZI—Z—BZ—Az—FaB(( )

+ Kr/) + hot (2.12)
n: = a.

The higher order terms in the equation for B contain the ¢>-term.

The global geometry of the invariant manifolds of (2.12) is studied in Section 5. For a = 0, the system (2.12) is a planar
Hamiltonian system depending on a fixed parameter 1. For every n € (0, 2), it has a pair of saddle fixed points connected by a
pair of heteroclinic orbits that enclose a family of periodic orbits. For 0 < a < 1, it follows from geometric singular perturbation
theory [10,12] that the manifolds persist. Using adiabatic Melnikov function theory we determine the splitting distance between the
invariant manifolds and their intersection points.

This global geometric information is then used in Section 6 to track solutions on M 0 further forward to N = Nmax = A&max. It
follows that, on the cross section 7 = nmax in the A—B plane, M exhibits a highly complex structure; see Fig. 8. As an important
result, on the cross section 7 = nmax in the A—B plane, there are two families of transverse intersection points of the manifolds
MO and M, Hence, there exist two families of solutions on M 0 and M such that for each member of these families the A and
B coordinates are the same at npax (values different for each member, of course). The properties of these solutions are further
specified in Section 8. We note here that one of the main properties is that the A coordinates at &n,,x of the intersection points lie

exponentially close to zero for one family while they are O(a %) for the other family.

With the above analysis the proof of Theorem 2.1 is almost finished. The last step concerns the ¥ coordinates. In general, the i
coordinates of the solutions just identified need not coincide. In Section 9, we show that the interval of values of the 1 coordinates
of the relevant points on M overlaps the interval of values of the ¥ coordinates of the relevant points on M. Furthermore, we
prove that the derivative of the 1 coordinate with respect to d of points on M° is much larger than that same derivative for points
on M®°; see Fig. 10 for a sketch of the manifolds in the d— plane. Therefore, we can conclude that, for each member of the two
families identified above and for each a sufficiently small, there exists a unique d such that not only are the A and B coordinates of
the solutions on both manifolds the same but also their i coordinates are the same. Concluding, the above analysis shows that the
three-dimensional manifolds M° and M have two families of transverse intersection points in the A—B—y—£—d five-dimensional
phase space and, hence, that the locally unique, multi-bump solutions stated in Theorem 2.1 exist.

Remark 2.2. In the proofs throughout this article, the letter ¢ is used to denote various positive, O(1) constants. These constants
are local.

i o0 = V2
3. Tracking M° backward to & = ada
The behaviour of solutions of the NLS on M for & very large was already studied in [15,20,21]. The results can be extended
to the GL and are stated in the following theorem:

Theorem 3.1. Assume that 2 < d < 4 is fixed and that a is sufficiently small. Then for every & > % and A sufficiently small,

there is a unique solution to (2.9) that satisfies the boundary condition (2.11) and A(§) = A1.

The proof of this theorem is an application of the contraction mapping principle to a rescaled form of system (2.9). It is a
straightforward extension of Theorem 3.1 in [20]; therefore, we will not give it here, and instead we refer the reader to [20].

~2
as/a
the value of d. Hence, choosing A(&1) and d gives a locally unique solution that is a function of &. Thus, the manifold M*° of

solutions that satisfy the boundary condition is of dimension 3 in (A, B, ¥, &, d)-space.

Theorem 3.1 gives us a solution satisfying the boundary condition (2.11) that is characterised by its amplitude at & = and

3.1. Tracking M®° backward further to Emax = 2-va

a

V2
ay/a
Emax = 2—‘;/5. We extend the method used in [21] for the NLS to the GL. However, the extension of the results to the GL is not
straightforward and does lead to a different statement for ¢ at &nax; therefore, we do give this analysis here.

We denote the values of A, B, and ¢ at & = &pax by AJ° (Emax), B7° (Emax), and ¥ 3° (max). We will show that B3® (§max) lies

close to —a% in a C! manner (see Lemmas 3.2 and 3.5) and that wjo (Emax) lies close to _“gm‘”‘ (see Lemma 3.2). Moreover, for

In this section, we analyse the behaviour of the solutions on M as they are integrated backward further from & = to

these solutions, the interval of values that Ago(émax) can reach stretches to include the interval (0, a%]. In Fig. 3, a sketch of the
manifold M is given in the A—B plane.
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In the same way as in [15,20,21], we introduce a rescaling of Q for which the linearised equation (2.5) for Q becomes self-
adjoint. Let Q(§) = X(§)W(&), where X is chosen so that, after substitution in (1.3), the equation for W does not contain any
first-order derivatives (i.e., the linearised equation for W is self-adjoint). This gives X (§) = e 48 25 % and the following equation
for W:

. a2§2 ia 1 . ia azéz 1
(LﬂK@Wg+[—Z~—L—Ew—2y—Eﬂd—DM—3%HKa<E+—I~+Eﬂd—DM—3O]W
+ (1 +ibKa)e' " WPPw = 0. (3.1)

The linearised version of this equation reduces for 0 < a <« 1 and & > 1 to the parabolic cylinder equation

Wg+<i—~J>W=O. (3.2)

At¢ = % the type of Eq. (3.2) changes from elliptic for £ > % to hyperbolic for £ < % since the coefficient in front of the W-term
vanishes there.

For & > %, the two linearly independent solutions of (3.2) are given to leading order by

Wi :%‘%_%e%gz and W, :%‘%"‘%e%aézl

The higher order terms are small as long as £ > % and a < 1. Solution W, does not satisfy condition (2.7); hence, it is not the
solution that we are looking for (see Section 2). Instead, W; has the correct asymptotics at infinity; it does satisfy condition (2.7).

To determine approximations for ijo (émax) and 1//50 (émax), we study solutions of (3.2) close to the turning point to obtain an
estimate for the linearised equation (2.5). We denote these approximations by B;Olin (€max) and xpjohn (émax)- Then, we extend these
results to the full nonlinear equation (1.3) for Q; see Lemma 3.2.

Lemma 3.1. For d > 2 fixed and for a sufficiently small,

11
B;,o]in(gmax) =—a*+ Z\/E + hot,

a Smax

Vg Gin Emax) + is exponentially small.
This lemma follows from the explicit expression for the leading order solution of (3.2) and the relations between A, B, v, and W,

1-d
A=|0|=§7|W|,

B—R Wg 1—d
_C<W>+ 26 (33)
o (e _ a8

See Lemma 3.1 and Appendix A in [21] for a detailed proof.
Next, we extend these approximations to the solutions of the full equation (3.1), and hence, to Eq. (1.3).

Lemma 3.2. For d > 2 fixed and for a sufficiently small, there exist positive constants c1 and ¢, such that
1
Bgo(%.max) =—a* + Cl\/a and

w;o@max) = _@

5 + a2 (1 + b).

Proof. We introduce amplitude and phase coordinates associated with W,

3
W(E) = y(&)exp [1/0 ¢(X)dX} ; z2(§) = yy—é (3.4)

These are analogous to the coordinates A, B, and v associated with Q. Moreover, (3.3) and (3.4) imply the following relations
between B and z and between y and ¢:
-1 p
= — ,
2§ 3.5)

_ %
o=+



V. Rottschdfer / Physica D 237 (2008) 510-539 517

Eq. (3.1) may be written in the variables y, z, and ¢ as

Ye =¥z
1 a2§2 -
zs=—z22+¢2+4§—2(d—1)(d—3>+m[ — (=K — (1= b’ KDy
—%(d—w (3.6)
. a 1 a’K? a2§2 l—d 2
¢€—‘2¢”m[z<ff—z>+ > +K(1—T)—Ks y(1+b)]

We will compare the solutions of system (3.6) to the solutions of the linear equation for W obtained in Lemma 3.1. Let
2(6) = z(6) — 2(&) and (&) = (&) — ¢(&), where Z(£) and ¢(&) are the solutions of the linearised version of Eq. (3.1).
Note that in the amplitude and phase coordinates linearisation corresponds to setting y = 0, so the linearised system depends only
on z and ¢. The estimates for B and v/ in Lemma 3.1 imply that 7 = —at + 4—1‘ @ and ¢ is exponentially small to leading order at

& = Emax. Here we will show that |Z| < ad_% < 4/a and that |q§| <o+ b)ad_% for & > &pnax. Combining these two results, we

find approximations for z and ¢. Finally, via (3.5), this leads to the desired approximations for B and .
The system (3.6) can be written in terms of y, Z, and ¢ as

Ye = YT+ y2
N _ - A $2 -2 1_}’“21(25174 2
AN —22_ 2¢ z n 1 +a2K?2 y 3.7)
d:) ~\—20 —2z)\o ogs_ UHDKa o |7 '
1 +a2k2°  °

The z- and qAﬁ—equations have been written in this way to show the structure of the 2 x 2-matrix, whose behaviour plays an important

role in the analysis.
4w
For & > % we have that 7 ~ —32;”1 < 0 (because z = Re d\év‘v | from the definition of the polar coordinates (3.4) and because
we evaluate along W1). We need that z < 0 for every £ > &pax. For £ > 1 and a < 1, the solutions to (3.2) can be used to calculate

the sign of z. A solution to (3.2) can be written as

W=KW (l, ﬁg) + L <1, —ﬁé) :
a 2 a

4w
where the functions on the right hand side are Weber parabolic functions, see [1], and K is a constant. Computation of 7 = Re %
shows thatz < Qat& = % (for a <« 1), and 7 decreases monotonically and algebraically to O as & increases, so 7 < 0 for & > &pax.

_ . _ _1 - . .
Define & < & = ~2 by z(§2) = —2a. Such a & exists because z ~ —a~ % at {max, Z increases monotonically for & > &pax,

aa
and 7 ~ —(;ﬁ‘%)cﬁ/2 at &). It remains to show that, for y(£1) in some appropriate range, |Z| < +/a and Ip| < ca(1 + b)ad’% for

S 2 %-max~
To show this, we need the following

Lemma 3.3. We denote by V the space of solutions to (3.7) that satisfy

a. (v, %, ¢) is exponentially small for & < & < &,
b Iyl <2475, [2] < V/a, and || < c2(1 +b)a’"? for & = Emax.

Then for y(&1) chosen appropriately, sufficiently small, the solutions remain in this space.

The proof of this lemma is given in Appendix A, and it is based on an argument that uses continuous induction. The fact that
solutions satisfy the first property of the space can be proved by showing that the two following statements hold.

First, we show that if y(&) is exponentially small for & > &;, then Z and qAS are exponentially small for & > &,, provided that they
are already this small at & = &. Vice versa, we need to show that if Z is exponentially small for & > &, and y is exponentially small
at &1, then for y(£1) chosen small, y is also exponentially small for £ > &,. The same type of argument can be used to show that the
solutions also satisfy property b.

Applying this lemma, we can finish the proof of Lemma 3.2. We choose y(£;1) so that Lemma 3.3 is satisfied. Then it follows

1

immediately that |¢A5| <c(1+b)a% "7 and 2| < Ja forevery & > Epax. U

In the following lemma, we estimate A5 (§max)-
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Lemma 3.4. For d > 2 fixed and for a sufficiently small, the range of A1 = A( ) can be chosen such that, as a function of Ay,
A (Emax) is onto (0, a¥].
Proof. We use the relation A = S% v, between y and A that follows from the relation between Q and W. The proof of Lemma 3.2

shows that one may choose the range of y(&;) such that y < 2a_% for all £ > &n«. In the proof of Lemma 3.2, we chose y(&1) in an
interval such that y (&) is exponentially small. For the largest value of y(£1) we know that y(§max) > «/za*% . Thus AZ® (max) > a%

1=d
since £m3 > \/g .

We conclude this section with a lemma extending the C 0 closeness of ijo (Emax) to —a'/% in the A-B plane to C I closeness.
This result will then be used below in Section 6 to establish the transversality of M° and M.

Lemma 3.5. For d > 2 fixed, a sufficiently small, and for each Ay in the range of A\ values found in Lemma 3.4, the map
A1 = (AT (Emax> A1), BE (Emax, A1)
has a slope that is less than ca’ in the A-B plane for some ¢ > 0.

Proof. Define Z = a Y = a T . and ¥ = A d’ . Then Z, Y, and ¥ satisfy the variational equations
1’

=Z+2)Y+yZ,

2p 0 — 227 -2 TP iy
B D@2
ve) — \-2¢ —2z)\¥ . (1+b)Ka '
207 — 250 —2—— ¢!y
¢ z T 22K2 § Yy
Since Y stays bounded away from 0, we may look at the quantities Z/Y and ¥ / Y. These satisfy the equations

7 Y2 2 ba2K2 1— d
((Z/Y)g)_<—32—32 2<;3+2¢3)<Z/Y)_ YZIY) 42k
(U/Y)e)  \—2¢—24 —-3z7-33)\¥/Y 14+ b)K
g P TR (Z/Y)(W/Y>+z(++—2)Kjgl dy

Integrating backward to &pax and using an appropriate integrating factor similar to that in the proof of Lemma 3.3, we have

that Z/Y can be estimated by ca_%é 1-d yl1 +b“2 [fz (since Z dominates z and 7 ~ —a~% and negative for £ > &n,4) and
W)Y by ca 3E!" dy(l]j:bz)llgf Also, we know thaty < 2a~%. Therefore, (3Z )/(a ) = Z/Y < cg!~ dya_’lH_b“zIf2 , and so

2 4d-17
(aa/fl )/(aAl) <ca 45 =z yll+b“21§(2 <ca ¥ <K cas for some positive constant c. [

Remark 3.1. More generally, we can pull back M* to a point § = , where a 3 <L b K a$. The choice of b = JJa, used
to obtain &pax, was made to simplify the analysis. Further details are glven in Remark 6.1, after the necessary analysis of M is
presented.

4. The manifold M satisfying the initial conditions

In this section, we will study solutions of the system (2.9) that satisfy the initial conditions (2.10). Moreover, we choose A (0)
close to zero but positive. We construct a manifold M° of such solutions and track it forward to & = &,. We denote the values of
A,Band ¢y at§ = &, by Ag &p), Bg(éh) and wg (&p). We show that Bg(é;,) lies in an interval where B = 1 to leading order. Also,
we show that there exists an interval of initial conditions for A such that A at £ = &, overlaps the interval (0, ca]. Finally, we will
prove that, at £ = &, the image of the curve of these solutions lies horizontally in the (A, B)-plane.

The solutions that we construct here lie close to the zero solution of (1.6). Therefore, we first study the solutions to Eq. (1.6) and
then we use the fact that the solutions of system (2.9) lie close to Eq. (1.6).

4.1. The estimates on Bg(éb)

We want to study solutions that lie close to a solution of Eq. (1.6); therefore, we analyse this equation first and write it as a
first-order system. We introduce 7 = % so that (1.6) becomes

R: = RT

Te=——T-T @1

—R*+1.



V. Rottschdfer / Physica D 237 (2008) 510-539 519

VA

B MY

ca

Fig. 4. A sketch of the manifold M 0'in the A-B plane at £ = &;,.

Note that this system is identical to (2.9) if we set a = 0 and ¢ = 0. For large £, 1 <« & < &, (4.1) has a critical point located to
leading order at R = 0, T = 1. This point is a saddle, and therefore solutions with initial conditions near the zero solution will go
towards and then diverge from this solution for large &.

From the asymptotics, it follows that a solution to (2.9) that satisfies the initial conditions (2.10) has a yr-component that remains
closeto Y = —%. Therefore, we introduce ¢ = v + % Note that this is the same ¢ as was used in the previous section; however,

the reason why it is used here is different. The system (2.9) then becomes

Ag = AB
_1-d 2 a’g? 2 1 272\ 42 a’g? 2

Bg—TB—B +T+¢ —aé¢+l+a—2K2{1—(l—baK)A +(ZE¢—T+CI K(1+EB)} (42)
_1=d B tasn+ Y a 1—EB+K|1 8 A

¢S—T¢_¢ +aé +7+m{— —§B+ |:+a€¢—T—(+) ]}

In this section, we prove that solutions starting in B(0) = 0, ¢(0) = 0 and A(0) € (0, ¢c,a™ ], m, > 0, will evolve into a curve
at & = &, where 0 < A(&) < ca™, m > 0, and B is close to 1; see Fig. 4. We start by showing that the statement holds when
setting ¢ = a = 0in (4.2).

Hence, we first show that it is true for R and T in (4.1) and then extend this result to the full (A, B, ¢)-system. For this second
step, we prove that ¢ remains small for 0 < & < &, and then use that (4.2) is a small perturbation of (4.1).

Lemma 4.1. There exist constants 0 < k3 < ka < kp, such that solutions that satisfy R(0) € (0, c,a™ ], T(0) =0 evolve at § = &
into a curve with

d—1 d—1
- cTE) <l ——— <]
2k log (1) 2kylog (1)
and 0 < R(&p) < ca™ k0 = ca™. Moreover, for m, — ky = m > 0, T > 0and Rg > Oforall0 <& <&,

The proof of this lemma is given in Appendix B.
Now, we will extend the above results to A and B. For that we want to bound ¢ at & = &. In order to establish such a bound, we
need:

Lemma 4.2. A solution that satisfies the initial conditions B(0) = 0 and ¢(0) =0, i.e. ¥ (0) = 0, can be represented as
ax
¢(x) = ¥x) + 5

_ ax'~4 /x A2y d—2+2K +a’*K?d
A2(x)(1 +a2K?) Jo 2

— aK(b+ )A%*(y) +a*Ky (¢ - %) + a3K2yB(y)] dy

32 1-d X
xa’K ax 4[d—-24+2K ay
= A2y | — =2 GK (b + 1)A? K - =) |d
2(1+a2K2)+A2(x)(1+a2K2)/0 My [ 3 aK(b+1)A(y)+a y(¢ 2) y
xa’K? ax'—4

= I,
2(1 +a?K?) * AZ(x)(1 + a?K?)

where

1) = /O ROIA2()y '~ dy
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R(y) = _T — Kb+ DA% + Kay (¢ — %) .

The proof of this lemma is given in Appendix C. Using the explicit expression (4.3) for ¢, we can now approximate ¢ at§ = &,
as follows:

Lemma 4.3. For B(§) > 0 (so that Ag > 0) and A(§) < ¢ for § < &, there exists a constant C > 0 such that |¢(§)| < Ca? for
every0 < p<land(Q <& <&,

Proof. We will bound the expression / in Eq. (4.3) by studying the different integrals separately. Since A and x¢~! are both
increasing functions on 0 < y < & < &, it follows that

& 3 Ed
/ A?(ox4dx < Az(g)f x4 ldx = A% (6)>
0 0 d

and similarly
%-d—i-Z
d+2

& d S
/ A*(ox4ldx < A4(§)% and / AZ(x0)x?Tldx < A%(§)
0 0

The part in / which contains a term ¢ can be estimated by using continuous induction. Assuming |¢(x)| < Ca? for0 < x < &, we
can bound the integral as follows:

£ £
V A?(x)x?pdx| < Ca”/ A?(x)x%dx < Cl—”pgd“Az(g).
0 0 d+1
Hence
5 oald=2+2K b+1 , Cia? a§ 2eypd
[1(5)| < A°(5)§ [ ¥ +Kd+2A ($)+Ka$<d+1+2(d+2))]<CA 5)§°,

where for the second inequality we use the fact that a§ < a&, = akj log % < 1 together with the assumption that A(§) < c.
Substituting this bound into (4.3), we find that

ag
P < 1

a’K?
|: > ~|—C]<Ca$<<Ca”

for0 < p < 1,since §, < a= P! forevery p; > 0. [

As alast step we will show that the results as stated in Lemma 4.1 also hold for A and B.

Lemma 4.4. There exist constants ki, ko > 0 such that for solutions with A(0) € (0, c,a”™ ], B(0) = 0 and ¢ (0) = 0 the following
holds:
! d—1 B < 1 d—1
-~ < ) <1l——
2k log (1) 2k; log (1)

and 0 < A&p) < cra™ % = c.a™. Furthermore, form =m, —k, >0, Ag >0,Bg >0forall0 <& <&,

<1,

Proof. We use the fact that A and B lie close to R and 7. Using that B < 1, it follows analogously to the estimate for R that
0 < A(&p) < c,a™ % Since a and ¢ are small, the equations for A and B are small perturbations of the equations for R and T.
Hence, B(§p) also lies, in a similar way to 7', close to B = 1. Now, we prove that on the interval at § = &, B > 0. The extra terms
that the equation for B in (4.2) contains compared to the equation for T¢ are given by

612 gz
El=¢* + TR |:K2(1 +b)A? —aK?E¢p + K(1 +£B) + (a*K* — Do - K2i| .

3 . .
We know that aé¢ < a?, and since & < &, a’£% < aZ; hence, |E1| < 1% Therefore, this term is at £ = &, much smaller than
og

the other terms which are of order — 7. Hence, B > 0at§ =§,. U

log
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Remark 4.1. In Section 6 we need that Ag (&p) stretches out up to ca. More specifically, Ag (&p) must overlap the interval (0, ca]
including exponentially small terms. Therefore, we choose m < 1 which leads together with the fact that Ag > Oforall 0 < § < &,
to the required right boundary. It also follows from the fact that

AEp) = AO)elo” BOY < A0)aH»

that if A(0) is exponentially small, this is also true for A(&p).
4.2. The slope in the (A, B)-plane

In this section, we show that, at £ = &, the image of the curve of initial conditions [y lies horizontally. We use the variational
equations of system (4.2):

As = BA+ AB
) 1—d 4 ) I n 1 22 A n 2 )
By = — =B —2BB+20¢ —at¢ + 1y (<201 —ba’K*)AA + akd + a*KEB)

A 1—-d . A A A a A A "
s = Tq) —2¢B —2B¢ +a&B + m(—éB + Kla§¢ —2(1 + D)AA)),

where A, B and q’3 are the tangent vectors. As in Lemma 3.5 we compute the slope of the curve by using projectivised quantities.

We define u = £ and v = %. The functions u and v satisfy

A
L=d g 4y 9KE ], 2 K% 2 (- baPKY)A
Ug = u - —Au+ ———— v - - —ba
§ £ 14+ a2K? 1 +a?K? 1 +a%K? 44
1—d a’KE 3K (1 +bK '
R A Erel R e el I ey ea

The slope that we are interested in is represented by the value of u at £ = &,. We will show that u is small at £ = &, so that the
image of Iy lies approximately horizontal in the (A, B)-plane. This is stated in

Lemma 4.5. For a sufficiently small and d > 2, the image of the trajectories produced in Lemma 4.4 has, in the (A, B)-plane, a
slope that is less than ca' for some ¢ > 0and 0 <[ < 1.

The proof of this lemma will be given in Appendix C.1. The results of this lemma imply that, in the (A, B)-plane, the slope of the
graph is smaller than ca’ where 0 < [ < 1 and, hence, it lies approximately horizontally; see Fig. 4.

5. Structure of the invariant manifolds of system (2.12)

In this section, we study the system (2.12) for n > nmin = a&, and we establish an asymptotic approximation for the position of
My at n = Nmax = a&max- Along the lines of [21] we start by studying the geometry of system (2.12) for @ = 0 and then apply the
Fenichel theory to obtain the relevant information about the geometry for 0 < a < 1. Finally, by introducing an adiabatic Melnikov
function, we obtain a more detailed view of the structure of the invariant manifolds of system (2.12) for 0 < a < 1.

5.1. Geometry of the system (2.12) witha = 0

For a = 0, the geometry of the system (2.12) is the same as in the analysis of the NLS equation; see [21]. Here we summarise.
When a = 0, there exist three curves of fixed points,

2

n
I'Y=1(A,B,n))|A=0,B=+ L= 77 Mmin <71 < max (5.1)

2
/ n
In=43(A,B,n)|A= 1_ZaB:Oa77min<77<77max ) (5.2)

see Fig. 5(a). The curves FjOE are normally hyperbolic manifolds, since they are the unions of saddle fixed points (A, B) =

and

0, £4/1— "Tz) for every fixed n; see Fig. 5(a). These saddles are connected by a heteroclinic orbit for every n € (9min, Pmax)-
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(b)

[0}

By

Vaa A

For every fixed n, there exists a one-parameter family of periodic orbits in the domain inside the heteroclinic orbit. This family

limits on the centre fixed point (A, B) = (A¢r, 0) = (/1 — Z—z, 0), see Fig. 5(b), and the curve Iy shown in Fig. 5(a) is the union
of these centres.
The leading part of system (2.12) can be written as the Duffing equation

772
Age = A (1 -5 A2> , (5.3)

and hence, explicit expressions can be given for the heteroclinic and periodic orbits, see [11], for example. Note that the variable B
used here is the logarithmic derivative of A; see (2.8). For every nmin < 17 < 1max, the heteroclinic orbit is given by

(Ag(&). Bo(¥)) = [v2a sech(a), —a tanh(a)], (5.4)

/ 2 . . .. . .
where ¢ = /1 — "T. We denote the manifold that consists of all these heteroclinic connections with nmin < 1 < max by W. The
periodic solutions are given by

AB (&) = V2Bdn(BE, k), (5.5)
sn(BE, k)en(BE, k)
dn(B&, k)

B(k)(é‘) — —kzﬂ (5.6)

o
A/ 2—k2
solution. The period of such a solution is given by To(k) = Z%k), where K (k) is the complete elliptic integral of the first kind.
Finally, for system (2.12) with a = 0, there exist two integrals:

where 8 = and 0 < k < 1. Here, k = 0 corresponds to the centre point (A, B) = (/1 — "TZ, 0) and k = 1 to the heteroclinic

1 1 n? 1
=-A%B2 — —[1- =) A%24 A% 7
1=5 2( 4) T3 .7)
K2 =1

5.2. Persistence of the invariant manifolds for 0 < a < 1 and their transverse intersections

Since the two curves of critical points Fg are normally hyperbolic, we can apply the Fenichel theory [10,12]. Therefore, we
find that for 0 < a < 1 and 7 restricted to (9min, Mmax), the Fﬁ persist as slow manifolds I and I, which lie O(a) close to
F_? and I'°, respectively. These manifolds must also still lie in the plane {A = 0}, since this remains an invariant plane for a # 0.
Furthermore, it follows from the Fenichel theory that the manifolds Iy and I'_ have stable and unstable manifolds O(a) close to
those of the unperturbed system. The manifolds no longer coincide as they did for a = 0. We denote the component of the unstable
manifold of I} that lies O(a) close to the manifold W by W*([';.), and the component of the stable manifold of I"_ that lies O(a)
close to the manifold YW by W*(I_).

Now, we study the behaviour of the unstable manifold of I}, W*([}), and the stable manifold of I, W¥(I_), for0 < a < 1.
The Melnikov method for slowly varying systems, see [17,22], yields an expression for the distance between W* (") and W¥(I_)
as a function of 7. In fact, denoting the first intersection of W* (1) with the set {B = 0, A > 0} by P(["}), and similarly the first
intersection of W¥(I'_) with the same set by P~Y(I"_), we find the distance between P(I'y) and P-NI).
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Remark 5.1. The Fenichel and Melnikov theorems may be used directly to obtain the desired results for all n € (0, 2). Here, we
are also interested in the behaviour of W*(I"y) and W*(I'_) up to nmax = 2 — +/a and we note that after a suitable rescaling (the
eigenvalues are of size O(4/a) but the perturbation is of size O(a)) the Fenichel and Melnikov theories can also be applied up to

"max -

To apply the Melnikov method, we transform system (2.12) by introducing C = A B so that it is explicitly divergence free:

A =C
n? 2 1—-d
Cg:A(l—Z—A>+aC<—+Kn>+hot (5.8)
n
ng = a.

To leading order, system (5.8) is the Duffing equation and in this representation, the plane B = 0 corresponds to the plane C = 0.
Compared to the corresponding system that was obtained for the NLS equation in [21], this system contains an extra term a K nC.
Along the same lines as in [21], we compute the Melnikov function.
For any no such that nmin < 170 < 7max, we define Al and A% (which depend on 1) as the intersection points of orbits on W* (I'})
and W*(I.), respectively, with C = 0 on {n = no}. The solutions y}(§) = (A4(&), C; (&), n4(&)) in W*(Iy) and y; (&) =
(A3(&), C5(&), n5(§)) in WS (') for the perturbed system (5.8) are determined by the initial condition y,;** (§) = (Ag™* (§), 0, no)-

2
And y9(&) = (Ao(§), Co(€), no) is the heteroclinic solution of the unperturbed system with yo(0) = (1/ 2(1 — %"), 0, no). Here Ag
and Cy are given explicitly by (5.4), where Cy = AgBp. We define the following &-dependent distance function:

0
(ALE) — Ay(€) Co®)

—cuer—cuen) \PO(IT G 7A@

From this &£-dependent distance function, we derive the adiabatic Melnikov function in the usual way for slowly varying systems,
see [22], as

(o8]

A, no) =

00 0 0 an Co2
A0, n) = 1-d — YA dg.
©.m /,OO Co (T + Kn) * (—ng) da Ao (1 - "Z - A(%) §

Here %(g—a) = 1and g—Z = 0 for & = 0 and hence % = £. Computing the integrals using (5.4) and Co = A By, we find

o0 1—-d
A0, n) = / - I:C(% <T + Kﬂ) - gAOCOSjI d§

—00

~2p B (-2

The function A(0, ) measures the distance between P(I'y) and P~!(I"_) to O(a). Applying the Implicit Function Theorem, a
simple zero n; of A(0, n) defines a transversal intersection point of P(/’;) and P~ YI'_)at B =0.
We analyse the zeros of the Melnikov function. Setting A(0, n) = 0 leads to

n=2 or Kn*— @K +d+2)n*+4d—1)=0.

However, since A is not defined at n = 2, solutions of the fourth-order equation are the only possible candidates for a zero of the
Melnikov function. Note that solutions have to be positive and satisfy 0 < 7min < 7 < max < 2. The solutions of this equation are
given by the positive solutions of

1
=iy = ﬁ<4K+d+2i\/(4K+d~|—2)2—16K(d—1)).

For d < 4, the expression under the square root is positive, leading to two possible (positive) solutions. When d > 2, we find that
ky < 0for K < Oand x4 > 4 for K > 0, and the extra restriction 0 < n < 2 can only be satisfied by n_ = ,/k_.
Further analysis shows that 0 < x_ < 4 is satisfied for all K. Moreover, k_ is not defined for K = 0 and to leading order

K— = % — 0as K > ooand k_ = 4 + % — 4 as K — —oo to leading order. Using these asymptotic expansions, we

find restrictions on K since the zero n_ needs to lie between nmin = akp log % and Nmax = 2 — +/a. This gives the leading order
restriction
3 K d—1 (5.9)
——— <K < ——. .
4ﬁ nlznin
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(c)
W*(Ty) B

(a) (b)

M‘“‘(F_)

W*(T4)

(d)

Wou(Cs)

W)

Fig. 6. A sequence of sketches of the manifolds W (I"y) (dotted curve) and W¥(I"~) (solid curve) in the A—B plane as 7 increases from 1y to 7max. Their
positions are determined in Section 5. (a) At n = nmin, W*(I'-) is curled up inside W*(I'}) and starts to pull back as 1 increases. As long as nmin < 7 < Nzero»
WH(I'+) lies ‘outside’ W¥(I'-) at B = 0. (b) The smaller the value of a, the more the tongue winds around the centre point, and hence in the sketch we only
show the tip of the tongue and not all the spirals. (¢) For = nzer0, the two manifolds intersect at B = 0. Increasing n further (d), W (I"y) starts to curl up inside
W*(I'~) up to nmax (€) where for nzero < 17 < max, W*(I'+) lies ‘inside” W¥(I'—) at B = 0.

However, this property always holds since K is chosen to be positive and g ! > 1, whereas K = O(1). Thus, the two

(log ;)?
manifolds intersect transversely in a point that is O(a) close to (1/2(1 — "T"z), 0, n;) with n; = /k—. We label the n value of the
actual intersection point by 1 = 1),er0; see Fig. 6(c).

The adiabatic Melnikov function also gives the orientation of W (1) with respect to W¥(I_) at B = 0. We find that
A©,n) > 0 for nmin < 1 < Ngero; and, thus, W*(I'y) lies ‘outside’ WS(I'-), i.e., pi > py for points (p1,0,n) € P(I})
and (p2,0,n) € P~1(I"_); see Fig. 6(a) and (b). Similarly, A(0, n) < 0 for nzero < 7 < Nmax; and, therefore, W* (1) lies ‘inside’
WS(I'-),i.e., p1 < p2 for points (p1,0,n) € P(I'y) and (p2,0,n) € P~(I_); see Fig. 6(d) and (e).

5.3. The locations of segments of W"(I'y.) and W*(I'~) on constant n slices

In this section, we determine the locations of long segments of the manifolds W*(I'y) and W¥(I'_) on n = constant planes
for nmin < N < 7Mmax; see Fig. 6. Since the results of the previous section are similar to the ones in [21], only the position of
the intersection point differs; the analysis of [21] can be adjusted and applied here. This analysis makes use of the fact that the
manifolds are smooth, and of the Exchange Lemma [13,14] from geometric singular perturbation theory. We will only state the
results here and refer the reader to Section 6 of [21] for details of the analysis.

In summary, we find that the manifolds W*(I"y) and W*(I'_) behave as in Fig. 6 when 7 is varied from npin t0 fmax- As 1
increases from the value corresponding to the slice shown in Fig. 6(d) to that corresponding to Fig. 6(e), this segment of W*(I})
curls up inside W¥(I'_) in a tongue-like way; see Fig. 6(e).

Moreover, there is a segment of W*(/'_) that curls up inside W*(I'}.) for nmin < 1 < Nzero in a tongue-like way; see Fig. 6(a).
At 1 = Nmin, W (I'2) is curled up the most, and as 7 is increased the tongue that is formed by W*(I_) inside W*([’}) starts to
retract. This continues up to 1 = 1450, Where the manifolds intersect at the B-axis; see Fig. 6(c).

The extent to which W*(I'y) and W¥(I"—) curl up inside themselves depends on the magnitude of a. A smaller value of a results
in longer tongue structures of W*¥(I'_) at = nmin and of W*(I'}) at n = Nmax-

Detailed behaviour of W¥(I'_) and W*(Iy) that is needed in the analysis in Section 6 also can be concluded. Near npax, the
segment of W*(I'y) which is parallel to the B-axis and closest to it lies exponentially close to the B-axis. There, the width of the
tongue is O(a). And hence, the right boundary of the tongue is O(a) away from the B-axis. Moreover, the segment of W*(/_)
that lies closest to the B-axis, and that forms the left boundary of the tongue there, is exponentially close to the B-axis at 7 = Nmin.
Finally, the right boundary of the tongue there is O(a) away from the B-axis.
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Fig. 7. The transformation of I, as 7 is increased from npin to0 7max. During this process the point py remains on W*(I"y.), and the point p remains on W*(I"_).
(a) At n = Nin, Iy is an interval approximately perpendicular to the B-axis. The smaller the value of a, the more the tongue winds around the centre point, and
hence in the sketch we only denote the tip of the tongue and not all the spirals. ((b)-(d)) A—B planes at different values of 7 in Step I. I;; curls up as W (I"y) pulls
back, where frame (d) is a sketch for i = 1zer0. ((€), () In step II, W¥(I'3.) curls up in itself like a tongue. (f) At n = nmax, I has formed a tongue structure as a
result of the fact that W (I';.) curls up.

6. Tracking M from &, to Emay (i.e., from §min to Hmax) and the intersections of M® and M at pmayx

In this section, we track the manifold M( from 1y to Nmax. It will be useful to define n = constant slices of M. Following [21]
we denote these by I;,. The location of I;, , was already determined in Section 4; [, . is a nearly horizontal line segment that
stretches out over the interval (0, ca™] in the A coordinate and with B = 1 to leading order, as was first shown in Fig. 4 and as is
shown again here — now with the manifolds — in Fig. 7(a).

In order to show that [, . does indeed intersect with W¥(/'_) as shown in Fig. 7(a), we first recall from Lemma 4.4 that on

tmins B < 1 — 2kdl_1 - for some constant k; > 0. Secondly, we determine the value of B at the intersection point of W*(I'}) with
21og 4

I

2
the B-axis. For = nmin = akj log %, this value of B is givenby B =a =+/1 — 77,21“ =1- %azkg log? % to leading order, using
that nmin < 1. Combining this with the fact that the tongues are of O(a) width (Section 5.3), we conclude that the value of B on
WS (I'-) close to the upper saddle point is to leading order givenby B = 1 — %azk}% log? al —ca = 1 — ca. This value of B is larger

d—1 L
Yrlog T ) so that the position of [,

than the maximum value of B on I, (whichis B =1 —

with respect to W¥(I'_) is indeed as

Nmin
indicated in Fig. 7(a).

Moreover, combining the fact that the A coordinate of I, ; stretches out over the interval (0, ca™] (it also contains exponentially
small terms), see Remark 4.1, with the fact that the tongue has O(a) width, we find that I,, . intersects W*(/'_) at least in the points
po and pj as shown in Fig. 7(a).

The points on 1, must respect the invariance properties of the manifolds W*(I'y) and W*(I_). First, points on I, that are also
on the manifold W*(I'_), e.g., the points pg and p; in Fig. 7(a), must remain on W*(I"_) for as long as it exists. And, orbits that do
not start on either W*(I"}) or W* (I'_) will never intersect these manifolds. Also, if we choose the left end point of 1, ; sufficiently
close to the B-axis, it will remain close to the B-axis when increasing n from 7min t0 7max since it takes (9(%) time to pass along
the saddle point.

We distinguish two steps in pulling I, forward; step I from 7 t0 7zero and step II from 1zero t0 Pmax. In step I, the tongue
structure of the manifold W* (1) retracts as illustrated in Fig. 6(a)-(c). As a result /;, becomes a curve that rolls up inside itself
(Fig. 7(d)) during this step.

In step II, W*(I'}) starts to curl up into itself like a tongue, as illustrated in Fig. 6(e). Since the positions of all the points on I;,
with respect to W*(I;) and W¥(I_) have to remain the same, ,, will also start to curl up into itself like a tongue; see Fig. 7(f).
The curve Iy, has the important properties that there are segments that are C I exponentially close to the B-axis (namely segments
containing the type L intersection points — one segment for each such point), and that there are other segments that are C' close to

Nmin
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Tmaz
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Fig. 8. A sketch of M°° and Iy at n = nmax in the A—B plane. At the points marked by a cross, the mgl and mlzl., k = 2 solutions are formed fori = 1, 2, 3. At

the points marked by a dot, the mzi and mi ., k = 4 solutions occur for i, j = 1, 2, 3. The existence of all of these intersection points is demonstrated in Section 6.
Note that only some of the intersection points that form a k = 4 solution are sketched here, to maintain clarity in this figure.

W*(I';+) (namely one segment for each of — and containing — the intersection points of type R); see Fig. 8. Hence, the intersections
of I, with M are all transverse.

The structure as sketched in Fig. 8 is more complicated than the sketch of I, given in Fig. 7(f). When constructing Fig. 8, we
took into account that both W*¥(I_) at npin and W*(I}) at nmax, for smaller values of a, wind around in the (A, B)-plane more
than is sketched in Fig. 7(a) and (f). The fact that at nyn, W* (/') has made more excursions around the centre point implies that
there exist more intersection points of W*(I_) and I, , than are given in Fig. 7(a) (and leads to a different location of one of
the end-points of the curve). Then, carefully tracking I;, as 7 increases from 7y, and also taking into account that W* (I'y) winds
around the centre point more than is sketched in Fig. 7(f) leads to the sketch in Fig. 8.

On MY at &max we have the following estimates of B and A, where we denote these values by BO(Smax) and A° (Emax):

1 3 1 3
Lemma 6.1. For points on the curve Iy at § = Emay, the values of BO(SmaX) are mapped onto the interval (—a#% + %aﬁ, as — %az).

The proof of this lemma uses the fact that the solutions lie O(a) close to the heteroclinic orbit (5.4) of the unperturbed system

2 2 3
where its B value varies between —/ 1 — '7“;% and (/1 — "‘j‘% = a%,/l — }M/E —af — %a% + hot. See the proof of Lemma 7.1

in [21] for details.
1
Combining this result with the estimate obtained in Lemma 3.2, stating B[‘JX’ (émax) = —a?* + c1+/a, one finds that there are

solutions on M? and M such that the B coordinates of these solutions overlap at &max.
We also have the following estimate for AO(Smax):

Lemma 6.2. The intersection points of the curve I, and the line BJ®(§max) = _at + c14/a can be split into two groups. One
group of points lies close to the heteroclinic orbit (5.4) of the unperturbed problem, (2.12) with a = 0 and 1 = nmax. For these

3 241 5
points, Ao(émax) =2./ciad — legag + hot, and we label these as points of type R. For the other intersection points, Ao(émax)

is exponentially small, and we label them as points of type L. Hence, the A coordinates of all intersection points lie in the interval
3
0, 2./c1a’).

In the proof of this lemma it is again used that solutions of type R lie close to the heteroclinic orbit (5.4) of the unperturbed problem,
(2.12) with @ = 0 and n = nmax. Details of the proof can be found in the proof of Lemma 7.2 in [21].
Hence, there are solutions on M° and M for which the A coordinates coincide at nmax, since we showed in Lemma 3.4 that

Af;o (Emax) 1s onto (0, a%] (including the exponentially small terms) as a function of A1 = A(%).

Therefore, we find that there are solutions on MY and M for which the A and B coordinates at Emax are the same. Moreover,
the manifolds M° and M intersect transversely in the A—B plane at £ = &pax.
The above results are almost enough to prove Theorem 2.1. There are three outstanding issues. First, we need to show that the

assumption on ¢ that we made above, namely that |¢| < a2 for & < &max., 1s satisfied. This is proven in Section 7. Second, we need
to extract some more quantitative information about the full solutions that lie in the transverse intersections of M 0 and M, such
as locations of local maxima and distances between them, as stated in the theorem. This is done in Section 8. Third, while solutions
can be chosen so that the A and B coordinates are the same at £ = &y, it is not necessarily the case that the i coordinates of
these solutions also agree. Therefore, in Section 9, we analyse the dynamics of the iy coordinate. We show that for each of the
distinct intersection points found above there is a locally unique d such that the { coordinates also coincide. That completes the
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proof of the desired result that the three-dimensional manifolds M° and M have two families of transverse intersection points
in the A—-B——£—d, extended, five-dimensional phase space and, hence, that the locally unique, multi-bump solutions claimed in
Theorem 2.1 exist, with the properties stated there.

Remark 6.1. As was already noted in Remark 3.1, we can use a more general setting and pull back M* to a point § = 2;—b where

a3 Lb K a3 . This can be done as follows: at n = 2— b, the constant 1 slice of M lies exponentially close to the heteroclinic orbit
that exists for @ = 0. Thus, to make sure that M° and M intersect, we must have that the projection of M at £ = &pay lies within

2
this heteroclinic orbit. This is satisfied when BJ°(§max) > —/1 — n‘ﬁi and this leads to the condition b < a%. The a%-boundary
is needed to insure that the higher order terms in B(n = 2 — b) are really of higher order. A different choice of nmax would of course
also influence other estimates, for example Lemma 6.2 concerning the estimates of A at & = &, in the multi-bump region.

7. The bound on ¢

In the foregoing tracking analysis, we assumed that |¢| < a% for & < &nmax so that system (2.12) indeed contains the leading
order terms of (2.9). We now turn to proving this statement. The explicit expression (4.3) for ¢ obtained in Lemma 4.2 enables us
to approximate ¢ for & < &pa as follows:

Lemma 7.1. For the values of d, K, b such that there exist constants ¢ > 0 and | > % with

_ | 5 d—2+2K 5 Kaly? y
A2(8) ’/éb A [T —KeHDAT) = }dy <ca 3 (7.1)

for every &, < & < &max, there exists a positive constant ¢y such that

$) < crat < cra?,
where || = min(%, )
The proof of this lemma is given in Appendix D, and is based on continuous induction.

Now, we can finally choose the value of k. In Remark 4.1 and the proof of Lemma 7.1 we made the following assumptions on
the relation between kj, and m,:
3

—<m=m;, —kp < 1.

In the remaining part of this article we do not need to assume anything else for kp; therefore, we choose kj; and m, such that the
above holds.

In Lemma 7.1, we assumed that the coefficients d, a, K and b satisfy the restriction (7.1) where the solution still occurs in the
expression. Here, we analyse restriction (7.1) and study which relation between d, a, K and b has to be satisfied in order for (7.1)
to hold. We determine bounds of the integrals to obtain a relation between the coefficients which leads to

Lemma 7.2. Assumption (7.1) in Lemma 7.1 holds as long as there exist constants cy, ¢z, c,¢ > 0, ¢3, and | > % such that
le1(d —2) — 2K + ¢3b] < ca~iHe 4, (1.2)

For b = 0 in the case of the k = 2 solution, the above relation reduces to

d—2 5 8./2 s
K’ V2 —iHe— % (7.3)

The proof of this lemma is given in Appendix E. We use the fact that the solutions lie close to the heteroclinic orbit, in order to
bound the integral in (7.1).

Remark 7.1. It is noted in the proof of this lemma that several, but not all, of the solutions of Theorem 2.1 still exist in the case
where relation (7.2) does not hold, but when instead

lci(d —2) — 2K + c3b| < ca't, (7.4)

where [ = min{%, —;31 + 1 4 2mp} and A(&p) = cpa™, is satisfied. Solutions for which A(&), and hence A(0), is exponentially
small can no longer be constructed but the other solutions for which A(§5) = cpa™? can. Careful study of the construction of I, at
1 = Nmax implies that the solutions corresponding to the intersection points mgl, mlzz, m123, mfu, m£3 and the solutions with k > 6
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Fig. 9. A sketch of the different types of k = 2 solutions. (a) The solution of type R created at mgl. (b) The three solutions of type L, which are exponentially close
to each other and hence indistinguishable in this sketch, correspond to the three intersection points mlzl., i=1,2,3.

(k even) that are formed from these solutions no longer exist. However, the other solutions still do. Hence, on changing condition
(7.2)—(7.4) only some of the solutions in Theorem 2.1 can be constructed. Although not all of the solutions in the theorem are found,
for every even k, there do still exist solutions with k£ maxima.

8. The intersections of M and M°° and the multi-bump solutions

In Lemma 6.2, we showed that the intersection points of M? and M can be split into two types, L and R. We labelled the
intersection points mf - and m;,, where i, j € N, corresponding to points of type L and R, respectively, with the superscript
corresponding to the type of the intersection point and with the index i denoting the number of maxima of the solution on the real
line.

The number of maxima of a solution is determined by the number of times /;, winds around the centre point in the A—B plane as
1 increases from 7min t0 Nmax. Each time that /,, crosses the A-axis close to the heteroclinic orbit, an extra maximum is added. Thus,
by carefully keeping track of the number of these crossings, one can determine the number of maxima of a solution corresponding
to an intersection point. A k = n solution consists of » maxima on the whole real line, and hence % maxima for & > 0; the values
of n where these maxima occur are all smaller than 7y,x.

8.1. The k = 2 solutions

We will start by describing the k = 2 solutions that correspond to the four intersection points labelled m3,, mél, mlzz, ml23 in

Fig. 8. We do this by keeping track of I, as n increases from nmin 0 Nmax.

There is a qualitative difference between the solution that is constructed at m’, and the ones at the points ml2 ;- This difference
comes from the type, R or L, of the solution, i.e., the value of A(nmax) differs at the intersection of M 0 and M. Therefore, the
maximum of the solution will be reached at a different value of n for the two different types of solutions. The maximum of the

k = 2 solution corresponding to m§1 is reached for 71 close to ymax; and at this maximum Apax =/ 2(1 — %) = «/za% (1— %ﬁ)
to leading order. Thus, the value of A at the maximum is given by A = Anax + c2a for some constant c,; see Fig. 9(a) for a sketch
of this 2-bump. For the 2-bumps corresponding to the points mlzl., i =1, 2,3, the value of A at nmax is exponentially small. Thus,
the second maximum is reached well before n = nmax; see Fig. 9(b). Moreover, the points méi all lie exponentially close to each
other for n > n4er0; and, therefore, the three solutions of type L lie exponentially close to each other.

8.2. The construction of k = n solutions for k = 2 even and n > 4

Following the method used above to construct the k = 2 solutions, we now show that there exist solutions with n local maxima
on the real line for each n > 4 and n even. The number of kK = n solutions can be determined explicitly (for a sufficiently small),
where again a qualitative difference occurs between solutions of type R and of type L, as stated in Theorem 2.1.

We continue the argument given in the previous section for k = 2 for more general n (n even), starting with n = 4, by again
studying the intersection of M° and M at nyay (for a sufficiently small). As a decreases, the stable and unstable manifolds
W*(I'y) and W¥(I_) curl up more into themselves which implies that 7, also curls up more into itself. More precisely, comparing
WS(I'~) fora = aptoa = a; where 0 < a; < ag < 1, itis curled up more at n = 1y, for a; than for ag. A similar statement holds
for W*(I'y) at n = nmax. Therefore, when we follow I;; as 1 increases from 7y 10 Nmax We find, using the two steps distinguished
in Section 6, that there exist more intersection points of M® and M at npax besides the points leading to k = 2; see Fig. 8. Also,
the number of times that one crosses the A-axis near Apax to reach such an intersection point increases, and therefore, the number
of maxima of a solution increases. Note that one extra crossing near Amax in this construction leads to one extra maximum for
& > 0, and hence, to two extra maxima on the real line (solutions are symmetric).

First, we focus on the & = 4 solutions that are formed in a similar way as the k = 2 solutions. In step I of the transformation of /,,
as it winds around the A—B plane, a segment of I, has intersected with the A-axis twice at Apax, which results in the construction
of k = 4 solutions at the points m}; and mfu; see Fig. 8. In step II where I, forms a tongue, this same part of I, will again intersect
with M, this time exponentially close to 0. These intersection points, miu and m£3 (see Fig. 8), correspond to a pair of k = 4
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1 at MO

Fig. 10. A sketch of the y coordinates of the manifolds MO (solid curve) and M *° (dashed curve) at & = &mnax as a function of d.

solutions of type L. So far, the solutions are all constructed in a similar way as the k = 2 solutions. However, more k = 4 solutions
are formed in step II. These are constructed from the tongue-like branch on which the points ml22 and m123 lie. This branch winds
around the A—B plane to intersect once again with the A-axis close to Ap,x and, therefore, when it intersects with M at mfu and
my, two extra k = 4 solutions of type R are formed. These solutions have an extra maximum for & > 0 compared to the solutions
at the points ml22 and ml23 and therefore form k = 4 solutions. As I, curls up further (for a sufficiently small), this branch will again
intersect with M°° exponentially close to A = 0 to give two extra k = 4 solutions of type L; these are not shown in Fig. 8. Thus,
for a sufficiently small, there exist eight k = 4 solutions, three of which are of type R and five are of type L. Finally, the points mai
all lie exponentially close to each other.

The number of k = 4 solutions follows easily from the number of k = 2 solutions. One k = 4 solution of type R and three k = 4
solutions of type L are formed in a similar way to the k = 2 solutions. Besides these, two extra k = 4 solutions of type R and two
of type L are formed on the branches where the k = 2 solutions occur. Thus, the number of k = 4 solutions of type L increases by
2 with respect to the number of k = 2 solutions of type L, and the same holds for the number of k = 4 solutions of type R.

Inductively, the k = n + 2 solutions can be formed from the k = n solutions, and the number of n + 2 solutions also follows
from the number of k = n solutions, as long as n + 2 < ng(a) for the given, sufficiently small, value of a. The number of solutions
of both types L and R increases by 2 as the number of maxima increases from n to n + 2.

9. Matching the ¥ coordinate

So far, we have showed that on the cross section & = &4« there exist two families of solutions on M 0 and M for which the A
and B coordinates are the same (for a sufficiently small). In order to complete the proof of Theorem 2.1, we will show that d can be
chosen such that the ¥ coordinates of M and M are the same. The analysis of the ¥ coordinate consists of two parts. First, we

show that, at & = £pax, the interval of possible values of 1 on M° overlaps the interval of possible values on M. In Section 3.1

1 .
d_i; see Lemma 3.2. Therefore, to ensure that the intervals of the

we showed that the distance between 1#50 (émax) and _“2‘“""‘ is ca

possible values of ¥ on M and on M overlap, it is sufficient to show that the distance between 1//3 (émax) and _a2m“" is larger than

1 . . .
ca®" 2, fora range of d values. Secondly, we show that the intersection is transversal so that d can be chosen such that wjo (Emax)

and 1/f3(§max) match; see Fig. 10.

9.1. Overlap of the \r-intervals

. . _1
First, we show that |1//2 (Emax) + “sgm | is larger than ca®"2

. We get a lower bound from the expression (4.3).

Lemma 9.1. There exists a constant ¢ > 0 such that |¢2 Emax)| = |1/f2($max) + aé%| > ca®"2.

A proof of this lemma is given in Appendix F.
This lemma implies that, as we vary d, the interval of values of w{g (&max) overlaps the interval of values of 1/f5° (Emax)-

9.2. The transversal intersection

Here, we show that there exists a locally unique value of d for which W,?(Smax) = wf;o (5max)- Specifically, we prove that the
intersection of wg(émax) and w;o (émax) as functions of d is transversal by examining the derivatives of wjo (€max) and 1//2 (Emax)
with respectto A = d — 2.
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From Lemma 3.2 we know that |1p5° (Emax) + “S%| = cad_% , leading to

o0
8¢d (Smax) < Cadi% log(a) < Cadi%,
A
for some positive constant c. Now, we will show that the derivative of ’ﬁg(émax) with respect to A is larger than cad’%. We do this
in two steps. First, we determine an upper bound for the derivative at £ = &;; see Lemma 9.2. We need this upper bound to obtain,
in the second step, an estimate of a lower bound of the derivative at & = &ny,x, Lemma 9.3.
Using expression (4.3), the derivative of ¥ with respect to A is

IpE) Y () ag'=d] ( . sz> agl=d 41
= = log &

dA —  9A  A2(1 +42K?) AdA) T A2(0 +a2K2) dA’
where
dI 2 dA §
— = A2d1R 1 ———d fA”—ls
A A (y)<0gy+A( )dA) y+ A y 6]
=hL+D
and

SO) = L2k + 1A 4 kayd?
V=3 aa T rYaa

with K = ki(d — 2) and where R(y) is as defined in Lemma 4.2.

+k (l—(b+l)A2+ay<¢—%)>

Remark 9.1. It is unknown whether the constant K depends on d but we do expect and assume this here. A relation between the
parameters does follow in the asymptotic construction in [6] and the assumption (2.2), and therefore, we assume that there is a
dependence. In the case where there is no relation, the expression for %E—) simplifies with setting k; = 0.

First, we obtain an upper bound for %S_) até = §g&.

8¢>(E)| |<’¢d(5)

Lemma 9.2. There exists a constant c1 > 0 such that | | < cla4 forevery0 < & < &,

The proof of this lemma follows by bounding the terms in separately and is given in Appendix G.

Y9 (Emax)
A :

MG)
A

Using the above result, we now obtain a upper bound for

3¢ (Emax) | =| de (émdx)
1A

Lemma 9.3. There exists a constant ¢ > 0 such that | | > cha.

)

by differentiating the expression for i that we obtained in the proof

of Lemma 9.1 with respect to A. Then, we show that one of the terms in the expression for '5’(5)

Lemma 9.2. The proof is given in Appendix H.

0
aw‘%(i‘\““) > ; see Fig. 10. Therefore, the intersection of 9 4 Emax) and ¥ 7°(Emax) at
& = &nax is transverse, which implies that there ex1sts a unique d such that 1// 7 Emax) = ¥3° (Emax)-

In order to prove this lemma we derive an expression for 2

is dominant by using the result of

de (fmax)

The above lemma implies that
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Appendix A. The proof of Lemma 3.3

Here, we will prove Lemma 3.3 using the construction that we explained in Section 3.1. First, assume that y(§) is exponentially
small for & > &. Then, we can use an integrating factor in (3.7) and show that Z and dA) stay exponentially small for & > &,.

The first equation of (3.7) can be written as ye = (Z + Z)y. If we assume that Z is exponentially small, the rate of growth of y,
integrated backward from &1, is governed by z. Then, if y(&;) is chosen sufficiently small, using an integrating factor shows that y
stays exponentially small for & > &,. We restrict to those solutions for which y(&1) is such that y(&) stays exponentially small for
& > & . Combining the above two statements, we can conclude that the solutions satisfy the first property of the space V.



V. Rottschdfer / Physica D 237 (2008) 510-539 531

Next, we focus on property b. Rewrite the (Z, é)-system as one equation for the complex scalar z + ig. Again, z + i can

. _1 _ _ 2 2
be estimated by the non-homogeneous term —%a agl—d yzw

ly| < 2a~%, we find that |2] < /@ and ¢ < c2a%~2 (1 4+ b) for £ > Emax.
Finally, we assume that |Z| < /a. By y: = (Z + 2)y, the rate of expansion of y is governed essentially by estimates on Z. We

, by using an integrating factor. Upon assuming

_ 1 . . . .
know that 7 approaches —a?# over a substantial portion of the interval £y, < &€ < &. Therefore, we can choose a subinterval of

the parameter range for y(§) with y(&;) exponentially small so that, for each y(&1) in that interval, we have y(§) < 24~ for all
& > &nax. This concludes the proof of the second property of the space, and from this the statement in the lemma follows. [

Appendix B. The proof of Lemma 4.1

First, we study the linear equation for R and then the full nonlinear equation (1.6). Since we are interested in a solution for which
R is small, we can study the linearised equation

d—1
Rgg-f-TRg—R:O.

By setting z = 2& and R = we ¢ this equation can be rewritten as the canonical Kummer equation

1—d
szz+(d—1—Z)wz+—2 w=0.

For this Kummer equation, there exist two independent solutions and their long time behaviour, corresponding to & > 1, and so

z = 2& > 1, is known. For z > 1, the asymptotic expansion of a solution w is to leading order given by a linear combination of
z% and ez 15‘1. Hence for & > 1, Rjin(§) = S% [aje—% + bef], for some constants aj, by, is the leading order of a solution of

the linearised equation for R. Then, we use that T = % to determine T at & = &, which gives us Tijin (&) = 1 + 2kllgg to leading

T
order. Thus, T at & = &, lies close to 1 + 3 kll;g T-
Now, we turn to the full nonlinear systerﬁl (4.1). From Rz = RT it follows, using T < 1 forall 0 < & < §&,, that
£ X .
R(€) = R(0)eJo TO < R(0)e. Then, with R(0) € (0, c,a™ ] we find that R(&,) < R(0)a=* < c,a™ *» = c,a™. Moreover,
when R(0) is exponentially small, at £ = &, R is still exponentially small.
Since R and T are both positive, R > 0; hence, R increases for 0 < § < &;. Also, the leading order approximation from the

: : _ d—1 _ d—1 .
linear system gives that 1 T loa D) loe (D <T¢&) <1 2 lox(D) < 1 with 0 < k3 < k4.
For finite time, T increases. Finally, at £ = &,
1-d 2 2
Te = ——T(&) —T7(&) — R (&) + 1

&b

2
1—d d—1 d—1
1— -1 — —cZa® + 1
&p 2k4log = 2k4log -
d—1)ky —k d —1)2(2ks — k
_( ) (kp 4)+( )" (2ky4 b)_cza2m>0

kpka log % 4kbki (log l)z r
a

\

upon assuming that k4 < kj and m > 0 since (log Ell)_l > aP! forevery p; > 0. O

Appendix C. The proof of Lemma 4.2

We define

_ A2 @y
M) =2y (vo) + 7).

Then

%WHM) =2 [@-2 (v + F) +2an, (v + 5) 4342 (v +5) + 42 (v + )]

aA?(y)y?! |:d -2 a’K?d

+ K+ — Kb+ DA*(y) +aKyy +a*K*yB(y) |
1+ &2 2
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For the second equality the equations for Ay and v, in system (2.9) were used. Integrating from 0 to x and substituting M gives
the first part of the lemma after using that = ¢ — % and ¢ = Ka. The second expression in the lemma is obtained by integrating
the last term in the integral by parts. This can be done since Ag = AB. [

C.1. The proof of Lemma 4.5

We want to show that u is small at &,; the value of v is not relevant, but is needed in the estimate for u. We willAmake an
assumption on a bound of v and show that it is satisfied for all T < £ < &,. The initial conditions are given by B(0) = 0, ¢(0) =0,

and therefore, 2—5 = 0 at £ = 0; hence, it follows that limg_,ov(§) = 0. This implies that there is a finite K > 0 such that
£

[v(t)| < K. We assume that |v| < 2K and show that it is satisfied for t < & < &,.
In a similar way to in the proof of Lemma 4.4 we approximate (A, B) by (R, T). The equation obtained for % is analogous to

the first equation in (4.4) after setting ¢ = 0 and a = 0. System (4.1) gives that % can be made arbitrary small by taking t large
enough. From this it follows by using the facts that |¢| < Ca?, for some 0 < p < 1, a small, and |v| < 2K, that for 7 large enough
|u| < c holds at & = 7 for any fixed c.

On the trajectories we are following we have 0 < A < ca™ so that [2Au| < ca™, and |2u| < 1. We will use these properties to
estimate u(&p). Integrating the first equation of (4.4) from 7 to &, (t < &) and using an integrating factor gives

&p &b & a3xK2 1_a2bK2
u(&p) = u(r)exp |:/; qu} —i—/r exp |:-/X qu} |:<2¢> ~ 1 +a2K2> v—2 T 2K? Ai| dx,

2 . _ 2 -
where I'(x) = lx;d — 3B — Au + 11{;‘2]1{(2. To estimate I", we use that lx—d < 0, |Au| < ca™, 1-a|—a—X2KK2 < Ca and the fact that

7 can be chosen such that B(§) > 1 for every T < & < &,. This yields I' < —1 for every T < £ < £, which implies that
exp[ff” I'du] < exp[—(&» — x)]. Hence,

& a3xK? 1 —a?bK?
lu(Ep)| < |u(z)]expl—(Ep —T)]+/ exp[—(p — x)] <2|¢>| + 1+a—2K2> [v] +21-|—a—21(2A dx

&
< Ce™® 4 / ’ exp[— (&, — x)] [ca® + ¢a™] dx

T
= Ce ™ + [cal +éa™] (1 —e" %)

< Cd® + caP? + éa" < éd,

foracertain0 </ < 1.
So, there exist constants ¢ > 0 and 0 < [ < 1 such that u(&,) < ca’.
Now we can prove that |[v| < 2K holds for all T < & < &, using continuous induction. We integrate the second equation in
system (4.4) and apply an integrating factor to obtain

o (1-1+ /Sbrd +/§b /Ehrd 26 + @xK> N L (40K T,
T — €X X — —
’ P T ‘ T P x L 1 +a%K? T+ a2K2 *

<ol -1+ /Sbrd +/§b /Sde ul (210] + @xK? N L AHDK T,
v(T — €X €X .
- P - " . P Y 1 1+ a2K? al+a2K2 *

Now, we use that —1 + exp[ffb I'du] < 0, and that |u| < cd, |¢| < CaP (0 < p < 1), |A| < c,a™ and I'(x) < —1 which yields

()| =

’

&b
()| < [v(7)] +[ e~ @ (C,a*P 1 Cra)dx,

T

< ()| + c1a' TP + cra™ .

Thus v(&p) remains close to v(7) and, since |v(t)| < K, |v] < 2K holds forallt <& <§&,. O
Appendix D. The proof of Lemma 7.1

This estimate was already proved in Lemma 4.3 for T < £ < &;,. Therefore, we now focus on values of £ where &, < & < &qax.
We will use the expression (4.3) for ¢ given in Lemma 4.2. First, we bound the integral that we denote by [ in (4.3). Assuming
that &, < & < &nqax, we can split the integral into two parts, one integrating from O up to &, and the other from &, to &. For the part
containing ¢, we use continuous induction, similarly to the way it was used in the proof of Lemma 4.3.
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By using the estimate in Lemma 4.3, we obtain

&
1] < / Az(y>yd—1R<y)dy'+CA2<sb>sg’.

&

Hence, for &, < £ < &Emax

aEl_d [

2
lp(E)| < cra” + GRS

3
/g A2<y>yd—1R(y>dy‘ + CAZ(Eb)éf] :

b

First, we focus on the -term. It follows from A¢ = AB and the use of an integrating factor that

1
A%(8)

£
A(§) = A(&p) exp [/g BdS] (D.1)
b

for every &, < & < &max. In order to determine the integral in the exponent, we use the fact that B lies O(a) close to the periodic
solution B®) (5.6) of the unperturbed system where k — 1.

First, we determine in more detail how k depends on a. So far, it is only known that k — 1 for the solutions we are studying.
Substituting the expressions (5.5) and (5.6) for the periodic solutions (A® (&), BB (£)) of the unperturbed system into the integral
k1 (5.7), we obtain

g =1
o0 —5.
(2 —k?)?

The fact that the solution that we constructed lies O(a) close to the heteroclinic solution then implies that it crosses the A-axis at
(A, B) = (v2a — ca, 0) for some positive constant c. Substituting this into expression (5.7) for x yields

= (D.2)

k1 = —/2caa® + O@d?). (D.3)
Equating the two expressions (D.2) and (D.3) for x; and assuming that k lies close to 1, gives, to leading order,
ca
k=1- ,
V2a

where ¢ > 0.
As a next step, we determine the amplitude A®) at £ = — % To(k) for this value of k and assume that it is larger than A(&p). Using
the explicit expression for A®) gives

3 3 3
A(k) <_§T0(k)> = \/EIBCII] <—ZK(k)y k) = Clag,

to leading order. Choosing m = m, — k in Lemma 4.4 such that m > 3 then implies that A(k)(—éT(k)) > A(&p). Hence, the
g g 8 p 840

solution that we tracked to & = &, has not yet reached the point (A(k)(—%To(k)), B(")(—%To(k))).

Now, we study the integral in expression (D.1). Note that integrating the solution from &, up to where it intersects with B = 0
for the first time leads to a positive contribution to the integral since B is positive just to the right of &,. We denote the second
intersection point of the solution with B = 0 by &. Then, we can bound the integral of B by using the above, combined with the
fact that the integration of the periodic solution B®) over one whole period leads to no contribution in the integral. This yields

170

§ & 240
/ Bds > / Bds > / B®W (s)ds + O(a),
G £ -3y

b b

where To(k) is the period of B®). This integral can be calculated, since we know an explicit expression (5.6) for B, Using relations
between the Jacobi elliptic functions, see for example [7], we find that

1 (k)

2o B®(s)ds = log (dn (L7 k) —1og (dn (—>T7®.
7%7“0(]() - g 2 0 g 8 0 °
log (\/1 - kz) —log cat

) log ca®
= —loga—1lo
5 loga gca

1
=3 loga + hot.
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. . . / 2 .
Here, the expression for To(k) from Section 5.1 and the expressions for k, and @ = /1 — "T, where n > np, were substituted. Note
that this term is negative. Using (D.1), it follows that, to leading order,

A) = A(E)aF + hot
for every &, < & < &nax. Thus, we find that there exists a positive constant ¢ such that

L S (D.4)
A = '

A% (&)
for & <& < Emax.
Therefore,

&) < c1a® +C

5 ;
f A%y)y“R(y)dy‘ + Cradg' g

3
az%—lfd

2
cia+C
A% (&)

IA

i 2 d—1 3
/ AZ(y)y" T R(y)dy| + Cra?8p
&b

C at ‘/‘E A2( )R(y)d ’+C a%‘[’l
y y)ay 2
A2(&p) | Jg,
2.2

i d—2+2K
<c-= V AX(y) [—+—K(b+1)A2(y)— - i|dy‘+C2a43t—P1.
A=(p) |Jg,

2 2

. . . _ 3 3_ . .
Here we use in the first and the second inequality that £'~7 < Ebl 4 and a*&, K ad™ Pl (since & <« a—P1) where p; > 0 can still
be chosen. For the last inequality we use continuous induction on the part in R containing the ¢-term.

Upon assuming that for every &, < & < &nqax

1 § d—2+2K Ka?y?
A’(y) | ———= —K(b+ DA (y) — }d
&) ‘/sb (y)[ 5 (b+ DA (y) 3 y

3
—341

<ca

for some ¢ > 0, we do indeed find that

lp(€)] < calt

where || = min(% — p1, ). Upon choosing | > % and p; = %, the statement of the lemma follows. [

Appendix E. The proof of Lemma 7.2

We use the fact that for &, < & < &nax the solutions lie at most ca away from the heteroclinic orbit (5.4) of the unperturbed
system. As before we denote the second intersection point of the solution with the B-axis by &. Since we integrate along the
heteroclinic orbit, it follows that the integral can only be obtained in one step when § < &;. In the case where £ > &, the integral
can be bounded by splitting it into two parts, one integrating from &, up to & and the other integrating from &; to &. This second part
can then be bounded by integrating over one (or more) whole period. Note that this leads to different expressions for the relations
between d, K, b and a yielding different c1, ¢; and c3 in the statement of the lemma.

Note that A(&p) < ca™ with % < m < 1, such that integrating from £ = 0 instead of & = &, in the integral in (7.1) leads to

. 6 . 6,
a difference of at most ca8. Hence, from now on, we integrate from & = 0 onwards where we take the error of ca8 into account.
Assuming that £ < & and that & corresponds to some y; € (—o0, 00), we find

§ —242 2
’/ A() [d# _ Kb+ DAYy — KT”] dy‘
&

§ d—2+2K Kn?
= ‘/ A%(y) [—+ — Kb+ DA (y) — —ni| dy+cag
0 2 2
n d—2+2K Kn?
- ‘/ 202 sech?(ary) [—+ — 2K (b + Do sech?(ay) — T”} dy + cal
—o0o

3
a4

=2u

d—2 2 5 2
—— — K +35@b—DKe? ) (tanh(@y) + 1) — SK(b+ 1

. . sinh(ay) ]+

cosh? (ay1)

2

’——K——K(]—Zb)oz + 5 K(b—i—l)x/—a tcat
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—le1(d = 2) — 2K + c3b + call. (E.1)
In the case where £ > &, we can bound the integral by adding integrating of the heteroclinic orbit over one or more whole

periods to this expression. Hence, we must add

o0 d—2+2K Kn? d—2 2
' / 202 sech?(ay) [TJF 2K (b + 1)a? sech?(ay) — T”} dy' = dar| = — K - SK(I - )| (E2)
—00

or a (positive) integer multiple of this expression. This leads to different constants ¢; for solutions with a different number of
maxima. For an increase in the number of maxima of the solution by 2, expression (E.2) must be added once to (E.1), yielding
different c;’s. Note that the constants ¢; can unfortunately not be explicitly determined in general.

In general, the restriction (7.1) leads to

lc1(d —2) — 2K + c3b + cat| < a~ i A2(gy).

Now, there are two possibilities. Either A(&p) is exponentially small (and so is A(0)) or A(§) = ca™® for some constants ¢, mj > 0.
Assuming that

3 4
lei(d —2) — 2K + c3b| < ca”3tle™a
gives the existence of all solutions in Theorem 2.1. However, changing the assumption to
le1(d —2) — 2K +¢3b] < ca',

where [ = min{%, —% + 1+ 2mp} and A(&y) = cpa™?, also gives the existence of several, but not all, of the solutions given in
Theorem 2.1. See Remark 7.1 for details of the solutions that are still found under this assumption.
A further calculation yields that for b = 0, the restriction reduces for the k = 2 solutions to

d—2 5 82
-

= 2k K <ca it A%g). O
03

2 3

Appendix F. The proof of Lemma 9.1

From the last equation in system (4.2), we derive an expression for ¢ by first integrating this equation from &, up to some & > &,
and then finding an integrating factor. This leads to

&
(&) = ¢(6p) exp [/g X(z)dz}
b
a § § d—2 a’y? 5 2,0 d
+M—2W£b CXp[éb X(Z)de| <T+K<1 —T—(1+b)A )—i—a K <yB—‘r§>>dy, (F])
where
_ 1—d Ka?z B
X@ ==t g~ 2B
And
§ _ B Ka2(%-2_y2) £
_ gl-d d-1 _
exp [/y x(z)dz} =&y exp[z(1 T 2K 2/y B(z)dz].

We only need to prove the estimate in the lemma for & = &nax, and this is the choice that we make from now on.
By using the fact that B lies close to the heteroclinic orbit we can estimate the integral of B in a similar way to in the proof of
Lemma 7.1. We find that

1 § 0 ® 3
—10ga§/ def/ By’dz = —-loga
8 b P 8

and hence,

&
<exp |:—2/ dei| < a*%.
&b

EN[)

a
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Moreover, forall &, < y < &,
1700

—loga = = ——10ga
2 & 0 0 4= y = % O(k) o ¥ ) g

leading to

3
a ! > exp |:—2f dei| >a
y

We now analyse the first term in (F.1) and show that it is much smaller than the second term. After setting £ = £pax and applying
the above estimate, we find that the first term in (F.1) can be estimated as

Kaz(éfr%ax_gbz) imax ptd—1-1cd—1
|6 (Ep) |Emar &1 [m—zféh Bdz | < ca i

5 6
< cap+d 17P < ca?®,

using that |¢ (&p)| < CaP? for p < 1 (Lemma 4.3) and that &, < ca~P for some p > 0.
Now we focus on the second term in expression (F.1). We can bound this integral by using that |B| < 1 leading to
la’K%(yB + %)| < ca’y < ca and hence the other terms in the integral are dominant compared to this one. Also, using

exp[%] > 1 for every &, < y < &, and the bound on the integral of B, we find that the second term in (F.1) can (for

& = &max) be bounded from below by

gmax d 2 az 2
/ 1-dyd- 1|:—+K<1— Y —(l—i—b)Az)”dy
:, 2 2

a2

2 Emax
3 _
;a"( > +K) (nax = 85) = 0" S5 bma G — 87 = @PK (1 + D) / v Wdy’
ad —2) 2K\ /gm“ d-1 42
=|———|l-——=)—-a K1 +b Acdy|.
d ( d+2> e+ D o ’

Next, we show that the latter term in this expression is much smaller than the first.
The integral of A% can be estimated by using the fact that A lies close to the heteroclinic orbit; hence

o]

%‘mﬂx
rll;f/ v Ady < ﬂl/ 2a? sech® (az)dz

1) —0

A

= 2m [tanh(az)]%,, = 4ma < 4m,

where m is a positive integer denoting the number of round-trips that the solution makes through the (A, B)-plane.
We conclude that the second term in (F.1) is larger than Ca for some positive constant C, and hence, it is much larger than the
first term in (F.1). Moreover,

16 (Emax)| = Ca > ca®™ 7,

concluding the statement in the lemma.
Appendix G. The proof of Lemma 9.2

0
We will bound the terms in %2 separately. An estimate for the first term in %@— follows from using the result in Lemma 4.3

where we showed that

11(€) < CA%(£)&?

for & < &.
0
Also, the term %3—2 appears in the expression for alg“f) , and therefore, we must study it. We will show in Appendix I that

%3—2 < c¢log(&) as long as & < &p.

Hence,

a1 =41 (E) 2 dA )
A2(5>(1+a21<2)< E+__)'<C A2(E)

A()dA
caélogé K ca%

log &

IA
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for every £ < &.
Moreover,

3
/ A2y Ry =4y
0

£
<2 | A% Y R(y)log y|dy.
1A / YT R(y) log y|dy

Using this bound, and then splitting the integral /] into two parts we find that
£
i< e [ A%TIRG) loglay
0
1 §
= [ 4RO ogyidy + e [ A%TTIRG) logldy
0 1
1 §
< =@ [yt ogydy + clogé [ A% ROy
1

Rt
< —CAZ(E)|: ylogy — dzydi| +logC A% (§)E?
0

= cA’E) (1 + 15 logé),
where we use that |R(y)| < C for0 < y < 1 and thatlogy <logé for 1 < y < &. Concluding, we find that

a&' =1 e
AZ(E)(I +a?K?) —

for every & < &.

3
ag'= (14 c16%1og ) « cat,

To obtain a bound for />, we use continuous induction to handle the part which contains %E—) First, we study the function S.

By using that for every & < &, |A§7’Z‘| <cA?logy < ca®logy « ca™ |a¢(g)| < ca%, and |¢| < ca? we find that
(d—=2)S(y) = R(y),
to leading order. Hence, it follows that
|| < [1].
Combining the above results we find that

Iy (€)
0A

3

< ca+,

forevery & <§&,. O
Appendix H. The proof of Lemma 9.3

In this proof we use the expression for v that we obtained in the proof of Lemma 9.1. Differentiating (F.1) with respect to A we
obtain

WE) _ &) US §
&

5 A 3 A x(z)dz} + ¢ (&p) exp [/

&b

_ kia £ 5
X(Z)dzj| [IOgg "'+loggy, + Tra z(g 5172) — / a_AdZ]

b

a § § ka2
S — d ] 1 — (22
+1+a2K2/;b eXP[/y x(2) z] [<0g5 Hlogy+ 2K2(S yo)

§ 9B d—2 a’y? d 1
2| =dz)[—=+Kk[1-——(1+bA* 2k2(yB+ = —

/;8A2><2 + ( > (1+0) )—i—a (y —|—2>>+2

2y2 0A d 0B 1
s ( - % —qa +b)A2> _2K( +b)A—A 4 2Kkja? (yB T 5) + K242 (yﬁ 4 —)} dy

=T +T+T;s,
where y is given in Appendix F.
We only need to bound % at & = &nax and this is the choice that we make from now on. In the following, we show that at
& = &max, I3 is dominant with respect to the other two terms. Using the estimate for exp[—2 f 5} B(z)dz] obtained in the proof of
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d

Lemma 9.1, we find that exp[ f 5)"““ x(z)dz] < ca —3-p for some p > 0. Combining this with the fact that |%”—)| < ca% as given

in Lemma 9.2 we get that

_5_543 _3
ITi| < ca®17P%3 = ca¥™3 « ca,

at & = &nax, since d > 2. In the above we can still choose p as long as it is positive; therefore, we take p = 41'1'
We showed in Lemma 7.1 that |¢| < ca%, and hence,
§ 3
@ (&p) exp |:/ X(Z)dz:| Lca®"ip
&b

where p > 0 can still be chosen. Also, in Appendix I we show that g% = Of(a) for &, < & < Emax; hence,

- ca ca c .
. 8 ‘ = — max 1

Therefore, at & = &nax,
72| < cad_%_p [IOgé:max +logéy + C] < Clad_%_]% < cla% Lca

using that log £pax < a™P! for some p; > 0, and choosing p; + p = %.
Now, we bound T3 by applying that log y >> a?y? and log y > ay for every y > &, > 1. Also, we use |B| < 1, A% = O(a)
and % = O(a) for &, < & < &max, Which gives that to leading order

§ § d-—2 a’y? 1
— -1 _ _ 2 _
T; = a/; exp |:/y x(z)dzi| |:(log§ +10gy) < 5 + K (1 > (1+b)A )) + 3

b

2.2
+ k(l—aTy—(l—i—b)Az)}dy

§ § . 1 d—2 a’y? 2
=a/ exp|:/ X(z)dz:| <log$ +logy+—) <—+K<1———(1+b)A ))dy.
£ y d—-2 2 2

In the proof of Lemma 9.1 we obtained that exp[—2 ff B] > ca; thus,

1 d—2 2y2
<10g$1 tlogy + —) <T +K <1 _ “Ty —qa +b)A2)>‘dy.

¢
2 1-d ., d—1
5 d—2

&b
Integrating and substituting £ = &« yields to leading order

émax 1 d _ 2 a2 2
2 1—d . d-1 y
a /E Smax y (10g€max - IOgy — m) <T + K <1 _ 5 )) dy

b

T3] > a

2a
=—— |- d+2?*+2KQ3d +2)| =Ca,
gy @Y 2K +2)| = Ca
where C > 0.
Moreover,
2 Emax l—d . d-1 1 5 A 9 Smax 5
a : é:maxy log &max — logy — m (1+b)A°dy < Ca”log&max ; Ady
b b

Cla2 log &max < C]Cl%

IA

using the estimate for the integral of A2 obtained in the proof of Lemma 9.1.
Combining these bounds finally gives

|T5] = Ca.

Hence, the terms 77 and 7, are much smaller than T3 for & = &;,,x, and

Y (Emax)
A

d—

>Ca > c1a“" 2,

since d > % O
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Appendix I. Bounds for % and g%

In this appendix, we derive the bounds on (% and % as used in the proofs of Lemmas 9.2 and 9.3.
For & < &, we obtain an estimate for (% by using that A lies O(a) close to the solutions R of (4.1). We know from the proof of

Lemma 4.1 that for§ > 1, A = E% [ale_‘E + bleg] to leading order. Moreover, A < ca™ for £ < &,; hence, as long as & < &,

dA _ e
g4 = cA@)logé.

To determine an estimate on (% and g% for &, < & < &max, we use the fact that the constructed solution lies O(a) close to the
heteroclinic orbit of the unperturbed system, (2.12) with a = 0. Thus, A(&) = A® (&) + O(a) and B(E) = B® (&) + O(a) for
£y < & < Emax, where k — 1. Here, A®)(¢) and B® (¢) do not depend on the dimension d. Hence, % = O(a) and % = O(a)
for %_b = ";: = é:max- O
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