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Abstract: To combat infection by microorganisms host organisms possess a primary arsenal via the
innate immune system. Among them are defense peptides with the ability to target a wide range
of pathogenic organisms, including bacteria, viruses, parasites, and fungi. Here, we present the
development of a novel machine learning model capable of predicting the activity of antimicrobial
peptides (AMPs), CalcAMP. AMPs, in particular short ones (<35 amino acids), can become an effective
solution to face the multi-drug resistance issue arising worldwide. Whereas finding potent AMPs
through classical wet-lab techniques is still a long and expensive process, a machine learning model
can be useful to help researchers to rapidly identify whether peptides present potential or not. Our
prediction model is based on a new data set constructed from the available public data on AMPs and
experimental antimicrobial activities. CalcAMP can predict activity against both Gram-positive and
Gram-negative bacteria. Different features either concerning general physicochemical properties or
sequence composition have been assessed to retrieve higher prediction accuracy. CalcAMP can be
used as an promising prediction asset to identify short AMPs among given peptide sequences.

Keywords: antimicrobial peptides; artificial intelligence; bacteria; drug discovery; machine learning;
antimicrobial resistance

1. Introduction

It is now recognized that an increase in bacterial resistance to conventional antibiotics
can lead us to a “post antibiotic era” [1]. Conventional therapeutic strategies often no
longer work; hence, there is an urgent need to find new drugs to fight pathogens. Despite
a few promising compounds entering the different clinical phases, only two new classes
(lipopeptides and oxazolidinones) were discovered in the last 20 years [2]. Moreover,
both of them target only Gram-positive (Gram+) bacteria and their representatives already
face serious resistance drawbacks [3,4]. Therefore, there is a clear priority to find new
antimicrobial compounds, especially against a selection of critical strains published by
the World Health Organization (WHO) [5]. Among alternatives to small molecules drugs,
antimicrobial peptides (AMPs) are considered as interesting and promising candidates [6].
These peptides, which are already present in the innate immune system of plants, animals,
and humans, possess both antimicrobial activity and immunomodulatory properties [7].
AMPs are an essential component of the body’s first line of defense against pathogens,
even before the adaptive immune system is activated. Moreover, they exhibit diverse
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structural and functional profiles that can be optimized and fine-tuned to enhance their
activity further [8,9]. As a result, they offer tremendous potential as novel therapeutic
agents for combating a wide range of pathogens.

Several general properties are shared among AMPs such as a number of amino acids
(AAs) between 5 and 60, typically a global net positive charge (>3), and amphipathic
structures [10]. Still, even if the majority are cationic, several anionic AMPs exist [11,12].
Concerning their conformational characteristics, they show a great diversity of possible
3D structures from linear α-helices to β-sheets or random coils. They can also be cyclic or
present with one or several disulfide bridges [10]. Figure 1 represents an overview of this
variety in 3D structures among several AMPs.
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In contrast to conventional antibiotics that inhibit specific intracellular targets, most
AMPs act directly on the bacterial cell membrane or crucial cytoplasmic components [13].
Their interaction with the membrane provoke its disruption leading to the death of the
bacteria [14]. Therefore, the threshold to develop resistance is higher since it involves
a great modification of the membrane [15]. Moreover, since eukaryotic and prokaryotic
membranes present different specifications, AMPs can be very selective against bacteria
by accumulating at their negatively charged membrane surface [16]. In addition to their
antibacterial effects, AMPs may also present antifungal, antiparasitic, antivirus, or even
anticancer properties thus strengthening their potential and importance as new therapeu-
tics [17–20]. However, despite their ability, numerous interesting peptides never passed
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preclinical stages for various reason. The most important one is their possible toxicity
against human cells, in particular red blood cells, leading to their lysis similar to that of
bacteria [21]. Peptides may also present some stability issues, low oral bioavailability,
or high cost of production [22–24]. Those limitations are not unsurmountable with pep-
tide modification and engineering, e.g., D-amino acids or N-terminal modification can be
considered to improve their characteristics. Nevertheless, these challenges limited large
pharmaceutical companies from fully supporting the development of AMPs [25]. As of
today, only a few new AMPs are approved by the Food and Drug Administration (FDA)
or are in clinical trials [26]. Therefore, in order to help in the discovery of new ones and
reduce their cost, several computational approaches were developed.

In silico predictive models typically rely on the primary sequence of proven AMPs
from which different compositional and physicochemical descriptors are calculated and
used for predictions. Since the beginning of the century, several AMP prediction tools were
conceived based on different features and various algorithms. Experimentally validated
AMPs can be retrieved from different public databases such as DBAASP, DRAMP, or
CAMP [27–29]. In general, such databases also include a predictive model on their website
accessible via a webserver. In addition to these ones, several standalone tools have also
been developed for this purpose. For instance, iAMP-2 utilizes a fuzzy k-nearest neighbor
algorithm and pseudo amino acid composition (PseAAC) to predict not only antimicrobial
activity but also other types of activities such as anticancer or antivirus activities [30].
Another tool, iAMPpred, employs a support vector machine (SVM) algorithm and three
different types of features (compositional, structural, and physicochemical) [31]. More
recently, Bahdra et al. presented AmPEP, which uses the distribution patterns of amino
acid properties and a Random Forest (RF) classifier [32]. Subsequently, an updated version
focused on shorter peptides (<30 AAs), named DEEP-AmPEP30, was introduced. DEEP-
AmPEP30 is based on pseudo k-tuple reduced amino acids composition (PseKRAAC) and
a convolutional neural network (CNN) algorithm [33]. However, the first deep learning-
based AMP prediction model was conceived by Veltri et al. in 2018. It relies on the peptide’s
primary sequence composition, converted to a numerous vector, for its prediction [34].

Still, the majority of current AMP prediction tools suffer from two main drawbacks.
First, they do not account for differences in bacterial species or membrane structure differ-
ences, whereas the potency of AMPs can vary significantly depending on the target and the
type of bacterial envelope [35]. Second, these tools employ randomly selected sequences
without experimentally determined antimicrobial activity as the negative data set, rather
than using confirmed inactive peptides. Nowadays, it remains difficult to develop a model
specific to a bacterial species or a precise strain since little to no experimental data are
available to do so. A few methods were conceived to more precisely target bacteria using
their Gram classification and a threshold on activity to discriminate AMPs from other
peptides (i.e., non-AMPs), but it is only specific to either Gram+ or Gram-negative (Gram−)
bacteria [36,37]. Finally, even more recently, a new deep learning-based approach only
specific to Escherichia coli has been published focusing on small AMPs (<20 AAs) without
cysteine residues [38].

Here, we created a new data set composed exclusively of experimentally proven AMPs
and Non-AMPs by setting an activity threshold to discriminate them. The experiments
contained in our data set were focused on short AMPs (<35 AAs) since they can present
potent activity coupled with low toxicity [15,39]. Furthermore, it is much more convenient
to work with such peptides due to their small size, and they are simpler to synthesize,
optimize and produce on a bigger scale, implying lower costs. Based on this data set, we
introduced several novel predictive machine learning (ML) models separated according to
the Gram classification. Hence, a specific prediction model was conceived for each class.
In addition, an antifungal activity prediction model was created. The prediction method
relies on the calculation of several sequence composition and physicochemical descriptors
and several different ML algorithms assessed with cross validation (CV) and a holdout test
data set.
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2. Results
2.1. Exploration of the Data Set
2.1.1. Global Overview

After classification of all bacterial species by their Gram staining (positive or nega-
tive), the exploration began with the search of the most tested species. Figure 2a shows a
detailed overview of the five most retrieved species per category. For each category, the
large difference observed between the first and second most tested microorganisms reveals
a clear preference for certain species when running experimental tests. As suspected,
Staphylococcus aureus and E. coli were the most tested Gram+ and Gram− bacterial species,
respectively, and for fungi it was Candida albicans. While important species from the WHO
priority list of antibiotic-resistant bacteria were present, namely Acinetobacter baumannii and
Pseudomonas aeruginosa, other important species were not retrieved in the top five of tested
microorganisms, such as Helicobacter pylori, Neisseria gonorrhoeae, or Streptococcus pneumo-
niae [2,5]. Figure 2b shows a Venn diagram illustrating the distribution of peptides tested
against the different categories. As numerous peptides present several activities against
different targets, their number is much lower than the number of activities. Moreover, the
majority of them are common in both the Gram+ and Gram− data sets. However, there
was also a significant number of peptides that are specific to each category (1243, 1600, and
576 for the Gram+, Gram−, and fungi, respectively). Concerning antifungal peptides, much
less data are available than for bacteria and the majority of the peptides were retrieved
within the Gram category. Still, a significant number of the antifungal peptides was also
specific to this category. It appears that one global model for AMP prediction would not
sufficiently represent the data since, as shown in Figure 2b, a great number of peptides
were uniquely tested to one of the categories: Gram+, Gram−, or fungi.
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2.1.2. AMP/Non-AMP Peptides Analysis

The analysis of the overall amino acid composition (AAC) between AMPs and Non-
AMPs is represented in Figure 3a. For both categories, the five most represented AAs were
lysine (K), leucine (L), alanine (A), arginine (R), and glycine (G). In general, AMPs are
known to be cationic, and they indeed exhibited a higher frequency of positive residues
such as lysine or arginine. Additionally, tryptophan (W) was overrepresented in AMPs.
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Conversely, the proportion of histidine (H) was slightly higher for Non-AMP peptides,
which were also much more enriched in negative residues such as aspartic acid (D) and
glutamic acid (E), despite these being in low abundance overall. Finally, a global similarity
was observed for non-polar residues such as phenylalanine (F), isoleucine (I), leucine
(L), and cysteine (C) participating in the amphiphilic properties of these peptides. These
results were in correlation with the global charge difference between the two categories
(Figure 3b). As mentioned above, AMPs were significantly more positively charged than
Non-AMPs (Mann–Whitney U test, p < 0.05). They had an average positive charge of
+4.8 (standard deviation SD: 2.70) vs. a charge of +2.8 (SD: 2.56) for Non-AMPs. AMPs were
also significantly heavier (Mann–Whitney U test, p < 0.05) with a mean of 2241 g·mol−1

(SD: 703) vs. 1911 g·mol−1 (SD: 715) for Non-AMPs (see Figure 3c). Both a PCA and
t-SNE analysis were performed on the overall physicochemical descriptors (Supplementary
Materials, Figure S1) and AAC (Supplementary Materials, Figure S2). Such projections
allow us to quickly see if one can perceive a separation between AMPs and Non-AMPs.
A significant overlap existed between the two categories in the PCA space. For t-SNE,
the projections were very sparse and small clusters appeared to be quite discriminative
but overlap was visible. Therefore, we hypothesize that the specific AA sequence is more
important for the biological activity than the overall composition.
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Figure 3. Comparison of amino acid composition (a), global net charge (b), and molecular weight
(c) between AMPs and Non-AMPs.

A deeper analysis on the 4174 common peptides tested against both Gram+ and
Gram− bacteria and the distribution of AMPs/Non-AMPs is presented within the matrix
in Figure 4 (see Data labelling section for details on the classification). The majority, 89%,
acted either as an AMP or as a Non-AMP in both Gram+ and Gram− categories. Still, a
non-negligible part of Gram− bacteria AMPs (7%) were not active against Gram+ bacteria
and vice versa (4%). These results reinforce the importance to have a specific model for
Gram+ and Gram− bacteria rather than a global one.
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A PCA and a t-SNE projection were applied based on several general physicochemical
descriptors and were subsequently colored by class in Figure 4 matrix. Based on the PCA
projection, Figure 5a, a slight separation appeared between AMPs (right) from Non-AMPs
(left). However, a significant overlap remained between them. Peptides labelled as AMP
for Gram+ and Non-AMP for Gram− (in green) tended to cluster with the common Non-
AMP ones on the left side. Whereas peptides labeled AMP for Gram− and Non-AMP for
Gram+ (in black) tended to be projected with the common AMPs on the right side. The
correlation circle associated with this PCA (Supplementary Materials, Figure S3) shows
that component 1 is mostly “Charge” and component 2 is “MW” (molecular weight) and
“Length”. The plot confirms that AMPs have on average a higher molecular weight and
are more positively charged. The same separation was retrieved in the t-SNE projection,
Figure 5b, with an interesting cluster on the bottom of practically only the Non-AMPs
projected there. Still, in most cases, AMPs and Non-AMPs are near coincident in the
plots, meaning they present similar physicochemical characteristics. The same projections
were also produced using AAC (Supplementary Materials, Figure S4). These projections
show an horizontal separation between AMPs and Non-AMPs with AMPs being much
more dispersed than Non-AMPs. The separation was realized for arginine (R), lysine (K),
tryptophan (W), and leucine (L) for the top part (AMPs) and the other AAs for the bottom
part (Non-AMPs).
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2.2. Antimicrobial Activity Prediction
2.2.1. Feature Selection

As a basis for the prediction model, it is crucial to extract and select features from
the peptide’s primary sequence. The features from the sequences can be divided into
two main categories: based on physicochemical descriptors or based on AAC. For this
study, both types were used and evaluated individually to retain only the most interesting
ones. Feature selection was performed using the Random Forest classifier (RF) [40], a ML
algorithm that has an extensive track record in both drug discovery and AMP prediction
and can be interpreted. Hence, this algorithm was selected in order to obtain features that
produce the most accurate peptide classification. This first preliminary assessment, based
on a classical RF-classifier, was performed with 10-fold cross validation (CV) experiments
each time. The CV process consists of the data set being split into k-folds and k − 1 folds
being used as training data while the final fold is retained for evaluation. Therefore, the
model is assessed k times where each of the k-folds serve once as the validation data. After
that, the mean score and standard deviation for each metric can be calculated.
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For sequence-based features, the AAC, the dipeptide composition (DPC), the pseudo
amino acid composition (PseAAC) [41], and the composition-transition-distribution (CTD)
descriptors [42] were retained. AAC is the frequency of each AA in the sequence and DPC
is the same for dipeptides. Thus, they are made of 20 and 400 descriptors, respectively.
Contrarily to those two, PseAAC allows us to retain all the sequence-order information.
Depending on the initial parameters, it contains a different number of descriptors, derived
from the primary sequence and incorporating some sequence-order knowledge. Finally,
CTD descriptors are divided in three components: composition (C), the number of AAs
with a particular property divided by the length of the sequence; transition (T), the fre-
quency where AAs with a particular property is followed by AAs of another property; and
distribution (D), the measure of different lengths of the sequence of the distribution of each
property. In total, CTD descriptors are composed of 147 features (21 for C and T and 105
for D) and describes seven properties: charge, hydrophobicity, normalized van der Waals
volume, polarity, polarizability, secondary structure, and solvent accessibility. Concerning
the global physicochemical (GPC) descriptors, they are composed of the 10 following
descriptors: length, MW, global charge, charge density, isoelectric point, instability index,
aromaticity, aliphatic index, Boman index, and hydrophobic ratio. Of note, AA scale-based
descriptors such as T-scales or Z-scales as well as descriptors derived from the AA index
were dropped because of insufficient prediction results even though they were previously
shown to perform well on peptide bioactivity modelling [43,44].

The performances were evaluated according to several metrics including accuracy,
sensitivity, specificity, area under the receiver operator characteristic (ROC) curve (AUC),
and Matthew’s correlation coefficient (MCC). The results are shown in Table 1. For all sets
of features, individually and aggregated, the predictions between categories were similar
and no major difference appeared. For both categories, CTD descriptors were the ones
with the best prediction according to all metrics tested. It makes sense that CTD are the
descriptors producing the best predictions since they are the most complete ones, including
sequence composition and physicochemical criteria. The higher scores in all metrics was
obtained using all these set of descriptors together. The choice of these features allowed
our basic RF model to achieve an accuracy of 81% in both categories.

Table 1. Comparison of different feature sets for Gram+ (white) and Gram− (grey) AMP prediction.
The values in brackets represent the standard deviation obtained via 10-fold cross validation. Bold
values indicate the best value per column.

Feature Set
(#) Accuracy Sensitivity Specificity AUC-ROC MCC

AAC (20) 0.77 (0.02) 0.77 (0.02) 0.78 (0.04) 0.85 (0.01) 0.55 (0.04)
0.78 (0.02) 0.76 (0.01) 0.81 (0.03) 0.86 (0.02) 0.56 (0.03)

CTD (147) 0.79 (0.02) 0.77 (0.03) 0.82 (0.03) 0.87 (0.02) 0.59 (0.04)
0.80 (0.01) 0.79 (0.02) 0.82 (0.02) 0.88 (0.01) 0.61 (0.03)

DPC (400) 0.77 (0.02) 0.78 (0.03) 0.76 (0.03) 0.85 (0.02) 0.53 (0.04)
0.77 (0.02) 0.77 (0.02) 0.78 (0.03) 0.86 (0.01) 0.55 (0.04)

PseAAC (24) 0.77 (0.02) 0.76 (0.03) 0.79 (0.02) 0.85 (0.02) 0.55 (0.04)
0.78 (0.02) 0.75 (0.03) 0.81 (0.02) 0.86 (0.01) 0.55 (0.04)

GPC (10) 0.78 (0.01) 0.78 (0.02) 0.79 (0.03) 0.85 (0.01) 0.57 (0.02)
0.78 (0.01) 0.78 (0.03) 0.79 (0.02) 0.86 (0.01) 0.57 (0.02)

All (601) 0.81 (0.02) 0.80 (0.03) 0.83 (0.03) 0.89 (0.02) 0.62 (0.05)
0.81 (0.02) 0.80 (0.04) 0.82 (0.03) 0.89 (0.02) 0.62 (0.05)

2.2.2. Algorithm Choice

To assess which algorithm best suits our prediction purpose, several different models
from classical classification algorithms were tested. Thus, the performance of 14 ML
algorithms and one Multi-Layer Perceptron (MLP) was evaluated with 10-fold CV each
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time (Tables S1 and S2 in Supplementary Materials). For both categories, i.e., Gram+ and
Gram−, it was clearly observed that ensemble tree-based algorithms outperformed, in
all metrics, all the other types of ML models as well as the MLP. They achieved their
prediction with a mean accuracy of 80% compared to 73% for k-nearest neighbors, for
example. Therefore, the decision was made to build and tune a model for each top five
tested algorithms in each category: Catboost [45], LightGBM [46], XGBoost [47], Random
Forest, and Extra Trees [48].

2.2.3. Performance and Interpretation

For each algorithm selected, two models were created and tuned, one with all the
features (601) and one with a supplementary feature selection process. Indeed, feature
selection can be an important step to accelerate the learning and training but also improve
the performance of any model [49]. In order to identify the best discriminative and useful
features, their importance weights were used followed by a recursive elimination with
3-fold CV each time, reducing their numbers to 75. The overall results of each AMP
prediction model is presented in Supplementary Materials, Tables S3 and S4. For both
categories, no created model stood out, as they all presented similar results within their
standard deviation ranges. Moreover, no significant performance losses were observed
after our feature selection step. The selection of the best model was therefore made using
the external data set. For the Gram+ model (CalcAMP+), the best classifier was the Extra
Trees one with all features, as it achieved a prediction accuracy on the external test set of
79% and an MCC of 0.58. For the Gram− model (CalcAMP-), the best one was obtained
with the LightGBM algorithm using all of the features. This model obtained an accuracy of
80% and an MCC of 0.61. More results can be found in Table 2 in the Comparison with Other
Prediction Tools Section 2.2.4.

A “SHapley Additive exPlanations” (SHAP) values [50] analysis was performed to
globally interpret the predictions on our test data set. SHAP values allow us to visual-
ize which features are important for the prediction and their contribution. For the two
models, the top 20 variable importance plot is shown in Figure 6, with their impacts on
the prediction. The features are ranked in descending order and the horizontal scatterplot
for each illustrates whether the effect of that feature was associated with a positive or a
negative prediction output. For example, for CalcAMP+, a high MW (dots in red) had
a strong and positive impact on AMP prediction. Of these top 20 features, only three
were common to both models: MW, Charge, and pI. The majority of the top features were
from CTD descriptors. They are identifiable by their names beginning with an underscore
character, followed by the property and finally the component characteristics: composition
(C), transition (T), and distribution (D). From the AAC, only the proportion of tryptophan
(W) was represented in CalcAMP+. No features from DPC descriptors and only one from
PseAAC were retrieved in each model. For the global physicochemical descriptors, four out
of ten were part of the top features in both models, meaning that their importance was high,
as those of the CTD descriptors. For CalcAMP+ (A), the impact of the 20 features were
quite important as illustrated on the horizontal distribution, whereas for the CalcAMP- (B),
except for charge and MW, the impact of the other features were less important.
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CalcAMP+ (a) and CalcAMP- (b). Shown are physicochemical properties such as molecular weight
(MW), Charge, or Length. However, the majority of the top features were from CTD descriptors. They
are identifiable by their names beginning with an underscore character, followed by the property and
finally the component characteristics: composition (C), transition (T), and distribution (D).

A deeper look into the prediction results, especially at the confusion matrix asso-
ciated with the predictions (Figure 7a), reveals that the great majority of true positives
(TP) and true negatives (TN) was similarly predicted in both models. However, the im-
age was less clear for false positives (FP) or false negatives (FN), where a little more
than half were predicted differently even if the overall metrics of both models were
equivalent. This confusion matrix shows that our models returned different prediction
results and the distinction between Gram+ and Gram− bacteria remains important. Fi-
nally, the analysis of the probabilities associated with the prediction and not directly
the binary output (Figure 7b) displayed a scoring difference between our two models.
CalcAMP+ returned lower scores in general for any category, while CalcAMP- had an
average close to 1 or 0 for TP and TN predictions. However, the important observation here
is that there was a significant scoring difference between TP and FP and between TN and
FN for both models. TP scores were significantly higher than FP scores (Mann–Whitney U
test p < 0.05) and TN scores were significantly lower than FN scores (Mann–Whitney U test
p < 0.05). Therefore, in order to increase the sensitivity or the specificity of the pre-
diction, one should increase or decrease the classification threshold differently for the
CalcAMP+ and CalcAMP- models since they had different scoring scales.
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2.2.4. Comparison with Other Prediction Tools

Previously published AMP prediction tools were assessed in order to compare them
to our models using the external benchmark data set, composed of AMPs and non-AMPs
common to both Gram+ and Gram− bacteria. As already mentioned, most AMP predictive
approaches that have been developed are also based on a training set composed of AMPs
found in public databases. However, their negative data set is made without an activity
threshold but based on random peptide sequences from the UniProt database tagged
as Non-AMP. In our case, the method is significantly different since the classification of
peptides as AMP or Non-AMP was based on their measured activities (see Data Labelling,
Section 4.1.2). Nevertheless, our best classifiers were compared to five existing prediction
models: iAMPpred, DBAASP, RF-AmPEP30, Deep-AmPEP30, and AMP Scanner Vr.2.
These five tools are freely available as webservers, which were used for this comparison.

The comparison demonstrates the superiority of the CalcAMP models over all other
tested tools in the global prediction of activity (Table 2). The CalcAMP accuracy was
79% and 80% for Gram+ and Gram−, respectively, versus 67% or less for the others, and
CalcAMP demonstrated an MCC of at least 0.58 versus 0.35 or less. However, except for
the DBAASP model, all the others had a higher sensitivity (>90%), meaning that they
were more prone to predict the peptides as an AMP than CalcAMP. These results can be
explained by their different training data sets. For models using randomized negatives,
any peptide with a recorded antimicrobial activity is an AMP so in our external data set
most of them will be predicted as an AMP. However, the drawback is their lower specificity
(≤30%), implying a difficulty in discriminating and predicting peptides as Non-AMP if
they have a weak activity on their target. Both CalcAMP models presented a balanced high
specificity and sensitivity. They were able to efficiently differentiate between peptides with
high activity and those with lower ones. Figure 8 shows the different ROC curves (except
for DBAASP model) and confirm that our models have high accuracy at various thresholds
and are superior to the other models.
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Table 2. Comparison of different AMP prediction classifiers using the external data set. Bold values
indicate the best value per column.

Model Accuracy Sensitivity Specificity AUC-ROC MCC

Deep-AmPEP30 1 0.60 0.92 0.29 0.71 0.27
RF-AmPEP30 1 0.59 0.94 0.25 0.74 0.26
AMP_Scanner 0.61 0.93 0.30 0.75 0.29

iAMPpred 0.60 0.91 0.29 0.67 0.26
DBAASP 0.67 0.74 0.61 - 2 0.35
Average 0.61 0.89 0.35 0.72 0.29

CalcAMP+ 0.79 0.79 0.79 0.86 0.58
CalcAMP- 0.80 0.78 0.82 0.87 0.61

1 For Deep-AmPEP30 and RF-AmPEP30 models, only peptides with a length between 5 and 30 AAs were used
since it does not predict using longer ones. 2 For DBAASP, AUC-ROC cannot be calculated and the ROC curve
could not be displayed since it only returns binary results and the probabilities associated are not accessible.

To further compare CalcAMP with the other tools, an assessment on their own respec-
tive external data set was also performed using the external benchmark for AmPEP and
a shortened version of the Antimicrobial Peptide Scanner vr.2 validation data set (only
peptides with a length between 5 and 30 AAs). More details and results can be found in
Supplementary Materials, section Comparison with other datasets. As expected, CalcAMP
did not perform as well on those data sets as on our own external data set but still dis-
played an accuracy of around 70% and an MCC > 0.4. Such a loss of performance can
once again be explained by the initial labelling difference. Indeed, most peptides labelled
as AMPs in those data sets would be labelled Non-AMP in our case, thus accounting for
this decrease in prediction power. However, in doing these extra comparisons, our main
interest was the Non-AMPs predictions and therefore the sensitivity. Indeed, most or all
of their Non-AMPs have never been seen by any of our models. For both external data
sets, the sensitivities of CalcAMP+ and CalcAMP- were higher than all the other models,
reaching 100% for CalcAMP+ on the Antimicrobial Peptide Scanner vr.2 validation data set
(Supplementary Materials, Tables S5 and S6 and Figures S5–S8).
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2.3. Antifungal Activity Prediction

Fungal infections still remain a serious threat for humans and, similar to antibiotics,
antifungal drugs present some limitations [51,52]. Therefore, antifungal peptides (AFPs)
have emerged as new potential treatments to prevent or treat such infections [53], similar
to AMPs for bacteria. Even though the initial and main focus here was AMPs, quite a few
reported antifungal activities caught our attention. However, given the inferiority of input
data (1301 Non-AFPs and 887 AFPs), a lighter protocol was proposed and only models
based on RF and ET algorithms were employed. Concerning the initial exploration of the
data set with global physicochemical descriptors, no clear separation between AFPs and
Non-AFPs was visible with either PCA or t-SNE projections. Similarly, when looking at
AAC, no AAs were unbalanced between the categories, with two exceptions. Arginine was
enriched in AFPs over Non-AFPs and for alanine the inverse was true. Additionally, like
with AMPs, the five most retrieved amino acids were lysine, leucine, glycine, alanine, and
arginine. Of note, this could be the result of a bias as these data were retrieved from AMP
public databases. Therefore, most of the peptides were synthetized with the aim to target
bacteria so they present the characteristics of AMPs.

2.3.1. Performance and Interpretation

Following the same protocol as for the AMPs, two models per algorithm were created
and tuned: one with all of the features (601) and one with a feature selection step ending
with 75 features. Again, no created model stood out as they all presented similar results
within their standard deviation ranges (Supplementary Materials, Table S7). No significant
performance losses were observed after our feature selection step either. On the external
test set consisting of 30 AFPs and 30 Non-AFPs, the best classifier was the Random Forest
one with all features (CalcAFP) with an accuracy of 77% and a great specificity of 90% but
a lower sensitivity (63%). The prediction results are presented in Table 3. Such a difference
might be explained by the small input imbalance, where roughly 60% were Non-AFPs
versus 40% AFPs (due to the small amount of data, the choice was made to leave it as is).
Therefore, in our model it is best to discard Non-AFPs from selection rather than identifying
the AFPs.

Table 3. Comparison of different AFP prediction classifiers using the external data set. Bold values
indicate the best value per column.

Model Accuracy Sensitivity Specificity AUC-ROC MCC

iAMPpred 0.52 0.77 0.27 0.56 0.04
ClassAMP 0.48 0.33 0.63 - 1 −0.03

Antifp 0.50 0.30 0.70 - 1 0.00
Average 0.50 0.47 0.53 - 0.00

CalcAFP 0.77 0.63 0.90 0.86 0.55
1 For ClassAMP and Antifp, AUC ROC could not be calculated since we do not have access to the
probabilities associated.

Analysis of the model with SHAP values and the top 20 variable importance plot
are shown in Figure 9. Similar to the AMP prediction, charge and MW were important
features; the higher they were, the higher the positive impact on AFP prediction. However,
the descriptor pI was not retrieved in the top 20 features. In correlation with the AAC
comparison, the proportion of arginine (R) and also the dipeptide RR were retrieved, and
both were highly correlated with AFP prediction. Finally, the presence of three PseAAC
descriptors showed that they might be more important and interesting for AFP prediction
than for AMP predictions.
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2.3.2. Comparison with Other Prediction Tools

The comparison results with other AFP prediction tools is provided in Table 3. Three
available tools were evaluated: iAMPpred, ClassAMP [54], and AntiFP [55]. To note, iAMP-
pred and ClassAMP are not specific AFP prediction tools but multilabel ones proposing
AFP prediction. For ClassAMP, the model based on the SVM algorithm was selected.
Sequences predicted as antifungal were labeled as AFP while the ones not predicted as anti-
fungal but as other classes were considered Non-AFPs. Similar to the previously developed
AMP prediction tools, these tools were developed based on a training set composed of
AFPs from public databases without an activity threshold and random peptide sequences
from UniProt or Swiss-Prot tagged as non-AFP. These three tools are freely available as
a webserver, which we used for this comparison. CalcAFP achieved an accuracy of 77%
in contrast with 48% to 52% for the other predictors. It clearly outperformed them on all
metrics, except sensitivity where iAMPpred was higher (63% vs. 77%).

Another data set was also evaluated, the one from the Antifp tool. The Antifp_Main
validation data set was modified to keep only peptides with a length between 5 and
35 AAs. The details and results can be found in Supplementary Materials, section Compar-
ison with other datasets. Unfortunately, with this data set, CalcAFP performance suffered
heavy losses in all metrics with an MCC of −0.12 and was not able to perform better than a
random model. Still, it maintained a good specificity of 79% (Supplementary Materials,
Table S8). Hence, the performance difference can be explained by the different method-
ologies and initial classification of AFPs/Non-AFPs (Supplementary Materials, Figure S9).
Even though our results for AFP prediction were lower than for the AMPs predictions,
to the best of our knowledge, CalcAFP is the only model that works exclusively with
peptides having experimentally measured antifungal activity and classified AFP/Non-AFP
using a threshold.
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3. Discussion

The increase in antibiotic resistance urges the discovery of new therapeutics to tackle
this issue. AMPs represent a very interesting alternative to small molecules against bacteria.
They can have a large spectrum of activity against bacteria (either Gram+, Gram−, or
both classes) and fungi but also against viruses, parasites, or even cancer cells. Unlike
eukaryotic cells, prokaryotic cells, and particularly their cytoplasmic membranes, are
negatively charged and thus it is more convenient for the action of small cationic peptides.
Therefore, AMPs tend to be more enriched in arginine or lysine residues compared to
peptides showing no antimicrobial activity. However, an overall positive charge alone and
the proportion of certain AAs are not enough to correctly discriminate AMPs from Non-
AMPs. Other descriptors are important and the combination of several physicochemical
and compositional ones is the key to build an efficient prediction model. Here, the creation
of a novel public data set allowed us to construct ML models for antimicrobial activity
prediction. For each class of bacteria, Gram+ or Gram−, a general accuracy of around
80% was achieved. CalcAMP outperformed existing AMP classifiers and was also able to
correctly classify Non-AMP data set from these other tools.

The main limitation of the models comes from the input data gathered from different
sources that present quite high heterogeneity. Moreover, it can be difficult to classify a
peptide as a generic AMP since there is no clear experimental test to define it. Indeed,
several factors can influence the outcome, such as the bacterial strain tested, the growth
medium, and the type of activity measured. Since prediction models rely on input data,
small changes in the method and choices to discriminate AMPs from Non-AMPs can have
great consequences on the output. In an ideal world, models would be species or even
strain specific, but as discussed in the introduction a lack of data makes this quite difficult
to achieve. Future work will also focus on toxicity prediction with the creation of a new
model coupled to the current one allowing one to have both activity and toxicity predictions
returned. Indeed, toxicity remains a major issue in AMP design and development; therefore,
an effective toxicity prediction tool would be a significant help for the design of potential
clinical AMPs. We hope our method can be of great help and thus accelerate the R&D
process of finding new AMPs as a potential alternative to antibiotics. Moreover, we have
made our current curated data set available for use which could serve as a basis for other
experiments and development of tools.

4. Materials and Methods
4.1. Data Preparation
4.1.1. Data Mining and Preprocessing

The data set of peptides serving as input for the different prediction models was
built with publicly available data from different databases. At first, seven databases were
selected and manually mined: ADAM [56], BaAMPs [57], CAMP [29], DBAASP [27],
DRAMP [28], LAMP2 [58], and YADAMP [59]. From these, ADAM, having no precise
experimental data on activity, and BaAMPs, containing no relevant data (only activities on
biofilms), were rejected. Table 4 lists the databases examined with their URL and number of
corresponding peptides.
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Table 4. List of public AMP database used and their corresponding number of unique peptides.

Database Number of Unique Sequence 2

ADAM 1 (A Database of Anti-Microbial Peptides)
http://bioinformatics.cs.ntou.edu.tw/ADAM/index.html 7007

BaAMPs 1 (Biofilm-Active AMPs Database)
http://www.baamps.it/ 225

CAMP (Collection of Anti-Microbial Peptides)
http://www.camp.bicnirrh.res.in/ 8177

DBAASP (Database of Antimicrobial Activity and
Structure of Peptides)
https://dbaasp.org/

17,783

DRAMP (Data Repository of Antimicrobial Peptides)
http://dramp.cpu-bioinfor.org/ 22,259

LAMP2 (Linking Antimicrobial Peptides)
http://biotechlab.fudan.edu.cn/database/lamp/index.php) 23,253

YADAMP (Yet Another Database of Antimicrobial Peptides)
http://yadamp.unisa.it/ 2525

1 In grey are the databases that were rejected. 2 accessed in March 2021.

A primary filter was applied to the selected databases to keep only activity against
either bacteria or fungi; all other activities (virus, parasites, cells, etc.) were discarded.
Then, a second filter was implemented to retain only interesting activity types such as
minimal inhibitory or minimal bactericidal concentrations (MIC/MBC) or 99.9% lethal
concentration (LC99.9). Therefore, nonstandard or unclear activity types were rejected.
In order to easily and accurately compare experimental activity values, they were all
converted to µM, the most predominantly used, using Equation (1). Finally, since the study
focuses on the prediction of natural short AMPs, only peptides having a length between
5 and 35 AAs were considered. Among them, repetitive sequences of single AAs (e.g.,
RRRRRRR, AAAAAAAAA) and sequences containing unnatural AAs were left out. The
full data set is available in the Supplementary Materials.

(µM) =
C
(
µg·mL−1

)
MW(Da)

× 1000, (1)

4.1.2. Data Labelling

Each activity recorded was grouped by Gram classification using the bacteria species
tested. Unlike existing tools, with a negative data set constructed by selecting random
sequences from UniProt, [32] our strategy was to work exclusively with peptides that were
experimentally tested. Depending on their activities, peptides were classified either as
AMP (1) or Non-AMP (0) based on reported MIC/MBC or equivalent LC99.9 values for
antimicrobially active AMPs [60]. The activity threshold was set at ≤15 µM for a peptide to
be considered as active (strong) and above 25 µM for inactive ones (or weaker AMPs that
need higher concentrations to show antimicrobial properties). The values between these
thresholds were discarded as they are considered in an area where labelling was not certain
enough. The majority of peptides have been tested against multiple species of bacteria and
hence present several activity values. Therefore, to take into account this heterogeneity,
a specific workflow was set up for each peptide. If all activity values belonged to the
active category (Gram+, Gram−, or fungi; ≤15 µM) or if the majority was in this category
while none of the values are above 25 µM, then the peptide was labelled as an AMP (1).
Conversely, if all activity values are higher than 25 µM or if the majority is and none are
below 15 µM, then the peptide was labelled as Non-AMP (0). In every other case, the
antimicrobial activity was considered as unsure, and the peptide could not be labelled
as either active or inactive and was discarded for the creation of the prediction models.
This method is a means for us to tackle the heterogeneity of the experimental data and
to take into consideration the uncertainty of antimicrobial activity caused by different

http://bioinformatics.cs.ntou.edu.tw/ADAM/index.html
http://www.baamps.it/
http://www.camp.bicnirrh.res.in/
https://dbaasp.org/
http://dramp.cpu-bioinfor.org/
http://biotechlab.fudan.edu.cn/database/lamp/index.php)
http://yadamp.unisa.it/
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experimental conditions and/or experimental errors. In Figure 10, different examples of
labelling depending on the situation of the peptide and its related activities are displayed.
The categories were balanced between AMPs and Non-AMPs; there were slightly fewer
AMPs for the Fungi category but no major imbalance was present. Our final data set is
composed as follows:

• Gram+: 5791 peptides; 2849 Non-AMP (49%) and 2942 AMP (51%)
• Gram−: 6087 peptides; 3163 Non-AMP (52%) and 2924 AMP (48%)
• Fungi: 2544 peptides; 1475 Non-AMP (58%) and 1069 AMP (42%)
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4.1.3. Creation of the Data Sets

To build training data sets and in order to avoid redundancy, the software CD-HIT [61]
was used with a cutoff of 95% to remove highly similar sequences for both AMPs and
Non-AMPs distinctly before aggregating them. For the Gram− category, since there was a
small imbalance between AMPs and Non-AMPs, 350 Non-AMPs sequences were removed
randomly before the model construction. The external data set test was composed of
350 peptides (175 AMPs and 175 Non-AMPs). It was used for the evaluation and compari-
son of our models to the previously developed models. For its creation, all the common
AMPs and Non-AMPs of the Gram+ and Gram− data set were assembled. Then, a cluster-
ing was performed to select 300 representative peptides of each category. It was followed
by filtering using CD-HIT with a cutoff of 80%. Finally, this was followed with a random
selection on the remaining peptides to reach 175 AMPs and 175 Non-AMPs. Figure 11
shows how the training set was representative of the entire data set via a PCA projection
based on physicochemical descriptors.
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Concerning the AFP prediction external data set, a simple clustering on our training
data set to select 30 AFPs and 30 Non-AFPs representatives was performed.

4.2. Machine Learning Experiments
4.2.1. Feature Calculation

A preliminary exploration and assessment of the different existing types of descriptors
(single, double, tri-peptide composition, Moran, Geary, Moreau-Broto, etc.) and co-variance-
encoding methods (auto, cross, and auto-cross using different AA descriptor scales) was
achieved. The ones that showed insufficient performance with a simple RF model were
discarded and only the most promising were kept for the rest of the study. Thus, only AAC,
DPC, CTD, GPC, and PseAAC (see section “Feature selection” for their brief description)
were retained. All the calculations were made using Python 3.7 and the packages modlAMP
4.3.0 and PyBioMed 1.0.

4.2.2. Model Comparison

The comparison of different ML algorithms to develop a classification model between
AMP and non-AMP were made using the package PyCaret 2.3.6. PyCaret is an open-source,
low-code library allowing users to quickly compare several different ML algorithms. The
algorithms included were Random Forest (RF), Extra Trees (ET), Extreme Gradient Boosting
(xgboost), Light Gradient Boosting Machine (lightgbm), Ada Boost (ada), Gradient Boosting
(gbc), CatBoost (catboost), Logistic Regression (lr), SVM linear kernel (svm), Naive Bayes
(nb), Decision Tree (DT), Ridge (ridge), K-Nearest Neighbor (knn), Quadratic Discriminant
Analysis (qda), Linear Discriminant Analysis (lda), and a Dummy Classifier (dummy). In
addition, a Multi-layer Perceptron model created with Scikit-Learn 0.23.2 was added for the
comparison step. The comparison was made using the “Classification” modules, without
changing the parameters, and for each category (Gram+, Gram−), the top five models were
kept for further analysis.

4.2.3. Model Creation and Tuning

For each retained algorithm, two models were created and tuned, one with all the
features and one with a set of 75 features selected. The packages lightgbm 3.1.1, xgboost
1.5.0, and catboost 0.26.20 were used for the creation of our LightGBM, XGBoost, and
CatBoost classifiers, respectively. For our RF and ET classifiers we used Scikit-Learn 0.23.2.
The tuning and optimization of our created models were performed with the Scikit-Learn
API and the “RandomizedSearchCV” function (3-fold CV per change of parameter) on
the whole training data set. Once the hyperparameters were selected, the final model was
established with them and the performance was evaluated first via a 10-fold CV and then
with the external test set.

4.2.4. Feature Selection

Once the model calculated with all features was optimized, the process of feature
selection started with the help of feature importance weights. First, Scikit-Learn API with
the “SelectFromModel” function was used to remove unimportant features. Then, the
recursive feature elimination (RFE) module was used, with 3-fold CV, to select 75 features
from those remaining. RFE selects best features by recursively removing the least important
features until the desired number of features is reached. The choice of 75 features was
determined by plotting accuracy vs. number of features and the appearance of a plateau
from this number.

4.2.5. Evaluation Metrics

The developed classifiers were systematically assessed using a 10-fold CV and five
metrics: Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), area under the ROC curve
(AUC), and Matthew’s correlation coefficient (MCC). The external test set, with data
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unseen by our models, was not included into the CV process and serves for supplementary
evaluation and comparison. The metrics are defined as follows:

Acc =
TP + TN

TP + FP + TN + FP
, (2)

Sen =
TP

TP + FN
, (3)

Spe =
TN

TN + FP
, (4)

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
, (5)

where TP (True positive) is the number of correctly predicted AMPs, TN (True Negative) is
the number of correctly predicted Non-AMPs, FP (False Positive) is the number of Non-
AMPs incorrectly predicted as AMPs, and FN (False Negative) is the number of AMPs
incorrectly predicted as Non-AMPs. AUC is the area under the ROC curve: the plot of
the true positive rate (sensitivity) as a function of the false positive rate (1—specificity).
Accuracy (Equation (2)) is a global metric representing the sum of true positives and true
negatives divided by the total number of the data; it indicates the proportion of correct
predictions. Sensitivity (Equation (3)) and specificity (Equation (4)) focus on how well the
classifier predicts AMPs and non-AMPs, respectively. AUC measures the ability to correctly
distinguish between classes. All of them are between 0 and 1, and the higher value the
better the performance of the model. Matthew’s correlation coefficient (Equation (5)) also
measures the overall quality of a binary classifier and is widely used in the field of ML. The
MCC value is between −1 and 1. Again, the closer to 1, the better the performance, and a
value of 0 indicates that the model is no better than a random prediction and −1 is a total
disagreement between prediction and reality.

4.3. Implementation

All ML experiments were performed and implemented using Python 3.7. All the
figures are made using Matplotlib and Seaborn packages. Input, generated, or analyzed
data used in this study are included in this article’s supplementary data sets or uploaded
in Zenodo: https://doi.org/10.5281/zenodo.7588702. The code is available at: https:
//github.com/CDDLeiden/CalcAMP.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics12040725/s1, Figure S1: PCA (a) and t-SNE (b) pro-
jections of physicochemical descriptors between AMPs and Non-AMPs; Figure S2: PCA (a) and
t-SNE (b) projections of amino acid composition between AMPs and Non-AMPs; Figure S3: Corre-
lation circle associated to PCA shown in Figure 5 in the main text; Figure S4: PCA (a) and t-SNE
(b) projections of amino acid composition between common peptides of Gram+ and Gram− cate-
gories; Table S1: Comparison of ML classifiers tested for Gram+ AMP prediction (10 Times 10-Fold
Cross-Validation; Table S2: Comparison of ML classifiers tested for Gram− AMP prediction (10 Times
10-Fold Cross-Validation; Table S3: Results of ML classifiers created for Gram+ AMP prediction;
Table S4: Results of ML classifiers created for Gram− AMP prediction; Figure S5: Matrix of la-
bels for the common peptides between training dataset of CalcAMP+ and CalcAMP- models and
AmPEP external benchmark dataset; Table S5: Comparison of different AMP prediction classifiers
using AmPEP benchmark dataset; Figure S6: Receiver operator characteristic (ROC) curves of the
different AMP classifiers and their area under the curve score obtained using AmPEP external
benchmark dataset; Figure S7: Matrix of labels for the common peptides between training dataset of
CalcAMP+ and CalcAMP- models and adapted Antimicrobial Peptide Scanner vr.2 validation dataset;
Table S6: Comparison of different AMP prediction classifiers using adapted Antimicrobial Peptide
Scanner vr.2 validation dataset; Figure S8: Receiver operator characteristic (ROC) curves of the

https://doi.org/10.5281/zenodo.7588702
https://github.com/CDDLeiden/CalcAMP
https://github.com/CDDLeiden/CalcAMP
https://www.mdpi.com/article/10.3390/antibiotics12040725/s1
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Antibiotics 2023, 12, 725 19 of 21

different AMP classifiers and their area under the curve score obtained using adapted Antimicrobial
Peptide Scanner vr.2 validation dataset; Table S7: Results of ML classifiers created for AFP prediction;
Figure S9: Matrix of labels for the common peptides between training dataset of CalcAFP model and
adapted Antifp main validation dataset; Table S8: Comparison of different AFP prediction classifiers
using adapted Antifp main validation dataset.
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