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Abstract 

Classical theories suggest that age-related cognitive 
decline may be caused by increased neural noise. To 
explicitly test this hypothesis in behaving animals, we 
quantified single-neuron noise (using Fano Factors) in 
the cortex, hippocampus, and thalamus of young and old 
mice. Preliminary results suggest that thalamic neurons 
show higher trial-to-trial variability in old animals. This 
work will help us to understand alterations of neural 
function that may contribute to age-related cognitive 
decline. 
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Introduction 

Aging is characterized by impairments in decision-
making, memory and learning. Classical theories state 
that this cognitive decline arises from higher levels of 
‘noise’, defined as trial-to-trial variability in neural 
responses to the same stimulus, and thus the effective 
signal-to-noise ratio in the central nervous system 
decreases with age (Cremer & Zeef, 1987; Crossman & 
Szafran, 1956; Salthouse & Lichty, 1985; Welford, 
1981). Studies on anesthetized monkeys have found 
that noise in single cortical neurons (Yang et al., 2009) 
and local circuits (Wang et al., 2019) increases with age. 
However, the behavioral consequences of this 
variability are still unknown, and neural noise changes 
in aging have not been quantified in neural structures 
beyond cortex. 

Recent technical advances allow us to investigate 
neural noise in large-scale recordings from behaving 
animals (Urai et al., 2022). Here, we analyzed 
recordings from multiple brain regions (cortex, 
hippocampus, and thalamus) of mice performing a 
standardized perceptual decision-making task (The 
International Brain Laboratory et al., 2021). We then 
quantified trial-to-trial firing rate variability of single 
neurons, using the Fano Factor, a measure widely used 
to characterize neural variability (e.g., Churchland et al., 
2010; Yang et al., 2009). We tested the hypothesis that 
older mice exhibit higher levels of neural noise, which 
may ultimately contribute to decreased decision-making 
capabilities. 

Methods 

We used a public dataset of extracellular Neuropixel 
recordings (Jun et al., 2017) in young mice (N = 63, 45 
male, mean age = 6, range 4 - 9 months) (International 
Brain Laboratory et al., 2022) and additional recordings 
in old mice (N = 20, 13 male, mean age = 16, range 10 
- 19 months). Recordings were acquired using 
standardized pipelines for a visual decision-making task 
in mice (The International Brain Laboratory et al., 2021) 

(Figure 1a). We filtered recording sessions and ‘good’ 
neurons, which passed quality control criteria as 
defined in (International Brain Laboratory et al., 2022a; 
2022b). After quality control, we included 48 recording 
sessions from young mice and 14 sessions from old 
mice. Note that preprocessing is preliminary, and that 
we aim to include more sessions in our final analyses.  

The Fano Factor (FF) is defined as the spike count 
variance over trials divided by the spike count mean: 

 

𝐹𝑎𝑛𝑜 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑠𝑝𝑖𝑘𝑒 𝑐𝑜𝑢𝑛𝑡)

𝑚𝑒𝑎𝑛(𝑠𝑝𝑖𝑘𝑒 𝑐𝑜𝑢𝑛𝑡)
 

 
The Fano Factor calculation was limited to neurons 

with a firing rate >1 spikes/second, to ensure sufficient 
data for estimating the variance. The Fano Factor time 
course was calculated using a sliding window method 
(width = 0.1s, step = 0.02 s) for each neuron, and then 
averaged within each brain area. The code is at 
github.com/Fenying-Zang/mouse_age_FF. 
 

 

Figure 1. (a) Schematic of the visual decision-making 

task. (b) Extracellular recording using Neuropixels 

probes. The targeted trajectory goes through the 

posterior parietal cortex (PPC), hippocampal field CA1 

(CA1), dentate gyrus (DG), lateral posterior nucleus of 

the thalamus (LP), and posterior nucleus of the 

thalamus (PO). 

Results 

Neural yield 

We compared the neural yield (number of neurons per 
recording) between young and old animals for each 
target brain area (Figure 2). Old mice have fewer 
neurons overall recorded in the PPC, CA1 and DG, and 
fewer ‘good’ neurons in the PPC and CA1. Future work 
will investigate if this is caused by superficial tissue 
damage (as the dura of old mice was harder to 
penetrate), or reflects age-related neuron loss.  
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Figure 2. Neural yield for young and old mice in five 
target brain areas. p-values from a nonparametric 
Mann-Whitney U Test. 

Neural response and neural noise 

To test if aging increases neural noise, we focused our 
preliminary analysis on areas LP and PO, where the 
young and old groups both have sufficient numbers of 
neurons (n > 100). We found that old mice have more 
neural noise (larger Fano Factors) as compared to 
young mice in these thalamic areas (Figure 3). In the 
cortex or hippocampus, where we recorded smaller 
sample sizes, we did not observe a significant group 
difference.   
 

 

Figure 3. Distribution of Fano Factors (calculated 
based on spikes occurring between 100 - 200 ms after 
stimulus onset) for neurons in LP and PO areas of the 
young and old groups. Note that we set x-axis limits, 
thus a few neurons with a Fano Factor > 6 are not 
shown here. p-values from a nonparametric Mann-
Whitney U Test. 

Neural variability decreases (‘quenches’) upon 
stimulus onset in various cortical regions and species, 
including a wide range of cortical regions of monkeys 
(Churchland et al., 2010; Poland et al., 2019), the PPC 
of rats (Licata et al., 2017), and the olfactory cortex of 
both mice (Iurilli & Datta, 2017) and rats (Miura et al., 
2012). However, a previous study on rhesus macaques 
found that neural variability in the thalamic nuclei was 

unaffected by stimulation (Poland et al., 2019). To 
investigate the temporal dynamics of neural variability, 
we aligned the time course of firing rate and Fano 
Factor to stimulus onset. As expected, stimulus onset 
caused clear increases in the firing rate in both young 
and old mice (Figure 4, left). The decline in the Fano 
Factor was assessed by comparing the Fano Factor at 
200 ms after stimulus onset to that at 100 ms before 
stimulus onset, following the methodology used by 
(Churchland et al., 2010). In young animals, Fano 
Factors decreased after stimulus onset in LP and PO 
(Wilcoxon signed-rank test, both p < 0.001), replicating 
previous findings on the same dataset (International 
Brain Laboratory et al., 2022a). Preliminary analysis of 
the old mice also showed a declining trend after 
stimulus onset in LP and PO, although this decline was 
not statistically significant (Figure 4, right). Future work 
will further investigate the temporal dynamics of neural 
variability across multiple brain areas, its dependence 
on task conditions (stimuli/responses), and its change 
with age. 

 

 

Figure 4. Change in firing rate from pre-stimulus 
baseline and Fano Factor averaged over all neurons in 
LP and PO area, aligned to stimulus onset. Shaded 
areas show standard error of the mean across neurons. 

Conclusion 

We examined the effect of aging on neural noise, 
quantified using large-scale extracellular recordings in 
mice. Preliminary results suggest that old mice show 
higher trial-to-trial neural variability in thalamic areas.  

Our next steps will be extending our analysis to other 
brain areas (PPC, CA1, and DG) by including more 
datasets of old mice. Future work will investigate 
different cell types, and extend the current analysis to 
the local circuit level by exploring noise correlations 
between neurons. We also plan to link age-related 
changes in neural noise to decision-making behavior. 
The findings will facilitate our understanding of changes 
in neural functioning that may contribute to cognitive 
decline associated with aging.  
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