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Abstract
Purpose  The aim of this study was to investigate the biodistribution of (super-)selective trans-arterial radioembolization 
(TARE) with holmium-166 microspheres (166Ho-MS), when administered as adjuvant therapy after RFA of HCC 2–5 cm. The 
objective was to establish a treatment volume absorbed dose that results in an absorbed dose of ≥ 120 Gy on the hyperemic 
zone around the ablation necrosis (i.e., target volume).
Methods  In this multicenter, prospective dose-escalation study in BCLC early stage HCC patients with lesions 2–5 cm, 
RFA was followed by (super-)selective infusion of 166Ho-MS on day 5–10 after RFA. Dose distribution within the treatment 
volume was based on SPECT-CT. Cohorts of up to 10 patients were treated with an incremental dose (60 Gy, 90 Gy, 120 
Gy) of 166Ho-MS to the treatment volume. The primary endpoint was to obtain a target volume dose of ≥ 120 Gy in 9/10 
patients within a cohort.
Results  Twelve patients were treated (male 10; median age, 66.5 years (IQR, [64.3–71.7])) with a median tumor diameter 
of 2.7 cm (IQR, [2.1–4.0]). At a treatment volume absorbed dose of 90 Gy, the primary endpoint  was met with a median 
absorbed target volume dose of 138 Gy (IQR, [127–145]). No local recurrences were found within 1-year follow-up.
Conclusion  Adjuvant (super-)selective infusion of 166Ho-MS after RFA for the treatment of HCC can be administered safely 
at a dose of 90 Gy to the treatment volume while reaching a dose of ≥ 120 Gy to the target volume and may be a favorable 
adjuvant therapy for HCC lesions 2–5 cm.
Trial registration  Clinicaltrials.gov NCT03​437382.  (registered: 19-02-2018)

Keywords  Hepatocellular carcinoma · Radiofrequency ablation · Trans-arterial radioembolization · Holmium-166 · 
Adjuvant therapy · Dose-escalation study

Introduction

In the management of hepatocellular carcinoma (HCC), 
thermal ablation (TA) has become the preferred curative 
treatment for lesions up to 2 cm, owing to its equal effective-
ness and lower complication rate compared to surgical tech-
niques [1, 2]. For larger tumors, surgical resection is gener-
ally regarded as the recommended treatment, provided that 

liver function is preserved [1–7]. Nevertheless, most patients 
are not eligible for surgery due to the presence of underlying 
liver cirrhosis induced portal hypertension, impaired liver 
function, other comorbidity, and/or an unfavorable tumor 
location [1]. As a result, these patients are often treated with 
TA or trans-arterial therapies, such as trans-arterial chem-
oembolization (TACE) or trans-arterial radioembolization 
(TARE) [1, 2].

The risk of developing local recurrence after TA is gen-
erally considered to be higher than after surgical resection, 
especially for lesions > 3 cm [5, 6, 8]. Local recurrences Extended author information available on the last page of the article
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are mainly caused by (a) insufficient heat propagation dur-
ing thermal ablation, (b) heat sink effect in case of tumors 
with a bordering intrahepatic vessel, or (c) the presence of 
viable satellite nodules. Most recurrences are found in the 
periphery of, or in close proximity to the treated tumor [9].

In order to reduce local recurrence rates after TA of larger 
lesions (> 3 cm), the combined treatment of TA with TACE 
has been studied previously. Although the combined treat-
ment may improve survival as compared to TA alone, supe-
riority over surgical treatment has not been proven [10, 11]. 
Preclinical studies identified potential benefits of combined 
radiofrequency ablation (RFA) and radiation-based thera-
pies [12–15]. However, the liver has a low tolerability to 
external beam radiation therapy [16, 17]. TARE provides a 
selective way of delivering high doses of radiation therapy 
to a tumor while saving healthy parenchyma [18, 19] and 
may work synergistically with RFA when the two therapies 
are combined.

Since RFA induces hyperemia around the ablation zone 
[20], this reactive viable liver parenchyma corresponds to 
the volume where residual tumor cells or satellite nodules 
are most likely to reside, if present [9]. We hypothesized that 
this hyperemic effect can be used to deliver a high absorbed 
dose of holmium-166 microspheres (166Ho-MS) to the tissue 
directly bordering the ablated tissue with the aim of decreas-
ing chances of developing local recurrences. Early studies 
on TARE dosimetry reported on higher response rates in 
patients who received ≥ 120 Gy of yttrium-90 (90Y) mono-
therapy on their nonresectable HCC, compared to patients 
who received a lower absorbed dose [21]. The primary 
objective of this prospective study was to find the treatment 
volume absorbed dose of 166Ho-MS that yields an absorbed 
dose of ≥ 120 Gy to the hyperemic zone (target volume). 
Secondary objectives were to investigate safety and efficacy 
of this adjuvant therapy.

Materials and methods

Design

The HORA EST HCC study (NCT03437382) was a mul-
ticenter (3 tertiary referral centers for HCC), open-label, 
non-randomized phase Ib dose-escalation study to the use of 
adjuvant TARE after RFA in patients with Barcelona Clinic 
for Liver Cancer (BCLC) early stage HCC (A) lesions of 
2–5 cm [2]. The study protocol was approved by the local 
Medical Ethics Committee and was performed in accordance 
with good clinical practice and the Declaration of Helsinki. 
All participants provided written informed consent. The full 
study protocol has been published earlier, in accordance with 
good research practice [22].

Patients

Eligible patients were those with BCLC early stage HCC 
(A) with a solitary lesion of 2–5 cm or with up to 3 lesions 
of ≤ 3 cm and at least one lesion > 2 cm, in whom surgical 
resection was not the treatment of first choice upon deci-
sion by the multidisciplinary tumor board. Main inclusion 
criteria were age of ≥ 18 years old, Child-Pugh (CP) A or 
B ≤ 7, an Eastern Cooperative Oncology Group (ECOG) 
performance status of 0 or 1, an estimated TARE treat-
ment volume ≤ 50% of the total liver volume, no prior 
hemi-hepatectomy or radiation therapy, and a creatinine 
clearance rate ≥ 30 mL/min. A list of all in- and exclusion 
criteria can be found in Table 1.

Study procedures

A schematic overview of the study procedures can be 
found in Fig. 1. On the first day of treatment, ultrasound or 
CT guided RFA was performed under general anesthesia 
using 3 × 3 or 3 × 4 cm exposed tip multi-electrode Cool-
tip™ RFA system, electrodes and switching controller 
(Medtronic Inc, Dublin, Ireland). Immediately after RFA, 
a contrast enhanced computed tomography (CECT) scan 
was performed on a 64-slice Aquilion CT-scanner (Canon, 
Tochigi, Japan) and an additional ablation was acquired in 
the same session in case residual viable tumor tissue was 
identified on this scan.

On day 2, an angiography procedure was performed to 
selectively catheterize the hepatic arteries with vascular 
supply to the hyperemic tissue using a Progreat 2.4F or 
2.7F microcatheter (Terumo corporation, Tokyo, Japan). 
Catheter position(s) were chosen as selectively as pos-
sible and were verified by contrast enhanced cone-beam 
CT (CBCT). Next, 150 MBq of technetium-99m labeled 
macroaggregated albumin ([99mTc]Tc-MAA) was injected. 
The treatment volume was defined as the volume exposed 
to radiation, based on CBCT [23]. This would include 
both the hyperemic zone (i.e., target volume) and a lim-
ited volume of normal liver parenchyma (i.e., non-target 
volume). A single photon emission computed tomography 
(SPECT-CT) scan was acquired directly after the angiog-
raphy procedure on a Symbia T6 or Symbia Intevo (Sie-
mens Healthineers, Erlangen, Germany) or Discovery 670 
Pro (GE Healthcare, Boston, Massachusetts, USA).

On day 5–10 after RFA, TARE with infusion of 166Ho-
MS QuiremSpheres (Quirem Medical B.V., Deventer, the 
Netherlands) was performed during a second hospitaliza-
tion. Prior to 166Ho-MS injection, the catheter position 
was verified using fluoroscopy and CBCT to ensure that 
spheres would be injected at the identical location as the 



European Journal of Nuclear Medicine and Molecular Imaging	

[99mTc]Tc-MAA. The total activity administered was cal-
culated using the following equation [24]:

The treatment volume was segmented from the contrast 
enhanced CBCT and a tissue density of 1.00 g/mL was used 

AHo−166 = Treatment volume absorbed dose
[

Gy
]

×Mi[kg] × 63[MBq∕J]

to determine the mass of the treatment volume (Mi). One 
day after TARE (day 6–11), a post-treatment SPECT-CT 
was acquired for post-treatment dosimetry purposes. These 
SPECT images were acquired with a medium energy general 
purpose collimator. A total of 90 projections over a circu-
lar 360° orbit were acquired on a 128 × 128 matrix with 
an overall scanning time of 27 min (18 s per projection). 

Table 1   Inclusion and exclusion criteria

Inclusion Criteria Exclusion criteria

Informed consent Tumor location precluding percutaneous RFA
Age > 18 year Treatment volume > 50% of total liver
Single HCC lesion with diameter of ≥ 2–5cm or up to three lesions with each 

lesion measuring no more than 3 cm
Vascular tumor invasion or extrahepatic metastasis

HCC diagnosis is based on histology or non-invasive imaging criteria according 
to EORTC-EASL guidelines

Prior hemi-hepatectomy

Child-Pugh A or B ≤ 7 Severe comorbidity (e.g., cardiovascular disease, diabetes 
with nephropathy, active infections)

(HCC-unrelated) ECOG performance status ≤ 2 Uncorrectable coagulopathy
Bilirubin < 2 mg/dL Large arterio-portal venous shunting
ASAT < 5× upper limit of normal Previous radiotherapy to the liver
ALAT < 5× upper limit of normal Surgical hepatico-enterostomy
Thrombocytes ≥ 50 × 109/L Hepatic resection with placement of surgical clips that may 

cause artifacts on MRI
Incapability to give informed consent due to mental disorder
Pregnancy, inadequate anticonception
Lung shunt fraction > 20%
Creatinine clearance < 30 mL/min/1.73 m2

Fig. 1   Schematic drawings of the study procedure. A HCC lesion of 
2–5 cm. B Thermal ablation of HCC lesion. C Potential sites of local 
recurrences due to impaired heat propagation, heat-sink effect, or sat-
ellite nodules. D Target volume for adjuvant TARE. E Deposition of 

166Ho-MS with preferential flow of microspheres to the hyperemic 
zone surrounding the ablated tissue (i.e., target volume). F Liver vol-
ume infused with 166Ho-MS TARE (i.e., treatment volume) [22].
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Projections were recorded in the 81 keV (15% width) pho-
topeak window. An additional energy window centered at 
118 keV (12% width) was used to correct for bremsstrahl-
ung and higher energy gamma emissions. Planar scintigra-
phy was used to calculate lung shunting. In addition to this 
SPECT-scan, MRI was performed before and after TARE 
to allow MRI-based quantification of 166Ho-MS. The MRI-
images were acquired on a 1.5T scanner (Ingenia, Philips 
Healthcare, Best, The Netherlands) and included an MGRE 
sequence with 10 subsequent echoes (TE1, 1.06 ms; ∆TE, 
1.38 ms; TR, 149 ms; flip angle, 33°; in-plane resolution, 
2 × 2 mm2; slice thickness, 4 mm; FOV, 384 × 384 mm2).

Follow‑up

All patients were followed for 12 months which included 
imaging using CECT or dynamic MRI of the liver and chest 
at 6 weeks and 3 months after treatment, and every 3 months 
thereafter. Clinical assessment and biochemical liver func-
tion tests were performed at week 2 and simultaneous with 
all moments of imaging.

Endpoints

The primary endpoint of this study was to find the treatment 
volume absorbed dose that resulted in an absorbed dose of ≥ 
120 Gy to the target volume in 9/10 patients within a cohort, 
based on post-treatment SPECT-CT. The target volume was 
defined as the hyperemic zone encompassing the ablated 
tissue and generally anticipated to be a 1-cm rim around the 
ablated tissue. Manual segmentation of the treatment and 
target volumes in the post-treatment SPECT scan was per-
formed using Xeleris workstation version 4.0 (GE Health-
care, Boston, Massachusetts, USA). The non-target volume 
dose was defined as the treatment volume subtracted by the 
target volume. Post-treatment MRI dosimetry was performed 
using Q-Suite 2.0 software (Quirem Medical B.V. Deventer, 
The Netherlands).

In the first cohort, a dose of 60 Gy was administered to 
the treatment volume. If a second patient within a cohort 
failed to reach an absorbed dose of ≥ 120 Gy to the tar-
get volume, the dose was escalated to 90 Gy to the treat-
ment volume in subsequent patients (cohort 2) and could 
ultimately be escalated to 120 Gy (cohort 3). The design of 
this study was based on the assumption that microspheres 
would preferentially flow to the hyperemic zone around the 
ablation zone (i.e., target volume) rather than to the normal 
parenchyma (i.e., non-target volume) within the treatment 
volume. If the ratio of microsphere accumulation in the 
target volume versus normal non-target volume would be 
high, a low amount of radioactivity to the treatment volume 
(cohort 1) would be sufficient to reach an absorbed dose of 
≥ 120 Gy to the target volume. If there would be an even 

distribution of microspheres between the target volume and 
non-target volume a treatment volume absorbed dose of 120 
Gy (cohort 3) would be needed to meet the study endpoint. 
Per cohort at least 2 patients were treated and no further dose 
escalation was performed when the final endpoint was met of 
an absorbed dose of ≥ 120 Gy to the target volume in 9/10 
patients. The sample size of this study was thus determined 
to be a minimum of 10 and a maximum of 30 patients.

Secondary endpoints included toxicity, local tumor recur-
rence rates, progression-free survival (PFS), and overall sur-
vival (OS) at 6 months and at 1 year. Adverse events were 
categorized according to Common Terminology Criteria for 
Adverse Events (CTCAE) 4.0 [25]. Local recurrences were 
defined as appearance at follow-up of foci of untreated dis-
ease in tumors that were previously considered to be com-
pletely ablated, in concordance with the CIRSE Standards 
of practice guideline [26].

MRI-based quantification of 166Ho-MS was investigated 
as an exploratory endpoint.

Statistical analysis

Descriptive statistics and outcomes were calculated by medi-
ans and interquartile ranges (IQR) for continuous variables 
and frequencies and percentages per category for categori-
cal variables. Local recurrence free survival, PFS, and OS 
rates at 6-month and 12-month follow-up were calculated. 
Patients that underwent liver transplantation were censored 
in the survival statistics. Statistical analyses were performed 
using RStudio 1.4.1106.

Results

Patients

Informed consent was obtained from 20 patients between 
April 2018 and March 2021. Twelve of these patients com-
pleted the treatment regimen, as can be seen in Fig. 2. Rea-
sons for exclusion were withdrawal from the study (n = 
3), progression beyond BCLC early stage HCC in the time 
between inclusion and treatment (n = 1), CTCAE grade 3 
complication after RFA (n = 1), RFA off target (n = 1), high 
lung shunt fraction (n = 1), and incomplete administration of 
166Ho-MS (n = 1). Baseline characteristics of all 12 treated 
patients are shown in Table 2. The population consisted of 
more males (n = 10) than females (n = 2) and most patients 
had underlying Child-Pugh A liver cirrhosis (n = 10).

Treatment

A patient case example is given in Fig. 3. Treatment char-
acteristics can be found in Table 3. All ablations were 
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performed with a multiprobe approach. Three out of 16 
lesions in two out of 12 patients were treated with RFA 
only as the tumor diameter was < 2 cm. In those patients, 
only the larger lesion(s) (> 2 cm) were treated with adju-
vant TARE after RFA. Most 166Ho-MS infusions were per-
formed (sub-)segmental or bi-segmental, and one infusion 
was performed lobar. The median treatment volume was 
360 mL (IQR, [270–394]), and the median administered 
activity of 166Ho was 1.79 GBq (IQR, [1.45–2.23]).

Primary endpoint

The first two patients were treated with a dose of 60 Gy on 
the treatment volume. Figure 4 shows the dose distribution 
per patient. Although a preferential dose accumulation in 
the target volume was found in the first two patients, the 
absorbed target volume doses were 89 Gy and 93 Gy, respec-
tively. As the endpoint of ≥ 120 Gy to the target volume was 
not met, the dose was escalated to 90 Gy to the treatment 

Fig. 2   Flowchart of the study 
population.
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volume. In 9/10 patients in the 90 Gy cohort, a mean target 
volume dose of ≥ 120 Gy was met. In this cohort the median 
absorbed target volume dose was 138 Gy (IQR, [127–145]), 
and the median absorbed non-target volume dose was 67 
Gy (IQR, [54–75]), as can be seen in Fig. 4. As the primary 
endpoint was met, the inclusion was closed and the recom-
mended treatment volume absorbed dose was set at 90 Gy.

Toxicity

One patient was readmitted to the hospital on the third day 
after radioembolization because of fever. Ultrasound and 
CECT demonstrated abscess formation within the ablated 
tissue that was treated with percutaneous drainage (CTCAE 
4.0 grade 3 infection). Other reported adverse events were 
grade 1–2 nausea (n = 3) and grade 1 fatigue (n = 4).

Efficacy

Two patients underwent liver transplantation at 7.5 and 8.0 
months after treatment. They were both local recurrence free 
before liver transplantation. All other ten patients were also 
free of local recurrences within 12 months after treatment. 
Three patients developed new HCC lesions elsewhere in the 
liver, at 4.6, 5.5, and 5.6 months. Therefore, PFS was 75% 
at 6 months and 75% at 1 year. Two patients died, one as a 

result of decompensated liver cirrhosis and one following 
bacterial sepsis after liver transplantation. This resulted in 
an OS of 92% at 6 months and 83% at 1 year. Figure 5 shows 
an example of histological confirmation of 166Ho-MS accu-
mulation surrounding the fibrotic and central necrotic tissue.

Discussion

In this multi-center, single arm study we prospectively eval-
uated the feasibility of adjuvant TARE after RFA in BCLC 
early stage HCC 2–5 cm. The results show that an absorbed 
dose of > 120 Gy of 166Ho-MS on the target volume around 
the ablation zone could be reached at an administered dose 
of 90 Gy to the treatment volume. The median target volume 
dose was about twice as high as the median dose to the non-
target parenchyma, confirming our hypothesis that hyper-
emia induced by RFA can be utilized to deposit 166Ho-MS 
in a peripheral zone surrounding the ablation volume. The 
safety profile of the combined treatment was in concordance 
with the safety of RFA or TARE mono-therapy, or combined 
RFA and TACE. Only one CTCAE grade 4 complication 
occurred in 12 patients (8.3%) and no grade 5 complica-
tions were observed [27–29]. Within 1 year after treatment, 
no local recurrences developed, three patients developed 
recurrent HCC elsewhere in the liver and two patients died. 

Table 2   Patient characteristics 
of analyzed patients

* 3 lesions in 2 patients were treated with TA only in the same treatment session. All three lesions were < 
15 mm and therefore not eligible for TARE after TA. HCC hepatocellular carcinoma, BCLC Barcelona 
Clinic for Liver Cancer, TA thermal ablation, TACE trans-arterial chemoembolization

n

Total 12
Age Median [IQR] 66.5 [64.3–71.7]
Sex Male 10 83%

Female 2 17%
Liver parenchyma status Child-Pugh A cirrhosis 10 83%

Fibrosis 2 17%
Etiology of cirrhosis Hepatitis B 4 40%

Alcohol induced 6 60%
BCLC stage Early 12 100%
Prior HCC treatment None 11

TA 1
Number of study lesions* 1 11 92%

2 1 8%
Tumor location (Couinaud segments) Segment 3 1

Segment 4 2
Segment 5 1
Segment 6 2
Segment 7 6
Segment 8 1

Size (mm) of study lesions* Median [IQR] 27 [21–40]
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Treatment efficacy and safety profile should be further vali-
dated in a larger cohort.

Many patients with larger HCC lesions are not eligible to 
surgical resection due to comorbidities, cirrhosis with portal 
hypertension, or insufficient future liver remnant volume. TA 
is an alternative treatment, but a large diameter is an impor-
tant risk factor of local recurrence [6, 8]. In the continu-
ous search towards better treatment outcomes and extended 
bridging to liver transplantation, several treatment combina-
tions of TA with other locoregional or systemic therapies 

have been investigated. The STORM trial investigated adju-
vant sorafenib after surgery or TA, but failed to prove benefit 
in terms of time to progression free and overall survival [30]. 
Another widely studied combined treatment regimen is TA 
with (neo)adjuvant TACE. Several trials in Asian popula-
tions have indicated superiority of combined TA and TACE 
over TA alone [31, 32], but the combination therapy has not 
been adopted in the EASL, AASL, or BCLC guidelines [1, 
2, 7]. The different studies have methodological limitations 
and there is a considerable variation between the trials in 

Fig. 3   HORA EST HCC treatment sequence: A Arterial scan phase 
of diagnostic MRI showing a hypervascular HCC lesion of 31 mm 
in the liver. B Portal venous scan phase of MRI showing central 
wash-out in the HCC lesion. C Intraprocedural CT after placement 
of six cooled-tip RFA needles with 3-cm exposed tip. D Intraproce-
dural contrast enhanced CT scan in arterial phase showing hyperemia 

around the ablation zone on post-ablation CECT. E Super-selective 
catheterization of hepatic arteries with vascular supply to the target 
volume. F CBCT of the treatment volume with an identical catheter 
position as in E. G SPECT-CT of [99mTc]Tc-MAA dose distribution 
used for dose planning. H SPECT-CT of 166Ho-MS distribution. I 
MRI-based dosimetry of 166Ho-MS distribution.
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technique and treatment sequence [33–35]. Furthermore, 
superiority of the combination therapy over surgical resec-
tion has not been proven [11, 33]. To our knowledge this is 
the first study to combine TA with TARE.

Technical advancements have led to the adoption of TA 
as the preferred treatment of HCC < 2 cm a decade ago [2, 
36]. Similarly, recent advancements in patient selection and 
optimized patient-tailored dosing have resulted in a place for 

Table 3   Treatment 
characteristics

RFA radiofrequency ablation, CT computed tomography, 166Ho holmium-166, mL milliliter, GBq Giga-bec-
querel, Gy gray

n

RFA probes used Multiprobe 3 × 3 cm 5
Multiprobe 3 × 4 cm 3
Multiprobe 6 × 3 cm 2
Multiprobe 6 × 4 cm 2

Modality used for needle placement CT 2
Ultrasound 10

Angiography: catheter position (sub-)segmental 2
bi-segmental 9
lobar 1

Treatment volume (mL) Median [IQR] 360 [270–394]
Target volume (mL) Median [IQR] 88 [69–128]
Lung shunt fraction (%) Median [IQR] 4.6 [2.2–6.55]
Dose to treatment volume 60 Gy 2

90 Gy 10
120 Gy 0

Administered activity of 166Ho (GBq) Median [IQR] 1.79 [1.45–2.23]

Fig. 4   Dose distribution per patient within treatment volume, based 
on SPECT imaging. The bars in black represent the mean absorbed 
dose on the target volume directly surrounding the ablation volume 
per patient. The cutoff point of an absorbed target volume dose of ≥ 
120 Gy is indicated by the horizontal dashed line. The bars in white 

show the absorbed dose to the non-target volume within the treatment 
volume. The first two patients were treated with 60 Gy to the treat-
ment volume, whereas the other patients were treated with 90 Gy to 
the treatment volume. The median ratio of target volume dose vs non-
target volume dose was 1.97 (IQR, [1.75–2.17]).
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TARE in the recent BCLC update [2]. The LEGACY and 
RASER studies reported promising results of radiation seg-
mentectomy in patients with (very) early stage HCC patients 
with a mean lesion diameter of 2.7 cm and median lesion 
diameter of 2.1 cm, respectively [37, 38]. These results indi-
cate high local control rates to be achievable using radiation 
segmentectomy, although results were not superior to those 
that may be achieved with TA. Further prospective valida-
tion is needed in larger trials and in patients with larger 
lesions. Ultimately, the role of TARE in HCC is to be further 
clarified for different indications.

In this trial, only RFA was used as ablation modality. In 
this way, the treatment regimen was kept as homogeneous 
as possible. Moreover, preclinical work combining TA with 
radiation-based therapies was only performed with RFA 
[12–15]. However, over the last years, the use of microwave 
ablation (MWA) has increased. MWA may have some tech-
nological advancements over RFA, but similar outcomes 
have been found [39]. As hyperemia around the ablation 
zone is seen after MWA similarly to RFA, it is expected that 
a similar 166Ho-MS dose distribution can be achieved when 
TARE is performed following MWA [40–42].

Fig. 5   Histology of explanted liver treated with radiofrequency abla-
tion and adjuvant 166Ho TARE. Digitalized histology using Ultra Fast 
Scanner (Philips Healthcare, Best, The Netherlands) with a magni-
tude of 40×. A Zoom 10×. Transition from liver tissue with ductal 

proliferation to fibrosis with marked depositions of 166Ho-MS. B 
Zoom 5×. Overview of transition from ductal proliferation to necrotic 
tissue with marked 166Ho-MS.
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166Ho-MS were used for radioembolization in this study 
rather than 90Y TARE. 166Ho has advantages in terms of 
imaging as it emits direct gamma radiation at 81 keV. 
Moreover, the paramagnetic property of 166Ho allows for 
MRI-based post TARE dosimetry [24, 43]. The study end-
point was determined using SPECT-based dosimetry, and 
MRI-based quantification of 166Ho-MS was used as an 
exploratory endpoint. Unfortunately, reliable quantitative 
MRI-based dosimetry was unfeasible in many patients as a 
result of breathing and movement artifacts. MRI scans were 
obtained shortly after the RFA and TARE procedures, and 
many patients experienced discomfort and as a result had 
difficulty lying still and maintaining breath holds. [99mTc]Tc-
MAA was used for the scout procedure. Despite the potential 
benefits of 166Ho scout dose in terms of intrahepatic treat-
ment dose distribution mimicking, 166Ho scout dose was 
not yet available by the time of study design [44]. In the 
current study, however, standard volume-based dosimetry 
was used based on CBCT, so this would not have affected 
dose planning

The current study has several limitations. First, the sam-
ple size is small and therefore no definite conclusions can 
be drawn on the efficacy. Nevertheless, the absence of local 
recurrences in all study patients within 1 year after treat-
ment suggests that the efficacy of the combination therapy is 
high. Second, despite of meeting the primary end point at an 
administered dose of 90 Gy, a substantial variety in ratio of 
target volume dose versus non-target volume dose between 
individual patients was observed. This ratio depends on vari-
ous factors, such as degree of hyperemia, catheter position, 
occurrence of vascular stasis during injection, and the ratio 
target volume versus treatment volume. In the 90 Gy cohort, 
an absorbed target volume dose of ≥ 120 Gy was not reached 
in one patient. As a result of a very selective catheter posi-
tion in this patient, the target volume constituted > 50% of 
the treatment volume. In patients where the ratio between 
target volume and treatment volume ratio is very high, an 
administered dose higher than 90 Gy to the treatment volume 
may be required. Clearly, in the theoretical case that the tar-
get volume constitutes 100% of the treatment volume, TARE 
with a dose of 90 Gy would not be sufficient. For future stud-
ies, a volume-dependent administration dose planning could 
help to individualize treatment planning. Another limitation 
of this study is the complexity of the treatment regimen. For 
patients this meant undergoing a second treatment, includ-
ing four additional imaging examinations (2× MRI and 2× 
SPECT/CT) and an additional hospitalization. This was con-
sidered burdensome by some patients, and therefore a reason 
not to participate in this trial.

Since the initial plans of this study originate from 2017, 
less was known on (166Ho) TARE dosimetry, and the 120 Gy 
cutoff was mainly chosen based on initial 90Y research [21]. 
Treatment volume absorbed doses of the several cohorts 

were based on a phase I 166Ho-MS dose escalation study 
(HEPAR trial), in which a whole liver dose of 60 Gy was 
considered safe [45]. Recently, the first efficacy evidence for 
166Ho-MS in HCC was demonstrated in the HEPAR Primary 
study [28]. At a treatment volume absorbed dose of 50 Gy 
in an average of 54% of the total liver volume, partial or 
complete responses were seen in patients receiving an aver-
age absorbed dose of 210 Gy on their lesions versus 116 Gy 
in patients with progressive disease [28]. Since hyperemic 
tissue surrounding the ablation zone is targeted in our study 
rather than (large) lesions, these tumor dose values cannot 
be directly compared to the 138 Gy absorbed target volume 
dose found in our study. Nevertheless, taking into account 
the recent advancements of safe radiation segmentectomy 
procedures, and the fact that a tumor absorbed dose of 210 
Gy did show a higher level of tissue necrotization when 
compared to an absorbed dose of 116 Gy in the HEPAR 
primary study, investigating higher dosing of 166Ho-MS as 
adjuvant treatment after thermal ablation seems to be justi-
fied. Especially when a small treatment volume is treated 
that mainly consists of the target volume, a higher dose than 
in the current trail should be chosen. In light of recent seg-
mentectomy studies [37, 38, 46], recommendations with 
90Y [47], and the HEPAR primary trial [28], the treatment 
volume absorbed dose may be as high as about 200 Gy. For 
patients with a larger treatment volume (for example due to 
multiple ablations or a more centrally located tumor), a treat-
ment volume absorbed dose of 90 Gy remains recommended 
to limit the absorbed radiation dose to the liver parenchyma. 
Our study provides insight in the biodistribution of 166Ho-
MS after TA with an average target volume vs non-target 
volume ratio of 2:1. This may help to determine the optimal 
dose in each individual patient, while taking into account 
the risk of radiation induced liver disease in patients with a 
larger treatment volume.

The median tumor diameter in this study was 2.7 cm. 
Patients with a tumor diameter of ≥ 2 cm were eligible for 
inclusion in this dose finding study. It may be questionable 
whether adjuvant TARE will be cost-effective in patients 
with a tumor < 3 cm. Future studies investigating effectivity 
of thermal ablation with adjuvant TARE are more likely to 
be positive when larger tumors are recruited.

Moreover, in a future study, the feasibility of combined 
TA and TARE in a single procedure could be explored. 
Owing to the low dose of 166Ho-MS used in this treatment 
regimen, the chance of introducing a substantial radiation 
dose to the lung parenchyma is extremely low. Moreover, 
as a result of super-selective catheterization and the use of 
CBCT prior to infusion of 166Ho-MS, the chance of other 
extrahepatic deposition is small as well. Especially since 
combined Angio-CT systems are increasingly being used, 
the combined treatment could be performed in a single 
session with high precision [48]. The current proposed 
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treatment protocol is promising for the locoregional treat-
ment of HCC lesions 2–5 cm that are at higher risk of local 
recurrences. Further research into subtypes of HCC or iden-
tification of satellite nodules may contribute to identifying 
patients who potentially benefit most of the combined treat-
ment regimen.

Conclusion

Selective radioembolization with 166Ho-MS can be used 
safely as an adjuvant treatment in early stage HCC 2–5 
cm. Hyperemia induced by TA can be utilized to deliver a 
high radiation dose to the target volume while limiting the 
dose to the normal liver parenchyma. A treatment volume 
absorbed dose of 90 Gy is safe and sufficient to deliver a 
tumoricidal absorbed radiation dose of at least 120 Gy to 
the target volume.
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