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ABSTRACT
People with severe intellectual disabilities (ID) could have difficulty expressing their stress which may 
complicate timely responses from caregivers. The present study proposes an automatic stress detection 
system that can work in real-time. The system uses wearable sensors that record physiological signals in 
combination with machine learning to detect physiological changes related to stress. Four experiments 
were conducted to assess if the system could detect stress in people with and without ID. Three 
experiments were conducted with people without ID (n = 14, n = 18, and n = 48), and one observational 
study was done with people with ID (n = 12). To analyze if the system could detect stress, the perfor-
mance of random, general, and personalized models was evaluated. The mixed ANOVA found 
a significant effect for model type, F(2, 134) = 116.50, p < .001. Additionally, the post-hoc t-tests found 
that the personalized model for the group with ID performed better than the random model, t(11) = 9.05, 
p < .001. The findings suggest that the personalized model can detect stress in people with and without 
ID. A larger-scale study is required to validate the system for people with ID.
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Introduction

People with an intellectual disability (ID) experience difficul-
ties in conceptual, social, and practical areas of living, accord-
ing to the DSM-5 (American Psychiatric Association, 2013). 
They may have difficulty expressing themselves (Smith et al.,  
2020), which can result in unmet needs that may cause stress 
(Cappelletti et al., 2015). Stress can be defined as the response 
to an environmental demand that exceeds the natural regula-
tory capacity of an organism, especially in uncontrollable and 
unpredictable situations (Koolhaas et al., 2011). While the 
stress response to acute stressors can be beneficial, prolonged 
or chronic exposure to stress affects physical and mental health 
(Yaribeygi et al., 2017). This may put people with ID that may 
depend on others to cope with stress at increased risk (Scott & 
Havercamp, 2014). If the built-up stress goes unnoticed due to 
communicative deficiencies, stress may exhibit as challenging 
behavior, for example, aggression and self-injury (Ali et al.,  
2014; Janssen et al., 2002). Challenging behavior harms the 
quality of life and may harm fellow residents and caregivers 
(Bruinsma et al., 2020; Gur, 2016). This further complicates the 
client’s care and may lead to staff dropout (Ryan et al., 2021; 
ZIN, 2019). To prevent challenging behavior that stems from 
stress it is important to detect the stress timely. Early notifica-
tion of stress may help people with ID to inform caregivers 
about unmet needs, thereby enabling the caregiver to respond 
adequately and timely. This may reduce the number of beha-
vioral escalations, which can lower the burden on caregivers, 

reduce costs, improve the quality of life, and limit stress- 
related health outcomes for people with ID who have difficul-
ties expressing themselves.

In recent years, automatic stress detection has become 
increasingly effective for the general population. Many differ-
ent methods have been successful in detecting stress (for 
a review, see Giannakakis et al., 2019). Studies have demon-
strated effective stress detection in both lab and uncontrolled 
conditions (Can et al., 2019; Sandulescu et al., 2015;, respec-
tively). This was achievable on large windows of data, suitable 
for detecting stress afterward (Jaques et al., 2017), as well as 
short windows, suitable for real-time usage (Saeed & 
Trajanovski, 2017). Many different mathematical methods 
have been effective, ranging from rule-based algorithms 
(Salai et al., 2016; Tomczak et al., 2020), to deep learning 
(Bobade & Vani, 2020). These methodologies have been 
applied to different data sources like mobile phone usage 
(Vildjiounaite et al., 2018), facial expressions (Gao et al.,  
2014), and physiology (Saeed & Trajanovski, 2017).

Not all data sources are practical for a real-time application. 
Due to advances in wearable sensors, some physiological sig-
nals can be recorded in real-time without interfering with daily 
life. This is true for electrodermal activity (EDA) and heart rate 
variability (HRV), which have been found highly informative 
in stress detection (Alberdi et al., 2016). EDA refers to the 
electric conductivity of the skin, which increases due to sweat 
secretion (Boucsein et al., 2012), and is considered a biomarker 
for stress (Cacioppo et al., 2007). The relation between stress 
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and EDA is especially clear after decomposing the signal into 
a fast and slow component. The fast component, or skin 
conductance response (SRC), peaks between 1 to 3 times 
per minute during rest, and over 20 times per minute during 
stress (Boucsein, 2012). HRV refers to metrics that express the 
variation in beat-to-beat time differences (i.e., inter-beat inter-
val; IBI) from the heart (Shaffer & Ginsberg, 2017). Reduced 
variation is associated with a diminished parasympathetic ner-
vous system and an increased sympathetic nervous system, 
which is highly associated with stress and physical effort 
(Appelhans & Luecken, 2006).

Besides EDA and HRV, accelerometers can also be bene-
ficial in stress detection (Wu et al., 2015). Physical activity may 
elicit similar physiological responses as stress (Mastorakos 
et al., 2005; Puli & Kushki, 2020). This may lead to false 
positive stress detections when relying only on physiological 
signals. Additionally, the intensity of physical movements in 
people with ID may be informative for the level of stress 
(Doodeman et al., 2022). Including acceleration may therefore 
provide context that assists in making more reliable stress 
predictions.

Despite the success of many stress detection studies, their 
generalizability is often questionable (Nkurikiyeyezu et al.,  
2019). In the first place, generalizability may be harmed by the 
complex overlap in physical and mental stressors present in 
daily life. Contextual information, such as movement, may be 
relevant to distinguish mental stress from physical stress. 
Another explanation for this may be that a one-size-fits-all 
solution is not appropriate for stress detection (Alberdi et al.,  
2016; Taylor et al., 2020). However, training models (i.e., feeding 
a machine learning algorithm enough data to learn from) for 
each user in real-world applications is impractical and costly 
(Matthes et al., 2020). To account for personalization compactly, 
multi-task learning (MTL) neural networks were introduced 
(Jaques et al., 2017; Saeed et al., 2018; Taylor et al., 2020). 
These models capture common characteristics in shared layers 
and personal characteristics in person-specific layers (see 
Figure 1). These models have been demonstrated to outperform 
generalized models while avoiding training a model for each 
person.

Although many developments have been made in stress 
detection, most studies have been done with healthy adults. 
While some studies have investigated this technology in adults 
and children with autism (Puli & Kushki, 2020; Tomczak et al.,  
2020), and elderly with dementia (Kikhia et al., 2016), to our 

knowledge no studies exist in which automatic stress detection 
was investigated in people with ID. However, on 
a physiological level stress responses in people with ID don’t 
seem to differ from the general population. For example, 
compared to the general population, people with ID show no 
different activity of the hypothalamic-pituitary-adrenal (HPA) 
axis which involves the central nervous system and the endo-
crine system during stress (Presland et al., 2013). In addition, it 
has been found that situations that elicit emotion show phy-
siological changes in people with ID, suggesting that physiol-
ogy gives information about their emotional state (Frederiks 
et al., 2019; Vos et al., 2012). Therefore, automatic stress 
detection based on physiology may be possible for people 
with ID. The automatic classification of stress based on phy-
siological signals may demonstrate a novel application in care 
for people with ID. This technology may help people with ID 
and their caregivers in situations where the continuous pre-
sence of a caregiver is required, but who may not be able to 
continuously observe the client.

Objectives

The first objective of the study was to develop an automatic 
stress detection system suitable for real-time use. To allow for 
integration in a real-time system, the study focused on limiting 
the required computational power, and fully automatic data 
processing without human interference. The second objective 
was to assess if the system generalizes to people with ID. For 
this, the performance of the system was investigated between 
people with and without ID.

Methods

Participants

To train and validate the system a custom dataset was 
recorded. Participants were recruited for one of four experi-
ments. The first three experiments were conducted with parti-
cipants without ID. Participants were recruited through 
personal connections and online volunteer platforms. 
Participation was done voluntarily, and no compensation was 
given. All participants gave written informed consent. 
Participants had to be at least 18 years old and capable of 
understanding Dutch or English instructions. Additionally, 
in the third experiment, people were excluded that could not 

Figure 1. General architecture of multi-task learning neural network with person specific layers.
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run on a treadmill. Data for the first three experiments were 
collected between May 2020 – December 2020.

The fourth group consisted of participants with challenging 
behavior (i.e., according to psychologists of the care centers) 
and severe to profound ID, following the DSM-5 criteria they 
required daily supervision of self-care activities up to 24-hour 
care. Participants in this group were residents of living facil-
ities. At most eight residents lived together in one living facil-
ity. Each resident had their own room, the shared facilities 
included the bathroom, kitchen, and living room. The type of 
care differed greatly among clients within a facility, with some 
clients living relatively independently, while others require 
very intensive care. The number of clients per caregiver 
depends on the intensity of the provided care and the time 
of day. At least one caregiver is present per four clients. The 
contacted living facilities were known to the researchers 
through industry events. Participants were selected in colla-
boration with the caregivers and behavioral experts of these 
living facilities. The inclusion criteria were ID with challenging 
behavior, residency at the living facility, willingness to partici-
pate from caregivers and legal guardians of the participant, and 
sensor acceptance from the participant. Data for experiment 4 
were collected between June 2019 – October 2020. Informed 
consent was given by the participant, when possible, otherwise 
by their legal representatives. The Medical Ethics Review 
Committee of VU University Medical Center judged that the 
Medical Research Involving Human Subjects Act did not apply 
(protocol number 2019.255)

Measurement equipment

A set of wearables was selected to record physiology. The 
selection was based on improving sensor acceptance and inte-
gration in daily care for the participants with ID (Kikhia et al.,  
2016). Therefore, the number of devices was limited, and only 
wearable wireless devices were selected. For heart rate, several 
devices were considered (e.g., Polar H10 (Polar Electro, 
Kempele, Finland), Zephyr Bioharness (Zephyr Technology 
Corporation, Annapolis, MD, US)), due to compatibility and 
affordability reasons Movesense (Movesense, Vantaa, Finland) 
was chosen. This device recorded the average HR per minute 
(0.5 – 2 Hz), IBI as an interval in microseconds between con-
secutive heartbeats (0.5 – 2 Hz), and acceleration on the x, y, 
and z-axis (26 Hz). Being made for athletes the device can 
handle movement and is highly accurate even for clinical 
purposes (Hartikainen et al., 2019; Parak et al., 2021). 
Empatica E4 wristband (Empatica, Milan, Italy) was used to 
record EDA in micro Siemens (4 Hz) on the non-dominant 
wrist, this device has been specifically validated for stress 
detection (Kyriakou et al., 2019) and challenging behavior 

(Imbiriba et al., 2020). In addition, it was the only compatible 
wearable available that recorded EDA in a non-obtrusive fash-
ion. SentiSock (Mentech, Eindhoven, The Netherlands) was 
used as an additional sensor during the lab experiments to 
record EDA in micro Siemens (4 Hz) on the dominant foot 
sole using an EDA sensor integrated into a sock. In separate 
studies this device has been compared against Empatica for 
measuring skin conductance and stress detection (De Vries 
et al., 2022; Leborgne et al., 2023). Data were transmitted using 
the HUME (Mentech, Eindhoven, The Netherlands), which is 
a cloud-based platform. The HUME gathers data from wear-
ables sensors using a nearby smartphone and transfers this 
data to the cloud. In the cloud, this data is processed in real- 
time using signal-processing and ML methods to come to 
a binary stress prediction. The stress prediction is visualized 
in the HUME app of the caregiver, which enables them to see 
stress in real-time. While HUME is mainly developed to assist 
people with ID and communicative difficulties, it may apply to 
other target groups as well.

Experimental protocol

Experiments 1–3 were conducted in a controlled environment 
(Mentech, Eindhoven, The Netherlands). These experiments 
were designed to induce stress but differed in experimental 
tasks and levels of physical activity. All experiments started 
with applying the sensors, followed by a sitting resting period 
of 3 minutes. Afterward, multiple stress-inducing tasks of 3–5  
minutes were conducted. Each task was followed by 3 minutes 
of rest. The task order in all experiments was not randomized. 
After each task, the arousal dimension of the Self-assessment 
Manikin Scale (SAM) (Bradley & Lang, 1994) was filled in by 
the participant to indicate their stress levels. This scale presents 
five pictures ranging from a very drowsy to a highly active 
person.

The study applied two types of stressors that aimed to affect 
physical and emotional stress. Physical stress can be induced 
by mental workload, while emotional stress may be triggered 
by real or perceived threats (Hong, 2023). To induce physical 
stress the Stroop task (Stroop, 1992) and an arithmetic task 
were applied. During the Stroop task participants were asked 
to read the words for different colors printed in different font 
colors as fast as possible. The arithmetic task participants were 
asked to solve questions similar to Figure 2. Both tasks were 
done for approximately 5 minutes. The protocol was applied in 
two different experiments. During experiment 1 participants 
were asked to act out physical movements that were assumed 
to resemble daily life motions that may introduce signal noise 
(e.g., waving, cleaning a surface, and rocking back and forth). 
While in experiment 2 participants walked on a treadmill. The 

Figure 2. Arithmetic task example.
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third experiment aimed to induce emotional stress through VR 
videos and games. VR has been investigated in the context of 
stress detection and seems like a promising method (Dammen 
et al., 2022). Additionally, it was assumed that the ability to 
immerse the participant in a fear-inducing environment may 
stimulate emotional stress. Participants were informed they 
could remove the headset at any point, for example, if they 
experienced motion sickness. An overview of the content can 
be found in Table 1. The genre of the chosen content was 
horror as this induced a strong emotional reaction and was 
available. All videos were passive experiences in which the 
participant could look all around. The games required active 
participation from the participant. The HTC Vive Pro VR 
headset was used to show the VR content.

In experiment 4, no stress was induced but periods of 
stress and relaxation were observed during normal daily 
activities. These recordings were made at the living facility 
of the participants with ID. Both the Movesense HR+ and 
Empatica E4 were worn and were complemented with 
video recordings. A minimum of three recording sessions 
were planned with the caregivers for each participant. If 
no stressful episode occurred during the session, a new 
recording session was planned. The recordings took 
between 2 to 8 hours. This was dependent on the partici-
pants’ sensor acceptance and daily schedule. Subsequently, 
two healthcare professionals (i.e., professional caregiver 
and psychologist) labeled stress and periods of no stress 
independently. Both professionals knew the client, one 
usually provided care, and the other was involved as 
a behavioral expert for the client. Prior to analyzing the 
recordings the healthcare professionals agreed on what 
behavior reflected which arousal state. Based on these 
definitions they labeled the video recording by listing 
start and end timestamps and if the behavior was stress. 
Moments where they did not agree were discussed to 
come to an agreement.

Data analysis

The data analysis consisted of signal processing, feature extrac-
tion, data cleaning, model training, and model validation. 
With all steps, the limitations of the real-time platform were 
taken into account. This meant that at most 45-second win-
dows of data could be analyzed at a time.

The signals (i.e., IBI, EDA, acceleration) were filtered in 
different ways to ensure the best reduction of noise and ensure 
usability in real-time. The IBI signal was filtered using the real- 
time IBI correction algorithm by Rand et al. (2007). This filter 
uses a buffer to correct the signal locally according to a set of 
rules that detect missed and ectopic heartbeats. The EDA 
signal was filtered using discrete wavelet transforms (DWT). 
The EDA signal was then split into a phasic and tonic compo-
nent using the cvxEDA algorithm (Greco et al., 2016). For the 
acceleration signal, a Butterworth low-pass filter was used, 
since motion caused by a person is related to high frequencies 
(Bayat et al., 2014).

The cleaned signals were used to extract features for 
each second. An overview of the features can be found in 
Table 2. The features served as the input array for model 
training, and the collected labels served as the ground truth. 
The labels were binarized by excluding the middle SAM value 
and assigning no-stress to the lower values and stress to the 
higher values. Next, the features and labels were temporally 
aligned. Any moments that were not associated with a label 
were excluded from model training. In total, three models were 
trained for each experiment. Training was done using the 
python package Keras (version 2.3.1) with the TensorFlow 
(version 1.14) backend. The first model was a baseline random 
chance model, the second a neural network for generic use 
(referred to as the general model), and the third model was the 
MTL neural network with personalized layers (referred to as 
the personalized model). The architecture of the personalized 
model was based on similar studies that applied MTL to stress 
detection problems (Jaques et al., 2016; Saeed & Trajanovski,  

Table 1. Virtual reality (VR) content used in experiment 3.

Content name Content type Source link

The Exorcist video https://www.youtube.com/watch?v=Zd-k_jrgDJk&t=13s
The Nun video https://www.youtube.com/watch?v=evzsN1BGR6A&t=23s
Bloody Mary video https://www.youtube.com/watch?v=gV7u6NYyLpA&t=6s
Nightmare video https://www.youtube.com/watch?v=QOgrFZxyQhk&t=46s
Slender Man video https://www.youtube.com/watch?v=lYJgTFkCNYU
Lights out video https://www.youtube.com/watch?v=7v-dG9Rq_aY&t=18s
The Conjuring 2 video https://www.youtube.com/watch?v=lYJgTFkCNYU
Five Nights at Fredies game https://store.steampowered.com/app/732690/FIVE_NIGHTS_AT_FREDDYS_HELP_WANTED/
Funhouse game https://store.steampowered.com/app/468700/NVIDIA_VR_Funhouse/

Table 2. Overview of features extracted on physiological signals, including the signal and window length.

Feature Signal Window length in seconds Reference

Slope EDA signal 20 Cho et al. (2017)
Mean SCR 20 Cho et al. (2017)
Max SCR 20 Cho et al. (2017)
Number of peaks SCR 20 Cho et al. (2017)
Slope IBI 20 Shaffer and Ginsberg (2017)
Standard deviation IBI 20 Shaffer and Ginsberg (2017)
Root-Mean-Square of Successive Differences IBI 20 Shaffer and Ginsberg (2017)
Magnitude Acceleration on chest 20 & 40 seconds (Garcia-Ceja et al. (2015)

EDA = Electro Dermal Activity; SCR = Skin Conductance Response; IBI = Inter-Beat Interval.
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2017; Taylor et al., 2020) and is shown in Figure 3. The general 
model used the same architecture as the personalized model, 
instead of the personalized layers, it contained only one output 
layer. The models were compiled using the binary cross- 
entropy loss function with the optimizer Adam and 
a learning rate of 0.0001. To assess the performance of the 
models, a leave-one-out cross-validation (LOOCV) was used. 
Predictions were made after each iteration on the left-out data, 
which were used to calculate the balanced accuracy.

For experiment 4, a trained model from experiments 1–3 
was applied to validate the performance in the ID group. 
Through this approach, it could be investigated if models 
trained on people without ID generalized to people with ID.

Statistical analysis

To compare the balanced accuracy of the different models in 
the groups, a mixed ANOVA was done using Pingouin (ver-
sion 0.5.1). Assumptions of normality, homogeneity of var-
iances, and sphericity were checked using the python packages 
SciPy (version 1.7.3) and Pingouin. The four different experi-
ments were used as between-subject differences and the ran-
dom chance, general, and personalized models were used as 
within-subject differences. The dependent variable was 
balanced accuracy. Afterward, post-hoc T-tests were done to 
assess the differences between experimental groups, models, 

and interactions (e.g., the model difference between experi-
mental groups). The p-values in the post-hoc tests were cor-
rected using the Bonferroni method. Statistical power was 
calculated post-hoc with G-power 3, using the F-scores from 
the mixed ANOVA procedure and the sample size of the 
smallest group.

Results

Descriptives of the sample are given in Table 3. In total 21 
participants were excluded, 7 from experiment 1, and 14 from 
experiment 3. The reason for exclusion was either corrupt 
sensor data, or not experiencing any stress during the experi-
ment based on their self-reported SAM scores. In experiment 3 
no reports on motion sickness were made.

All models were trained using the LOOCV procedure. This 
resulted in a balanced accuracy for each person on each model, 
shown in Figure 4. Mixed ANOVA was used to assess the 
differences between the models and experimental groups.

Prior to the analysis, the assumptions for mixed ANOVA 
were tested. Normality was assessed per within-group, the 
p-values were 0.62, 0.98, and 0.07 for the groups random, 
general, and personal, respectively. Sphericity was tested 
using Mauchly’s test and was met, χ2(2) = 1.93, p = .38. 
Finally, the homogeneity of variances was assessed with 
Levene’s test and was not violated, F = 1.03, p = .42. The results 

Figure 3. Personalized model architecture using the multi-task learning neural network framework.

Table 3. Demographical information of each experimental group.

Group Average age (years) SD age N participated N included in analysis N male

Experiment 1 35.5 16.5 18 11 7
Experiment 2 24.2 5.8 14 14 10
Experiment 3 34.7 14.8 48 34 18
Experiment 4 45.0 13.2 12 12 6

ASSISTIVE TECHNOLOGY 5



of the mixed ANOVA showed a significant effect for experi-
mental group, F(3, 67) = 7.23, p < .001, ηp

2 = 0.24. 
Additionally, a significant effect was found for model type, F 
(2, 134) = 116.50, p < .001, ηp

2 = 0.64. Based on these findings 
the statistical power was assessed using the smallest ηp

2 and the 
sample size of the smallest group (n = 11). The statistical power 
was found to be 0.81. Post-hoc tests were conducted to assess 
the study’s objectives.

Validation of stress detection system

The random, general, and personalized models differed 
significantly from each other. In each experimental 
group, the personalized model performed better than the 
random and general model, T(70) = 15.03, p < .001, ηp

2 =  
0.66, T(70) = −8.32, p < .001, ηp

2 = 0.24, respectively. In 
turn, the general model performed significantly better 
than the random model, T(70) = 5.50, p < .001, ηp

2 = 0.19. 
However, the within-comparison found that the general 
model did not significantly differ from the random 
model in experiments 2 and 4. Contrary, the personalized 
model did outperform the random model significantly in 

all experimental groups. For an overview of the within- 
comparison results see Table 4.

Generalizability to people with ID

A comparison between the different experimental groups was 
conducted to assess if the system generalized to people with ID. 
Experimental group 4 did not differ from groups 2 and 3, T 
(23.98) = −0.14, p = 1.00, ηp

2 = 0.001; T(19.34) = 0.50, p = 1.00, 
ηp

2 = 0.007, respectively. However, group 4 did differ from 
group 1, T(18.62) = 3.49, p = .015, ηp

2 = 0.35. Although, groups 
2 and 3 also differed significantly from group 1, T(19.94) =  
3.54, p = .012, ηp

2 = 0.35; T(13.93) = 3.57, p = 0.019, ηp
2 = 0.34, 

respectively.

Discussion

This study had two main objectives. Firstly, to develop a stress 
detection system given real-time data processing constraints. 
Secondly, to assess if the system would generalize to people 
with ID. For the first objective it could not be concluded that 
the general model was capable of detecting stress. Guided by 

Figure 4. Distribution of balanced accuracies for each model on each experiment. Where R is the random chance model, G is the personalized model, P is the 
personalized model and Exp# indicates the experiment.

Table 4. Post-hoc analysis of model performance differences per group.

Group Model 1 Model 2 T-value DoF P-value ηp
2

Exp 1 General Personal −4.67 10 .01 0.23
Exp 1 General Random 5.75 10 .002 0.56
Exp 1 Personal Random 10.76 10 < .001 0.82
Exp 2 General Personal −5.38 13 .002 0.49
Exp 2 General Random 0.64 13 1.00 0.01
Exp 2 Personal Random 5.77 13 .001 0.63
Exp 3 General Personal −4.75 33 < .001 0.15
Exp 3 General Random 4.44 33 .001 0.28
Exp 3 Personal Random 9.69 33 < .001 0.65
Exp 4 General Personal −4.17 11 .02 0.40
Exp 4 General Random 1.00 11 1.00 0.04
Exp 4 Personal Random 9.05 11 < .001 0.74

DoF = Degrees of freedom; P-value is corrected using Bonferroni; ηp
2 = Partial Eta squared.
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recommendations from previous research, the personalized 
model was investigated (Saeed & Trajanovski, 2017). In con-
trast to the general model, the personalized model did perform 
significantly better than the random chance and general model 
in all groups. It was therefore concluded that the proposed 
system can detect stress in lab conditions, but it does require 
a personalized stress detection model. This further underlines 
that personalized models result in better-performing systems 
than one-size-fits-all methods (Alberdi et al., 2016; Taylor 
et al., 2020).

For the second objective, it was analyzed if the models 
generalized to people with ID. While the ANOVA found 
a significant effect on model performance for the different 
groups, it was found in the post-hoc analysis that control 
group 1 significantly differed from all other groups. The 
group with ID did not differ from control groups 2 and 3. 
This suggests that the proposed system performed similarly 
for people with and without ID. In addition, the persona-
lized model performed significantly better for the group 
with ID than the random chance and general model, 
while the latter two did not differ from each other at this 
point. Therefore, model personalization was necessary for 
people with ID as well, and resulted in an accuracy of 
70 percent on average.

Overall, the system performs similarly for people with and 
without ID. This underlines the findings from the literature 
that physiology provides information about the emotional 
state of people with ID (Vos et al., 2012). Similar to people 
with autism (Puli & Kushki, 2020; Tomczak et al., 2020), it is 
possible to predict stress in people with ID based on physiol-
ogy. People with ID may significantly benefit from this tech-
nology as it may notify caregivers about needs they may not be 
able to express themselves (Smith et al., 2020). In practice, this 
could mean that stress is detected earlier, which may prevent 
escalation into challenging behavior and limit negative physi-
cal and mental health related to prolonged stress (Penley et al.,  
2002; Scott & Havercamp, 2014), such as the reduced risk of 
cardiovascular disease (Steptoe & Kivimäki, 2012) and depres-
sion (Hartley et al., 2009).

There were several limitations in the study. In the first 
place, the sample size per group was relatively small. Given 
the effect sizes, it was found to be sufficient, but a larger scale 
study would be recommended. The study design could have 
been improved by randomizing the task order within the 
experiments. Additionally, baseline levels of stress were not 
recorded. Participants who reported stress within the relaxing 
conditions were removed, but the relative stress increase could 
have been a meaningful addition. By recording baseline stress 
levels it could also have been assessed if the experimental 
settings itself induced stress. Next, moments of stress were 
labeled either through self-reports or observations by beha-
vioral experts. This may have introduced some subjectivity 
into the process (Alekhine et al., 2020). In addition, binarizing 
the labels into stress and no-stress removed information about 
the intensity of stress. There is evidence that regression-based 
models can perform better for stress detection (Siirtola & 
Röning, 2020), suggesting that a continuous scale may fit 
better. All moments that were not labeled, such as moments 
in between tasks, were excluded, which may have introduced 

selection bias. It could also have removed meaningful informa-
tion, such as anticipation for the next stressful task. Requesting 
labels from these moments could have improved the design. 
Additionally, the study aimed to demonstrate that stress detec-
tion in people with ID is feasible. The model performance was 
therefore not highly optimized. The performance may be 
improved by implementing active learning to prompt care-
givers for expert-feedback (El-Hasnony et al., 2022). In addi-
tion, semi-supervised learning can be used to include 
unlabeled data (Chebli et al., 2018), which reduces the labeling 
burden on caregivers. Both methods integrate real-life data, 
which improves the generalizability to the healthcare use-case. 
Lastly, the model was developed to be integrated into a real- 
time system. The model performance may therefore have been 
limited by the restrictions of the real-time system. 
Nevertheless, the findings suggest that the proposed stress 
detection system could detect stress in both people with and 
without ID. Future work may focus on notifying caregivers 
about physiological changes preceding stress (Simons et al.,  
2021), and how automatic stress detection affects physical and 
mental health, and behavioral outcomes in people with ID.

Conclusions

The study aimed to assess if the proposed automatic stress 
detection could be used to detect stress. The personalized 
model was found to be capable of detecting stress in all groups. 
On average the personalized model had a balanced accuracy of 
0.73, while the general model performed at 0.60. These findings 
further support the notion that a one-size-fits-all approach may 
not be suitable for stress detection. Furthermore, it was found 
that the developed system performed largely similarly for people 
with and without ID. This suggests that the system generalized 
to people with ID. The proposed technology could, therefore, 
assist people with ID to express their needs during times of 
stress. Notifying caregivers during times of stress enables them 
to help people with ID cope, which may reduce the negative 
effects of stress, such as challenging behavior. Although the 
findings are promising, a large-scale validation study is required. 
The present study, therefore, serves as the first step in this 
direction.
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