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Abstract

For the Ginzburg–Landau equation (GL), we establish the existence and local uniqueness of two classes of multi-bump, self-similar, blow-up
solutions for all dimensions 2 < d < 4 (under certain conditions on the coefficients in the equation). In numerical simulation and via asymptotic
analysis, one class of solutions was already found; the second class of multi-bump solutions is new.

In the analysis, we treat the GL as a small perturbation of the cubic nonlinear Schrödinger equation (NLS). The existence result given here is a
major extension of results established previously for the NLS, since for the NLS the construction only holds for d close to the critical dimension
d = 2.

The behaviour of the self-similar solutions is described by a nonlinear, non-autonomous ordinary differential equation (ODE). After
linearisation, this ODE exhibits hyperbolic behaviour near the origin and elliptic behaviour asymptotically. We call the region where the type
of behaviour changes the mid-range. All of the bumps of the solutions that we construct lie in the mid-range.

For the construction, we track a manifold of solutions of the ODE that satisfy the condition at the origin forward, and a manifold of solutions
that satisfy the asymptotic conditions backward, to a common point in the mid-range. Then, we show that these manifolds intersect transversely.
We study the dynamics in the mid-range by using geometric singular perturbation theory, adiabatic Melnikov theory, and the Exchange Lemma.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Ginzburg–Landau equation; Multi-bump blow-up solutions

1. Introduction

In various problems coming from physics, biology and chemistry the Ginzburg–Landau equation (GL) is found as a model
equation. It is derived in, for example, Rayleigh–Bénard convection, Taylor–Couette flow, nonlinear optics, models of turbulence,
superconductivity, superfluidity and reaction–diffusion systems; see [18,3,23,8,9] and the review article [2]. The GL can be viewed
as a normal form describing the leading order behaviour of small perturbations in ‘marginally unstable’ systems of nonlinear partial
differential equations defined on unbounded domains [16]. Thus, it is relevant for understanding the dynamics of ‘instabilities’. The
coefficients in the equation can be expressed in terms of the coefficients of the underlying system of PDEs; therefore, we study the
dynamics of the GL for a wide range of parameters.

We study the GL written in the following form:
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i
∂Φ
∂t

+ (1 − iε)∆Φ + (1 + ibε)|Φ|
2Φ = 0, (1.1)

where x ∈ Rd , ε, b > 0 and t > 0. The standard form of the GL as given in [16] can be obtained by rescaling.
Numerical simulations show that there exist sets of initial data for the GL such that the solutions become infinite in finite time

for 2 < d < 4; see [6,19]. Hence, a contraction of the wave packet takes place, and simultaneously the amplitude grows and blows
up. In nonlinear optics this phenomenon is called self-focusing and it is related to an extreme increase of the field amplitude. In
plasma physics it is called wave collapse.

In this article we study blow-up solutions to the GL as found in the numerical simulations and asymptotic analysis in [6]. We
assume ε � 1 such that Eq. (1.1) is a small perturbation of the well known nonlinear Schrödinger equation (NLS). Note that, after
setting ε = 0 in Eq. (1.1) the GL reduces to the NLS.

Blow-up solutions of the NLS have already been studied extensively; see [24] for a survey. The dimension d = 2 is the critical
dimension for the NLS; it distinguishes between integrable and blow-up behaviour. In the numerical simulations of [5] and [4],
radially symmetric, self-similar, multi-bump blow-up solutions for the NLS were found for d > 2. Here, multi-bump is related
to |Φ| having several maxima. An asymptotic analysis was also given in [4]. The existence and local uniqueness of a radially
symmetric, monotone, self-similar blow-up solution has been proved for d close to 2 in [15,20]. And the multi-bump solutions have
been shown to exist, in [21], again for d close to 2.

Here, we extend and adjust the techniques of [15,20,21] to prove existence and local uniqueness of the blow-up solutions of the
GL as found numerically in [6]. The solutions found in [6] are radially symmetric and self-similar as in the case of the NLS. For the
NLS, they were studied using the method of dynamical rescaling, and we also use it here. This method exploits the asymptotically
self-similar behaviour of the solutions. Following [6], space, time, and Φ are scaled by factors of a suitably chosen norm of the
solutions, denoted by L(t), which blows up at the singularity,

ξ ≡
|x |

L(t)
, τ ≡

∫ t

0

1

L2(s)
ds, u(ξ, τ ) = L(t)Φ(x, t). (1.2)

The corresponding norm of the rescaled solution u remains constant in time, and as a consequence, the rescaled problem is no
longer singular. The rescaled solution u satisfies

iuτ + (1 − iε)
[

uξξ +
d − 1
ξ

uξ

]
+ (1 + ibε)|u|

2u + ia(τ )(ξu)ξ = 0,

where

a = −L
dL

dt
= −

1
L

dL

dτ
.

Self-similar blow-up behaviour, with L(t) → 0, arises when a(τ ) is a positive constant and u(ξ, τ ) = eiwτ Q(ξ) for some positive
w that depends on the solution. We have L(t) =

√
2a(T − t) and τ =

1
2a log(T − t), and scaling τ with 1

w
leads to the following

equation for Q:

(1 − iε)
[

Qξξ +
(d − 1)
ξ

Qξ

]
− Q + ia(ξQ)ξ + (1 + ibε)|Q|

2 Q = 0. (1.3)

Here the parameter a plays the role of a nonlinear eigenvalue. In [19], the constant w is left as an unknown; this does not affect the
solutions since it can be scaled out.

Moreover, the initial and asymptotic conditions for Φ, namely that Φ(x, 0) = Φ0(x) and that |Φ| vanishes as |x | → ∞, lead to
the following initial and asymptotic conditions for Q:

Qξ (0) = 0, Im Q(0) = 0, (1.4)

|Q(ξ)| → 0 as ξ → ∞. (1.5)

Here we have exploited the phase invariance of the equation to define the phase of Φ at the origin. Alternatively, we could have
kept w as an unknown in (1.3) and set Q(0) = 1, as in [19].

In the numerics and asymptotics in [6], multi-bump solutions were found where |Q| has k maxima on the real line. For every
2 < d < 4, k-solution branches are found in the (ε, a)-plane on which a solution with k maxima on (−∞,∞) exists. In Fig. 1(a),
which is a reproduction of Fig. 1.1 from [6], the branches for k = 1 and k = 2 where b = 0 and d = 3 are given. The branches
correspond to symmetric solutions with one maximum on the real line, k = 1, at ξ = 0, and with two maxima, k = 2, on the real
line. The latter solutions (k = 2) have a minimum at ξ = 0. The amplitudes |Q| of the solutions as found on the upper and lower
parts of both branches at ε = 0.1, the points indicated by the *’s, are given in Fig. 1(b), which is a reproduction of Fig. 1.2 from [6].

Every k-solution branch consists of two parts which coalesce. The solutions on the upper part of the branch are smooth
perturbations of the solutions found for the NLS. Note that the intersection point of this part of the branch with the ε = 0-axis
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Fig. 1. (a) The k = 1 solution branch, the solutions with one maximum on (−∞,∞), and the k = 2 solution branch, the solutions with two maxima on (−∞,∞),
plotted in the (ε, a)-plane where d = 3 and b = 0. In (b), the solutions corresponding to the *’s are given. (b) Final-time profiles where the amplitude |Q| is plotted
as a function of the spatial variable ξ for ε = 0.1. The solutions correspond to the *’s in (a). This is a reproduction of Figs. 1.1 and 1.2 in [6].

corresponds exactly to the NLS solutions. However, solutions on the lower part of the branch are not a simple perturbation of the
solutions of the NLS.

There is a clear distinction between solutions for which k is even and ones for which it is odd. When k is odd the k-solution has
a maximum at ξ = 0; on the other hand for even k it does not.

In the numerical simulations, the maxima that lie away from ξ = 0 are found for a small in the range ξ = O( 1
a ) and just to the

left of ξ =
2
a , which is the point where the linearisation of (1.3) has a turning point. Thus, as a → 0+, all these maxima are created

at |ξ | = ∞. Furthermore, for k odd and d → 2+ the form of |Q| close to ξ = 0 converges to the ground state solution of

Rξξ +
d − 1
ξ

Rξ − R + R3
= 0. (1.6)

In this article, we focus mainly on the solutions as found on the lower part of the k-solution branches. More specifically, we
construct the solutions for k even; the solutions with a minimum at ξ = 0. This is one of the main points in which the analysis of
this article differs from and extends the studies in [21,20,15] (apart from the fact that the equation is different). There, solutions
with a maximum at ξ = 0 were constructed for the NLS. So far, no analysis for the solutions with a minimum at ξ = 0 has been
performed.

For k even, we establish existence and local uniqueness of two classes of k-bump solutions for 2 < d < 4 and with 0 < a � 1
as long as certain relations between a, d, b and ε hold. The second major extension of [21,20,15] is the fact that our proof holds
for every 2 < d < 4, whereas in the studies for the NLS [20,21] the dimension d must be taken algebraically close to d = 2:
d − 2 = O(al) for some l > 0. This extended result is possible because we focus mainly on solutions on the lower part of the
solution branches. These solutions are no simple perturbations of the solutions for the NLS. Nevertheless, for d algebraically close
to 2 the analysis here also yields the solutions on the upper part of the branches.

In the analysis, we find that the k
2 maxima for ξ > 0 (recall that the solution is symmetric) lie just to the left of ξ =

2
a and are

O(log 1
a ) apart. These maxima lie in the so-called mid-range, the interval ξ ∈ [ξb, ξmax] where ξb = kb log 1

a and ξmax =
2−

√
a

a .
The two types of solutions that are constructed differ from one another in the value of |Q| at ξ = ξmax. For solutions of type L , |Q|

is exponentially small at ξ = ξmax whereas for solutions of type R, |Q|(ξmax) is strictly O(a
3
8 ). The solutions of type L are those

found in [6]. The solutions of type R have, to our knowledge, not been found in numerical simulations or asymptotic analysis so
far. Finally, the solutions of type L lie exponentially close to each other as do the solutions of type R.

Solutions with a maximum at ξ = 0, where k is odd, can also be found for the GL by combining the techniques from this article
and Section 4 of [21]. We do not give a proof here, but we will state the results in the next section.

Remark 1.1. Choosing a non-integer dimension as done here is equivalent to taking d = 2 and the power of the nonlinear term
equal to 2σ for some positive σ .

2. The main result and the strategy for its proof

In this section, we state the main theorem and the strategy that we take to prove it. The main result of this paper is
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Theorem 2.1. For each a > 0 sufficiently small, 2 < d < 4, and d, ε, b and a related as in expressions (2.1) and (2.2), there exists
an n0(a) such that, if 2 ≤ n ≤ n0(a) and n is even, there exist 2n locally unique k = n solutions of the type studied here of the
problem given by Eq. (1.3) and the initial conditions (1.4) and boundary conditions (1.5). These symmetric solutions consist of n

maxima on the real line where n
2 maxima are found on 0 < ξ < ξmax, with ξmax =

2−
√

a
a . These maxima are strictly O(log( 1

a ))

apart. Of the 2n locally unique k = n solutions, n + 1 are characterized by the property that |Q(ξmax)| is exponentially small, and
they are said to be of type L. The other n − 1, said to be of type R, instead satisfy |Q(ξmax)| = ca3/8

− c̃a5/8, for some positive

constant c and a positive function c̃ = c̃(c), and the last maximum occurs near ξmax, where |Q| =
√

2a
1
4 (1 −

1
8

√
a)+ hot.

We now give the restrictions under which this theorem holds. First of all, we aim for a balance in Eq. (1.3) between the terms
containing the parameter ε, representing the perturbation away from the NLS giving the GL, and the terms containing the small
parameter a, and therefore, set

ε = K a, (2.1)

where K > 0 and K = O(1).
Moreover, we assume when bounding φ in Section 7 that there exist constants c1, c2, c, c̃ > 0, c3 and l > 1

2 such that d, ε, b and
a satisfy

|c1a(d − 2)− c2ε + c3ab| ≤ ca
1
4 +le−

c̃
a . (2.2)

For every solution, the constants ci can be determined; they differ as k is varied. Moreover, restriction (2.2) can be made less
strict (replacing the exponentially small term by a term of O(al1)), yielding fewer solutions in the theorem; see Remark 7.1. It is
remarkable that in this case, for every even k a k-solution can still be constructed.

Note that it is possible to choose a, d, ε and b in such a way that restriction (2.2) is satisfied. For example, if we focus on the
two-bump solutions in the case where b = 0, relation (2.2) reduces to∣∣∣∣d − 2

2
−

5
3

K

∣∣∣∣+ 8
√

2

9
√

3
K ≤ ca−

3
4 +le−

c̃
a ; (2.3)

see Lemma 7.2 and expression (7.3). And ε, a and d can indeed be chosen such that this holds.

Remark 2.1. It will be shown that n0(a) increases as a decreases.

For solutions with a maximum at the origin, and hence, an odd number of maxima (n odd), a statement similar to Theorem 2.1 can
be proved. The result and assumptions only slightly change. Combination of the proofs given in this article and in Section 4 of [21]
leads to the existence of 4(n −1) locally unique n-solutions for n odd. Moreover, the two different types of solutions in the theorem
still exist and they are characterised by the same properties. There exist 2n − 1 solutions of type L and the other 2n − 3 are of type
R. Assumption (2.1) still has to be satisfied whereas restriction (2.2) must be replaced by

|c̃1a(d − 2)− c̃2ε + c̃3ab| ≤ ĉa
5
4 +l , (2.4)

leading to a less strict condition on a, d, ε and b.
We study solutions of Eq. (1.3) with initial condition (1.4) and boundary condition (1.5). As in [6] and the studies for the

NLS [21,20,15], we replace the boundary condition (1.5) by a local asymptotic condition at ξ → ∞. For large ξ , it follows from
the boundary condition (1.5), |Q(ξ)| → 0, that the behaviour of the solutions is described by the linear part of Eq. (1.3):

(1 − iaK )

[
Qξξ +

(d − 1)
ξ

Qξ

]
− Q + ia(ξQ)ξ = 0. (2.5)

For this equation, there exists a pair of linearly independent solutions for large ξ that are given by

Q1 ∼ ξ−1−
i
a , Q2 ∼ ξ−(d−1−

i
a )e−ia ξ

2
2 +

a2 K ξ2
2 . (2.6)

Solution Q2 is rapidly varying as |ξ | → ∞, and has unbounded H1-norm. The solutions that we are looking for are slowly varying
solutions, and hence, their limiting profile for large ξ is a multiple of Q1. The asymptotic expressions for Q1 and its derivative
imply that∣∣∣∣ξQξ +

(
1 +

i
a

)
Q

∣∣∣∣ → 0 as ξ → ∞ (2.7)

must hold; see [6]. In the NLS limit this corresponds to solutions with finite Hamiltonian. From the fact that Q1 decays at ∞, it
follows that the boundary condition (1.5) is satisfied, and hence, condition (1.5) can be omitted. Therefore, we from now on study
Eq. (1.3) with the conditions (1.4) and (2.7).
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Fig. 2. The different points and intervals on the ξ -axis. As explained in Section 2, solutions on the manifolds M∞ and M0 are tracked to ξmax from ∞ and 0,
respectively, and it is shown that these manifolds have two families of transverse intersection points at ξmax. The multi-bump, self-similar, blow-up solutions of
Theorem 2.1 are found in these transverse intersections.

Fig. 3. A sketch of the manifold M∞ in the A–B plane at ξ = ξmax.

The analysis of (1.3) is carried out by decomposing Q into amplitude and phase,

Q(ξ) = A(ξ) exp
[

i
∫ ξ

0
ψ(x)dx

]
, B(ξ) =

Aξ
A
. (2.8)

Here, A is the amplitude, B its logarithmic derivative, and ψ is the gradient of the phase. Then, (1.3) reduces to
Aξ = AB

Bξ =
(1 − d)B

ξ
+ ψ2

− B2
+

1

1 + a2 K 2 [−(1 − a2bK 2)A2
+ 1 + aξψ + a2 K (1 + ξ B)]

ψξ =
(1 − d)ψ

ξ
− 2ψB −

a

1 + a2 K 2 [1 + ξ B + K ((1 + b)A2
− 1 − aξψ)],

(2.9)

where (1.4) and (2.7) are given by

B(0) = 0, ψ(0) = 0, (2.10)

and

B ∼ −
1
ξ
, ψ ∼ −

1
aξ

as ξ → ∞. (2.11)

This reduction from a four-dimensional system to a three-dimensional system is made possible by the fact that Eq. (1.3) is invariant
under phase shifts.

We prove Theorem 2.1 by analysing the solutions of Eq. (2.9) that satisfy the initial and asymptotic conditions (2.10) and (2.11).
We start with those solutions that satisfy (2.11). These form a three-dimensional manifold in the A–B–ψ–ξ–d extended phase
space, and we denote this manifold by M∞, where the superscript ∞ corresponds to the fact that they satisfy (2.11); the condition

at infinity. By tracking these solutions from ∞ back to ξ = ξmax =
2−

√
a

a (see Fig. 2), we find that, at ξmax, a segment of the
manifold M∞ is nearly a horizontal line segment that stretches out at least over the interval (0, a3/8

] in the A coordinate with
B = −a1/4 to leading order; see Fig. 3.

As a next step, we focus on the solutions of (2.9) that satisfy the initial condition (2.10). These solutions also form a three-
dimensional manifold, which we denote by M0. In two stages, we track the solutions on M0 from ξ = 0 to ξ = ξmax; see Fig. 2.
First, in Section 4, we pull M0 forward to ξ = ξb = kb log( 1

a ), for some kb > 0. Then, in Sections 5 and 6, we track the solutions
on M0 further forward from ξ = ξb to ξ = ξmax; this is the interval in which the bumps lie. We introduce a ‘slow’ independent

variable η = aξ and the shifted phase variable φ = ψ +
aξ
2 in (2.9). Under the assumption that |φ| < a

1
2 (this strict inequality is
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proved in Section 7), the leading order system becomes
Aξ = AB

Bξ = 1 −
η2

4
− B2

− A2
+ aB

(
(1 − d)

η
+ Kη

)
+ hot

ηξ = a.

(2.12)

The higher order terms in the equation for B contain the φ2-term.
The global geometry of the invariant manifolds of (2.12) is studied in Section 5. For a = 0, the system (2.12) is a planar

Hamiltonian system depending on a fixed parameter η. For every η ∈ (0, 2), it has a pair of saddle fixed points connected by a
pair of heteroclinic orbits that enclose a family of periodic orbits. For 0 < a � 1, it follows from geometric singular perturbation
theory [10,12] that the manifolds persist. Using adiabatic Melnikov function theory we determine the splitting distance between the
invariant manifolds and their intersection points.

This global geometric information is then used in Section 6 to track solutions on M0 further forward to η = ηmax = aξmax. It
follows that, on the cross section η = ηmax in the A–B plane, M0 exhibits a highly complex structure; see Fig. 8. As an important
result, on the cross section η = ηmax in the A–B plane, there are two families of transverse intersection points of the manifolds
M0 and M∞. Hence, there exist two families of solutions on M0 and M∞ such that for each member of these families the A and
B coordinates are the same at ηmax (values different for each member, of course). The properties of these solutions are further
specified in Section 8. We note here that one of the main properties is that the A coordinates at ξmax of the intersection points lie

exponentially close to zero for one family while they are O(a
3
8 ) for the other family.

With the above analysis the proof of Theorem 2.1 is almost finished. The last step concerns the ψ coordinates. In general, the ψ
coordinates of the solutions just identified need not coincide. In Section 9, we show that the interval of values of the ψ coordinates
of the relevant points on M0 overlaps the interval of values of the ψ coordinates of the relevant points on M∞. Furthermore, we
prove that the derivative of the ψ coordinate with respect to d of points on M0 is much larger than that same derivative for points
on M∞; see Fig. 10 for a sketch of the manifolds in the d–ψ plane. Therefore, we can conclude that, for each member of the two
families identified above and for each a sufficiently small, there exists a unique d such that not only are the A and B coordinates of
the solutions on both manifolds the same but also their ψ coordinates are the same. Concluding, the above analysis shows that the
three-dimensional manifolds M0 and M∞ have two families of transverse intersection points in the A–B–ψ–ξ–d five-dimensional
phase space and, hence, that the locally unique, multi-bump solutions stated in Theorem 2.1 exist.

Remark 2.2. In the proofs throughout this article, the letter c is used to denote various positive, O(1) constants. These constants
are local.

3. Tracking M∞ backward to ξ =

√
2

a
√

a

The behaviour of solutions of the NLS on M∞ for ξ very large was already studied in [15,20,21]. The results can be extended
to the GL and are stated in the following theorem:

Theorem 3.1. Assume that 2 < d < 4 is fixed and that a is sufficiently small. Then for every ξ ≥

√
2

a
√

a
and A1 sufficiently small,

there is a unique solution to (2.9) that satisfies the boundary condition (2.11) and A(ξ) = A1.

The proof of this theorem is an application of the contraction mapping principle to a rescaled form of system (2.9). It is a
straightforward extension of Theorem 3.1 in [20]; therefore, we will not give it here, and instead we refer the reader to [20].

Theorem 3.1 gives us a solution satisfying the boundary condition (2.11) that is characterised by its amplitude at ξ1 =

√
2

a
√

a
and

the value of d . Hence, choosing A(ξ1) and d gives a locally unique solution that is a function of ξ . Thus, the manifold M∞ of
solutions that satisfy the boundary condition is of dimension 3 in (A, B, ψ, ξ, d)-space.

3.1. Tracking M∞ backward further to ξmax =
2−

√
a

a

In this section, we analyse the behaviour of the solutions on M∞ as they are integrated backward further from ξ1 =

√
2

a
√

a
to

ξmax =
2−

√
a

a . We extend the method used in [21] for the NLS to the GL. However, the extension of the results to the GL is not
straightforward and does lead to a different statement for ψ at ξmax; therefore, we do give this analysis here.

We denote the values of A, B, and ψ at ξ = ξmax by A∞

d (ξmax), B∞

d (ξmax), and ψ∞

d (ξmax). We will show that B∞

d (ξmax) lies

close to −a
1
4 in a C1 manner (see Lemmas 3.2 and 3.5) and that ψ∞

d (ξmax) lies close to −aξmax
2 (see Lemma 3.2). Moreover, for

these solutions, the interval of values that A∞

d (ξmax) can reach stretches to include the interval (0, a
3
8 ]. In Fig. 3, a sketch of the

manifold M∞ is given in the A–B plane.
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In the same way as in [15,20,21], we introduce a rescaling of Q for which the linearised equation (2.5) for Q becomes self-
adjoint. Let Q(ξ) = X (ξ)W (ξ), where X is chosen so that, after substitution in (1.3), the equation for W does not contain any

first-order derivatives (i.e., the linearised equation for W is self-adjoint). This gives X (ξ) = e−
ia
4 ξ

2
ξ

1−d
2 and the following equation

for W :

(1 − iK a)Wξξ +

[
a2ξ2

4
− 1 −

ia
2
(d − 2)−

1

4ξ2 (d − 1)(d − 3)+ iK a

(
ia
2

+
a2ξ2

4
+

1

4ξ2 (d − 1)(d − 3)
)]

W

+ (1 + ibK a)ξ1−d
|W |

2W = 0. (3.1)

The linearised version of this equation reduces for 0 < a � 1 and ξ � 1 to the parabolic cylinder equation

Wξξ +

(
a2ξ2

4
− 1

)
W = 0. (3.2)

At ξ =
2
a the type of Eq. (3.2) changes from elliptic for ξ > 2

a to hyperbolic for ξ < 2
a since the coefficient in front of the W -term

vanishes there.
For ξ �

2
a , the two linearly independent solutions of (3.2) are given to leading order by

W1 = ξ
d−3

2 −
i
a e

ia
4 ξ

2
and W2 = ξ

1−d
2 +

i
a e

−ia
4 ξ2

.

The higher order terms are small as long as ξ �
2
a and a � 1. Solution W2 does not satisfy condition (2.7); hence, it is not the

solution that we are looking for (see Section 2). Instead, W1 has the correct asymptotics at infinity; it does satisfy condition (2.7).
To determine approximations for B∞

d (ξmax) and ψ∞

d (ξmax), we study solutions of (3.2) close to the turning point to obtain an
estimate for the linearised equation (2.5). We denote these approximations by B∞

d,lin(ξmax) and ψ∞

d,lin(ξmax). Then, we extend these
results to the full nonlinear equation (1.3) for Q; see Lemma 3.2.

Lemma 3.1. For d > 2 fixed and for a sufficiently small,

B∞

d,lin(ξmax) = −a
1
4 +

1
4

√
a + hot,

ψ∞

d,lin(ξmax)+
aξmax

2
is exponentially small.

This lemma follows from the explicit expression for the leading order solution of (3.2) and the relations between A, B, ψ , and W ,

A = |Q| = ξ
1−d

2 |W |,

B = Re
(

Wξ

W

)
+

1 − d

2ξ
,

ψ = Im
(

Wξ

W

)
−

aξ

2
.

(3.3)

See Lemma 3.1 and Appendix A in [21] for a detailed proof.
Next, we extend these approximations to the solutions of the full equation (3.1), and hence, to Eq. (1.3).

Lemma 3.2. For d > 2 fixed and for a sufficiently small, there exist positive constants c1 and c2 such that

B∞

d (ξmax) = −a
1
4 + c1

√
a and

ψ∞

d (ξmax) = −
aξmax

2
+ c2ad−

1
2 (1 + b).

Proof. We introduce amplitude and phase coordinates associated with W ,

W (ξ) = y(ξ) exp
[

i
∫ ξ

0
φ(x)dx

]
, z(ξ) =

yξ
y
. (3.4)

These are analogous to the coordinates A, B, and ψ associated with Q. Moreover, (3.3) and (3.4) imply the following relations
between B and z and between ψ and φ:

z =
d − 1

2ξ
+ B,

φ =
aξ

2
+ ψ.

(3.5)
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Eq. (3.1) may be written in the variables y, z, and φ as

yξ = yz

zξ = −z2
+ φ2

+
1

4ξ2 (d − 1)(d − 3)+
1

(1 + a2 K 2)

[
1 −

a2ξ2

4
(1 − a2 K 2)− (1 − ba2 K 2)ξ1−d y2

−
a2 K

2
(d − 3)

]
φξ = −2φz +

a

1 + a2 K 2

[
1
2
(d − 2)+

a2 K 2

2
+ K

(
1 −

a2ξ2

2

)
− K ξ1−d y2(1 + b)

]
.

(3.6)

We will compare the solutions of system (3.6) to the solutions of the linear equation for W obtained in Lemma 3.1. Let
ẑ(ξ) = z(ξ) − z̄(ξ) and φ̂(ξ) = φ(ξ) − φ̄(ξ), where z̄(ξ) and φ̄(ξ) are the solutions of the linearised version of Eq. (3.1).
Note that in the amplitude and phase coordinates linearisation corresponds to setting y = 0, so the linearised system depends only

on z and φ. The estimates for B and ψ in Lemma 3.1 imply that z̄ = −a
1
4 +

1
4

√
a and φ̄ is exponentially small to leading order at

ξ = ξmax. Here we will show that |ẑ| < ad−
3
2 <

√
a and that |φ̂| < c2(1 + b)ad−

1
2 for ξ ≥ ξmax. Combining these two results, we

find approximations for z and φ. Finally, via (3.5), this leads to the desired approximations for B and ψ .
The system (3.6) can be written in terms of y, ẑ, and φ̂ as

yξ = yz̄ + yẑ

(
ẑξ
φ̂ξ

)
=

(
−2z̄ 2φ̄
−2φ̄ −2z̄

)(
ẑ
φ̂

)
+

φ̂
2
− ẑ2

−
1 − ba2 K 2

1 + a2 K 2 ξ
1−d y2

−2φ̂ ẑ −
(1 + b)K a

1 + a2 K 2 ξ
1−d y2

 . (3.7)

The ẑ- and φ̂-equations have been written in this way to show the structure of the 2×2-matrix, whose behaviour plays an important
role in the analysis.

For ξ �
2
a we have that z̄ ∼ −

3−d
2ξ < 0 (because z̄ = Re

d
dξ |W |

|W |
from the definition of the polar coordinates (3.4) and because

we evaluate along W1). We need that z̄ ≤ 0 for every ξ ≥ ξmax. For ξ � 1 and a � 1, the solutions to (3.2) can be used to calculate
the sign of z̄. A solution to (3.2) can be written as

W = K1W

(
1
a
,
√

aξ

)
+

i
2

e−
π
a W

(
1
a
,−

√
aξ

)
,

where the functions on the right hand side are Weber parabolic functions, see [1], and K1 is a constant. Computation of z̄ = Re
d

dξ |W |

|W |

shows that z̄ < 0 at ξ =
2
a (for a � 1), and z̄ decreases monotonically and algebraically to 0 as ξ increases, so z̄ < 0 for ξ ≥ ξmax.

Define ξ2 < ξ1 =

√
2

a
√

a
by z̄(ξ2) = −2a. Such a ξ2 exists because z̄ ∼ −a−

1
4 at ξmax, z̄ increases monotonically for ξ ≥ ξmax,

and z̄ ∼ −( 3−d
2
√

2
)a3/2 at ξ1. It remains to show that, for y(ξ1) in some appropriate range, |ẑ| <

√
a and |φ̂| < c2(1 + b)ad−

1
2 for

ξ ≥ ξmax.
To show this, we need the following

Lemma 3.3. We denote by V the space of solutions to (3.7) that satisfy

a. (y, ẑ, φ̂) is exponentially small for ξ2 ≤ ξ ≤ ξ1,

b. |y| < 2a−
1
8 , |ẑ| <

√
a, and |φ̂| < c2(1 + b)ad−

1
2 for ξ ≥ ξmax.

Then for y(ξ1) chosen appropriately, sufficiently small, the solutions remain in this space.

The proof of this lemma is given in Appendix A, and it is based on an argument that uses continuous induction. The fact that
solutions satisfy the first property of the space can be proved by showing that the two following statements hold.

First, we show that if y(ξ) is exponentially small for ξ ≥ ξ2, then ẑ and φ̂ are exponentially small for ξ ≥ ξ2, provided that they
are already this small at ξ = ξ1. Vice versa, we need to show that if ẑ is exponentially small for ξ ≥ ξ2 and y is exponentially small
at ξ1, then for y(ξ1) chosen small, y is also exponentially small for ξ ≥ ξ2. The same type of argument can be used to show that the
solutions also satisfy property b.

Applying this lemma, we can finish the proof of Lemma 3.2. We choose y(ξ1) so that Lemma 3.3 is satisfied. Then it follows

immediately that |φ̂| < c2(1 + b)ad−
1
2 and |ẑ| <

√
a for every ξ ≥ ξmax. �

In the following lemma, we estimate A∞

d (ξmax).
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Lemma 3.4. For d > 2 fixed and for a sufficiently small, the range of A1 = A(
√

2
a
√

a
) can be chosen such that, as a function of A1,

A∞

d (ξmax) is onto (0, a
3
8 ].

Proof. We use the relation A = ξ
1−d

2 y, between y and A that follows from the relation between Q and W . The proof of Lemma 3.2

shows that one may choose the range of y(ξ1) such that y < 2a−
1
8 for all ξ ≥ ξmax. In the proof of Lemma 3.2, we chose y(ξ1) in an

interval such that y(ξ2) is exponentially small. For the largest value of y(ξ1)we know that y(ξmax) >
√

2a−
1
8 . Thus A∞

d (ξmax) > a
3
8

since ξ
1−d

2
max >

√
a
2 . �

We conclude this section with a lemma extending the C0 closeness of B∞

d (ξmax) to −a1/4 in the A–B plane to C1 closeness.
This result will then be used below in Section 6 to establish the transversality of M0 and M∞.

Lemma 3.5. For d > 2 fixed, a sufficiently small, and for each A1 in the range of A1 values found in Lemma 3.4, the map

A1 →
(

A∞

d (ξmax, A1), B∞

d (ξmax, A1)
)

has a slope that is less than ca
1
8 in the A–B plane for some c > 0.

Proof. Define Z =
∂z
∂A1

, Y =
∂y
∂A1

, and Ψ =
∂φ
∂A1

. Then Z , Y , and Ψ satisfy the variational equations

Yξ = (z̄ + ẑ)Y + y Z ,

(
Zξ
Ψξ

)
=

(
−2z̄ 2φ̄
−2φ̄ −2z̄

)(
Z
Ψ

)
+

 2φ̂Ψ − 2ẑ Z − 2
1 − ba2 K 2

1 + a2 K 2 ξ
1−dY y

−2φ̂Z − 2ẑΨ − 2
(1 + b)K a

1 + a2 K 2 ξ
1−dY y

 . (3.8)

Since Y stays bounded away from 0, we may look at the quantities Z/Y and Ψ/Y . These satisfy the equations

(
(Z/Y )ξ
(Ψ/Y )ξ

)
=

(
−3z̄ − 3ẑ 2φ̄ + 2φ̂
−2φ̄ − 2φ̂ −3z̄ − 3ẑ

)(
Z/Y
Ψ/Y

)
−

 y(Z/Y )2 + 2
1 − ba2 K 2

1 + a2 K 2 ξ
1−d y

y(Z/Y )(Ψ/Y )+ 2
(1 + b)K a

1 + a2 K 2 ξ
1−d y

 .
Integrating backward to ξmax and using an appropriate integrating factor similar to that in the proof of Lemma 3.3, we have

that Z/Y can be estimated by ca−
1
4 ξ1−d y 1−ba2 K 2

1+a2 K 2 (since z̄ dominates ẑ and z̄ ≈ −a−
1
4 and negative for ξ ≥ ξmax) and

Ψ/Y by ca−
1
4 ξ1−d y (1+b)K a

1+a2 K 2 . Also, we know that y < 2a−
1
8 . Therefore, ( ∂z

∂A1
)/(

∂y
∂A1

) = Z/Y ≤ cξ1−d ya−
1
4 1−ba2 K 2

1+a2 K 2 , and so

( ∂B
∂A1

)/( ∂A
∂A1

) ≤ ca−
1
4 ξ

1−d
2 y 1−ba2 K 2

1+a2 K 2 ≤ ca
4d−7

8 � ca
1
8 for some positive constant c. �

Remark 3.1. More generally, we can pull back M∞ to a point ξ =
2−b

a , where a
2
3 � b � a

2
5 . The choice of b =

√
a, used

to obtain ξmax, was made to simplify the analysis. Further details are given in Remark 6.1, after the necessary analysis of M0 is
presented.

4. The manifold M0 satisfying the initial conditions

In this section, we will study solutions of the system (2.9) that satisfy the initial conditions (2.10). Moreover, we choose A(0)
close to zero but positive. We construct a manifold M0 of such solutions and track it forward to ξ = ξb. We denote the values of
A, B and ψ at ξ = ξb by A0

d(ξb), B0
d (ξb) and ψ0

d (ξb). We show that B0
d (ξb) lies in an interval where B = 1 to leading order. Also,

we show that there exists an interval of initial conditions for A such that A at ξ = ξb overlaps the interval (0, ca]. Finally, we will
prove that, at ξ = ξb, the image of the curve of these solutions lies horizontally in the (A, B)-plane.

The solutions that we construct here lie close to the zero solution of (1.6). Therefore, we first study the solutions to Eq. (1.6) and
then we use the fact that the solutions of system (2.9) lie close to Eq. (1.6).

4.1. The estimates on B0
d (ξb)

We want to study solutions that lie close to a solution of Eq. (1.6); therefore, we analyse this equation first and write it as a
first-order system. We introduce T =

Rξ
R so that (1.6) becomesRξ = RT

Tξ =
1 − d

ξ
T − T 2

− R2
+ 1.

(4.1)
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Fig. 4. A sketch of the manifold M0 in the A–B plane at ξ = ξb .

Note that this system is identical to (2.9) if we set a = 0 and ψ = 0. For large ξ , 1 � ξ < ξb, (4.1) has a critical point located to
leading order at R = 0, T = 1. This point is a saddle, and therefore solutions with initial conditions near the zero solution will go
towards and then diverge from this solution for large ξ .

From the asymptotics, it follows that a solution to (2.9) that satisfies the initial conditions (2.10) has a ψ-component that remains
close to ψ = −

aξ
2 . Therefore, we introduce φ = ψ +

aξ
2 . Note that this is the same φ as was used in the previous section; however,

the reason why it is used here is different. The system (2.9) then becomes
Aξ = AB

Bξ =
1 − d

ξ
B − B2

+
a2ξ2

4
+ φ2

− aξφ +
1

1 + a2 K 2

{
1 − (1 − ba2 K 2)A2

+ aξφ −
a2ξ2

2
+ a2 K (1 + ξ B)

}
φξ =

1 − d

ξ
φ − 2φB + aξ B +

ad

2
+

a

1 + a2 K 2

{
−1 − ξ B + K

[
1 + aξφ −

a2ξ2

2
− (1 + b)A2

]}
.

(4.2)

In this section, we prove that solutions starting in B(0) = 0, φ(0) = 0 and A(0) ∈ (0, cr amr ], mr > 0, will evolve into a curve
at ξ = ξb where 0 < A(ξb) < cam , m > 0, and B is close to 1; see Fig. 4. We start by showing that the statement holds when
setting φ = a = 0 in (4.2).

Hence, we first show that it is true for R and T in (4.1) and then extend this result to the full (A, B, φ)-system. For this second
step, we prove that φ remains small for 0 < ξ < ξb and then use that (4.2) is a small perturbation of (4.1).

Lemma 4.1. There exist constants 0 < k3 < k4 < kb such that solutions that satisfy R(0) ∈ (0, cr amr ], T (0) = 0 evolve at ξ = ξb
into a curve with

1 −
d − 1

2k3 log
(

1
a

) < T (ξb) < 1 −
d − 1

2k4 log
(

1
a

) < 1

and 0 < R(ξb) < camr −kb = cam . Moreover, for mr − kb = m > 0, Tξ > 0 and Rξ > 0 for all 0 ≤ ξ ≤ ξb.

The proof of this lemma is given in Appendix B.
Now, we will extend the above results to A and B. For that we want to bound φ at ξ = ξb. In order to establish such a bound, we

need:

Lemma 4.2. A solution that satisfies the initial conditions B(0) = 0 and φ(0) = 0, i.e. ψ(0) = 0, can be represented as

φ(x) = ψ(x)+
ax

2

=
ax1−d

A2(x)(1 + a2 K 2)

∫ x

0
A2(y)yd−1

[
d − 2 + 2K + a2 K 2d

2

− aK (b + 1)A2(y)+ a2 K y
(
φ −

ay

2

)
+ a3 K 2 y B(y)

]
dy

=
xa3 K 2

2(1 + a2 K 2)
+

ax1−d

A2(x)(1 + a2 K 2)

∫ x

0
A2(y)yd−1

[
d − 2 + 2K

2
− aK (b + 1)A2(y)+ aK y

(
φ −

ay

2

)]
dy

=
xa3 K 2

2(1 + a2 K 2)
+

ax1−d

A2(x)(1 + a2 K 2)
I, (4.3)

where

I (x) =

∫ x

0
R(y)A2(y)yd−1dy
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and

R(y) =
d − 2 + 2K

2
− K (b + 1)A2(y)+ K ay

(
φ −

ay

2

)
.

The proof of this lemma is given in Appendix C. Using the explicit expression (4.3) for φ, we can now approximate φ at ξ = ξb
as follows:

Lemma 4.3. For B(ξ) > 0 (so that Aξ > 0) and A(ξ) ≤ c̃ for ξ ≤ ξb, there exists a constant C > 0 such that |φ(ξ)| < Ca p for
every 0 < p < 1 and 0 ≤ ξ ≤ ξb.

Proof. We will bound the expression I in Eq. (4.3) by studying the different integrals separately. Since A and xd−1 are both
increasing functions on 0 ≤ y ≤ ξ ≤ ξb it follows that∫ ξ

0
A2(x)xd−1dx ≤ A2(ξ)

∫ ξ

0
xd−1dx = A2(ξ)

ξd

d

and similarly∫ ξ

0
A4(x)xd−1dx ≤ A4(ξ)

ξd

d
and

∫ ξ

0
A2(x)xd+1dx ≤ A2(ξ)

ξd+2

d + 2
.

The part in I which contains a term φ can be estimated by using continuous induction. Assuming |φ(x)| < Ca p for 0 ≤ x < ξ , we
can bound the integral as follows:∣∣∣∣∫ ξ

0
A2(x)xdφdx

∣∣∣∣ < Ca p
∫ ξ

0
A2(x)xddx ≤

C1a p

d + 1
ξd+1 A2(ξ).

Hence

|I (ξ)| ≤ A2(ξ)ξd
[

d − 2 + 2K

2d
+ K

b + 1
d + 2

A2(ξ)+ K aξ

(
C1a p

d + 1
+

aξ

2(d + 2)

)]
< C A2(ξ)ξd ,

where for the second inequality we use the fact that aξ ≤ aξb = akb log 1
a � 1 together with the assumption that A(ξ) ≤ c̃.

Substituting this bound into (4.3), we find that

|φ(ξ)| ≤
aξ

1 + a2 K 2

[
a2 K 2

2
+ C

]
< Caξ � Ca p

for 0 < p < 1, since ξb � a−p1 for every p1 > 0. �

As a last step we will show that the results as stated in Lemma 4.1 also hold for A and B.

Lemma 4.4. There exist constants k1, k2 > 0 such that for solutions with A(0) ∈ (0, cr amr ], B(0) = 0 and φ(0) = 0 the following
holds:

1 −
d − 1

2k1 log
(

1
a

) < B(ξb) < 1 −
d − 1

2k2 log
(

1
a

) < 1,

and 0 ≤ A(ξb) < cr amr −kb = cr am . Furthermore, for m = mr − kb > 0, Aξ > 0, Bξ > 0 for all 0 ≤ ξ ≤ ξb.

Proof. We use the fact that A and B lie close to R and T . Using that B < 1, it follows analogously to the estimate for R that
0 < A(ξb) < cr amr −kb . Since a and φ are small, the equations for A and B are small perturbations of the equations for R and T .
Hence, B(ξb) also lies, in a similar way to T , close to B = 1. Now, we prove that on the interval at ξ = ξb, Bξ > 0. The extra terms
that the equation for Bξ in (4.2) contains compared to the equation for Tξ are given by

E1 = φ2
+

a2

1 + a2 K 2

[
K 2(1 + b)A2

− aK 2ξφ + K (1 + ξ B)+ (a2 K 2
− 1)

ξ2

4
− K 2

]
.

We know that aξφ < a2, and since ξ < ξb, a2ξ2 < a
3
2 ; hence, |E1| �

1
log 1

a
. Therefore, this term is at ξ = ξb much smaller than

the other terms which are of order 1
log 1

a
. Hence, Bξ > 0 at ξ = ξb. �
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Remark 4.1. In Section 6 we need that A0
d(ξb) stretches out up to ca. More specifically, A0

d(ξb) must overlap the interval (0, ca]

including exponentially small terms. Therefore, we choose m < 1 which leads together with the fact that Aξ > 0 for all 0 < ξ < ξb
to the required right boundary. It also follows from the fact that

A(ξb) = A(0)e
∫ ξb

0 B(y)dy
≤ A(0)a−kb

that if A(0) is exponentially small, this is also true for A(ξb).

4.2. The slope in the (A, B)-plane

In this section, we show that, at ξ = ξb, the image of the curve of initial conditions I0 lies horizontally. We use the variational
equations of system (4.2):

Âξ = B Â + AB̂

B̂ξ =
1 − d

ξ
B̂ − 2B B̂ + 2φφ̂ − aξ φ̂ +

1

1 + a2 K 2 (−2(1 − ba2 K 2)AÂ + aξ φ̂ + a2 K ξ B̂)

φ̂ξ =
1 − d

ξ
φ̂ − 2φ B̂ − 2Bφ̂ + aξ B̂ +

a

1 + a2 K 2 (−ξ B̂ + K [aξ φ̂ − 2(1 + b)AÂ]),

where Â, B̂ and φ̂ are the tangent vectors. As in Lemma 3.5 we compute the slope of the curve by using projectivised quantities.

We define u =
B̂
Â

and v =
φ̂

Â
. The functions u and v satisfy

uξ = u

[
1 − d

ξ
− 3B − Au +

a2 K ξ

1 + a2 K 2

]
+ v

[
2φ −

a3 K 2ξ

1 + a2 K 2

]
−

2

1 + a2 K 2 (1 − ba2 K 2)A

vξ = v

[
1 − d

ξ
− 3B − Au +

a2 K ξ

1 + a2 K 2

]
+ u

[
−2φ +

a3 K 2ξ

1 + a2 K 2

]
− 2a

(1 + b)K

1 + a2 K 2 A.

(4.4)

The slope that we are interested in is represented by the value of u at ξ = ξb. We will show that u is small at ξ = ξb so that the
image of I0 lies approximately horizontal in the (A, B)-plane. This is stated in

Lemma 4.5. For a sufficiently small and d > 2, the image of the trajectories produced in Lemma 4.4 has, in the (A, B)-plane, a
slope that is less than cal for some c > 0 and 0 < l < 1.

The proof of this lemma will be given in Appendix C.1. The results of this lemma imply that, in the (A, B)-plane, the slope of the
graph is smaller than cal where 0 < l < 1 and, hence, it lies approximately horizontally; see Fig. 4.

5. Structure of the invariant manifolds of system (2.12)

In this section, we study the system (2.12) for η > ηmin = aξb, and we establish an asymptotic approximation for the position of
M0 at η = ηmax = aξmax. Along the lines of [21] we start by studying the geometry of system (2.12) for a = 0 and then apply the
Fenichel theory to obtain the relevant information about the geometry for 0 < a � 1. Finally, by introducing an adiabatic Melnikov
function, we obtain a more detailed view of the structure of the invariant manifolds of system (2.12) for 0 < a � 1.

5.1. Geometry of the system (2.12) with a = 0

For a = 0, the geometry of the system (2.12) is the same as in the analysis of the NLS equation; see [21]. Here we summarise.
When a = 0, there exist three curves of fixed points,

Γ 0
± =

(A, B, η)

∣∣∣∣∣∣A = 0, B = ±

√
1 −

η2

4
, ηmin < η < ηmax

 (5.1)

and

Γ0 =

(A, B, η)

∣∣∣∣∣∣A =

√
1 −

η2

4
, B = 0, ηmin < η < ηmax

 ; (5.2)

see Fig. 5(a). The curves Γ 0
± are normally hyperbolic manifolds, since they are the unions of saddle fixed points (A, B) =

(0,±
√

1 −
η2

4 ) for every fixed η; see Fig. 5(a). These saddles are connected by a heteroclinic orbit for every η ∈ (ηmin, ηmax).
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Fig. 5. (a) A sketch of the three curves of critical points Γ 0
±

and Γ0 in the A–B–η plane for a = 0. Here the positive B-axis points into the paper. (b) The flow in

the A–B plane for η ∈ (ηmin, ηmax) fixed, where α =

√
1 −

η2

4 .

For every fixed η, there exists a one-parameter family of periodic orbits in the domain inside the heteroclinic orbit. This family

limits on the centre fixed point (A, B) = (Actr , 0) = (

√
1 −

η2

4 , 0), see Fig. 5(b), and the curve Γ0 shown in Fig. 5(a) is the union
of these centres.

The leading part of system (2.12) can be written as the Duffing equation

Aξξ = A

(
1 −

η2

4
− A2

)
, (5.3)

and hence, explicit expressions can be given for the heteroclinic and periodic orbits, see [11], for example. Note that the variable B
used here is the logarithmic derivative of A; see (2.8). For every ηmin < η < ηmax, the heteroclinic orbit is given by

(A0(ξ), B0(ξ)) = [
√

2α sech(αξ),−α tanh(αξ)], (5.4)

where α =

√
1 −

η2

4 . We denote the manifold that consists of all these heteroclinic connections with ηmin < η < ηmax by W . The
periodic solutions are given by

A(k)(ξ) =
√

2βdn(βξ, k), (5.5)

B(k)(ξ) = −k2β
sn(βξ, k)cn(βξ, k)

dn(βξ, k)
, (5.6)

where β =
α√

2−k2
and 0 < k < 1. Here, k = 0 corresponds to the centre point (A, B) = (

√
1 −

η2

4 , 0) and k = 1 to the heteroclinic

solution. The period of such a solution is given by T (k)0 = 2 K (k)
β

, where K (k) is the complete elliptic integral of the first kind.
Finally, for system (2.12) with a = 0, there exist two integrals:

κ1 =
1
2

A2 B2
−

1
2

(
1 −

η2

4

)
A2

+
1
4

A4 (5.7)

κ2 = η.

5.2. Persistence of the invariant manifolds for 0 < a � 1 and their transverse intersections

Since the two curves of critical points Γ 0
± are normally hyperbolic, we can apply the Fenichel theory [10,12]. Therefore, we

find that for 0 < a � 1 and η restricted to (ηmin, ηmax), the Γ 0
± persist as slow manifolds Γ+ and Γ−, which lie O(a) close to

Γ 0
+ and Γ 0

−, respectively. These manifolds must also still lie in the plane {A = 0}, since this remains an invariant plane for a 6= 0.
Furthermore, it follows from the Fenichel theory that the manifolds Γ+ and Γ− have stable and unstable manifolds O(a) close to
those of the unperturbed system. The manifolds no longer coincide as they did for a = 0. We denote the component of the unstable
manifold of Γ+ that lies O(a) close to the manifoldW by W u(Γ+), and the component of the stable manifold of Γ− that lies O(a)
close to the manifoldW by W s(Γ−).

Now, we study the behaviour of the unstable manifold of Γ+, W u(Γ+), and the stable manifold of Γ−, W s(Γ−), for 0 < a � 1.
The Melnikov method for slowly varying systems, see [17,22], yields an expression for the distance between W u(Γ+) and W s(Γ−)

as a function of η. In fact, denoting the first intersection of W u(Γ+) with the set {B = 0, A > 0} by P(Γ+), and similarly the first
intersection of W s(Γ−) with the same set by P−1(Γ−), we find the distance between P(Γ+) and P−1(Γ−).
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Remark 5.1. The Fenichel and Melnikov theorems may be used directly to obtain the desired results for all η ∈ (0, 2). Here, we
are also interested in the behaviour of W u(Γ+) and W s(Γ−) up to ηmax = 2 −

√
a and we note that after a suitable rescaling (the

eigenvalues are of size O(
√

a) but the perturbation is of size O(a)) the Fenichel and Melnikov theories can also be applied up to
ηmax.

To apply the Melnikov method, we transform system (2.12) by introducing C = AB so that it is explicitly divergence free:
Aξ = C

Cξ = A

(
1 −

η2

4
− A2

)
+ aC

(
1 − d

η
+ Kη

)
+ hot

ηξ = a.

(5.8)

To leading order, system (5.8) is the Duffing equation and in this representation, the plane B = 0 corresponds to the plane C = 0.
Compared to the corresponding system that was obtained for the NLS equation in [21], this system contains an extra term aKηC .

Along the same lines as in [21], we compute the Melnikov function.
For any η0 such that ηmin < η0 < ηmax, we define Au

a and As
a (which depend on η0) as the intersection points of orbits on W u(Γ+)

and W s(Γ−), respectively, with C = 0 on {η = η0}. The solutions γ u
a (ξ) = (Au

a(ξ),Cu
a (ξ), η

u
a (ξ)) in W u(Γ+) and γ s

a (ξ) =

(As
a(ξ),Cs

a(ξ), η
s
a(ξ)) in W s(Γ−) for the perturbed system (5.8) are determined by the initial condition γ u,s

a (ξ) = (Au,s
a (ξ), 0, η0).

And γ0(ξ) = (A0(ξ),C0(ξ), η0) is the heteroclinic solution of the unperturbed system with γ0(0) = (

√
2(1 −

η2
0

4 ), 0, η0). Here A0
and C0 are given explicitly by (5.4), where C0 = A0 B0. We define the following ξ -dependent distance function:

∆(ξ, η0) =



∂

∂a
(Au

a(ξ)− As
a(ξ))

∂

∂a
(Cu

a (ξ)− Cs
a(ξ))

 ∧

 C0(ξ)

A0(ξ)

(
1 −

η2
0

4
− A0(ξ)

2

) 
 .

From this ξ -dependent distance function, we derive the adiabatic Melnikov function in the usual way for slowly varying systems,
see [22], as

∆(0, η) =

∫
∞

−∞


 0

C0

(
1 − d

η
+ Kη

) +

(
0

−
η

2
A0

)
∂η

∂a

 ∧

 C0

A0

(
1 −

η2

4
− A2

0

)  dξ.

Here ∂
∂ξ
(
∂η
∂a ) = 1 and ∂η

∂a = 0 for ξ = 0 and hence ∂η
∂a = ξ . Computing the integrals using (5.4) and C0 = A0 B0, we find

∆(0, η) =

∫
∞

−∞

−

[
C2

0

(
1 − d

η
+ Kη

)
−
η

2
A0C0ξ

]
dξ

= −2

√
1 −

η2

4

[
2
3

(
1 − d

η
+ Kη

)(
1 −

η2

4

)
+
η

2

]
.

The function ∆(0, η) measures the distance between P(Γ+) and P−1(Γ−) to O(a). Applying the Implicit Function Theorem, a
simple zero ηi of ∆(0, η) defines a transversal intersection point of P(Γ+) and P−1(Γ−) at B = 0.

We analyse the zeros of the Melnikov function. Setting ∆(0, η) = 0 leads to

η = 2 or Kη4
− (4K + d + 2)η2

+ 4(d − 1) = 0.

However, since ∆ is not defined at η = 2, solutions of the fourth-order equation are the only possible candidates for a zero of the
Melnikov function. Note that solutions have to be positive and satisfy 0 < ηmin < η < ηmax < 2. The solutions of this equation are
given by the positive solutions of

η2
= κ± =

1
2K

(
4K + d + 2 ±

√
(4K + d + 2)2 − 16K (d − 1)

)
.

For d < 4, the expression under the square root is positive, leading to two possible (positive) solutions. When d > 2, we find that
κ+ < 0 for K < 0 and κ+ > 4 for K > 0, and the extra restriction 0 < η < 2 can only be satisfied by η− =

√
κ−.

Further analysis shows that 0 < κ− < 4 is satisfied for all K . Moreover, κ− is not defined for K = 0 and to leading order
κ− =

d−1
K → 0 as K → ∞ and κ− = 4 +

3
K → 4 as K → −∞ to leading order. Using these asymptotic expansions, we

find restrictions on K since the zero η− needs to lie between ηmin = akb log 1
a and ηmax = 2 −

√
a. This gives the leading order

restriction

−
3

4
√

a
< K <

d − 1

η2
min

. (5.9)
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Fig. 6. A sequence of sketches of the manifolds W u(Γ+) (dotted curve) and W s (Γ−) (solid curve) in the A–B plane as η increases from ηmin to ηmax. Their
positions are determined in Section 5. (a) At η = ηmin, W s (Γ−) is curled up inside W u(Γ+) and starts to pull back as η increases. As long as ηmin ≤ η < ηzero,
W u(Γ+) lies ‘outside’ W s (Γ−) at B = 0. (b) The smaller the value of a, the more the tongue winds around the centre point, and hence in the sketch we only
show the tip of the tongue and not all the spirals. (c) For η = ηzero, the two manifolds intersect at B = 0. Increasing η further (d), W u(Γ+) starts to curl up inside
W s (Γ−) up to ηmax (e) where for ηzero ≤ η < ηmax, W u(Γ+) lies ‘inside’ W s (Γ−) at B = 0.

However, this property always holds since K is chosen to be positive and 1
a2(log 1

a )
2 � 1, whereas K = O(1). Thus, the two

manifolds intersect transversely in a point that is O(a) close to (
√

2(1 −
η2

i
4 ), 0, ηi ) with ηi =

√
κ−. We label the η value of the

actual intersection point by η = ηzero; see Fig. 6(c).
The adiabatic Melnikov function also gives the orientation of W u(Γ+) with respect to W s(Γ−) at B = 0. We find that

∆(0, η) > 0 for ηmin < η < ηzero; and, thus, W u(Γ+) lies ‘outside’ W s(Γ−), i.e., p1 > p2 for points (p1, 0, η) ∈ P(Γ+)

and (p2, 0, η) ∈ P−1(Γ−); see Fig. 6(a) and (b). Similarly, ∆(0, η) < 0 for ηzero < η < ηmax; and, therefore, W u(Γ+) lies ‘inside’
W s(Γ−), i.e., p1 < p2 for points (p1, 0, η) ∈ P(Γ+) and (p2, 0, η) ∈ P−1(Γ−); see Fig. 6(d) and (e).

5.3. The locations of segments of W u(Γ+) and W s(Γ−) on constant η slices

In this section, we determine the locations of long segments of the manifolds W u(Γ+) and W s(Γ−) on η = constant planes
for ηmin < η < ηmax; see Fig. 6. Since the results of the previous section are similar to the ones in [21], only the position of
the intersection point differs; the analysis of [21] can be adjusted and applied here. This analysis makes use of the fact that the
manifolds are smooth, and of the Exchange Lemma [13,14] from geometric singular perturbation theory. We will only state the
results here and refer the reader to Section 6 of [21] for details of the analysis.

In summary, we find that the manifolds W u(Γ+) and W s(Γ−) behave as in Fig. 6 when η is varied from ηmin to ηmax. As η
increases from the value corresponding to the slice shown in Fig. 6(d) to that corresponding to Fig. 6(e), this segment of W u(Γ+)

curls up inside W s(Γ−) in a tongue-like way; see Fig. 6(e).
Moreover, there is a segment of W s(Γ−) that curls up inside W u(Γ+) for ηmin < η < ηzero in a tongue-like way; see Fig. 6(a).

At η = ηmin, W s(Γ−) is curled up the most, and as η is increased the tongue that is formed by W s(Γ−) inside W u(Γ+) starts to
retract. This continues up to η = ηzero, where the manifolds intersect at the B-axis; see Fig. 6(c).

The extent to which W u(Γ+) and W s(Γ−) curl up inside themselves depends on the magnitude of a. A smaller value of a results
in longer tongue structures of W s(Γ−) at η = ηmin and of W u(Γ+) at η = ηmax.

Detailed behaviour of W s(Γ−) and W u(Γ+) that is needed in the analysis in Section 6 also can be concluded. Near ηmax, the
segment of W u(Γ+) which is parallel to the B-axis and closest to it lies exponentially close to the B-axis. There, the width of the
tongue is O(a). And hence, the right boundary of the tongue is O(a) away from the B-axis. Moreover, the segment of W s(Γ−)

that lies closest to the B-axis, and that forms the left boundary of the tongue there, is exponentially close to the B-axis at η = ηmin.
Finally, the right boundary of the tongue there is O(a) away from the B-axis.
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Fig. 7. The transformation of Iη as η is increased from ηmin to ηmax. During this process the point p0 remains on W u(Γ+), and the point p1 remains on W s (Γ−).
(a) At η = ηmin, Iη is an interval approximately perpendicular to the B-axis. The smaller the value of a, the more the tongue winds around the centre point, and
hence in the sketch we only denote the tip of the tongue and not all the spirals. ((b)–(d)) A–B planes at different values of η in Step I. Iη curls up as W u(Γ+) pulls
back, where frame (d) is a sketch for η = ηzero. ((e), (f)) In step II, W u(Γ+) curls up in itself like a tongue. (f) At η = ηmax, Iη has formed a tongue structure as a
result of the fact that W u(Γ+) curls up.

6. Tracking M0 from ξb to ξmax (i.e., from ηmin to ηmax) and the intersections of M0 and M∞ at ηmax

In this section, we track the manifold M0 from ηmin to ηmax. It will be useful to define η = constant slices of M0. Following [21]
we denote these by Iη. The location of Iηmin was already determined in Section 4; Iηmin is a nearly horizontal line segment that
stretches out over the interval (0, cam

] in the A coordinate and with B = 1 to leading order, as was first shown in Fig. 4 and as is
shown again here – now with the manifolds – in Fig. 7(a).

In order to show that Iηmin does indeed intersect with W s(Γ−) as shown in Fig. 7(a), we first recall from Lemma 4.4 that on
Iηmin : B < 1 −

d−1
2k2 log 1

a
for some constant k2 > 0. Secondly, we determine the value of B at the intersection point of W u(Γ+) with

the B-axis. For η = ηmin = akb log 1
a , this value of B is given by B = α =

√
1 −

η2
min
4 = 1 −

1
8 a2k2

b log2 1
a to leading order, using

that ηmin � 1. Combining this with the fact that the tongues are of O(a) width (Section 5.3), we conclude that the value of B on
W s(Γ−) close to the upper saddle point is to leading order given by B = 1 −

1
8 a2k2

b log2 1
a − ca = 1 − ca. This value of B is larger

than the maximum value of B on Iηmin (which is B = 1 −
d−1

2k2 log 1
a

) so that the position of Iηmin with respect to W s(Γ−) is indeed as

indicated in Fig. 7(a).
Moreover, combining the fact that the A coordinate of Iηmin stretches out over the interval (0, cam

] (it also contains exponentially
small terms), see Remark 4.1, with the fact that the tongue hasO(a)width, we find that Iηmin intersects W s(Γ−) at least in the points
p0 and p1 as shown in Fig. 7(a).

The points on Iη must respect the invariance properties of the manifolds W u(Γ+) and W s(Γ−). First, points on Iη that are also
on the manifold W s(Γ−), e.g., the points p0 and p1 in Fig. 7(a), must remain on W s(Γ−) for as long as it exists. And, orbits that do
not start on either W u(Γ+) or W s(Γ−) will never intersect these manifolds. Also, if we choose the left end point of Iηmin sufficiently
close to the B-axis, it will remain close to the B-axis when increasing η from ηmin to ηmax since it takes O( 1

a ) time to pass along
the saddle point.

We distinguish two steps in pulling Iη forward; step I from ηmin to ηzero and step II from ηzero to ηmax. In step I, the tongue
structure of the manifold W s(Γ−) retracts as illustrated in Fig. 6(a)–(c). As a result Iη becomes a curve that rolls up inside itself
(Fig. 7(d)) during this step.

In step II, W u(Γ+) starts to curl up into itself like a tongue, as illustrated in Fig. 6(e). Since the positions of all the points on Iη
with respect to W u(Γ+) and W s(Γ−) have to remain the same, Iη will also start to curl up into itself like a tongue; see Fig. 7(f).
The curve Iηmax has the important properties that there are segments that are C1 exponentially close to the B-axis (namely segments
containing the type L intersection points — one segment for each such point), and that there are other segments that are C1 close to
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Fig. 8. A sketch of M∞ and Iη at η = ηmax in the A–B plane. At the points marked by a cross, the mr
21 and ml

2i , k = 2 solutions are formed for i = 1, 2, 3. At

the points marked by a dot, the mr
4i and ml

4 j , k = 4 solutions occur for i, j = 1, 2, 3. The existence of all of these intersection points is demonstrated in Section 6.
Note that only some of the intersection points that form a k = 4 solution are sketched here, to maintain clarity in this figure.

W u(Γ+) (namely one segment for each of – and containing – the intersection points of type R); see Fig. 8. Hence, the intersections
of Iηmax with M∞ are all transverse.

The structure as sketched in Fig. 8 is more complicated than the sketch of Iηmax given in Fig. 7(f). When constructing Fig. 8, we
took into account that both W s(Γ−) at ηmin and W u(Γ+) at ηmax, for smaller values of a, wind around in the (A, B)-plane more
than is sketched in Fig. 7(a) and (f). The fact that at ηmin, W s(Γ−) has made more excursions around the centre point implies that
there exist more intersection points of W s(Γ−) and Iηmin than are given in Fig. 7(a) (and leads to a different location of one of
the end-points of the curve). Then, carefully tracking Iη as η increases from ηmin and also taking into account that W u(Γ+) winds
around the centre point more than is sketched in Fig. 7(f) leads to the sketch in Fig. 8.

On M0 at ξmax we have the following estimates of B and A, where we denote these values by B0(ξmax) and A0(ξmax):

Lemma 6.1. For points on the curve Iη at ξ = ξmax, the values of B0(ξmax) are mapped onto the interval (−a
1
4 +

1
8 a

3
4 , a

1
4 −

1
8 a

3
4 ).

The proof of this lemma uses the fact that the solutions lie O(a) close to the heteroclinic orbit (5.4) of the unperturbed system

where its B value varies between −

√
1 −

η2
max
4 and

√
1 −

η2
max
4 = a

1
4

√
1 −

1
4

√
a = a

1
4 −

1
8 a

3
4 + hot . See the proof of Lemma 7.1

in [21] for details.
Combining this result with the estimate obtained in Lemma 3.2, stating B∞

d (ξmax) = −a
1
4 + c1

√
a, one finds that there are

solutions on M0 and M∞ such that the B coordinates of these solutions overlap at ξmax.
We also have the following estimate for A0(ξmax):

Lemma 6.2. The intersection points of the curve Iη and the line B∞

d (ξmax) = −a
1
4 + c1

√
a can be split into two groups. One

group of points lies close to the heteroclinic orbit (5.4) of the unperturbed problem, (2.12) with a = 0 and η = ηmax. For these

points, A0(ξmax) = 2
√

c1a
3
8 −

c2
1+

1
4

2
√

c1
a

5
8 + hot, and we label these as points of type R. For the other intersection points, A0(ξmax)

is exponentially small, and we label them as points of type L. Hence, the A coordinates of all intersection points lie in the interval

(0, 2
√

c1a
3
8 ).

In the proof of this lemma it is again used that solutions of type R lie close to the heteroclinic orbit (5.4) of the unperturbed problem,
(2.12) with a = 0 and η = ηmax. Details of the proof can be found in the proof of Lemma 7.2 in [21].

Hence, there are solutions on M0 and M∞ for which the A coordinates coincide at ηmax, since we showed in Lemma 3.4 that
A∞

d (ξmax) is onto (0, a
3
8 ] (including the exponentially small terms) as a function of A1 = A(

√
2

a
√

a
).

Therefore, we find that there are solutions on M0 and M∞ for which the A and B coordinates at ξmax are the same. Moreover,
the manifolds M0 and M∞ intersect transversely in the A–B plane at ξ = ξmax.

The above results are almost enough to prove Theorem 2.1. There are three outstanding issues. First, we need to show that the

assumption on φ that we made above, namely that |φ| < a
1
2 for ξ ≤ ξmax, is satisfied. This is proven in Section 7. Second, we need

to extract some more quantitative information about the full solutions that lie in the transverse intersections of M0 and M∞, such
as locations of local maxima and distances between them, as stated in the theorem. This is done in Section 8. Third, while solutions
can be chosen so that the A and B coordinates are the same at ξ = ξmax, it is not necessarily the case that the ψ coordinates of
these solutions also agree. Therefore, in Section 9, we analyse the dynamics of the ψ coordinate. We show that for each of the
distinct intersection points found above there is a locally unique d such that the ψ coordinates also coincide. That completes the
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proof of the desired result that the three-dimensional manifolds M0 and M∞ have two families of transverse intersection points
in the A–B–ψ–ξ–d , extended, five-dimensional phase space and, hence, that the locally unique, multi-bump solutions claimed in
Theorem 2.1 exist, with the properties stated there.

Remark 6.1. As was already noted in Remark 3.1, we can use a more general setting and pull back M∞ to a point ξ =
2−b

a where

a
2
3 � b � a

2
5 . This can be done as follows: at η = 2−b, the constant η slice of M0 lies exponentially close to the heteroclinic orbit

that exists for a = 0. Thus, to make sure that M0 and M∞ intersect, we must have that the projection of M∞ at ξ = ξmax lies within

this heteroclinic orbit. This is satisfied when B∞

d (ξmax) � −

√
1 −

η2
max
4 and this leads to the condition b � a

2
5 . The a

2
3 -boundary

is needed to insure that the higher order terms in B(η = 2−b) are really of higher order. A different choice of ηmax would of course
also influence other estimates, for example Lemma 6.2 concerning the estimates of A at ξ = ξmax in the multi-bump region.

7. The bound on φ

In the foregoing tracking analysis, we assumed that |φ| < a
1
2 for ξ ≤ ξmax so that system (2.12) indeed contains the leading

order terms of (2.9). We now turn to proving this statement. The explicit expression (4.3) for φ obtained in Lemma 4.2 enables us
to approximate φ for ξ ≤ ξmax as follows:

Lemma 7.1. For the values of d, K , b such that there exist constants c > 0 and l > 1
2 with

1

A2(ξb)

∣∣∣∣∫ ξ

ξb

A2(y)

[
d − 2 + 2K

2
− K (b + 1)A2(y)−

K a2 y2

2

]
dy

∣∣∣∣ ≤ ca−
3
4 +l (7.1)

for every ξb < ξ < ξmax, there exists a positive constant c1 such that

|φ(ξ)| ≤ c1al1 < c1a
1
2 ,

where l1 = min( 5
8 , l)

The proof of this lemma is given in Appendix D, and is based on continuous induction.
Now, we can finally choose the value of kb. In Remark 4.1 and the proof of Lemma 7.1 we made the following assumptions on

the relation between kb and mr :

3
8
< m = mr − kb < 1.

In the remaining part of this article we do not need to assume anything else for kb; therefore, we choose kb and mr such that the
above holds.

In Lemma 7.1, we assumed that the coefficients d, a, K and b satisfy the restriction (7.1) where the solution still occurs in the
expression. Here, we analyse restriction (7.1) and study which relation between d, a, K and b has to be satisfied in order for (7.1)
to hold. We determine bounds of the integrals to obtain a relation between the coefficients which leads to

Lemma 7.2. Assumption (7.1) in Lemma 7.1 holds as long as there exist constants c1, c2, c, c̃ > 0, c3, and l > 1
2 such that

|c1(d − 2)− c2 K + c3b| ≤ ca−
3
4 +le−

c̃
a . (7.2)

For b = 0 in the case of the k = 2 solution, the above relation reduces to∣∣∣∣d − 2
2

−
5
3

K

∣∣∣∣+ 8
√

2

9
√

3
K ≤ ca−

3
4 +le−

c̃
a . (7.3)

The proof of this lemma is given in Appendix E. We use the fact that the solutions lie close to the heteroclinic orbit, in order to
bound the integral in (7.1).

Remark 7.1. It is noted in the proof of this lemma that several, but not all, of the solutions of Theorem 2.1 still exist in the case
where relation (7.2) does not hold, but when instead

|c1(d − 2)− c2 K + c3b| ≤ cal1 , (7.4)

where l1 = min{
3
4 ,−

3
4 + l + 2mb} and A(ξb) = cbamb , is satisfied. Solutions for which A(ξb), and hence A(0), is exponentially

small can no longer be constructed but the other solutions for which A(ξb) = cbamb can. Careful study of the construction of Iη at
η = ηmax implies that the solutions corresponding to the intersection points mr

21,ml
22,ml

23,mr
42,mr

43 and the solutions with k ≥ 6
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Fig. 9. A sketch of the different types of k = 2 solutions. (a) The solution of type R created at mr
21. (b) The three solutions of type L , which are exponentially close

to each other and hence indistinguishable in this sketch, correspond to the three intersection points ml
2i , i = 1, 2, 3.

(k even) that are formed from these solutions no longer exist. However, the other solutions still do. Hence, on changing condition
(7.2)–(7.4) only some of the solutions in Theorem 2.1 can be constructed. Although not all of the solutions in the theorem are found,
for every even k, there do still exist solutions with k maxima.

8. The intersections of M0 and M∞ and the multi-bump solutions

In Lemma 6.2, we showed that the intersection points of M0 and M∞ can be split into two types, L and R. We labelled the
intersection points ml

i j and mr
i j , where i, j ∈ N, corresponding to points of type L and R, respectively, with the superscript

corresponding to the type of the intersection point and with the index i denoting the number of maxima of the solution on the real
line.

The number of maxima of a solution is determined by the number of times Iη winds around the centre point in the A–B plane as
η increases from ηmin to ηmax. Each time that Iη crosses the A-axis close to the heteroclinic orbit, an extra maximum is added. Thus,
by carefully keeping track of the number of these crossings, one can determine the number of maxima of a solution corresponding
to an intersection point. A k = n solution consists of n maxima on the whole real line, and hence n

2 maxima for ξ > 0; the values
of η where these maxima occur are all smaller than ηmax.

8.1. The k = 2 solutions

We will start by describing the k = 2 solutions that correspond to the four intersection points labelled mr
21,ml

21,ml
22,ml

23 in
Fig. 8. We do this by keeping track of Iη as η increases from ηmin to ηmax.

There is a qualitative difference between the solution that is constructed at mr
21 and the ones at the points ml

2i . This difference
comes from the type, R or L , of the solution, i.e., the value of A(ηmax) differs at the intersection of M0 and M∞. Therefore, the
maximum of the solution will be reached at a different value of η for the two different types of solutions. The maximum of the

k = 2 solution corresponding to mr
21 is reached for η close to ηmax; and at this maximum Amax =

√
2(1 −

η2
max
4 ) =

√
2a

1
4 (1−

1
8

√
a)

to leading order. Thus, the value of A at the maximum is given by A = Amax + c2a for some constant c2; see Fig. 9(a) for a sketch
of this 2-bump. For the 2-bumps corresponding to the points ml

2i , i = 1, 2, 3, the value of A at ηmax is exponentially small. Thus,
the second maximum is reached well before η = ηmax; see Fig. 9(b). Moreover, the points ml

2i all lie exponentially close to each
other for η > ηzero; and, therefore, the three solutions of type L lie exponentially close to each other.

8.2. The construction of k = n solutions for k = 2 even and n ≥ 4

Following the method used above to construct the k = 2 solutions, we now show that there exist solutions with n local maxima
on the real line for each n ≥ 4 and n even. The number of k = n solutions can be determined explicitly (for a sufficiently small),
where again a qualitative difference occurs between solutions of type R and of type L , as stated in Theorem 2.1.

We continue the argument given in the previous section for k = 2 for more general n (n even), starting with n = 4, by again
studying the intersection of M0 and M∞ at ηmax (for a sufficiently small). As a decreases, the stable and unstable manifolds
W u(Γ+) and W s(Γ−) curl up more into themselves which implies that Iη also curls up more into itself. More precisely, comparing
W s(Γ−) for a = a0 to a = a1 where 0 < a1 < a0 � 1, it is curled up more at η = ηmin for a1 than for a0. A similar statement holds
for W u(Γ+) at η = ηmax. Therefore, when we follow Iη as η increases from ηmin to ηmax we find, using the two steps distinguished
in Section 6, that there exist more intersection points of M0 and M∞ at ηmax besides the points leading to k = 2; see Fig. 8. Also,
the number of times that one crosses the A-axis near Amax to reach such an intersection point increases, and therefore, the number
of maxima of a solution increases. Note that one extra crossing near Amax in this construction leads to one extra maximum for
ξ > 0, and hence, to two extra maxima on the real line (solutions are symmetric).

First, we focus on the k = 4 solutions that are formed in a similar way as the k = 2 solutions. In step I of the transformation of Iη,
as it winds around the A–B plane, a segment of Iη has intersected with the A-axis twice at Amax, which results in the construction
of k = 4 solutions at the points mr

41 and ml
41; see Fig. 8. In step II where Iη forms a tongue, this same part of Iη will again intersect

with M∞, this time exponentially close to 0. These intersection points, ml
42 and ml

43 (see Fig. 8), correspond to a pair of k = 4
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Fig. 10. A sketch of the ψ coordinates of the manifolds M0 (solid curve) and M∞ (dashed curve) at ξ = ξmax as a function of d .

solutions of type L . So far, the solutions are all constructed in a similar way as the k = 2 solutions. However, more k = 4 solutions
are formed in step II. These are constructed from the tongue-like branch on which the points ml

22 and ml
23 lie. This branch winds

around the A–B plane to intersect once again with the A-axis close to Amax and, therefore, when it intersects with M∞ at mr
42 and

mr
43 two extra k = 4 solutions of type R are formed. These solutions have an extra maximum for ξ > 0 compared to the solutions

at the points ml
22 and ml

23 and therefore form k = 4 solutions. As Iη curls up further (for a sufficiently small), this branch will again
intersect with M∞ exponentially close to A = 0 to give two extra k = 4 solutions of type L; these are not shown in Fig. 8. Thus,
for a sufficiently small, there exist eight k = 4 solutions, three of which are of type R and five are of type L . Finally, the points ml

4i
all lie exponentially close to each other.

The number of k = 4 solutions follows easily from the number of k = 2 solutions. One k = 4 solution of type R and three k = 4
solutions of type L are formed in a similar way to the k = 2 solutions. Besides these, two extra k = 4 solutions of type R and two
of type L are formed on the branches where the k = 2 solutions occur. Thus, the number of k = 4 solutions of type L increases by
2 with respect to the number of k = 2 solutions of type L , and the same holds for the number of k = 4 solutions of type R.

Inductively, the k = n + 2 solutions can be formed from the k = n solutions, and the number of n + 2 solutions also follows
from the number of k = n solutions, as long as n + 2 ≤ n0(a) for the given, sufficiently small, value of a. The number of solutions
of both types L and R increases by 2 as the number of maxima increases from n to n + 2.

9. Matching the ψ coordinate

So far, we have showed that on the cross section ξ = ξmax there exist two families of solutions on M0 and M∞ for which the A
and B coordinates are the same (for a sufficiently small). In order to complete the proof of Theorem 2.1, we will show that d can be
chosen such that the ψ coordinates of M0 and M∞ are the same. The analysis of the ψ coordinate consists of two parts. First, we
show that, at ξ = ξmax, the interval of possible values of ψ on M0 overlaps the interval of possible values on M∞. In Section 3.1

we showed that the distance between ψ∞

d (ξmax) and −aξmax
2 is cad−

1
2 ; see Lemma 3.2. Therefore, to ensure that the intervals of the

possible values of ψ on M0 and on M∞ overlap, it is sufficient to show that the distance between ψ0
d (ξmax) and −aξmax

2 is larger than

cad−
1
2 , for a range of d values. Secondly, we show that the intersection is transversal so that d can be chosen such that ψ∞

d (ξmax)

and ψ0
d (ξmax) match; see Fig. 10.

9.1. Overlap of the ψ-intervals

First, we show that |ψ0
d (ξmax)+

aξmax
2 | is larger than cad−

1
2 . We get a lower bound from the expression (4.3).

Lemma 9.1. There exists a constant c > 0 such that |φ0
d(ξmax)| = |ψ0

d (ξmax)+
aξmax

2 | ≥ cad−
1
2 .

A proof of this lemma is given in Appendix F.
This lemma implies that, as we vary d , the interval of values of ψ0

d (ξmax) overlaps the interval of values of ψ∞

d (ξmax).

9.2. The transversal intersection

Here, we show that there exists a locally unique value of d for which ψ0
d (ξmax) = ψ∞

d (ξmax). Specifically, we prove that the
intersection of ψ0

d (ξmax) and ψ∞

d (ξmax) as functions of d is transversal by examining the derivatives of ψ∞

d (ξmax) and ψ0
d (ξmax)

with respect to ∆ = d − 2.
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From Lemma 3.2 we know that |ψ∞

d (ξmax)+
aξmax

2 | = cad−
1
2 , leading to

∂ψ∞

d (ξmax)

∂∆
≤ cad−

1
2 log(a) � cad−

3
4 ,

for some positive constant c. Now, we will show that the derivative of ψ0
d (ξmax) with respect to ∆ is larger than cad−

3
4 . We do this

in two steps. First, we determine an upper bound for the derivative at ξ = ξb; see Lemma 9.2. We need this upper bound to obtain,
in the second step, an estimate of a lower bound of the derivative at ξ = ξmax, Lemma 9.3.

Using expression (4.3), the derivative of ψ with respect to ∆ is

∂φ(ξ)

∂∆
=
∂ψ(ξ)

∂∆
=

aξ1−d I

A2(1 + a2 K 2)

(
log ξ−1

−
2
A

dA

d∆

)
+

aξ1−d

A2(1 + a2 K 2)

dI

d∆
,

where

dI

d∆
=

∫ ξ

0
A2 yd−1 R(y)

(
log y +

2
A(y)

dA

d∆

)
dy +

∫ ξ

0
A2 yd−1S(y)

= I1 + I2

and

S(y) =
1
2

− 2K (b + 1)A
dA

d∆
+ Kay

dφ
d∆

+ k1

(
1 − (b + 1)A2

+ ay
(
φ −

ay

2

))
with K = k1(d − 2) and where R(y) is as defined in Lemma 4.2.

Remark 9.1. It is unknown whether the constant K depends on d but we do expect and assume this here. A relation between the
parameters does follow in the asymptotic construction in [6] and the assumption (2.2), and therefore, we assume that there is a
dependence. In the case where there is no relation, the expression for ∂ψ(ξ)

∂∆ simplifies with setting k1 = 0.

First, we obtain an upper bound for ∂ψ(ξ)
∂∆ at ξ = ξb.

Lemma 9.2. There exists a constant c1 > 0 such that |
∂φ(ξ)
∂∆ | = |

∂ψ0
d (ξ)

∂∆ | ≤ c1a
3
4 for every 0 < ξ < ξb.

The proof of this lemma follows by bounding the terms in
∂ψ0

d (ξ)

∂∆ separately and is given in Appendix G.

Using the above result, we now obtain a upper bound for
∂ψ0

d (ξmax)

∂∆ .

Lemma 9.3. There exists a constant c2 > 0 such that |
∂φ(ξmax)
∂∆ | = |

∂ψ0
d (ξmax)

∂∆ | > c2a.

In order to prove this lemma we derive an expression for ∂ψ(ξ)
∂∆ by differentiating the expression for ψ that we obtained in the proof

of Lemma 9.1 with respect to ∆. Then, we show that one of the terms in the expression for ∂ψ(ξ)
∂∆ is dominant by using the result of

Lemma 9.2. The proof is given in Appendix H.

The above lemma implies that
∂ψ0

d (ξmax)

∂∆ �
∂ψ∞

d (ξmax)

∂∆ ; see Fig. 10. Therefore, the intersection of ψ0
d (ξmax) and ψ∞

d (ξmax) at
ξ = ξmax is transverse, which implies that there exists a unique d such that ψ0

d (ξmax) = ψ∞

d (ξmax).
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Appendix A. The proof of Lemma 3.3

Here, we will prove Lemma 3.3 using the construction that we explained in Section 3.1. First, assume that y(ξ) is exponentially
small for ξ ≥ ξ2. Then, we can use an integrating factor in (3.7) and show that ẑ and φ̂ stay exponentially small for ξ ≥ ξ2.

The first equation of (3.7) can be written as yξ = (z̄ + ẑ)y. If we assume that ẑ is exponentially small, the rate of growth of y,
integrated backward from ξ1, is governed by z̄. Then, if y(ξ1) is chosen sufficiently small, using an integrating factor shows that y
stays exponentially small for ξ ≥ ξ2. We restrict to those solutions for which y(ξ1) is such that y(ξ) stays exponentially small for
ξ ≥ ξ2. Combining the above two statements, we can conclude that the solutions satisfy the first property of the space V .
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Next, we focus on property b. Rewrite the (ẑ, φ̂)-system as one equation for the complex scalar ẑ + iφ̂. Again, ẑ + iφ̂ can

be estimated by the non-homogeneous term −
1
2 a−

1
4 ξ1−d y2 1−a2bK 2

+iaK (1+b)
1+a2 K 2 , by using an integrating factor. Upon assuming

|y| < 2a−
1
8 , we find that |ẑ| <

√
a and φ̂ < c2ad−

1
2 (1 + b) for ξ ≥ ξmax.

Finally, we assume that |ẑ| <
√

a. By yξ = (z̄ + ẑ)y, the rate of expansion of y is governed essentially by estimates on z̄. We

know that z̄ approaches −a
1
4 over a substantial portion of the interval ξmax ≤ ξ ≤ ξ2. Therefore, we can choose a subinterval of

the parameter range for y(ξ) with y(ξ2) exponentially small so that, for each y(ξ1) in that interval, we have y(ξ) < 2a−
1
8 for all

ξ ≥ ξmax. This concludes the proof of the second property of the space, and from this the statement in the lemma follows. �

Appendix B. The proof of Lemma 4.1

First, we study the linear equation for R and then the full nonlinear equation (1.6). Since we are interested in a solution for which
R is small, we can study the linearised equation

Rξξ +
d − 1
ξ

Rξ − R = 0.

By setting z = 2ξ and R = we−ξ this equation can be rewritten as the canonical Kummer equation

zwzz + (d − 1 − z)wz +
1 − d

2
w = 0.

For this Kummer equation, there exist two independent solutions and their long time behaviour, corresponding to ξ � 1, and so
z = 2ξ � 1, is known. For z � 1, the asymptotic expansion of a solution w is to leading order given by a linear combination of

z
1−d

2 and ezz
1−d

2 . Hence for ξ � 1, Rlin(ξ) = ξ
1−d

2 [a1e−ξ
+ b1eξ ], for some constants a1, b1, is the leading order of a solution of

the linearised equation for R. Then, we use that T =
Rξ
R to determine T at ξ = ξb which gives us Tlin(ξb) = 1 +

1−d
2k log 1

a
to leading

order. Thus, T at ξ = ξb lies close to 1 +
1−d

2k log 1
a

.

Now, we turn to the full nonlinear system (4.1). From Rξ = RT it follows, using T < 1 for all 0 < ξ < ξb, that

R(ξ) = R(0)e
∫ ξ

0 T (y)dy
≤ R(0)eξ . Then, with R(0) ∈ (0, cr amr ] we find that R(ξb) ≤ R(0)a−kb < cr amr −kb = cr am . Moreover,

when R(0) is exponentially small, at ξ = ξb, R is still exponentially small.
Since R and T are both positive, Rξ > 0; hence, R increases for 0 < ξ < ξb. Also, the leading order approximation from the

linear system gives that 1 −
d−1

2k3 log( 1
a )
< T (ξb) < 1 −

d−1
2k4 log( 1

a )
< 1 with 0 < k3 < k4.

For finite time, T increases. Finally, at ξ = ξb,

Tξ =
1 − d

ξb
T (ξb)− T 2(ξb)− R2(ξb)+ 1

>
1 − d

ξb

(
1 −

d − 1

2k4 log 1
a

)
−

(
1 −

d − 1

2k4 log 1
a

)2

− c2
r a2m

+ 1

=
(d − 1)(kb − k4)

kbk4 log 1
a

+
(d − 1)2(2k4 − kb)

4kbk2
4

(
log 1

a

)2 − c2
r a2m > 0

upon assuming that k4 < kb and m > 0 since (log 1
a )

−1
� a p1 for every p1 > 0. �

Appendix C. The proof of Lemma 4.2

We define

M(y) = A2(y)y
(
ψ(y)+

ay

2

)
.

Then

d
dy
(yd−2 M) = yd−2

[
(d − 2)A2

(
ψ +

ay

2

)
+ 2y AAy

(
ψ +

ay

2

)
+ y A2

(
ψx +

a

2

)
+ A2

(
ψ +

ay

2

)]
=

a A2(y)yd−1

1 + ε2

[
d − 2

2
+ K +

a2 K 2d

2
− K (b + 1)A2(y)+ aK yψ + a2 K 2 y B(y)

]
.
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For the second equality the equations for Ay and ψy in system (2.9) were used. Integrating from 0 to x and substituting M gives
the first part of the lemma after using that ψ = φ−

ay
2 and ε = K a. The second expression in the lemma is obtained by integrating

the last term in the integral by parts. This can be done since Aξ = AB. �

C.1. The proof of Lemma 4.5

We want to show that u is small at ξb; the value of v is not relevant, but is needed in the estimate for u. We will make an
assumption on a bound of v and show that it is satisfied for all τ ≤ ξ ≤ ξb. The initial conditions are given by B̂(0) = 0, φ̂(0) = 0,

and therefore, φ̂ξ

Âξ
= 0 at ξ = 0; hence, it follows that limξ→0 v(ξ) = 0. This implies that there is a finite K > 0 such that

|v(τ)| < K . We assume that |v| < 2K and show that it is satisfied for τ ≤ ξ ≤ ξb.

In a similar way to in the proof of Lemma 4.4 we approximate ( Â, B̂) by (R̂, T̂ ). The equation obtained for T̂
R̂

is analogous to

the first equation in (4.4) after setting φ = 0 and a = 0. System (4.1) gives that T̂
R̂

can be made arbitrary small by taking τ large
enough. From this it follows by using the facts that |φ| < Ca p, for some 0 < p < 1, a small, and |v| < 2K , that for τ large enough
|u| < c holds at ξ = τ for any fixed c.

On the trajectories we are following we have 0 < A < c̃am so that |2Au| < c̃am , and |2u| < 1. We will use these properties to
estimate u(ξb). Integrating the first equation of (4.4) from τ to ξb (τ < ξb) and using an integrating factor gives

u(ξb) = u(τ ) exp
[∫ ξb

τ

Γdu

]
+

∫ ξb

τ

exp
[∫ ξb

x
Γdu

] [(
2φ −

a3x K 2

1 + a2 K 2

)
v − 2

1 − a2bK 2

1 + a2 K 2 A

]
dx,

where Γ (x) =
1−d

x − 3B − Au +
a2x K

1+a2 K 2 . To estimate Γ , we use that 1−d
x < 0, |Au| < cam , a2x K

1+a2 K 2 < c̃a and the fact that

τ can be chosen such that B(ξ) > 1
2 for every τ ≤ ξ ≤ ξb. This yields Γ < −1 for every τ ≤ ξ ≤ ξb, which implies that

exp[
∫ ξb

x Γdu] < exp[−(ξb − x)]. Hence,

|u(ξb)| < |u(τ )| exp[−(ξb − τ)] +

∫ ξb

τ

exp[−(ξb − x)]

[(
2|φ| +

a3x K 2

1 + a2 K 2

)
|v| + 2

1 − a2bK 2

1 + a2 K 2 A

]
dx

< Ce−ξb +

∫ ξb

τ

exp[−(ξb − x)]
[
ca p

+ c̃am] dx

= Ce−ξb +
[
ca p

+ c̃am] (1 − eτ−ξb )

< Cakb + ca p
+ c̃am < ĉal ,

for a certain 0 < l < 1.
So, there exist constants ĉ > 0 and 0 < l < 1 such that u(ξb) < cal .
Now we can prove that |v| < 2K holds for all τ ≤ ξ ≤ ξb using continuous induction. We integrate the second equation in

system (4.4) and apply an integrating factor to obtain

|v(ξb)| =

∣∣∣∣v(τ)(1 − 1 + exp
[∫ ξb

τ

Γdu

])
+

∫ ξb

τ

exp
[∫ ξb

x
Γdu

] [
u

(
−2φ +

a3x K 2

1 + a2 K 2

)
− 2a

(1 + b)K

1 + a2 K 2 A

]
dx

∣∣∣∣ ,
≤ |v(τ)|

∣∣∣∣1 − 1 + exp
[∫ ξb

τ

Γdu

]∣∣∣∣+ ∫ ξb

τ

exp
[∫ ξb

x
Γdu

] [
|u|

(
2|φ| +

a3x K 2

1 + a2 K 2

)
+ 2a

(1 + b)K

1 + a2 K 2 A

]
dx .

Now, we use that −1 + exp[
∫ ξb
τ

Γdu] < 0, and that |u| < cal , |φ| < Ca p (0 < p < 1), |A| < cr am and Γ (x) < −1 which yields

|v(ξb)| ≤ |v(τ)| +

∫ ξb

τ

e−(ξb−x)(C1al+p
+ C2am+1)dx,

≤ |v(τ)| + c1al+p
+ c2am+1.

Thus v(ξb) remains close to v(τ) and, since |v(τ)| < K , |v| < 2K holds for all τ ≤ ξ ≤ ξb. �

Appendix D. The proof of Lemma 7.1

This estimate was already proved in Lemma 4.3 for τ < ξ ≤ ξb. Therefore, we now focus on values of ξ where ξb < ξ ≤ ξmax.
We will use the expression (4.3) for φ given in Lemma 4.2. First, we bound the integral that we denote by I in (4.3). Assuming
that ξb < ξ ≤ ξmax, we can split the integral into two parts, one integrating from 0 up to ξb and the other from ξb to ξ . For the part
containing φ, we use continuous induction, similarly to the way it was used in the proof of Lemma 4.3.



V. Rottschäfer / Physica D 237 (2008) 510–539 533

By using the estimate in Lemma 4.3, we obtain

|I | ≤

∣∣∣∣∫ ξ

ξb

A2(y)yd−1 R(y)dy

∣∣∣∣+ C A2(ξb)ξ
d
b .

Hence, for ξb < ξ ≤ ξmax

|φ(ξ)| ≤ c1a2
+

aξ1−d

A2(ξ)(1 + ε2)

[∣∣∣∣∫ ξ

ξb

A2(y)yd−1 R(y)dy

∣∣∣∣+ C A2(ξb)ξ
d
b

]
.

First, we focus on the 1
A2(ξ)

-term. It follows from Aξ = AB and the use of an integrating factor that

A(ξ) = A(ξb) exp
[∫ ξ

ξb

Bds

]
(D.1)

for every ξb < ξ ≤ ξmax. In order to determine the integral in the exponent, we use the fact that B lies O(a) close to the periodic
solution B(k) (5.6) of the unperturbed system where k → 1.

First, we determine in more detail how k depends on a. So far, it is only known that k → 1 for the solutions we are studying.
Substituting the expressions (5.5) and (5.6) for the periodic solutions (A(k)(ξ), B(k)(ξ)) of the unperturbed system into the integral
κ1 (5.7), we obtain

κ1 = α4 k2
− 1

(2 − k2)2
. (D.2)

The fact that the solution that we constructed lies O(a) close to the heteroclinic solution then implies that it crosses the A-axis at
(A, B) = (

√
2α − ca, 0) for some positive constant c. Substituting this into expression (5.7) for κ1 yields

κ1 = −
√

2caα3
+O(a2). (D.3)

Equating the two expressions (D.2) and (D.3) for κ1 and assuming that k lies close to 1, gives, to leading order,

k = 1 −
ca

√
2α
,

where c > 0.
As a next step, we determine the amplitude A(k) at ξ = −

3
8 T (k)0 for this value of k and assume that it is larger than A(ξb). Using

the explicit expression for A(k) gives

A(k)
(

−
3
8

T (k)0

)
=

√
2βdn

(
−

3
4

K (k), k

)
= c1a

3
8 ,

to leading order. Choosing m = mr − kb in Lemma 4.4 such that m > 3
8 then implies that A(k)(− 3

8 T (k)0 ) > A(ξb). Hence, the

solution that we tracked to ξ = ξb has not yet reached the point (A(k)(− 3
8 T (k)0 ), B(k)(− 3

8 T (k)0 )).
Now, we study the integral in expression (D.1). Note that integrating the solution from ξb up to where it intersects with B = 0

for the first time leads to a positive contribution to the integral since B is positive just to the right of ξb. We denote the second
intersection point of the solution with B = 0 by ξ2. Then, we can bound the integral of B by using the above, combined with the
fact that the integration of the periodic solution B(k) over one whole period leads to no contribution in the integral. This yields∫ ξ

ξb

Bds ≥

∫ ξ2

ξb

Bds ≥

∫ 1
2 T (k)0

−
3
8 T (k)0

B(k)(s)ds +O(a),

where T (k)0 is the period of B(k). This integral can be calculated, since we know an explicit expression (5.6) for B(k). Using relations
between the Jacobi elliptic functions, see for example [7], we find that∫ 1

2 T (k)0

−
3
8 T (k)0

B(k)(s)ds = log
(

dn
(

1
2

T (k)0 , k

))
− log

(
dn
(

−
3
8

T (k)0 , k

))
= log

(√
1 − k2

)
− log ca

3
8

=
1
2

log a − log ca
3
8

=
1
8

log a + hot.
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Here, the expression for T (k)0 from Section 5.1 and the expressions for k, and α =

√
1 −

η2

4 , where η ≥ ηb, were substituted. Note
that this term is negative. Using (D.1), it follows that, to leading order,

A(ξ) ≥ A(ξb)a
1
8 + hot

for every ξb ≤ ξ ≤ ξmax. Thus, we find that there exists a positive constant c1 such that

1

A2(ξ)
≤ c1a−

1
4

1

A2(ξb)
(D.4)

for ξb ≤ ξ ≤ ξmax.
Therefore,

|φ(ξ)| ≤ c1a2
+ C

a
3
4 ξ1−d

A2(ξb)

∣∣∣∣∫ ξ

ξb

A2(y)yd−1 R(y)dy

∣∣∣∣+ C2a
3
4 ξ1−dξd

b

≤ c1a2
+ C

a
3
4 ξ1−d

A2(ξb)

∣∣∣∣∫ ξ

ξb

A2(y)yd−1 R(y)dy

∣∣∣∣+ C2a
3
4 ξb

≤ C
a

3
4

A2(ξb)

∣∣∣∣∫ ξ

ξb

A2(y)R(y)dy

∣∣∣∣+ C2a
3
4 −p1

≤ C
a

3
4

A2(ξb)

∣∣∣∣∫ ξ

ξb

A2(y)

[
d − 2 + 2K

2
− K (b + 1)A2(y)−

K a2 y2

2

]
dy

∣∣∣∣+ C2a
3
4 −p1 .

Here we use in the first and the second inequality that ξ1−d < ξ1−d
b and a

3
4 ξb � a

3
4 −p1 (since ξb � a−p1 ) where p1 > 0 can still

be chosen. For the last inequality we use continuous induction on the part in R containing the φ-term.
Upon assuming that for every ξb < ξ < ξmax

1

A2(ξb)

∣∣∣∣∫ ξ

ξb

A2(y)

[
d − 2 + 2K

2
− K (b + 1)A2(y)−

K a2 y2

2

]
dy

∣∣∣∣ ≤ ca−
3
4 +l

for some c > 0, we do indeed find that

|φ(ξ)| ≤ cal1

where l1 = min( 3
4 − p1, l). Upon choosing l > 1

2 and p1 =
1
8 , the statement of the lemma follows. �

Appendix E. The proof of Lemma 7.2

We use the fact that for ξb < ξ < ξmax the solutions lie at most ca away from the heteroclinic orbit (5.4) of the unperturbed
system. As before we denote the second intersection point of the solution with the B-axis by ξ2. Since we integrate along the
heteroclinic orbit, it follows that the integral can only be obtained in one step when ξ < ξ2. In the case where ξ > ξ2, the integral
can be bounded by splitting it into two parts, one integrating from ξb up to ξ2 and the other integrating from ξ2 to ξ . This second part
can then be bounded by integrating over one (or more) whole period. Note that this leads to different expressions for the relations
between d, K , b and a yielding different c1, c2 and c3 in the statement of the lemma.

Note that A(ξb) < cam with 3
8 < m < 1, such that integrating from ξ = 0 instead of ξ = ξb in the integral in (7.1) leads to

a difference of at most ca
6
8 . Hence, from now on, we integrate from ξ = 0 onwards where we take the error of ca

6
8 into account.

Assuming that ξ < ξ2 and that ξ corresponds to some y1 ∈ (−∞,∞), we find∣∣∣∣∫ ξ

ξb

A2(y)

[
d − 2 + 2K

2
− K (b + 1)A2(y)−

Kη2

2

]
dy

∣∣∣∣
=

∣∣∣∣∫ ξ

0
A2(y)

[
d − 2 + 2K

2
− K (b + 1)A2(y)−

Kη2

2

]
dy + ca

6
8

∣∣∣∣
=

∣∣∣∣∫ y1

−∞

2α2 sech2(αy)

[
d − 2 + 2K

2
− 2K (b + 1)α2 sech2(αy)−

Kη2

2

]
dy + ca

3
4

∣∣∣∣
= 2α

∣∣∣∣[(d − 2
2

− K +
2
3
(2b − 1)Kα2

)
(tanh(αy1)+ 1)−

2
3

K (b + 1)α2 sinh(αy1)

cosh3(αy1)

]
+ ca

3
4

∣∣∣∣
≤ 4

∣∣∣∣d − 2
2

− K −
2
3

K (1 − 2b)α2
∣∣∣∣+ 4

27
K (b + 1)

√
3α2

+ ca
3
4
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= |c1(d − 2)− c2 K + c3b + ca
3
4 |. (E.1)

In the case where ξ > ξ2, we can bound the integral by adding integrating of the heteroclinic orbit over one or more whole
periods to this expression. Hence, we must add∣∣∣∣∫ ∞

−∞

2α2 sech2(αy)

[
d − 2 + 2K

2
− 2K (b + 1)α2 sech2(αy)−

Kη2

2

]
dy

∣∣∣∣ = 4α

∣∣∣∣d − 2
2

− K −
2
3

K (1 − 2b)α2
∣∣∣∣ (E.2)

or a (positive) integer multiple of this expression. This leads to different constants ci for solutions with a different number of
maxima. For an increase in the number of maxima of the solution by 2, expression (E.2) must be added once to (E.1), yielding
different ci ’s. Note that the constants ci can unfortunately not be explicitly determined in general.

In general, the restriction (7.1) leads to

|c1(d − 2)− c2 K + c3b + ca
3
4 | ≤ a−

3
4 +l A2(ξb).

Now, there are two possibilities. Either A(ξb) is exponentially small (and so is A(0)) or A(ξb) = camb for some constants c,mb > 0.
Assuming that

|c1(d − 2)− c2 K + c3b| ≤ ca−
3
4 +le−

c̃
a

gives the existence of all solutions in Theorem 2.1. However, changing the assumption to

|c1(d − 2)− c2 K + c3b| ≤ cal1 ,

where l1 = min{
3
4 ,−

3
4 + l + 2mb} and A(ξb) = cbamb , also gives the existence of several, but not all, of the solutions given in

Theorem 2.1. See Remark 7.1 for details of the solutions that are still found under this assumption.
A further calculation yields that for b = 0, the restriction reduces for the k = 2 solutions to∣∣∣∣d − 2

2
−

5
3

K

∣∣∣∣+ 8
√

2

9
√

3
K ≤ ca−

3
4 +l A2(ξb). �

Appendix F. The proof of Lemma 9.1

From the last equation in system (4.2), we derive an expression for φ by first integrating this equation from ξb up to some ξ > ξb,
and then finding an integrating factor. This leads to

φ(ξ) = φ(ξb) exp
[∫ ξ

ξb

χ(z)dz

]
+

a

1 + a2 K 2

∫ ξ

ξb

exp
[∫ ξ

ξb

χ(z)dz

](
d − 2

2
+ K

(
1 −

a2 y2

2
− (1 + b)A2

)
+ a2 K 2

(
y B +

d

2

))
dy, (F.1)

where

χ(z) =
1 − d

z
+

K a2z

1 + a2 K 2 − 2B(z).

And

exp
[∫ ξ

y
χ(z)dz

]
= ξ1−d yd−1 exp

[
K a2(ξ2

− y2)

2(1 + a2 K 2)
− 2

∫ ξ

y
B(z)dz

]
.

We only need to prove the estimate in the lemma for ξ = ξmax, and this is the choice that we make from now on.
By using the fact that B lies close to the heteroclinic orbit we can estimate the integral of B in a similar way to in the proof of

Lemma 7.1. We find that

1
8

log a ≤

∫ ξ

ξb

Bdz ≤

∫ 0

−
3
8 T (k)0

B(k)0 dz = −
3
8

log a

and hence,

a
3
4 ≤ exp

[
−2

∫ ξ

ξb

Bdz

]
≤ a−

1
4 .
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Moreover, for all ξb < y < ξ ,

1
2

log a =

∫ 1
2 T (k)0

0
B(k)0 dz ≤

∫ ξ

y
Bdz ≤

∫ 0

−
1
2 T (k)0

B(k)0 dz = −
1
2

log a

leading to

a−1
≥ exp

[
−2

∫ ξ

y
Bdz

]
≥ a.

We now analyse the first term in (F.1) and show that it is much smaller than the second term. After setting ξ = ξmax and applying
the above estimate, we find that the first term in (F.1) can be estimated as

|φ(ξb)|ξ
1−d
max ξ

d−1
b exp

[
K a2(ξ2

max − ξ2
b )

2(1 + a2 K 2)
− 2

∫ ξmax

ξb

Bdz

]
≤ ca p+d−1−

1
4 ξd−1

b

� ca p+d−
5
4 − p̃ < ca

6
4 ,

using that |φ(ξb)| < Ca p for p < 1 (Lemma 4.3) and that ξb � ca− p̃ for some p̃ > 0.
Now we focus on the second term in expression (F.1). We can bound this integral by using that |B| < 1 leading to

|a2 K 2(y B +
1
2 )| ≤ ca2 y ≤ ca and hence the other terms in the integral are dominant compared to this one. Also, using

exp[
K a2(ξ2

−y2)

2(1+ε2)
] ≥ 1 for every ξb < y < ξ , and the bound on the integral of B, we find that the second term in (F.1) can (for

ξ = ξmax) be bounded from below by

a2
∣∣∣∣∫ ξmax

ξb

ξ1−d
max yd−1

[
d − 2

2
+ K

(
1 −

a2 y2

2
− (1 + b)A2

)]∣∣∣∣ dy

=

∣∣∣∣a2ξ1−d
max

d

(
d − 2

2
+ K

)
(ξd

max − ξd
b )− a4 K

2(d + 2)
ξ1−d

max (ξ
d+2
max − ξd+2

b )− a2 K (1 + b)ξ1−d
max

∫ ξmax

ξb

yd−1 A2dy

∣∣∣∣
=

∣∣∣∣a(d − 2)
d

(
1 −

2K

d + 2

)
− a2 K (1 + b)ξ1−d

max

∫ ξmax

ξb

yd−1 A2dy

∣∣∣∣ .
Next, we show that the latter term in this expression is much smaller than the first.

The integral of A2 can be estimated by using the fact that A lies close to the heteroclinic orbit; hence

ξ1−d
max

∫ ξmax

ξb

yd−1 A2dy ≤ m̃
∫

∞

−∞

2α2 sech2(αz)dz

= 2m̃ [tanh(αz)]∞−∞ = 4m̃α ≤ 4m̃,

where m̃ is a positive integer denoting the number of round-trips that the solution makes through the (A, B)-plane.
We conclude that the second term in (F.1) is larger than Ca for some positive constant C , and hence, it is much larger than the

first term in (F.1). Moreover,

|φ(ξmax)| ≥ Ca � cad−
1
2 ,

concluding the statement in the lemma.

Appendix G. The proof of Lemma 9.2

We will bound the terms in
∂ψ0

d (ξ)

∂∆ separately. An estimate for the first term in
∂ψ0

d (ξ)

∂∆ follows from using the result in Lemma 4.3
where we showed that

|I (ξ)| ≤ C A2(ξ)ξd

for ξ ≤ ξb.

Also, the term 1
A

dA
d∆ appears in the expression for

∂ψ0
d (ξ)

∂∆ , and therefore, we must study it. We will show in Appendix I that
1
A

dA
d∆ ≤ ĉ log(ξ) as long as ξ ≤ ξb.
Hence,∣∣∣∣ aξ1−d I (ξ)

A2(ξ)(1 + a2 K 2)

(
log ξ +

2
A(ξ)

dA

d∆

)∣∣∣∣ ≤ C
aξ1−d

|I (ξ)|

A2(ξ)
log ξ

≤ caξ log ξ � ca
3
4 ,
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for every ξ ≤ ξb.
Moreover,∣∣∣∣∫ ξ

0
A2 yd−1 R(y)

2
A

dA

d∆
dy

∣∣∣∣ ≤ 2
∫ ξ

0
A2 yd−1

|R(y) log y|dy.

Using this bound, and then splitting the integral I1 into two parts we find that

|I1| ≤ c
∫ ξ

0
A2 yd−1

|R(y) log y|dy

= c
∫ 1

0
A2 yd−1

|R(y) log y|dy + c
∫ ξ

1
A2 yd−1

|R(y) log y|dy

≤ −C A2(ξ)

∫ 1

0
yd−1 log ydy + c log ξ

∫ ξ

1
A2 yd−1

|R(y)|dy

≤ −C A2(ξ)

[
1
d

yd log y −
1

d2 yd
]1

0
+ log ξC1 A2(ξ)ξd

= cA2(ξ)(1 + c1ξ
d log ξ),

where we use that |R(y)| ≤ C for 0 < y < 1 and that log y ≤ log ξ for 1 < y < ξ . Concluding, we find that

aξ1−d
|I1|

A2(ξ)(1 + a2 K 2)
≤ caξ1−d(1 + c1ξ

d log ξ) � ca
3
4 ,

for every ξ ≤ ξb.
To obtain a bound for I2, we use continuous induction to handle the part which contains ∂φ(ξ)

∂∆ . First, we study the function S.

By using that for every ξ ≤ ξb, |A dA
d∆ | ≤ cA2 log y ≤ ca2m log y � cam , |

∂ψ(ξ)
∂∆ | ≤ ca

3
4 , and |φ| < ca p we find that

(d − 2)S(y) = R(y),

to leading order. Hence, it follows that

|I2| ≤ |I |.

Combining the above results we find that∣∣∣∣∣∂ψ0
d (ξ)

∂∆

∣∣∣∣∣ � ca
3
4 ,

for every ξ ≤ ξb. �

Appendix H. The proof of Lemma 9.3

In this proof we use the expression for ψ that we obtained in the proof of Lemma 9.1. Differentiating (F.1) with respect to ∆ we
obtain

∂ψ(ξ)

∂∆
=
∂ψ(ξb)

∂∆
exp

[∫ ξ

ξb

χ(z)dz

]
+ φ(ξb) exp

[∫ ξ

ξb

χ(z)dz

] [
log ξ−1

+ log ξb +
k1a2

1 + a2 K 2 (ξ
2
− ξ2

b )− 2
∫ ξ

ξb

∂B

∂∆
dz

]
+

a

1 + a2 K 2

∫ ξ

ξb

exp
[∫ ξ

y
χ(z)dz

] [(
log ξ−1

+ log y +
k1a2

1 + a2 K 2 (ξ
2
− y2)

− 2
∫ ξ

y

∂B

∂∆
dz

)(
d − 2

2
+ K

(
1 −

a2 y2

2
− (1 + b)A2

)
+ a2 K 2

(
y B +

d

2

))
+

1
2

+ k1

(
1 −

a2 y2

2
− (1 + b)A2

)
− 2K (1 + b)A

∂A

∂∆
+ 2K k1a2

(
y B +

d

2

)
+ K 2a2

(
y
∂B

∂∆
+

1
2

)]
dy

= T1 + T2 + T3,

where χ is given in Appendix F.
We only need to bound ∂ψ

∂∆ at ξ = ξmax and this is the choice that we make from now on. In the following, we show that at

ξ = ξmax, T3 is dominant with respect to the other two terms. Using the estimate for exp[−2
∫ ξ
ξb

B(z)dz] obtained in the proof of
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Lemma 9.1, we find that exp[
∫ ξmax
ξb

χ(z)dz] ≤ cad−
5
4 − p̃ for some p̃ > 0. Combining this with the fact that |

∂ψ(ξb)
∂∆ | ≤ ca

3
4 as given

in Lemma 9.2 we get that

|T1| ≤ cad−
5
4 − p̃+

3
4 = cad−

3
4 � ca,

at ξ = ξmax, since d > 2. In the above we can still choose p̃ as long as it is positive; therefore, we take p̃ =
1
4 .

We showed in Lemma 7.1 that |φ| < ca
1
2 , and hence,∣∣∣∣φ(ξb) exp

[∫ ξ

ξb

χ(z)dz

]∣∣∣∣ � cad−
3
4 −p

where p > 0 can still be chosen. Also, in Appendix I we show that dB
d∆ = O(a) for ξb < ξ < ξmax; hence,∫ ξ

ξb

∂B

∂∆
dy ≤ caξ ≤ caξmax = C1.

Therefore, at ξ = ξmax,

|T2| ≤ cad−
3
4 −p [log ξmax + log ξb + C

]
� c1ad−

3
4 −

1
16 < c1a

19
16 � c1a

using that log ξmax � a−p1 for some p1 > 0, and choosing p1 + p =
1
16 .

Now, we bound T3 by applying that log y � a2 y2 and log y � ay for every y ≥ ξb � 1. Also, we use |B| < 1, A dA
d∆ = O(a)

and dB
d∆ = O(a) for ξb < ξ < ξmax, which gives that to leading order

T3 = a
∫ ξ

ξb

exp
[∫ ξ

y
χ(z)dz

] [(
log ξ−1

+ log y
)(d − 2

2
+ K

(
1 −

a2 y2

2
− (1 + b)A2

))
+

1
2

+ k

(
1 −

a2 y2

2
− (1 + b)A2

)]
dy

= a
∫ ξ

ξb

exp
[∫ ξ

y
χ(z)dz

](
log ξ−1

+ log y +
1

d − 2

)(
d − 2

2
+ K

(
1 −

a2 y2

2
− (1 + b)A2

))
dy.

In the proof of Lemma 9.1 we obtained that exp[−2
∫ ξ

y B] ≥ ca; thus,

|T3| ≥ a2
∫ ξ

ξb

ξ1−d yd−1
∣∣∣∣(log ξ−1

+ log y +
1

d − 2

)(
d − 2

2
+ K

(
1 −

a2 y2

2
− (1 + b)A2

))∣∣∣∣ dy.

Integrating and substituting ξ = ξmax yields to leading order

a2
∫ ξmax

ξb

ξ1−d
max yd−1

(
log ξmax − log y −

1
d − 2

)(
d − 2

2
+ K

(
1 −

a2 y2

2

))
dy

=
2a

d2(d + 2)2
| − (d + 2)2 + 2K (3d + 2)| = Ca,

where C > 0.
Moreover,

a2
∫ ξmax

ξb

ξ1−d
max yd−1

(
log ξmax − log y −

1
d − 2

)
(1 + b)A2dy ≤ Ĉa2 log ξmax

∫ ξmax

ξb

A2dy

≤ C1a2 log ξmax ≤ C1a
3
2

using the estimate for the integral of A2 obtained in the proof of Lemma 9.1.
Combining these bounds finally gives

|T3| ≥ Ca.

Hence, the terms T1 and T2 are much smaller than T3 for ξ = ξmax, and∣∣∣∣∣∂ψ0
d (ξmax)

∂∆

∣∣∣∣∣ ≥ Ca > c1ad−
1
2 ,

since d > 3
2 . �
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Appendix I. Bounds for dA
d∆ and dB

d∆

In this appendix, we derive the bounds on dA
d∆ and dB

d∆ as used in the proofs of Lemmas 9.2 and 9.3.
For ξ ≤ ξb we obtain an estimate for dA

d∆ by using that A lies O(a) close to the solutions R of (4.1). We know from the proof of

Lemma 4.1 that for ξ � 1, A = ξ
1−d

2
[
a1e−ξ

+ b1eξ
]

to leading order. Moreover, A ≤ cam for ξ ≤ ξb; hence, as long as ξ ≤ ξb,

dA

d∆
= cA(ξ) log ξ.

To determine an estimate on dA
d∆ and dB

d∆ for ξb ≤ ξ ≤ ξmax, we use the fact that the constructed solution lies O(a) close to the
heteroclinic orbit of the unperturbed system, (2.12) with a = 0. Thus, A(ξ) = A(k)(ξ) + O(a) and B(ξ) = B(k)(ξ) + O(a) for
ξb ≤ ξ ≤ ξmax, where k → 1. Here, A(k)(ξ) and B(k)(ξ) do not depend on the dimension d. Hence, dA

d∆ = O(a) and dB
d∆ = O(a)

for ξb ≤ ξ ≤ ξmax. �
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