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Longitudinal and high-dimensional measurements have become increasingly
common in biomedical research. However, methods to predict survival out-
comes using covariates that are both longitudinal and high-dimensional are
currently missing. In this article, we propose penalized regression calibration
(PRC), a method that can be employed to predict survival in such situations. PRC
comprises three modeling steps: First, the trajectories described by the longitu-
dinal predictors are flexibly modeled through the specification of multivariate
mixed effects models. Second, subject-specific summaries of the longitudinal
trajectories are derived from the fitted mixed models. Third, the time to event
outcome is predicted using the subject-specific summaries as covariates in a
penalized Cox model. To ensure a proper internal validation of the fitted PRC
models, we furthermore develop a cluster bootstrap optimism correction pro-
cedure that allows to correct for the optimistic bias of apparent measures
of predictiveness. PRC and the CBOCP are implemented in the R package
pencal, available from CRAN. After studying the behavior of PRC via sim-
ulations, we conclude by illustrating an application of PRC to data from an
observational study that involved patients affected by Duchenne muscular dys-
trophy, where the goal is predict time to loss of ambulation using longitudinal
blood biomarkers.
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1 INTRODUCTION

High-dimensionality and longitudinal measurements have become more and more common in biomedical datasets. This
evolution has been fostered by several factors, including the increasing availability of clinical registry data and the diffu-
sion of microarray and high-throughput sequencing technologies. One of the consequences of these changes is that when
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developing a prediction model for a time to event outcome, biostatisticians are increasingly confronted with the availabil-
ity of a larger number of possible covariates (often hundreds, or even thousands). More often than not, such covariates
can vary over time, leading to scenarios where survival can be predicted using covariates that are both longitudinal and
high-dimensional. Additional features that might need to be dealt with in such scenarios are the presence of potentially
strong correlations between the covariates, an unbalanced repeated measurements design, and missing data at certain
measurement times for one or more covariates.

An example of such scenarios is represented by the MARK-MD study,1,2 an observational study on patients affected by
Duchenne muscular dystrophy (DMD) that constitutes the motivating example of this article. DMD is a rare neuromuscu-
lar disorder whose consequences include progressive loss of muscular tissue and muscle mass, loss of ambulation (LoA)
around the age of 12, and premature death. To date no cure for DMD has been found, and identification of non-invasive
biomarkers that could be employed to monitor disease progression and to predict disease milestones such as LoA is urgent.
The MARK-MD project aimed to study the dynamic evolution of 118 proteins in a longitudinal cohort of DMD patients,
and it yielded an unbalanced dataset comprising between 1 and 5 repeated measurements per patient. Protein expres-
sion was measured using a suspension bead array platform, whereby the expression levels of a protein are not measured
directly, but they are instead implicitly inferred from the relative abundance of multiple antibodies that bind to the pro-
tein of interest. In particular, between 1 and 5 antibodies per protein were measured, yielding a total of 240 antibodies
matching 118 unique proteins; in most cases, high correlations were found between antibodies that targeted the same
protein.1 Statistical analysis of the longitudinal biomarker data1 yielded evidence that several proteins are associated with
disease progression and with the wheelchair dependency status, raising the question of whether blood biomarkers may
be employed to predict the age at which a clinically meaningful milestone such as LoA will occur.

When developing a model to predict time to LoA for the MARK-MD dataset, three main features should be taken into
account:

1. High-dimensionality: The number of possible predictors (240) largely outweighs the number of subjects (93);
2. The availability of repeated measurements (between 1 and 5) from the same subject;
3. The presence of several groups of strongly correlated predictors, each of which comprises multiple items (the antibodies)

that are measured to reconstruct the same biological process of interest (the protein that the antibodies bind to).

While several statistical methods are available to tackle separately each of these three features, developing a model that
can address them jointly is more challenging. To date, several approaches to predict survival using a high-dimensional
set of cross-sectional covariates have been proposed,3 however extensions to high-dimensional settings with longitudinal
covariates are currently lacking. On the other hand, study of the association between one or more longitudinal covariates
and a time-to-event outcome is typically based on the specification of a joint model for longitudinal and survival data.4,5

Estimation of joint models becomes computationally prohibitive when more than a handful of longitudinal covariates
are included, restricting their application to low-dimensional settings.6,7

In practice, the lack of methods to predict survival using covariates that are both longitudinal and high-dimensional
often forces a choice between selecting only a small subset of the available predictors, or using only the baseline mea-
surements of all variables. It is apparent, however, that both choices are suboptimal: if predictions are based on a limited
number of pre-specified covariates, important predictors may be missed; if the longitudinal measurements are discarded,
important information about the way in which the predictors change over time will be missed. Therefore, a method that
avoids these simplifications and does not sacrifice part of the available information would be preferable.

In this article, we propose penalized regression calibration (PRC), a method that makes it possible to predict survival
times using a high-dimensional set of predictors that are measured repeatedly over time, and which may additionally
display strong correlations (as in the case of the MARK-MD study). PRC comprises three modeling steps, which respec-
tively consist of (1) the specification and estimation of a model for the longitudinal biomarkers, (2) the computation
of subject-specific summaries of the trajectories described by the biomarkers, and (3) the estimation of a model for the
survival outcome.

More in detail, in step 1, we specify multivariate latent process mixed models (MLPMMs)8 that allow us to model
jointly all the items (ie, the antibodies) which are employed to measure a latent biological process of interest (the protein
targeted by those antibodies). By doing so, we are able to model the trajectories described by highly correlated antibodies
using a latent variable model that comprises two sets of random effects, one set for the observed items and another for the
latent processes. Moreover, we can easily handle unbalanced designs or missing values thanks to the flexibility of mixed
effects models. In step 2, we proceed to the computation of subject-specific summaries of the longitudinal biomarkers,
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F I G U R E 1 Schematic representation of PRC and CBOCP. The light blue box summarizes the three modeling steps that PRC consists
of. The faded orange box shows the steps involved in the computation of the CBOCP [Colour figure can be viewed at wileyonlinelibrary.com]

which in practice are the predicted random effects from the MLPMM. In step 3, we employ these summaries as predictors
of the time to event outcome (time to LoA in the MARK-MD study) by estimating a penalized Cox model with ridge or
elasticnet penalty, which can then be used to compute predictions of survival probabilities.

In addition to this first model based on the MLPMM, we also consider a simpler model where in step 1 the biomarkers
are modeled independently using linear mixed models (LMMs).9 Such an approach, which performs univariate model-
ing of the biomarkers and is thus computationally less intensive, might be preferred in situations where no distinction
between observed items and latent biological processes of interest exists. In terms of relationship with existing statis-
tical methods, PRC might be regarded as a high-dimensional extension of the ordinary regression calibration10 (ORC)
approach. However, ORC and PRC differ in their purposes: while the goal of ORC is to estimate the association between a
single longitudinal biomarker and survival, PRC aims to predict survival based on a high-dimensional set of longitudinal
biomarkers.

A further contribution of our work is the implementation of a computational procedure that allows to perform the
internal validation of PRC. The internal validation of prediction models based on penalized regression is often a neglected
step, possibly due to the belief that the penalization of the model parameters will suffice to prevent overfitting, so that no
formal assessment of the optimism associated to the reported performance is then needed. In this article, we do not take
this belief for granted, and instead we explicitly explore the topic of the internal validation of PRC, which is a penalized
prediction model. In particular, we implement a cluster bootstrap optimism correction procedure (CBOCP hereafter) that
allows to estimate the optimism of naive predictiveness measures, thereby making it possible to properly assess whether
overfitting is present. The CBOCP requires the re-estimation of the PRC model on a sequence of clustered bootstrap
samples, and the computation of estimates of the optimism associated to the apparent model performance, which are
obtained by comparing the predictive performance of the newly fitted models on the bootstrapped dataset and on the
original dataset. When averaged over all cluster bootstrap samples, these estimates yield a bootstrap optimism correction
that is subtracted from the apparent measure of model predictiveness (ie, the measure of predictiveness computed on the
original dataset where PRC was fitted). In Figure 1, we provide a schematic representation of the different steps involved
in the estimation of PRC, and in the computation of the CBOCP.

Lastly, we provide an implementation of functions to compute PRC and its associated CBOCP using R, and make them
available through the R package pencal,11 which can be freely downloaded from CRAN.
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The remainder of this article is organized as follows: in Section 2, we introduce the methodological framework for
PRC, discussing in detail the three steps involved in its estimation and the CBOCP. In Section 3, we employ simulations
to compare PRC to a simpler prediction approach that employs information on the baseline biomarker levels, but ignores
the repeated measurements taken after baseline; additionally, we compare the predictive performance of PRC to that of a
joint modeling approach in a low-dimensional setting with three longitudinal covariates. In Section 4, we employ PRC to
predict time to LoA for the patients involved in the MARK-MD study. Lastly, in Section 5, we provide some conclusions
and discuss possible extensions of PRC.

2 METHODS

We consider a situation in which a set of p latent biological processes (indexed by s ∈ {1, … , p}) are considered as poten-
tial predictors of an event of interest, but they are not measured directly. Instead, rs ≥ 1 items (indexed by q ∈ {1, … , rs})
that are related to the sth biological process are employed to reconstruct it, so that in total,

∑p
s=1rs items are employed as

proxies for the p latent biological processes. In simpler situations where each biological process of interest can be mea-
sured directly, or where rs = 1 for all s ∈ {1, … , p}, the distinction between items and latent processes is unnecessary,
and the subscript q can be dropped.

The distinction between a latent biological process of interest and the items used to measured it is motivated by the
setup of proteomic studies, where typically the expression of a protein is not measured directly, but it is instead recon-
structed by measuring the abundance of multiple antibodies that bind to the protein itself. In the case of the MARK-MD
study, the latent biological processes are p = 118 proteins, and the items are the

∑p
s=1rs = 240 antibodies that were mea-

sured to reconstruct the level of the proteins. In particular, between 1 and 5 antibodies were measured for each protein,
so that rs ∈ {1, 2, 3, 4, 5}. This distinction is not unique to proteomic studies: it may as well arise in different settings, for
example, when different psychometric items are employed to reconstruct a latent cognitive process of interest.

We assume that the items are measured longitudinally following either a balanced or an unbalanced design, and that
for each individual i ∈ {1, … ,n}, mi ≥ 1 repeated measurements are collected before the event of interest occurs. We
denote by yqsij the value of the qth item related to the sth latent biological process that is measured on individual i at their
jth repeated measurement (j ∈ {1, … ,mi}). We summarize all

∑n
i=1mi measurements of the qth item referring to the sth

biological process in a vector yqs = (yqs11, … , yqsnmn).
Moreover, we use aij to denote the age of subject i when the jth measurement is collected, and we let ti > 0 be the

event time (measured starting from the baseline age ai1) for individual i, and 𝛿i be a censoring indicator such that 𝛿i = 1
if the event of interest is observed at ti, or 𝛿i = 0 in case of right-censoring.

Let yi = (y11i1, … , yrssimi) be the vector containing all mi repeated measurements of all items obtained from subject i.
In Sections 2.1 to 2.3, we propose PRC, a method that allows to predict the time to event outcome ti using as predictor yi,
which comprises a high-dimensional set of longitudinally measured items. Specifically, in Section 2.1, we model the tra-
jectories described by the longitudinal biomarkers using the MLPMM.8 In Section 2.2, we proceed to the computation of
subject-specific summaries of the longitudinal trajectories that refer both to the measured items, and to the latent biolog-
ical process. In Section 2.3, we specify a penalized Cox model that relates the time to event outcome to these summaries,
and we employ it to compute predictions of survival probabilities.

In Section 2.4, we turn our attention to the problem of correctly assessing the predictive performance of PRC, dis-
cussing the CBOCP that we have implemented to obtained unbiased estimates of in-sample predictiveness. Lastly, in
Section 2.5, we provide details about the implementation of the proposed methodology in R, and we shortly introduce the
R package pencal.11

2.1 Modeling the longitudinal biomarkers

The first step of PRC involves the estimation and specification of a statistical model capable of describing the evo-
lution over time of the longitudinal biomarkers. We propose to jointly model the dynamic evolution of all the items(

y1s, y2s, … , yrss
)

that refer to the sth latent biological process with the following MLPMM:8

yqsij = 𝛽qs0 + us0i + bqsi + 𝛽qs1aij + us1iaij + 𝜀qsij, q = 1, … , rs, (1)
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where 𝛽qs0 and 𝛽qs1 are fixed effect parameters, usi = (us0i,us1i) ∼ N2(0,Σus ) is a vector of shared random effects that com-
prises a shared random intercept (us0i) and a shared random slope (us1i), bqsi ∼ N1(0, 𝜎2

bqs
) ∀q ∈ {1, … , rs} are item-specific

random intercepts, and 𝜀qsij ∼ N1(0, 𝜎2
𝜀qs
) is a measurement-error term. As identifiability condition, we set Var(us1i) = 1. If

there are some processes that are measured using only one item, that is, there exist some s for which rs = 1, the MLPMM
of Equation (1) can be simplified into ysij = 𝛽s0 + us0i + 𝛽s1aij + us1iaij + 𝜀sij, which is a LMM with correlated random
intercept and random slope.

We employ maximum likelihood to estimate model (1), using the R package lcmm.12 Note that for simplicity we have
included only age as covariate and random slope in model (1), but depending on the features of the problem at hand one
may choose to add to model (1) further covariates (eg, to account for relevant confounders), and to include further shared
random effects.

The advantage of using the MLPMM specified in (1) is 2-fold. First, it allows us to model jointly all the items(
y1s, … , yrss

)
that refer to the sth latent biological process, so that we can properly account for the possibility that the

items may be strongly correlated with each other. Second, the MLPMM enables us to separate the within-item variability
from the between-item variability, thanks to the inclusion of a first set of random effects that refer to the observed items,
and of a second set of random effects that are linked to the unobserved biological process of interest. In practice, this
means that although we cannot directly measure the relevant biological process, we can describe its underlying dynamic
evolution using the shared random effects in (1).

This multivariate modeling approach is motivated by the setup of the MARK-MD study, where proteins were not
measured directly, but through multiple antibodies, and it can be applied to any other situation in which one measures
multiple items that can be related to a common latent process. While our framework is general enough to account for
such complex designs, it can be flexibly adapted to simpler situations where the biological processes of interest are directly
measured. In such scenarios, one might prefer to model the longitudinal biomarkers independently from each other using
separate LMMs.9 Since in such cases rs = 1 for all s = 1, … , p, we can drop the subscript q from yqsij, and simplify the
notation to ysij. The general formulation of the LMM in matrix notation is

ysi = Xi𝛽s + Zibsi + 𝜀si, (2)

where Xi and Zi are design matrices that respectively refer to the fixed effects coefficients 𝛽s and to the random effects bsi,
bsi ∼ N(0,Ds) is a vector of normally distributed random effects, and 𝜀si ∼ N(0, 𝜎2

s Imi ) is a Gaussian error term.
The LMM framework makes it possible to specify a wide range of random effect structures in (2); in particular, to keep

the analogy with model (1) we hereafter consider the following LMM with correlated random intercepts and random
slopes:

ysij = 𝛽s0 + bs0i + (𝛽s1 + bs1i)aij + 𝜀sij, (3)

where bsi = (bs0i, bs1i) ∼ N2(0,Ds) comprises a random intercept bs0i and a random slope bs1i, and 𝜀si ∼ Nmi (0, 𝜎
2
𝜀s

Imi). We
employ maximum likelihood for the estimation of model (3), resorting in particular to the R package nlme.13

2.2 Derivation of the predicted random effects

In the second step of PRC, we compute summaries of the longitudinal trajectories described by the biomarkers based
on the mixed models estimated in the previous step. These summaries are the predicted random effects,14 and their
computation (and interpretation) differs depending on the type of model fitted in the first step.

Computation of the predicted random effects in R is typically straightforward when performed for the very same
dataset on which the mixed effects model was fitted. However, it is more complicated when one needs to compute the
predicted random effects for a new dataset, because this is not implemented neither in the lcmm package that estimates
the MLPMM, nor in the popular R packages nlme and lme4 that are commonly used to estimate LMMs. Nevertheless,
the ability to compute the predicted random effects on a dataset different from that on which a MLPMM or a LMM is
fitted is fundamental for the implementation of the optimism correction that we will describe in Section 2.4, as well as
for the computation of predictions for a new individual that was not included in the original dataset on which PRC was
fitted. Therefore, hereafter we illustrate how to compute the predicted random effects for the MLPMM and for the LMM.
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For the MLPMM, we can compute the predicted random effects ûsi = (ûs0i,ûs1i) and b̂si = (b̂1si, … , b̂rssi) by adapting
the formulas provided by Ebrahimpoor et al15 to the MLPMM of Equation (1) as follows:

(
ûsi, b̂si

)
= E (usi, bsi|Ysi = ysi) =

[
ZiΣ̂us

Σ̂bs Irs ⊗ 1mi,1

]
Σ̂−1

ysi ẏsi, (4)

where ysi = (y1si1, … , y1simi , … , yrssi1, … , yrssimi)
T , ẏsi is the equivalent of ysi with ẏqsij = yqsij − 𝛽qs0 − 𝛽qs1aij as entries,

Zi is the random-effects design matrix associated to ysi in (1), Σbs =
⎡⎢⎢⎣
𝜎2

b1s … 0
⋮ ⋱ ⋮
0 … 𝜎2

brss

⎤⎥⎥⎦, Σ𝜀s =
⎡⎢⎢⎣
𝜎2
𝜀1s … 0
⋮ ⋱ ⋮
0 … 𝜎2

𝜀rss

⎤⎥⎥⎦, Σus =[
𝜎2

us0 𝜎us0,us1
𝜎us0,us1 𝜎2

us1

]
, andΣysi = ZiΣus Z

T
i + Irs ⊗ Σ𝜀s Imi + Irs ⊗ Σbs1mi,mi ,where I denotes identity matrices and1a,b “all-ones”

matrices (ie, matrices whose entries are all equal to 1) of dimension a × b.
For the LMM, instead, the predicted random effects are given by

b̂si = E(bsi|Ysi = ysi) = D̂sZT
i V̂−1

si (ysi − Xi𝛽s), (5)

where Vsi = ZiDsZT
i + 𝜎2

𝜀s
Imi is the marginal covariance matrix of subject i.

2.3 Prediction of the survival outcome

In the last step of the PRC approach, we employ the summary measures obtained in Section 2.2 to compute predictions
of the individual survival probabilities. To achieve this goal, we specify a penalized Cox model where we include baseline
age and the predicted random effects as covariates. When the longitudinal biomarkers are modeled using the MLPMM
of Equation (1), we can consider two alternative prediction approaches.

Let ûi =
(

û10i, … ,ûp1i
)

and b̂i = (b̂11i, … , b̂rppi) denote the vectors of shared and item-specific predicted random
effects for subject i computed using (4). The first approach that we consider is proposed having in mind a data generat-
ing mechanism where the event times are influenced only by the latent biological processes: with such an approach, the
items are viewed just as an instrument to reconstruct the unobservable biological process, and they are not believed to
have an additional predictive value of their own. Thus, in this first approach the hazard function depends only on the
shared random effects:

h(ti|ai1,ûi) = h0(ti) exp

(
𝜏ai1 +

p∑
s=1

𝛾sûs0i +
p∑

s=1
𝛿sûs1i

)
, (6)

where h(ti|ai1,ûi) denotes the hazard function, and h0(ti) is the baseline hazard. Hereafter, we refer to this modeling
approach as PRC MLPMM(U).

On the contrary, the second approach that we consider allows for the possibility that besides being useful to reconstruct
the latent biological processes, the items may carry additional information that is useful for the prediction of the time
to event outcome. Thus, in this second approach the item-specific random effects b̂i are included as predictors alongside
with the shared ûi:

h(ti|ai1,ûi, b̂i) = h0(ti) exp

(
𝜏ai1 +

p∑
s=1

𝛾sûs0i +
p∑

s=1
𝛿sûs1i +

p∑
s=1

rs∑
q=1

𝜉qsb̂qsi

)
. (7)

We refer to this modeling approach as PRC MLPMM(U+B).
Lastly, in the case in which the longitudinal markers are modeled with univariate LMMs we let

h(ti|ai1, b̂i) = h0(ti) exp

(
𝜏ai1 +

p∑
s=1

𝛾sb̂s0i +
p∑

s=1
𝛿sb̂s1i

)
, (8)
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where b̂i = (b̂101, b̂111, … , b̂p0i, b̂p1i) is the vector containing all the predicted random effects for subject i, as computed
with (5). We refer to this modeling approach as PRC LMM.

In models (6) to (8), we have included baseline age as covariate, assuming that subjects entered the study at different
ages. If this is not the case, ai1 can be dropped. Furthermore, in practice one may want or need to include in such models
relevant predictors or confounders that are not measured longitudinally, such as, for example, gender, ethnicity, hospital,
etc.; obviously, this can be easily done by adding such covariates to the linear predictors.

Models (8), (6), and (7) may (and typically will) comprise a large, high-dimensional set of predictors. For example,
in the MARK-MD study the number of predictors is 237 for the PRC MLPMM(U) approach of Equation (6), 355 for the
PRC MLPMM(U+B) in (7), and 481 for the PRC LMM approach in (8). In such high-dimensional scenarios, maximum
likelihood estimation is unfeasible, and some form of regularization is needed. In this article, we consider two penalized
likelihood estimation methods, respectively based on the ridge16 and on the elasticnet17 penalties. The elasticnet penalty
is a linear combination of an L1 and an L2 penalty that comprises two tuning parameters 𝛼 ∈ [0, 1] and 𝜆 > 0. 𝜆 determines
the overall level of regularization imposed on the regression coefficients by the penalty, whereas 𝛼 determines the relative
contributions of the two penalties. When 𝛼 = 0, the ridge penalty is obtained, whereas when 𝛼 = 1, we obtain the lasso
penalty. For model (7), the elasticnet penalty is given by

p(𝛾, 𝛿, 𝜉; 𝜆, 𝛼) = 𝜆

[
𝛼

( p∑
s=1

|𝛾s| + p∑
s=1

|𝛿s| + p∑
s=1

rs∑
q=1

|𝜉qs|) + (1 − 𝛼)

( p∑
s=1

𝛾2
s +

p∑
s=1

𝛿2
s +

p∑
s=1

rs∑
q=1

𝜉2
qs

)]
, (9)

where we do not penalize the regression coefficient associated to the baseline age. The ridge penalty can be obtained
from (9) by fixing 𝛼 = 0. For models (6) and (8), the penalties can be obtained from Equation (9) by dropping the terms
containing 𝜉qs.

We employ the R package glmnet17 to estimate the penalized Cox models described above. We use the
cross-validation procedure implemented in glmnet to select the optimal value of tuning parameter 𝜆 when the ridge
penalty is used. Moreover, we implement a nested cross-validation procedure18 to select the optimal values of the two
tuning parameters (𝜆, 𝛼) when the elasticnet penalty is used.

Once the penalized Cox model of step 3 is estimated, we can proceed with the computation of the predicted survival
probabilities. As usual with the Cox model, these can be obtained as follows:

Ŝi(t) = exp
(
−∫

t

0
ĥ0(z)e�̂�ij dz

)
,

where ĥ0(z) is a nonparametric estimate of the baseline hazard function, and 𝜂ij denotes the linear predictor in models
(6) to (8). Conditional survival probabilities can be obtained as Ŝi(t2|t1) =

Ŝi(t2)
Ŝi(t1)

, where t2 > t1.

2.4 Cluster bootstrap optimism correction procedure

We employ two measures of predictiveness to evaluate the predictive performance of the PRC-LMM and PRC-MLPMM
methods: the time-dependent area under the ROC curve (tdAUC hereafter), which we estimate using the nearest neighbor
estimator proposed by Heagerty et al,19 and the concordance (or C) index, which we estimate using the method proposed
by Pencina and D’Agostino.20

A common problem when developing prediction models is that of correctly evaluating the predictive performance
of a method. Typically, the naive estimate of an index of predictiveness will be optimistically biased, due to the overfit-
ting caused by the fact that the naive measure of performance is computed using the same data on which the model
is estimated. For this reason, with low-dimensional problems it is customary to implement an internal validation strat-
egy that allows to correct for this bias.21 However, internal validation is often a neglected step in the development of
high-dimensional risk prediction models, probably due to the belief that the penalization introduced in the estimation
phase will by itself prevent any overfitting. In this article, we do not subscribe to this belief, and instead we develop a
CBOCP that makes it possible to estimate the bias of the naive measures of performance, thus quantify the extent of the
overfitting.
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Our CBOCP adapts the bootstrap optimism correction method22 to the case of longitudinal data. Hereafter we illustrate
how the correction is computed in the case of the C index, but the computation proceeds in the same manner for the
tdAUC. Let s0 = {1, … ,n} be the set of subject indicators contained in the dataset at hand, which we denote by D(s0).
Note that for each subject i, D(s0) contains mi repeated measurements. The CBOCP proceeds through the following steps:

1. Draw from s0 a sample with replacement comprising n (possibly replicated) subject ids. Denote by sb the bootstrap
sample thus obtained, and by D(sb) the corresponding longitudinal dataset;

2. Estimate the PRC model of interest using D(sb) as data. Denote by M̂b the model thus fitted;
3. Estimate the value of the C index of M̂b when applied to D(sb), Ĉb, and to the original dataset D(s0), Ĉ0b;
4. Repeat steps 1 to 3 b = 1, … ,B times (typically, B = 100 or 200);
5. Compute the optimism correction 1

B

∑B
b=1(Ĉb − Ĉ0b).

Let Ĉ0 denote the naive estimate of the C index. The optimism-corrected C index, ĈCBOCP, is obtained by subtracting
the optimism correction from the naive C index:

ĈCBOCP = Ĉ0 −
1
B

B∑
b=1

(
Ĉb − Ĉ0b

)
. (10)

2.5 The R package pencal

We have implemented the methodology described in Sections 2.1 to 2.4 in the R package pencal,11 which can be freely
downloaded from CRAN at the link https://cran.r-project.org/package=pencal. The package comprises functions to esti-
mate the PRC MLPMM(U), PRC MLPMM(U+B), and PRC LMM models, to compute the CBOCP, and to obtain the
predicted survival probabilities from the fitted models. A vignette illustrating how to use the package is also available
on CRAN. The scripts used for the simulations described in Section 3 are available at https://github.com/mirkosignorelli/
pencal.

3 SIMULATIONS

As mentioned in Section 1, the current lack of methods that can predict survival using predictors that are both longitudinal
and high-dimensional forces the use of simpler prediction strategies, which either ignore the longitudinal information,
or focus on a limited number of predictors and ignore the remaining ones. In this section, we describe the results of
simulations studies designed to compare PRC to a simpler prediction approach where the baseline biomarker levels are
employed as predictors in a penalized Cox model. This approach, which we refer to as baseline pCox model hereafter, can
handle the large number of available biomarkers, but it ignores the repeated measurements that carry information on their
evolution over time. In Sections 3.1 and 3.2, we compare the baseline pCox approach to the PRC LMM, PRC MLPMM(U),
and PRC MLPMM(U+B) methods, showing that by properly modeling the dynamic evolution of the biomarkers we can
improve the accuracy of predictions in a high-dimensional setting. In Section 3.3, we compare the distribution of the
naive and optimism-corrected C index and tdAUC, showing the importance of the CBOCP in evaluating overfitting (and
correcting for it). Lastly, in Section 3.4, we turn our attention to computing time.

3.1 Evaluation of the PRC LMM and the effect of the number of repeated
measurements

We begin our simulation studies by evaluating how the level of improvement in predictive accuracy that can be obtained
using PRC can depend on the number of available repeated measurements and on the type of relationship existing between
the longitudinal biomarker profiles and survival. For simplicity, here we consider a situation where no distinction between
items and latent biological processes is present (namely, rs = 1 ∀s = 1, … , p), and we compare the PRC LMM and baseline
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pCox approaches. In Section 3.2, we will consider more complex scenarios where such distinction is present, and we will
employ the PRC MLPMM instead of the PRC LMM.

We first consider a low-dimensional setting with p = 30 biomarkers. Without loss of generality, we assume that all
patients entered the study at the same age. We generate the longitudinal profiles of each biomarker from the LMM of
Equation (3), considering two cases that differ for the number of available repeated measurements per patient (we will
refer to these two cases as scenarios with “few” and “many” repeated measurements), and we simulate survival times
from a Weibull model.23 We consider three simulations: in simulation 1, we assume that the random intercepts and
random slopes are uncorrelated and have the same variance, that is, 𝜎01s = 0 and 𝜎2

0s = 𝜎2
1qs = 1 ∀s, and that the random

intercept and slopes of 6 of the 30 biomarkers contribute to determining the survival times, that is, |𝛾s|, |𝛿s| ∼ U(0.5, 1) for
s ∈ {1, 2, … , 6}, and 𝛾s, 𝛿s = 0 otherwise, in Equation (8). Thus, in simulation 1, the random intercepts and slopes play an
equal role in determining the time-to-event outcome. In simulations 2 and 3, instead, we consider cases where the slopes
play a more prominent role. In particular, in simulation 2, we still let 𝜎2

0qs = 𝜎2
1qs = 1 ∀q, s, but we assume that only the

random slopes have non-null coefficients in Equation (8). Instead, in simulation 3, we set 𝜎2
0qs = 0.1 and 𝜎2

1qs = 2∀q, s, and
similar to in simulation 1 we assume that both the random intercepts and random slopes of six biomarkers contribute to
determining the survival times. Within each simulation, we consider two different sample sizes (n = 100 and n = 300). We
compute the optimism-corrected tdAUC (with t = 5) and C index using bootstrap samples of size B = 100, and repeat each
simulation setting 100 times. Hereafter we present the results obtained using the ridge penalty, and in the Supplementary
Material, we show the equivalent results when the elasticnet penalty is used.

Figure 2 shows the distribution of the tdAUC and C index in simulations 1, 2, and 3 for the baseline pCox model, and
for the PRC LMM model when few or many repeated measurements are available. In each of the simulation scenarios, we
can observe that use of the PRC LMM produces an improvement over the baseline pCox; in particular, the improvement
is stronger with the larger sample size (n = 300), and when more repeated measurements are available. Furthermore, the
improvement is somewhat stronger in simulations 2 and 3, where the survival times are more strongly determined by the
progression rates of the biomarkers.

Similar results are obtained when using elasticnet instead of ridge as penalty (Supplementary Figure 1). We can further
observe that the distribution of the performance measures across random replicates of the same simulation has somewhat
higher variability with elasticnet than with ridge. This result is probably due to the fact that the elasticnet penalty is a linear
combination of an L1 and an L2 penalty that comprises two tuning parameters, 𝛼 ∈ [0, 1] and 𝜆 > 0. When 𝛼 = 0 elasticnet
reduces to ridge, and when 𝛼 = 1 to the lasso. Because with elasticnet the cross-validation of the tuning parameters can
yield different choices of 𝛼 across random replicates whereas with ridge 𝛼 is fixed, we can indeed expect the distribution
of performance measures to be more variable with elasticnet than with ridge.

Next, we consider the same simulation scenarios in a high-dimensional setting with p = 150 predictors. We assume
that survival time depends on the first 10 predictors, and in simulations 4, 5, and 6 we make the same assumptions on
the variances of the random effects and on the relationship between random effects and survival times made in simula-
tions 1, 2, and 3. The results of these simulations using the ridge penalty are presented in Figure 3. When we consider
the optimism-corrected tdAUC estimates, the results are largely in line with those obtained in the low-dimensional sim-
ulations: the gain associated to the use of the PRC LMM model is stronger with larger sample sizes, when more repeated
measurements are available, and when (in simulations 5 and 6) the survival times are more strongly associated with the
random slopes. When looking at the C index, instead, we see that the gain associated with the PRC-LMM is apparent
with n = 300, but not with n = 100. This latter result seems to indicate that obtaining performance improvements can
be more challenging in a high-dimensional setting, and that larger sample sizes might be required to accurately evaluate
predictiveness in high-dimensions.

Although similar remarks hold for elasticnet (Supplementary Figure 2), once again we observe a higher variability in
the distribution of the performance measurements; furthermore, while the improvement with the PRC LMM method is
still apparent in terms of tdAUC, it tends to vanish when looking at the C index.

The primary motivation for the development of PRC is that estimation of joint models becomes computationally
unfeasible when more than a handful of longitudinal predictors are available. As a matter of fact, PRC represents a compu-
tationally feasible alternative to joint models for the prediction of survival from high-dimensional longitudinal predictors.
Nevertheless, it might be still be interesting to compare the predictive performance of PRC to that of joint models in
low-dimensional settings, where both approaches can be pursued. In Section 3 of the Supplementary Material, we present
the results of a simulation study designed to compare the performance of PRC LMM to a joint modeling approach in a
situation with only three longitudinal predictors.
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F I G U R E 2 Results of simulations 1, 2, and 3 (where we consider a low-dimensional setting with 30 biomarkers) using the ridge
penalty. The boxplots compare the distribution over 100 random replications of the optimism-corrected tdAUC (left) and C index (right) of
the PRC LMM model when few (light blue) or many (light green) repeated measurements are available to that of a penalized Cox model
where only baseline measurements are used (violet red) [Colour figure can be viewed at wileyonlinelibrary.com]

3.2 Evaluation of the PRC MLPMM(U) and PRC MLPMM(U+B) methods

We now turn our attention to the validation of the PRC MLPMM(U) and PRC MLPMM(U+B) methods, considering
simulations where we have multiple correlated items that refer to the same latent biological process.

Similarly to what we have done in Section 3.1, we begin by considering a low-dimensional scenario where there are
p = 10 latent biological processes, each measured through rs = 3 items. We generate the longitudinal items using the
MLPMM of Equation (1), and survival times using a Weibull model where survival depends on the shared random effects,

that is, on us0,us1, s = 1, … , p. In simulation 7, we set Σus =
[

1 0.5
0.5 1

]
∀s and let survival depend on the shared ran-

dom effects of 4 of the 10 latent biological processes; in other words, random intercepts and random slopes have the
same weight both in the definition of the longitudinal profiles and in the generation of survival times (note that this
is a multivariate equivalent of simulations 1 and 4). In simulation 8, we keep the same Σus, but we let survival depend
only on the random slopes of the latent processes (in analogy with simulations 2 and 5). Lastly, in simulation 9, we

set Σus =

[
0.1 0.5

√
0.2

0.5
√

0.2 2

]
∀s, and we let survival depend both on the shared random intercepts and on the shared

random slopes of the latent processes (this is the equivalent of simulations 3 and 6). Within each simulation, we con-
sider two different sample sizes (n = 100 and n = 300). We compute the optimism-corrected tdAUC at t = 5 and the C
index using bootstrap samples of size 100, and for each simulation setting we consider 100 random replicates. Here we
present the results obtained using the ridge penalty, and in the Supplementary Material, the equivalent results when using
elasticnet.
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F I G U R E 3 Results of simulations 4, 5, and 6 (where we consider a high-dimensional setting with 150 biomarkers) using the ridge
penalty. The boxplots compare the distribution over 100 random replications of the optimism-corrected tdAUC (left) and C index (right) of
the PRC LMM model when few (light blue) or many (light green) repeated measurements are available to that of a penalized Cox model
where only baseline measurements are used (violet red) [Colour figure can be viewed at wileyonlinelibrary.com]

The distributions of the tdAUC and C index in simulations 7, 8, and 9 using the ridge penalty are presented in Figure 4.
In all simulations, we observe that the two PRC MLPMM methods outperform the baseline pCox both with respect to
the tdAUC and to the C index, and with both sample sizes. Moreover, we can observe that the PRC-MLCMM(U) and
PRC-MLCMM(U+B) models achieve a similar predictive performance, despite the fact that the data are generated in line
with the PRC-MLCMM(U) model, and not with the PRC MLPMM(U+B); as a matter of fact, PRC-MLCMM(U) performs
slightly better, as expected given the way in which the survival times are simulated. Supplementary Figure 3 shows the
results of simulations 7, 8, and 9 using the elasticnet penalty; in this case, the results are substantially the same as those
obtained with ridge.

Lastly, we assess the same simulation scenarios in a high-dimensional setting with
∑p

s=1
∑rs

q=1 = 150 predictors, where
in particular there are p = 50 latent biological processes, each measured using three items. We assume that survival time
depends on the shared random effects of the first 10 latent variables, and in simulations 10, 11, and 12, we make the same
assumptions on the variances of the random effects and on the relationship between random effects and survival times
made in simulations 7, 8, and 9.

The results of these simulations using the ridge penalty are presented in Figure 5. Similarly to what we observed
in simulations 4, 5, and 6 (in Section 3.1), the improvement of the PRC methods over the baseline pCox is apparent
with both n = 100 and n = 300 when looking at the tdAUC, and with n = 300 the C index; it is less apparent when we
consider the C index in the n = 100 scenarios. Moreover, in line with what already observed in simulations 7, 8, and 9,
the difference between PRC-MLPMM(U) and PRC-MLPMM(U+B) is relatively small. Similar remarks hold for elasticnet
(Supplementary Figure 4), where, however, we can once again observe a higher variability in the distribution of the
performance measurements, similar to simulations 4, 5, and 6.
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F I G U R E 4 Results of simulations 7, 8, and 9 (where we consider a low-dimensional setting with 30 items targeting 10 different
biological processes) using the ridge penalty. The boxplots compare the distribution over 100 random replications of the optimism-corrected
tdAUC (left) and C index (right) of the baseline pCox (violet red), PRC-MLPMM(U) (blue), and PRC-MLPMM(U+B) (orange) models
[Colour figure can be viewed at wileyonlinelibrary.com]

3.3 Effect of the cluster bootstrap optimism correction

To showcase the effect that the CBOCP has on the level of the reported measures of predictiveness, we have compared the
distribution of the naive estimates of the tdAUC and C index to that of the optimism-corrected estimates obtained with
the CBOCP introduced in Section 2.4.

Figure 6 compares the naive and optimism-corrected estimates of the tdAUC and C index in simulation 10 (similar
results hold for the other simulations described in Sections 3.1 and 3.2). It is apparent that the effect of the opti-
mism correction is rather sizeable for all models. For example, in the case of the PRC-MLPMM(U+B) model with
n = 300 the median of the naive estimates is 0.978 for tdAUC(5) and 0.881 for the C index, whereas the median of the
optimism-corrected estimates is 0.908 for tdAUC(5) and 0.801 for the C index. These results highlight the importance
of properly evaluating predictive performance by implementing an internal validation procedure that can estimate the
optimism associated to the naive performance estimators.

3.4 Computing time

In this section, we study the typical computing time of the PRC-LMM and PRC-MLPMM models and its relation to sample
size and number of longitudinal predictors. For this benchmarking, we employ the data generated in simulations 7 and
10, and monitor the mean computing time of a penalized Cox model with baseline predictors, of the PRC-LMM model,
and of the PRC-MLPMM(U) and PRC-MLPMM(U+B)) models. Computations were performed using an Intel E7-4890
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F I G U R E 5 Results of simulations 10, 11, and 12 (where we consider a low-dimensional setting with 150 items targeting 50 different
biological processes) using the ridge penalty. The boxplots compare the distribution over 100 random replications of the optimism-corrected
tdAUC (left) and C index (right) of the baseline pCox (violet red), PRC-MLPMM(U) (blue), and PRC-MLPMM(U+B) (orange) models
[Colour figure can be viewed at wileyonlinelibrary.com]

processor with 2.2 GHz CPU, and version 0.4.1 of the R package pencal; for each model, computation of the CBOCP
was parallelized over 10 cores.

Supplementary Table 1 reports the computing time associated to the estimation of the different models. We can observe
that both for the PRC-LMM and the PRC-MLPMM models, computing time increases less than linearly with respect to
the sample size n. Moreover, computing time increases more than linearly with respect to the number of longitudinal
predictors for the PRC-LMM approach, and approximately linearly for the two PRC-MLPMM approaches. Similar
observations hold for the computation of the CBOCP, whose mean computing times are presented in Supplementary
Table 2.

By comparing the computing times in Supplementary Tables 1 and 2, we can observe that while the estimation of PRC
is not particular demanding in terms of computing time, the computation of the CBOCP is typically slower. This is due to
the fact that bootstrap validation procedures require the repetition of the same computations for a rather large number
(typically hundreds) of bootstrap samples. Due to their repetitiveness, these computations can be easily parallelized: for
this reason, in the R package pencal we offer the possibility to easily parallelize computations over multiple cores,
making it easy for users to reduce computing time through parallelization.

4 APPLICATION

In this section, we illustrate an example application of PRC to the data gathered in the MARK-MD study, the motivat-
ing dataset that we briefly introduced in Section 1. The MARK-MD study1,2 was an observational study that focused
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F I G U R E 6 Comparison of the distribution of the naive (orange) and optimism-corrected (green) performance measures in simulation
10. The boxplots compare the distribution over 100 random replications of the naive and optimism-corrected estimates of the tdAUC (top
panel) and C index (bottom) for each of the methods considered in simulation 10 [Colour figure can be viewed at wileyonlinelibrary.com]

on the validation of a set of blood biomarkers as longitudinal markers of disease progression for DMD, a severe neu-
romuscular disorder whose consequences include progressive loss of muscular tissue and muscle mass, LoA around
the age of 12, and premature death. One of the reasons that motivate the research interest in blood biomarkers for
DMD is that the methods currently used to monitor disease progression in DMD (namely, timed tests that mea-
sure the distance and speed that a patient can walk, and magnetic resonance imaging) can be motivation-dependent
and rather noisy, so that measuring the level and dynamic change of blood biomarkers would represent a desirable
alternative.

Hereafter we focus on the problem of predicting the age at which DMD patients will experience LoA, which is a cru-
cial disease milestone for DMD. The MARK-MD study led to the collection of 303 longitudinal blood samples from a total
of 157 patients. However, 64 of these patients were not ambulant where they entered the study, so here we restrict our
attention to the 93 patients who were ambulant when they entered the MARK-MD study. Of these 93 patients, 55 experi-
enced the event of interest (LoA), whereas 38 are right-censored. Figure 7 shows the Kaplan-Meier estimator associated
to the LoA event.

An interesting feature of the MARK-MD study is the fact that the biological markers of interest, that is, the proteins,
were not measured directly; instead, between 1 and 5 antibodies, with different affinity and specificity towards a given
target protein, were employed to measure each protein. More in detail, an antibody-based array was employed to measure
the abundance of 240 antibodies that targeted 118 proteins in total; 37 proteins were measured using a single antibody, 52
using two different antibodies, 18 with 3 distinct antibodies, 10 with 4 antibodies, and 1 with 5 different antibodies. The
118 proteins partitioned the antibodies into non-overlapping sets (ie, each antibody targeted a single protein). In other
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F I G U R E 7 Kaplan-Meier estimator for the MARK-MD data. The estimated survival probabilities Ŝ(t) correspond to the probability of
being ambulant after t years from baseline

7.2 7.4 7.6 7.8 8.0 8.2

8.
5

8.
6

8.
7

8.
8

8.
9

HPA005551

H
PA
04
91
76

7.2 7.4 7.6 7.8 8.0 8.2

7.
0

7.
2

7.
4

7.
6

7.
8

8.
0

HPA005551

H
PA
05
33
26

8.5 8.6 8.7 8.8 8.9

7.
0

7.
2

7.
4

7.
6

7.
8

8.
0

HPA049176

H
PA
05
33
26

F I G U R E 8 Correlation between the three items employed to measure the protein CFH. In the MARK-MD study, the protein CFH was
measured using three antibodies: HPA005551, HPA049176, and HPA053326. The three scatter plots compare each pair of antibodies, showing
that they are all positively correlated with each other

words, we are interested in p = 118 latent biological process, each of which is measured using between 1 and 5 items, that
is, rs ∈ {1, 2, 3, 4, 5}.

In most cases, a moderate/strong positive correlation can be observed between antibodies that target the same protein
(see Figure 8 for an example based on the three antibodies used to measure the protein CFH, and Supplementary File 1
of the original study1 for a more detailed overview), indicating that a multivariate modeling of the antibodies that match
the same protein might be more appropriate than modeling each antibody separately.

Table 1 shows the number of repeated blood measurements taken before LoA that are available for each patient.
Note that while between 2 and 5 repeated measurements before LoA are available for 48 patients, for 45 patients only 1
measurement can be used: this feature makes the longitudinal modeling of the biomarkers challenging, because the fact
that no longitudinal information is available for almost half of the patients makes it is difficult to derive accurate predicted
random effects, and in particular to obtain accurate random slopes.

We estimated four different models that can be employed to predict time to LoA: a penalized Cox model that
employs the baseline biomarkers levels as covariates, the PRC-LMM model that in step 1 models each antibody sep-
arately with a LMM with random intercepts and random slopes, and the PRC-MLCMM(U) and PRC-MLCMM(U+B)
models, which jointly model all antibodies targeting the same protein using the MLPMM. Each of the models was fitted
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T A B L E 1 Distribution of the number of repeated measurements before LoA across patients

Number of repeated measurements before LoA 1 2 3 4 5

Frequency 45 23 18 6 1

T A B L E 2 Optimism-corrected estimates of the C index for the prediction of time to
LoA in the MARK-MD dataset

Optimism-corrected C index

Model Ridge penalty Elasticnet penalty

Penalized Cox with baseline markers 0.696 0.692

PRC-LMM 0.668 0.666

PRC-MLPMM(U) 0.640 0.659

PRC-MLPMM(U+B) 0.710 0.733

using both the ridge, and the elasticnet penalty. The predictive accuracy of each model was evaluated by estimating the
optimism-corrected C index, and the optimism-corrected tdAUC evaluated every half year, up to 5 years from baseline.
The optimism correction was performed using the CBOCP with B = 500 bootstrap samples.

The optimism-corrected C index estimates of the aforementioned models are compared in Table 2. Irrespective of
the type of penalty used, the best performing model appears to be the PRC-MLPMM(U+B). It is interesting to note that
whereas this model outperforms the penalized Cox model that uses only the baseline marker values, the PRC-LMM and
PRC-MLPMM(U) models do not. We believe that this somewhat surprising result may be due to the lack of repeated
measurements for almost half of the patients: as a matter of fact, for those 45 patients for which only 1 measurement
before LoA is available it is virtually impossible to reliably estimate the random slopes (progression rates). We can expect
this complication to affect more severely the performance of the PRC-LMM and PRC-MLPMM(U) models than that of the
PRC-MLPMM(U+B) model, because whereas in the PRC-LMM and PRC-MLPMM(U) models half of the predictors are
random intercepts and half random slopes, in the PRC-MLPMM(U+B) the random intercepts (bqsi and us0i in Equation 1)
employed for prediction outnumber the random slopes (us1i; the total number of random intercepts is 237, vs 118 random
slopes).

Similar results hold for the optimism-corrected estimates of the tdAUC, which are shown in Figure 9. Once again,
the most predictive model appears to be the PRC-MLPMM(U+B) model when fitted with elasticnet penalty, fol-
lowed by the same model fitted with the ridge penalty and by the penalized Cox model with baseline measures as
covariates.

Lastly, we note that for the baseline penalized Cox and the PRC-LMM models, the predictive performance is substan-
tially the same when using ridge or elastic net; this is due to the fact that for these two models, the value of the elastic
net tuning parameter 𝛼 on the original dataset selected by nested cross-validation is �̂�NCV = 0, meaning that the elastic
net model is the same as the ridge model. Thus, the naive estimates of the C index and tdAUC are the same for the two
different penalties. Slight differences in the estimation of the optimism correction are however expected, because with
elasticnet, 𝛼 is tuned independently for each bootstrap sample during the CBOCP. This, in turn, yields slightly different
optimism-corrected estimates of performance. On the contrary, for the PRC-MLPMM(U) and PRC-MLPMM(U+B) mod-
els we observe a more substantial difference between ridge and elastic net: this is due to the fact that for these models,
�̂�NCV > 0, so the models selected by ridge and elastic net are actually different, and have different predictive performance.

5 DISCUSSION

High-dimensionality and repeated measurements are commonly encountered features of modern biomedical data. How-
ever, the current lack of statistical methods that can predict survival using a high-dimensional set of longitudinally
measured predictors limits the possibility to exploit the full predictive potential of complex biomedical datasets. When
dealing with a large number of longitudinal predictors, this methodological gap makes it necessary to employ simpler
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F I G U R E 9 Optimism-corrected estimates of the tdAUC for the prediction of time to LoA in the MARK-MD dataset [Colour figure can
be viewed at wileyonlinelibrary.com]

prediction strategies that are either based on the pre-selection of a limited number of longitudinal covariates as predic-
tors, or on the use of the baseline measurements only. Such simplifications can be detrimental for the performance of risk
prediction models, because they discard part of the available information.

In this article, we overcome this limitation by proposing PRC, a method that makes it possible to predict survival
using covariates that are at the same time longitudinal and high-dimensional. PRC begins with the specification of mixed
effects models that describe the dynamic evolution of the biomarkers, it proceeds to the computation of subject-specific
summaries of the biomarker’s trajectories, and finally it employs such summaries as predictors of the survival outcome
(Figure 1). Use of mixed effects models makes it easy to handle unbalanced repeated measurement designs, as well as
missing data. Additionally, PRC is capable of handling the presence of multiple items that are employed to measure the
same underlying biological process, and which might be highly correlated with each other.

To illustrate PRC, we have employed data from the MARK-MD study as motivating example. In this study, the mea-
sured predictors are antibodies that are employed to reconstruct the abundance of a smaller number of proteins, which
cannot be measured directly and can thus be regarded as the latent biological processes of interest. To account for this
peculiar feature, we have introduced PRC considering a general framework where multiple items can be employed to
measure the same biological process of interest. However, here we would like to emphasize that the applicability of PRC is
not limited to studies with such a complex setup: PRC can also be applied to simpler contexts where no distinction exists
between the items and the biological processes of interest. In such situations, use of the PRC LMM approach instead of
the PRC MLPMM might be preferable.

Moreover, we would like to remark that although we have illustrated PRC using an example where proteomic data
are employed as predictors, the applicability of PRC is not restricted to proteomic datasets. As a matter of fact, there is
no restriction on the type of longitudinal variables that might be used, so that in practice PRC can be applied to datasets
comprising a highly heterogeneous set of variables, which might, for example, include clinical variables, laboratory mea-
surements, different types of omic measurements, and performance tests. Moreover, applicability of PRC is not restricted
to problems arising in medicine and biology, as the method can be employed with any type of survival outcomes and
longitudinal predictors.

To estimate the penalized Cox models in step 3 of PRC (Section 2.3), we have focused on the use of the ridge and
elasticnet penalties, which are commonly employed for prediction problems. If desired, one may consider the use of
alternative forms of regularization (lasso, group lasso, SCAD, etc.). In the case of Equation (9), one might also consider
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a modification of elasticnet that combines the ridge and group lasso penalty to jointly select or exclude all summaries
that refer to a single biological process. Although in the R package pencal we allow for the possibility to use the
lasso penalty, in general we do not recommend its use, because lasso models typically have lower predictive perfor-
mance in comparison to ridge and elastic net, and they additionally have problems when dealing with highly correlated
predictors.24

In the simulations presented in Section 3, we observed that ridge and elasticnet usually result in a similar predic-
tion performance; however, the distribution of the optimism-corrected tdAUC and C index over randomly replicated
datasets is often more variable with elasticnet, indicating that use of ridge may yield more stable predictors. Moreover,
the estimation of PRC is faster when employing the ridge penalty, because this is a special case of elasticnet. Thus, our
practical recommendation is to estimate PRC using the ridge penalty, unless a sparse predictor is desired.

A further contribution of our work is the implementation of the CBOCP, which makes it possible to perform a proper
internal validation of the fitted prediction model. As shown in Section 3.3, the optimism correction in high-dimensional
settings can be substantial, indicating that the naive measures of predictive performance may exhibit a strong bias, and
that performing the CBOCP is thus necessary to correct for this bias.

Motivated by the presence in the MARK-MD study of strong correlations between antibodies that target the same
protein, in this article, we have proposed a multivariate modeling approach where all items targeting the same biological
process are modeled jointly (step 1 of the PRC-MLPMM model). Primary advantages of this approach are the facts that it
can tackle the major source of correlation between the longitudinal antibodies, and that it allows to obtain summaries of
the longitudinal trajectories that refer to the latent biological processes. On the other hand, this approach does not model
the weaker correlations that exist between antibodies that target different proteins, as specifying a single multivariate
mixed model for 240 longitudinal biomarkers is computationally prohibitive. If computationally feasible, an extension of
PRC-MLPMM whereby all 240 longitudinal biomarkers are jointly modeled in step 1 could yield prediction models with
higher predictive accuracy.

Lastly, in this article, we have assumed that survival times have been systematically collected and reported as an
outcome measured in continuous time. However, in clinical practice, it may happen that the survival status of a patient
is only measured at discrete time points, for example, on the dates of a visit, resulting in interval censoring. Dealing with
interval-censored outcomes would require an extension of PRC whereby the penalized Cox model employed in step 3 of
PRC is replaced with a model for interval-censored data suitable for the analysis of high-dimensional data.
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