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We investigate the consequences of resonant tunneling of Cooper pairs on the quantum phase slips occurring in
a Josephson junction. The amplitude for quantum tunneling under the Josephson potential barrier is modified by
the Landau-Zener amplitude of adiabatic passage through an Andreev level crossing, resulting in the suppression
of 2π phase slips. As a consequence, close to resonance, 4π phase slips become the dominant tunneling process.
We illustrate this crossover by determining the energy spectrum of a transmon circuit, showing that a residual
charge dispersion persists even at perfect transparency.
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I. INTRODUCTION

The phase difference across a Josephson junction can be
driven by quantum fluctuations to change, or “slip”, by integer
multiples of 2π [1]. Such quantum phase slips often determine
the low-frequency behavior of microwave superconducting
circuits [2–7]. In a long chain or loop of Josephson junctions,
or in thin superconducting wires or rings, quantum phase
slips compromise the spatial stiffness of the phase and can
suppress superconductivity [8–15]. In general, quantum phase
slips affect the energy levels of a coherent superconducting
circuit [16] and can therefore be measured with spectroscopic
methods.

For instance, in a Cooper-pair-box circuit [17–19] in the
transmon limit [20], quantum phase slips determine the charge
dispersion of the energy levels [20], i.e., the magnitude of
their oscillation as a function of the charge induced on the
superconducting island [see Figs. 1(a) and 1(b)]. The charge
dispersion of the fundamental frequency of the circuit is par-
ticularly important since it controls the dephasing time of
superconducting qubits [20]. This fact motivated the devel-
opment of the transmon [20], where the quantum phase slip
amplitude is suppressed by a large ratio of the Josephson
energy EJ and the charging energy Ec, resulting in an expo-
nential suppression of the charge dispersion [21].

Setting aside qubit applications, devices with an apprecia-
ble charge dispersion remain of fundamental interest: Thanks
to their sensitivity to charge parity, they can be used to study
quasiparticle poisoning and dynamics [22–27], and, in a possi-
ble future, to measure fermion parity in topological Majorana
qubits [28,29]. These ongoing developments welcome further
theoretical study of quantum phase slips, particularly given
the emergence of hybrid semiconducting-superconducting
qubit devices [30] and novel designs of noise-protected su-
perconducting qubits [31].

In this paper, we compute in detail the amplitude of quan-
tum phase slips in a Josephson junction with a resonant energy
level. We describe and pay particular attention to the compe-
tition between coherent 2π and 4π quantum phase slips that

occurs in such a junction. The competition is controlled by
two independent parameters: the energy of the resonant level
and the asymmetry between the tunneling rates to the super-
conducting leads. The 4π phase slips become dominant close
to resonance, and we argue that even though they were too
small to be detected in recent experiments [32,33], they can be
observed in devices with a larger charging energy. Towards the
end, possible implications for qubit designs are also discussed.
The next section motivates our calculations, placing them in
the context of previous theoretical and experimental research.

II. 2π AND 4π QUANTUM PHASE SLIPS

The amplitude of coherent quantum phase slips in a weak
link is given by the tunneling amplitude between neighboring
minima of the Josephson potential energy. This amplitude
can be qualitatively affected by the type of weak link where
the phase slip occurs. Figures 1(c) and 1(e) compares three
simple but paradigmatic scenarios: a low-transparency tunnel
junction (S-I-S); a highly transparent single-channel quantum
point contact (S-QPC-S); and finally a junction with a res-
onant level (S-R-S). As we argue below, so far the S-R-S
scenario has not been fully understood and described, despite
its experimental relevance.

Figure 1(c) illustrates the familiar setting of a tunnel junc-
tion, such as a quantum point contact close to pinch-off or an
Al oxide junction, for which the potential energy is ≈EJ (1 −
cos φ) [34]. Quantum phase slips connect the neighboring
minima of the cosine potential, distant by 2π and, when EJ �
Ec, they are suppressed exponentially with

√
EJ/Ec [20]. This

classic result can be obtained using the WKB method or an
instanton approach to the cosine potential [35,36]. The charge
dispersion of the energy levels is 2e periodic and, while ex-
ponentially small, remains finite at any value of EJ due to the
presence of backscattering at the tunnel junction.

By contrast, Fig. 1(d) shows the case of a quantum
point contact at perfect transparency. Its distinctive feature
is the presence of a level crossing that disconnects the
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FIG. 1. (a) A Cooper-pair box consists of a superconducting island connected to ground by a capacitor and a Josephson junction. A
gate voltage Vg controls the charge induced on the island, qg = CgVg. In the transmon limit of the Cooper-pair box, the charging energy
Ec is much smaller than the Josephson tunneling strength. (b) The energy levels En of the Cooper-pair box oscillate with ng. The resulting
charge dispersion can be determined by measuring the fundamental frequency ω01 = E1 − E0 as a function of ng, for instance via microwave
spectroscopy. [(c)–(e)] Schematic energy spectrum of three different types of Josephson weak links (top row) and corresponding charge
dispersion oscillations in the Cooper-pair box (bottom row). (c) 2e periodic dispersion due to 2π quantum phase slips in a tunnel junction.
(d) Absence of charge dispersion in a quantum point contact at perfect transparency. (e) 1e periodic dispersion due to 4π quantum phase slips
in a junction with a resonant energy level (e). Dashed lines in (d) and (e) show the Josephson potential away from perfect transparency, in
which case 2π phase slips are weakly restored.

neighboring minima of the Josephson potential. In fact, since
each potential branch touches the continuum states at E =
2�, the Josephson potential is aperiodic [37]. As a conse-
quence, quantum phase slips are forbidden altogether and
the charge dispersion vanishes [37–39]. Away from perfect
transparency, the level crossing becomes a narrowly avoided
crossing. Quantum phase slips may then occur again, but only
if the phase slips adiabatically though the crossing. Hence,
they are suppressed by the associated Landau-Zener transition
amplitude and, near perfect transparency, it remains much
smaller than in a S-I-S junction with comparable Josephson
energy.

This enhanced suppression of the charge dispersion has
been recently observed in spectroscopic measurements of
transmon qubits realized with hybrid InAs/Al nanowire
Josephson junctions [32,33]. However, in these experiments
the condition of almost perfect transparency was achieved by
fine-tuning the nanowire junction to a resonance. As shown
in Fig. 1(e), this scenario differs qualitatively from that of a
quantum point contact.

The normal-state transmission probability of a quantum
point contact does not depend on energy on scales compared
to the gap �, while in the presence of a resonance it is a
peaked function of energy, with a characteristic width � that
can be much smaller than �. As a consequence, the Andreev
levels in the resonant case are detached from the continuum of
energy levels even at zero phase difference [40,41], while they
always touch the gap edge for a quantum point contact [42].

This difference has important consequences for quantum
phase slips: if perfect transmission is achieved resonantly,
the Josephson potential consists of two 4π -periodic branches
[43]. Thus, one expects 4π phase slips to occur even when
2π phase slips are forbidden. As a result, one predicts a finite
charge dispersion at resonance, but with a modified periodic-
ity of 1e rather than 2e. In this respect, the situation is similar
to that of a topological Josephson junction with coupled

Majorana zero modes [44,45], with the crucial difference that
in the resonant junction the two branches of the potential have
the same fermion parity.

Given this scenario, it is appropriate to revisit quantum
phase slips in the presence of a resonance, using as a starting
point the existing knowledge on resonant Josephson tunneling
[40,41,46,47], which has seen a revival [43] in view of ex-
perimental progress on microwave measurements of Andreev
bound states [48–51].

III. MODEL

We consider a minimal model for a resonant Josephson
junction in which the current between two superconducting
electrodes is mediated via a single spin-degenerate energy
level (see Fig. 2). The parameters of the model are the two
tunneling rates �1 and �2 between the leads and the resonant
level, and the energy εr of the resonant level, measured with
respect to the Fermi level in the leads. In what follows, we
will refer to εr as the detuning.

FIG. 2. Illustration of the model of Eqs. (1) and (2). (a) A Joseph-
son junction consisting of quantum dot (orange) with a single energy
level. The detuning εr of the energy level from the Fermi level of
the leads and the tunneling rates �1, �2 can be controlled via gate
electrodes. (b) Transport of Cooper pairs across the two insulating
barriers is mediated by the spin-degenerate resonant level.
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We consider the case in which �1,2 � �, the supercon-
ducting gap in the leads. In this limit, it is possible to integrate
out the fermionic degrees of freedom of the superconductors
and obtain a simple effective Hamiltonian for the coupled
dynamics of the superconducting phase difference φ and of
the resonant level. The effective Hamiltonian is

H = 4Ec(i∂φ + ng)2 + V (φ). (1)

Here, Ec is the charging energy between the two electrodes,
and ng = qg/(2e) the charge induced by the electrostatic
gates coupled to them, measured in units of 2e. The operator
−i∂φ counts the number of Cooper pairs transferred between
the two superconductors. The matrix-valued potential energy
V (φ) is [43,52–54]

V = −εr τz − � cos(φ/2) τx − δ� sin(φ/2) τy, (2)

where we have introduced the total tunneling rate

� = �1 + �2, (3)

and the asymmetry parameter

δ� = �1 − �2. (4)

The Pauli matrices τx,y,z encode the dynamics of the two-level
system in which the resonant level is either empty (τz = +1)
or occupied by a Cooper pair (τz = −1).

The adiabatic eigenvalues ±EA of the potential in Eq. (2)
reproduce the well-known formula for the Andreev levels in a
single-channel junction,

EA(φ) =
√

ε2
r + �2 cos2(φ/2) + δ�2 sin2(φ/2) (5)

≡ �A

√
1 − T sin2 φ/2, (6)

with �2
A = �2 + ε2

r and T = 1 − |r|2 the transparency of the
junction, controlled by the reflection coefficient

r = εr + iδ�

�A
. (7)

The salient features of the Andreev spectrum are the fol-
lowing. First, at perfect transparency, which is achieved when
εr = δ� = 0 so that r = 0, the spectrum evolves into two
decoupled, 4π -periodic branches with energy ±� cos(φ/2),
with a zero-energy level crossing at φ = π . Second, as long
as �A � �, the Andreev bound state energy is well detached
from the continuum spectrum for all values of φ, including
φ = 0 [see Fig. 1(e)]. This fact, in particular, justifies ne-
glecting excited states in the continuum when considering the
adiabatic dynamics of the phase difference.

The derivation of the effective Hamiltonian of Eq. (1),
which is carried out in Appendix A, also yields the appropriate
boundary condition for the spinor wave functions

�(φ + 2π ) = τz�(φ). (8)

This twisted boundary condition incorporates a constraint
on the dynamics that comes from charge conservation: If a
Cooper pair occupies the resonant level, it must be subtracted
from one of the two superconductors. In other words, the
tunneling of a Cooper pair between one of the two supercon-
ductors and the dot counts as half of a Cooper pair transfer
between the two superconductors. This is the humble origin

FIG. 3. Energy spectrum of the model in the weak tunneling
limit. We recall that ng is the charge induced on the island in units of
2e. (a) Energy levels of the model of Eq. (1) with εr/Ec = 0.2, �1 =
�2 = 0. Note that charge parabolas with the dot empty (occupied)
are centered around integer (half-integer) values of ng. (b) Energy
levels with �/Ec = 0.12 and δ�/Ec = 0.06. Blue and red circles
identify avoided crossings opened by a finite �1 and �2, respectively.
(c) Energy levels for εr=0, δ�=0, and �/Ec=0.8. In panels (b) and
(c) the dashed lines represent the charge parabolas for �1 = �2 = 0.

of the 4π periodicity of the tunneling terms in the effective
Hamiltonian.

We also point out that, despite the complete similarity
at the level of the Andreev spectrum, Eq. (5), the effective
two-level Hamiltonian of Eq. (1) is not the same as the corre-
sponding two-level Hamiltonian for a quantum point contact
[55,56]. Besides the aforementioned fact that the Andreev lev-
els are fully detached from the continuum, the main physical
difference is that in the limit T → 0 a subgap state is present
in the resonant level model (provided that εr is small enough),
while no subgap state remains for the quantum point contact.

These circumstances can be elucidated by inspecting the
energy spectrum in the absence of tunneling, at �1 = �2 = 0,
see Fig. 3(a). It consists of familiar parabolas with energy
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E = 4Ec (n − ng)2, each corresponding to a charge q = 2en
transferred between the superconductors. If the resonant level
is empty, n is integer, leading to a set of parabolas centered
around integer values of ng. On the other hand, if the resonant
level is occupied, n is half-integer, leading to a second set
of parabolas centered around half-integer values of ng. The
resulting energy spectrum is always at least 2e periodic as
a function of ng, and it becomes 1e periodic if εr = 0. If
|εr | < Ec, as in Fig. 3(a), there are two degeneracy points
per period at which parabolas cross, otherwise only a single
degeneracy point per period remains.

The effect of small but finite tunneling rates on the energy
spectrum is shown in Fig. 3(b). A small �1 hybridizes the
resonant level with the left superconductor, and thus opens
avoided crossings at the degeneracy points between energy
levels corresponding to n and n + 1

2 (with n integer). Con-
versely, a small �2 hybridizes the resonant level with the
right superconductor, and thus opens avoided crossings at
the degeneracy points between energy levels corresponding
to n and n − 1

2 (again, with n integer). If the tunneling rates
are different, namely if δ� �= 0, the avoided crossing have
different magnitudes.

These simple arguments indicate that the energy spectrum
will be 2e periodic away from the resonant condition in which
both εr = 0 and δ� = 0. At resonance, the energy spectrum is
1e periodic in ng, as illustrated in Fig. 3(c), since all the charge
parabolas are aligned and the hybridization of the resonant
level is balanced across the two leads.

Our discussion so far has been perturbative in nature, and
it applies directly to the weak-tunneling regime T �A � Ec

of Fig. 3. However, the conclusions regarding the periodicity
of the energy spectrum remain valid in the strong-tunneling
regime, where they can be understood in terms of the relative
strength of 2π and 4π phase slip amplitudes. This will be the
focus of the next section.

IV. WKB ANALYSIS

In this section we are going to derive approximate solutions
for the energy levels of the Hamiltonian of Eq. (1) under
the boundary condition (8) using the WKB approximation.
The latter applies to the strong-tunneling regime, defined as
the parameter regime where the bandwidth of the Josephson
potential is much larger than the charging energy: T �A � Ec.
In this limit, the low-lying energy levels near the bottom of
the potential are almost harmonic, with exponentially small
corrections dictated by the tunneling under the potential bar-
rier. The calculation of the latter requires particular care near
perfect transparency, |r| � 1.

After moving the induced charge ng from the Hamiltonian
to the boundary condition via a gauge transformation � →
eiφng�, the problem to be solved is the stationary Schrödinger
equation

−4Ec�
′′ + V � = (−�A + E ) �. (9)

We have shifted the zero of the energy E to the bottom of
the Josephson potential, which is at energy −�A, so that the
eigenvalues are all positive. We are interested in solutions
near the bottom of the potential, E � T �A. In the WKB
approximation, the solution � is taken to be a wave with a

locally-varying wave vector

k±(φ) =
√

E − �A ∓ EA(φ)

4Ec
. (10)

where the ± index labels the two branches of the potential
with energy ±EA. The wave vector is real (imaginary) when
E is above (below) the potential energy.

The periodic boundary conditions (8) ensure that we need
to solve Eq. (9) in a 2π interval, say [−π, π ]. In this interval,
the − branch has a classically available region between the
two turning points at ±φc, which are defined by the condition

E − �A + EA(φc) = 0. (11)

On the other hand, the + branch is classically forbidden in
the entire interval, and thus for this branch the WKB ansatz
consists of evanescent waves everywhere.

The WKB ansatz fails at the classical turning points, where
the WKB momentum vanishes, and also, for small r, at φ =
π , because the adiabatic eigenstates (i.e., the spinors χs such
that V χs = sEAχs) rotate rapidly with the phase. In both cases,
it is possible to linearize the potential V (φ) at the problematic
boundary and, from the solutions of the resulting differential
equations, use the method of matching asymptotes to derive
connection formulas for the WKB solutions on the two sides
of the boundary. At φ = ±φc, the linearization involves only
the σ = −1 energy branch and, as is well known, it leads
to the Airy differential equation for the solutions close to
the turning point [57]. In the case of the level crossing at
φ = π , the linearization involves both branches. It leads to the
2 × 2 system of equations of the Landau-Zener problem with
imaginary time [37], mathematically equivalent to a Weber
differential equation whose solutions are parabolic cylinder
functions [58].

The result of these calculations, which are reproduced in
detail in Appendix B, is a bound state equation for the energy,
which takes the form

cos σ = w e−τ cos(2πng + δ) + e−ρe−τ cos(4πng). (12)

On the left-hand side, σ is the integral of k− over the classi-
cally available region,

σ (E ) =
∫ φc

−φc

√
E − �A + EA(φ)

4Ec
dφ. (13)

On the right-hand side, τ and ρ are WKB tunneling integrals,
respectively under the smaller barrier of the − branch and the
larger barrier of the + branch,

τ (E ) =
∫ 2π−φc

φc

√
�A − E − EA(φ)

4Ec
dφ, (14)

ρ(E ) =
∫ π

−π

√
�A − E + EA(φ)

4Ec
dφ. (15)

Furthermore, on the right-hand side of Eq. (12), w represents
the amplitude for the wave function to remain on the lower
branch when evolving through the avoided crossing. It is given
by

w =
√

2π

λ

e−λ λλ

�(λ)
, (16)
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with

λ = |r|2
4

�A

�

√
�A

Ec
, (17)

the parameter controlling adiabaticity: w tends to one for
λ � 1 (adiabatic limit), while w ∼ √

2πλ for λ � 1. Note,
in particular, that w vanishes when r = 0 (diabatic limit).
Finally, in Eq. (12), −δ is the phase of the complex reflection
coefficient r.

Before proceeding to solve the bound state equation, it
is useful to discuss its structure. The first and second term
on the right-hand side of Eq. (12) originate from 2π and
4π phase slips respectively, as revealed by their different
periodicity with respect to the induced charge ng. The latter
can be understood in terms of the Aharonov-Casher effect: in
a 4π phase slip, the phase variable wraps around the circle
twice, and so the wave function picks up a phase factor of
4πng. The comparison of the two terms also tells us that 2π

phase slips dominate 4π phase slips when weρ � 1, while
in the opposite limit weρ � 1 the 4π -periodic component
dominates. Finally, we note that the appearance of the phase
shift δ is a consequence of the twisted boundary conditions
(8).

Neglecting the occurrence of quantum phase slips means
setting to zero the exponentially small tunneling amplitudes
e−τ and e−ρ on the right-hand side of Eq. (12). In this case
the left hand side yields a Bohr-Sommerfeld quantization
condition for the energy levels En in the Josephson potential,

σ (En) = π
(
n + 1

2

)
, (18)

with n = 0, 1, 2 . . . The effect of quantum phase slips can
then be introduced as a small correction δn to the eigenvalues
En obtained via the Bohr-Sommerfeld condition. This correc-
tion is the charge dispersion of the nth energy level due to
quantum phase slips. Expanding the left hand side of Eq. (12)
as described in Appendix B leads to the expression

δn = (−1)n+1

σ ′
n

we−τn cos(2πng + δ)

+ (−1)n+1

σ ′
n

e−ρn e−τn cos(4πng)

− τ ′
n

2(σ ′
n)2

w2e−2τn cos(4πng + 2δ). (19)

We adopted a shortened notation for the tunneling integrals
evaluated at the eigenergies, e.g., τn ≡ τ (En).

Equation (19) is the central result of our paper: It describes
the oscillations of the energy levels of the S-R-S transmon
circuit as a function of the induced charge, including the
effects of 2π and 4π quantum phase slips on equal footing.
The first term of Eq. (19) gives the contribution to the charge
dispersion coming from 2π phase slips, which coincides with
the one computed in Refs. [37,39]. This term yields a charge
dispersion with a period of 2e and it vanishes as r → 0, since
in this limit w → 0. The second term gives the contribution
coming from 4π phase slips, which is finite in the limit r → 0.
The last term is a 4π -periodic correction to the first term, of
higher order in the tunneling integral τn. We retain it here
since, as w increases, it becomes as large as the second term

in the crossover between 2π - and 4π -dominated regimes, and
eventually larger when w ≈ 1.

Our next goal is to compare these analytical results with
numerical results. To do so, we provide approximate expres-
sions for the quantities appearing in Eq. (19) in terms of
the model parameters. To begin with, in the limit T �A � Ec

in which it is appropriate to approximate the potential as a
parabola, the Bohr-Sommerfeld condition gives the harmonic
spectrum

En =
√

2T �AEc
(
n + 1

2

) ≡ ωp
(
n + 1

2

)
. (20)

We introduced the Josephson plasma frequency ωp for later
convenience. The anharmonic corrections to En are of order√

Ec/T �A and will be neglected.
Evaluating the tunneling integrals at these energies we

obtain

e−τn =
√

2π

n!

(
b2ωp

4Ec

)n+ 1
2

e−a ωp/Ec , (21)

e−ρn = e−(c/
√

T ) ωp/Ec+d
√

T (n+1/2), (22)

where a, b, c, d are positive numerical coefficients that de-
pend weakly on T , and whose explicit expressions are given
in Appendix C. Finally, we also find

σ ′
n = π

ωp
, (23)

τ ′
n = 1

ωp
log

4Ec
(
n + 1

2

)
b2ωp

. (24)

By simple replacement of Eqs. (21)–(24) into Eq. (19), it
is possible to obtain explicit asymptotic expressions for the
different contributions to the charge dispersion as a function
of the model parameters.

V. RESULTS

Armed with these expressions, we can compare the energy
levels obtained from the WKB ansatz with those obtained
from a numerical diagonalization of the Hamiltonian (1) in
the charge basis. The comparison serves both as a verification
of the results obtained analytically and as a way to illustrate
the behavior of the quantum phase slips amplitude versus the
model parameters. To do so, it is convenient to extract the 2e-
and 1e periodic components of the charge dispersion δn(ng),

δn(ng) = δ2e
n cos

(
2πng + β2e

n

) + δ1e
n cos

(
4πng + β1e

n

)
.

(25)
This equation is just a rewriting of the right-hand side of
Eq. (19) as a Fourier series. In particular, δ2e

n tracks the am-
plitude of the first term in Eq. (19), originating from 2π phase
slips, while δ1e

n tracks the amplitude of the second and third
term in Eq. (19), originating from 4π phase slips; β2e

n and β1e
n

are the corresponding total phase shifts.
In Fig. 4, we show the evolution of δ2e

n and δ1e
n for both

the ground (n = 0) and first excited (n = 1) states, as the
three model parameters �, δ�, and εr are swept at fixed
Ec. The parameter sweep is such that the left end of the
figure corresponds to the weak-tunneling regime (� = Ec),
finite asymmetry (δ�/Ec = 0.5), and finite detuning from res-
onance (εr/Ec = 0.5). On the other hand, the right end of the
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FIG. 4. Dispersion of the energy levels of the resonant model of Eq. (1) vs the model parameters, as the system is tuned from the detuned
weak-tunneling regime (left end of the plot) to the resonant strong-tunneling regime (right end of the plot). The quantities shown are the 2e-
and 1e periodic components of the charge dispersion δn(ng) of the nth energy level, for n = 0 and n = 1. For each quantity we show both the
WKB prediction (solid or dashed line) as well as numerical prediction via the diagonalization of the Hamiltonian (dots). In the left panel, �/Ec

is varied at fixed εr/Ec = 0.5 and δ�/Ec = 0.5. In the middle panel δ�/Ec is varied at fixed �/Ec = 15 and εr/Ec = 0.5. In the third panel
εr/Ec is varied at fixed �/Ec = 15 and δ� = 0. Note that in the right panel the horizontal axis is also on a log scale.

figure corresponds to the strong-tunneling regime (�/Ec =
15) and the resonant condition δ� = εr = 0.

The first panel shows the exponential suppression of the
charge dispersion as the tunneling rate � is increased at
fixed δ� and εr . This behavior is familiar from conventional
transmon model [20] and it originates from the increase in
the Josephson potential barrier height due to the increase of
�. The second panel shows that the trend continues as the
asymmetry δ� is tuned to zero at fixed � and εr . This is
because the effect of decreasing δ� at fixed detuning is to
increase T �A and, thus, the Josephson potential barrier height.
Up to now, both δ2e

n and δ1e
n exhibit a similar trend, because in

these parameter ranges their magnitudes are both controlled
by the exponent τn.

The third panel of Fig. 4 shows the effect of tuning the
level to resonance. The 2π phase slip amplitude δ2e

n drops
to zero linearly towards resonance, because as the reflection
coefficient r approaches zero, nonadiabatic effects related to
the narrowly avoided crossing at φ = π start to kick in, and
the Landau-Zener parameter w vanishes. On the other hand,
the 4π phase slip amplitude δ1e

n saturates to a finite value
determined by the exponent ρn, which is not sensitive to the
closing of the avoided crossing. Eventually, the 4π -periodic
component overcomes the 2π periodic component of the
charge dispersion at a value of εr determined by the condition
w ≈ e−ρn , which depends slightly on n, as the figure shows.
This crossover is well captured by the WKB solutions. In
fact, Fig. 4 shows that the agreement between the asymptotic
WKB results and the numerically determined eigenvalues is
reasonable even at values of �/Ec not much larger than one,
especially for the ground state n = 0.

The right panel of Fig. 4 also shows that if � � Ec, the
crossover to the 4π -dominated regime only happens very
close to resonance and at charge dispersion levels so small
to be practically unobservable. For instance, in Fig. 4, δ1e

n
saturates at a value of order 10−6 Ec for n = 1, reached when
εr ≈ 10−5 Ec. However, the effect becomes more striking, and
experimentally detectable, when the ratio �/Ec is reduced.

To highlight this, in Fig. 5 we show the scaling of the
charge dispersion when the tunneling strength � is varied
while maintaining the resonant condition. Here we focus
on the average energy difference ω̄01 = ∫ 1

0 dng (E1 − E0),
where E1 and E0 are the numerically determined eigenvalues
of the Hamiltonian, and on the peak-to-peak amplitude δω01

of its charge dispersion δ1 − δ0. These are the quantities that
can be more easily measured in a typical microwave spec-
troscopy experiment such as those in Refs. [32,33], which we
have in mind as a feasible way to test our predictions. We note
that, in principle, the charge dispersion of energy levels is also
accessible in the I-V characteristic of the junction [59–61].

FIG. 5. Comparison of the charge dispersion scaling in the reso-
nant model (solid line) vs the traditional Cooper-pair box (transmon)
model. We plot the peak-to-peak amplitude of the charge dispersion
of the fundamental frequency ω01 = E1 − E0 vs the averaged (over
ng) value of ω01. For the resonant model, the curve shown is obtained
varying the ratio �/Ec with δ� = εr = 0, while for the transmon
model of Eq. (26) it is obtained varying EJ/Ec. In the first case, δ01

is dictated by 4π phase slips under a −� cos(φ/2) barrier, while in
the second case by 2π phase slips under a −EJ cos φ barrier.
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Furthermore, we compare the behavior predicted by the
resonant level model with that of a conventional transmon
device described by the Hamiltonian

H = 4Ec(i∂φ + ng)2 − EJ cos φ (26)

with periodic boundary conditions on a 2π interval. In the
resonant level model, ω̄01 and δω01 were both computed nu-
merically for increasing �/Ec at fixed δ� = 0 and εr = 0.
For the transmon model, the same quantities were instead
computed increasing EJ/Ec, and they reproduce the well-
known curve for the charge dispersion of a transmon [20].
Via the parametric plot of the observable quantities ω̄01 and
δω01, computable for both models despite the different set of
parameters, a direct comparison can be made.

The comparison shows that, while the charge dispersion
decays exponentially in both models, the effect is much
stronger in the presence of a resonant level. This is because
we are essentially comparing the tunneling amplitude under
a −� cos(φ/2) barrier and that under a −EJ cos φ barrier:
the former corresponds to a higher potential and a longer
tunneling path, and is therefore exponentially smaller than the
latter. Thus, as Refs. [32,33] pointed out, resonant tunneling
provides a way to reach a target charge dispersion while
keeping the superconducting island closer to the Cooper-pair
box limit of weak tunneling (� � Ec rather than � � Ec). For
instance, in order to achieve δ01/Ec ≈ 10−3 it is necessary to
reach a ratio ω01/Ec ≈ 15 (that is, EJ/Ec ≈ 32) in the model
of Eq. (26), but it may be enough to reach the ratio ω01/Ec ≈ 3
(that is, �/Ec ≈ 5) using the resonant level model of Eq. (1).

This fact is convenient for qubit design, since it mitigates
a practical trade-off at play in the transmon: Reducing the
charge dispersion increases the dephasing time, but at the cost
of an increase of device footprint and capacitive losses, due to
the need for a large capacitor. However, the suppression of 2π

phase slips, which is at the basis of the advantageous scaling
of Fig. 5, requires fine-tuning the junction to a resonance.
Thus, the effect will be very sensitive with respect to noise,
especially to noise in the detuning parameter εr , which would
originate from charge noise in the gates required to tune the
resonant level.

To illustrate this important point, in Fig. 6 we show the
evolution of ω01(ng) as εr is varied from positive to negative
through zero, in the case of a rather weak tunneling �/Ec = 5.
In the top panel, we see how the charge dispersion evolves
from a conventional 2e periodic oscillation with a maximum
at ng = 0 (εr > 0), to a 1e periodic curve at resonance (εr =
0, black dashed line), to a shifted 2e periodic curve with
a maximum at ng = 1/2 (εr < 0). The plot illustrates how
the suppression of the charge dispersion occurs because the
charge dispersion changes sign as εr passes through zero,
signaling the ground-state occupation of the resonant level by
a Cooper pair when εr < 0. Neglecting 4π phase slips, the
dashed line at εr = 0 would be flat.

In the bottom panel of Fig. 6 we show the 2e- and
1e periodic amplitudes δ1e

01 ≡ δ1e
1 − δ1e

0 and δ2e
01 ≡ δ2e

1 − δ2e
0 ,

extracted from the curves in the top panel (computed in a
wider εr range). The 4π phase slip amplitude stays approx-
imately constant, while the 2π phase slip amplitude goes
through a dip at resonance, with its minimum value at εr = 0
determined by the presence of a small, residual asymmetry

FIG. 6. (a) Evolution of the energy difference ω01 = E1 − E0,
where E1 and E0 are the two lowest eigenvalues of Eq. (1), deter-
mined numerically, as a function of ng, for different values of the
detuning εr varying between εr/Ec = 0.04 (dark green) to εr/Ec =
−0.04 (dark brown). The black dashed line emphasizes the dou-
bling of the periodicity at εr = 0. Other parameters are �/Ec = 5,
δ�/Ec = 10−4. (b) Amplitudes of the 2e and 1e periodic compo-
nents of the charge dispersion as the resonant level is swept through
resonance.

(δ� ≈ 10−4Ec in Fig. 6) While the region dominated by 4π

phase slips has widened with respect to the right panel of
Fig. 4 due to the smaller ratio �/Ec, it still occurs in a rel-
atively narrow interval, |εr |/Ec � 0.01. The dephasing time
of the plasma oscillation would be dictated by 4π phase slips
only if time-dependent noise in the detuning parameter εr

were to be contained in this interval. Nevertheless, the plot
also shows that in this parameter regime it would be fea-
sible, with reasonable experimental resolution, to detect the
occurrence of 4π phase slips at resonance via a spectroscopic
measurement of the ω01(ng) curve. Indeed, the residual charge
dispersion at resonance is ≈2 × 10−3Ec in Fig. 6, and thus it
would fall in the MHz frequency range for realistic values of
Ec/h ∼ 1 GHz.

VI. CONCLUSIONS

We have studied in detail the quantum phase slips occur-
ring in a Josephson junction in the presence of a resonant
level mediating the tunneling of Cooper pairs. It was known
since Ref. [37] that 2π phase slips are fully suppressed in the
presence of a level crossing in the Andreev spectrum. Here,
we have extended this result by computing the amplitude of
4π phase slips, which remain finite in the presence of a level
crossing and provide the mechanism by which the charge
dispersion of the superconducting island remains finite, albeit
possibly very small. Our central result is Eq. (19): obtained
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within the WKB approximation, it provides asymptotic ex-
pressions for the energy levels of a Cooper-pair box in the
transmon limit, including the effect of both 2π and 4π quan-
tum phase slips, and yielding results in good agreement with
numerical simulations. To conclude our paper, we discuss
several implications of our results.

A. Experimental observability of 4π phase slips
in transmon circuits

The suppression of 2π phase slips occurs in a fairly narrow
parameter range near resonance (εr = 0) and symmetric bar-
riers (δ� = 0). Within this parameter range, a crossover to a
regime dominated by 4π phase slips occurs (see Fig. 6). The
width of the crossover region around resonance, as well as the
residual level of charge dispersion at resonance given by 4π

phase slips, both increase with decreasing �/Ec.
Although the suppression of 2π phase slips at resonance

has been observed in Refs. [32,33], coherent 4π quantum
phase slips were not observed. We attribute this fact to the
large ratio �/Ec of those measurements. Our calculations
predict that coherent 4π quantum phase slips should be ob-
servable with the same technology of existing experiments,
only in devices with larger charging energy. For instance,
let us consider a situation in which Ec/h = 1 GHz, εr =
δ� = 0 and �/h = 3 GHz. Then, our model predicts that
ω01 ≈ 2.16 GHz while δω01 ≈ 33 MHz, easily in the range
of detectable frequency shifts.

The direct comparison with a transmon qubit based
on a conventional tunnel junction with Josephson energy
−EJ cos φ shows that the resonant level provides a much
lower charge dispersion at a fixed ratio of the qubit frequency
to the charging energy (see Fig. 5). We have discussed crit-
ically the possible implications of this fact for qubit design,
emphasizing that the circuit is likely to remain sensitive to
charge noise modulating the energy of the resonant level.

B. Connection to novel qubit designs

Our results are relevant for the recently introduced bifluxon
qubit [62], which uses a superconducting island tuned to the
charge degeneracy point as a way to implement resonant
Cooper-pair tunneling with a 4π -periodic effective Josephson
energy. Indeed, the model of Eqs. (1) and (2) also applies to
such a case: the two degenerate charge states of the island,
with charge differing by 2e, map to the resonant level in
our model being empty or occupied. In this mapping, the
parameters εr and δ� indicate the detuning from the charge
degeneracy point of the island and the asymmetry between
two tunnel junctions. For noise protection, the bifluxon qubit
relies on the suppression of 2π quantum phase slips and
ideally operates in a regime where only 4π quantum phase
slips are present. Our detailed results on the competition of
2π and 4π quantum phase slips, especially at finite detuning
or junction asymmetry, are therefore relevant for its design.

A difference between the S-R-S transmon model studied
in this paper and the bifluxon is that the circuit of the latter
features an inductive shunt, similar to the fluxonium circuit
[63]. In the presence of an inductive loop, quantum phase
slips couple coherently persistent current states characterized

by a differing number of fluxons trapped in the loop [64].
By tuning the applied flux, it is therefore possible to measure
separately the amplitude for 2π and 4π phase slips, making
such a device ideal to observe the crossover between 2π and
4π -dominated regimes. In fact, a fluxonium circuit with a
weak link of the S-R-S type could be a competitive version
of the bifluxon qubit. We leave the analysis of this topic to
future work.

C. Connection to Majorana zero modes

Our calculations also have a close connection with mod-
els of superconducting islands with Majorana zero modes
(MZMs) [65,66]. It is known that the 4π Josephson effect
occurring in a junction between topological superconductors
(due to the presence of a pair of coupled MZMs) [44,45]
suppresses the occurrence of 2π phase slips, leaving only
the occurrence of 4π phase slips [67–69]. Even the boundary
condition of Eq. (8) has a precise counterpart in models with
topological superconducting islands, where it arises due to a
fermion parity constraint on the BCS wave function [65,70].
In fact, the model of Eq. (1), together with the boundary
conditions, can be mapped exactly to a model of four MZMs,
two per superconducting side, coupled across a weak link.
Such a model of four coupled MZMs could arise, for instance,
because of finite-size effects in a topological nanowire [71].

D. Generality of our results

Finally, let us discuss the generality of our results. The
regime with dominating 4π phase slips should persist even
outside of the strict domain of validity of the model in Eq. (2),
because it is a consequence of the presence of a level crossing
in the Andreev spectrum rather than of the precise form taken
by the Josephson potential energy. For instance, the assump-
tion � � � could be relaxed; doing so would modify the
phase dependence of the Andreev spectrum and the precise
values of the WKB integrals, but not the essential feature that
2π phase slips are suppressed at resonance.

Similar conclusions can be drawn about multichannel
extensions of the single-channel model of Eq. (2). If the
additional channels are not resonant, they simply provide a
2π periodic contribution to the Josephson energy (a similar
contribution is also provided by the above-gap, continuous
part of the spectrum). This contribution will increase the
height of the Josephson potential barrier, and thus lower all
the quantum phase slips amplitudes, but it will not affect the
resonant suppression of 2π phase slips illustrated in Fig. 6.
The resonant suppression is controlled by the parameter w

of Eq. (16), and thus by the most transparent channel only.
Qualitative deviations from our central result, Eq. (19) are
therefore only expected in the fine-tuned case where more
than one transport channel achieves near-perfect transparency
(|r|2 � √

Ec/�A).
Our results also remain valid in the presence of a finite

interaction energy U for the double-occupancy of the resonant
level, a term neglected in this paper. This is true at least as long
as U � �, since such a weak interaction would only renor-
malize the couplings in the effective Hamiltonian of Eq. (1)
[43]. For larger U , a transition to an odd-parity doublet ground
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state occurs close to resonance, diminishing the relevance of
Eq. (1), which applies to an even-parity singlet ground state.
The study of quantum phase slips when the junction is in the
doublet ground state is an interesting problem left to future
research.

The code and notebooks used to generate the numerical
results in this work are available on Zenodo [72].
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APPENDIX A: DERIVATION OF THE LOW-ENERGY
HAMILTONIAN

In this Appendix, we derive Eq. (1) starting from the
model of a level tunnel-coupled to two superconductors. Sim-
ilar derivations have appeared in the literature before, e.g.,
in Refs. [43,52]. Here we propose a simple derivation that
motivates and clarifies the use of the boundary conditions of
Eq. (8). The starting point is the following Hamiltonian:

H = Hsc + Hdot + Htunn + Hc. (A1)

The first term Hsc is the Hamiltonian of the two superconduc-
tors,

Hsc =
∑
αnσ

ξn c†
αnσ cαnσ − �

∑
αn

(e−iφα c†
α↑c†

α↓ + H.c.) (A2)

where α = 1, 2 denotes the two leads, n enumerates their spin-
degenerate single-particle states with energy ξn, σ =↑,↓ is
the spin quantum number, � is the pairing gap, and φα is the
superconducting phase in the two leads.

The second term is the Hamiltonian of the resonant level,

Hdot = εr

∑
σ

(
d†

σ dσ − 1

2

)
, (A3)

where the operator d†
σ , dσ create and annihilate an electron

with spin σ on the resonant level. For simplicity, we omit an
Anderson U . The limitations of this choice are discussed in
the main text and are not crucial for what follows. The third
term is the tunneling Hamiltonian between the leads and the
energy level in the dot,

Htunn =
∑
αnσ

tα (d†
σ cαnσ + H.c.). (A4)

Again for simplicity, we only consider spin-conserving tun-
neling. In the presence of both time-reversal symmetry and
spin-rotation symmetry, the couplings tα can be chosen to be
real.

Finally, the last term is the charging energy between the
two leads,

Hc = 4Ec(N − ng)2 (A5)

where Ec = e2/2C is the charging energy and ng the di-
mensionless charge induced by gates, and N is the charge
transferred between the two leads. Both N and ng are ex-
pressed in units of the Cooper-pair charge 2e. Explicit
expressions for Ec and ng in terms of the capacitances and
gate voltages of a capacitive network of two islands are given
in Ref. [73]. In writing the charging energy, we have neglected
the capacitance between the superconductors and the quantum
dot hosting the energy levels, as well as the capacitance be-
tween the superconductors and any gates, which may control
the quantum dot.

At the mean-field level description of superconductivity,
N is an operator, which includes separate contributions from
both the paired and unpaired electrons,

N = 1

2
(N1 − N2) + 1

4

∑
nσ

(c†
1nσ c1nσ − c†

2nσ c2nσ ). (A6)

Here, we denoted with N1, N2 the number of Cooper pairs in
each superconductor. They are operators with integer spec-
trum obeying the following commutation rules:

[Nα, e±iφβ ] = ±δαβ e±iφβ . (A7)

We stress the fact that the operator N keeps count of the
charge transferred between the superconductors in units of 2e.
Thus, a transfer of a Cooper pair between superconductors
(N1 → N1 ± 1, N2 → N2 ∓ 1) changes N by one unit (e.g.,
N → N ± 1). On the other hand, a transfer of a single electron
changes N by ±(1/2). Simply, yet amusingly, the transfer of
a Cooper pair from either superconductor to the quantum dot
also changes N by ±(1/2).

It is convenient to use a gauge transformation that removes
the operators eiφα from Hsc and which also simplifies the form
of the charging energy [74]. The gauge transformation is H →
UHU †, with

U = U1U2, Uα = exp

(
iφα

2

∑
nσ

c†
αnσ cαnσ

)
. (A8)

In this new gauge, we have the following changes:

Hsc →
∑
αnσ

ξn c†
αnσ cαnσ − �

∑
αn

(c†
α↑c†

α↓ + H.c.),

Hc → 4Ec(N − ng)2, (A9)

Htunn →
∑
αnσ

tα (e−iφα/2 d†
σ cαnσ + H.c.),

and Hdot → Hdot. Note how the tunneling terms now contain
operators e±iφα/2, which shift Nα by one half.

The next step is to diagonalize Hsc and rewrite the tun-
neling Hamiltonian in terms of Bogoliubov quasiparticle
operators,

cαn↑ = uαn�αn↑ + vαn�
†
αn↓, (A10)

cαn↓ = uαn�αn↓ − vαn�
†
αn↑, (A11)

with u2
n = 1

2 (1 + ξn/εn), v2
n = 1

2 (1 − ξn/εn), and ε2
n = ξ 2

n +
�2. After the Bogoliubov rotation, the Hamiltonian changes
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as follows:

Hsc →
∑
αnσ

εn �†
αnσ�αnσ ,

Htunn →
∑
αnσ

tα[e−iφα/2 d†
σ (un�αnσ + σvn�

†
αnσ̄ )

+ eiφα/2 (un�
†
αnσ + σvn�αnσ̄ )dσ ],

with the other terms left untouched.
At this point, assuming that � is the largest energy scale in

the problem, we would like to integrate out the quasiparticles
in the leads and derive an effective Hamiltonian describing the
low-energy coupled dynamics of the condensate and of the
quantum dot. Assuming that the total number of electrons in
the system is even, a generic wave function in the even-parity
low-energy space can be written as

|�〉 =
∑
n∈Z

�0(n)|n〉|0〉 +
∑

n∈Z+ 1
2

�2(n)|n〉|2〉, (A12)

where |n〉 are states with a given number of Cooper pairs
transferred: N |n〉 = n|n〉, |0〉 denotes the empty dot state, and
|2〉 = d†

↑d†
↓|0〉 denotes the state in which the dot is occupied

by a pair.
Using old-fashioned perturbation theory to the second or-

der in the tunneling term, and integrating out states with
unpaired quasiparticles, we obtain the following eigenvalue
problem, written in terms of the wave function amplitudes
�0(n) and �2(n):

[E − 4Ec(n − ng)2 + εr] �0(n)

= −�1 �2
(
n − 1

2

) − �2 �2
(
n + 1

2

)
, (A13)

[E − 4Ec(n − ng)2 − εr] �2(n)

= −�2 �0
(
n − 1

2

) − �1 �0
(
n + 1

2

)
, (A14)

where �α = ∑
n(2t2

αvnun)/εn = πt2
α/δα , with δα the level

spacing in the superconductor. A Fourier series,

�0(φ) =
∑
n∈Z

eiφn �0(n), (A15)

�2(φ) =
∑

n∈Z+ 1
2

eiφn �2(n), (A16)

yields the effective Hamiltonian of the main text, acting on the
spinor wave function

�(φ) =
[
�0(φ)
�2(φ)

]
. (A17)

The boundary condition of Eq. (8) follows from the fact that
�0(φ + 2π ) = �0(φ) while �2(φ + 2π ) = −�2(φ).

APPENDIX B: WKB SOLUTION

In this Appendix we derive the bound state equation (12) of
the main text, applying the WKB approach to the Schrödinger
equation H� = (−�A + E )� for the Hamiltonian in
Eq. (1).

We find it convenient to rotate the Hamiltonian such that
the cos(φ/2) term in the potential appears on the diagonal: the
basis of the eigenstates of V (φ) at εr = 0. The transformation
consists of a rotation of � by −π/2 around the y axis. Si-
multaneously, as already mentioned in the main text, we also
multiply the wave function by a phase that gets rid of ng in the
Hamiltonian, so that the transformation is

� → eiφng ei(π/4)τy� , (B1)

H → eiφngei(π/4)τy H e−iφnge−i(π/4)τy . (B2)

Since

ei(π/4)τy = 1√
2

[
1 1

−1 1

]
, (B3)

the transformation amounts to sending

H → −4Ec∂
2
φ + εrτx − � cos(φ/2)τz − δ� sin(φ/2) τy.

(B4)

In this new basis, the boundary condition is also different,

�(φ + 2π ) = −τxei2πng�(φ). (B5)

In the calculation that follows we will make use of the
adiabatic eigenstates of the potential V (φ) after the transfor-
mation, which in matrix form is given by

V (φ) =
[ −� cos(φ/2) εr + iδ� sin(φ/2)
εr − iδ� sin(φ/2) � cos(φ/2)

]
. (B6)

The two eigenvectors V (φ)χ± = ±EA(φ)χ± are

χ+ = N−1/2(φ)

[
EA − � cos(φ/2)
εr − iδ� sin(φ/2)

]
, (B7a)

χ− = N−1/2(φ)

[−εr − iδ� sin(φ/2)
EA − � cos(φ/2)

]
, (B7b)

with a normalization factor given by

N (φ) = 2EA(EA − � cos(φ/2)). (B8)

For later use we note the following property of these spinors:

χ+(2π + φ) = eiδ(φ) τx χ+(φ), (B9)

χ−(2π + φ) = −e−iδ(φ) τx χ−(φ), (B10)

where δ(φ) is the phase of εr + iδ� sin(φ/2).
To solve the Schrödinger equation, we split the interval

[−π, π ] into four regions as follows:
(i) Region I: φ ∈ (−π,−φc), where φc is the classical

turning point such that �A − EA(φc) = E .
(ii) Region II: φ ∈ (−φc, φc).
(iii) Region III: φ ∈ (φc, π ).
(iv) Region IV: φ ∈ (π, 2π − φc).
Within each region we can write the solution using the

WKB ansatz, with either oscillatory or decaying/growing
solutions. In detail,

�I = A1 χ−√
κ1

e− ∫ φ

−π
κ1dφ′ + A2 χ−√

κ1
e+ ∫ φ

−π
κ1dφ′

+ A3 χ+√
κ2

e− ∫ φ

−π
κ2dφ′ + A4 χ+√

κ2
e+ ∫ φ

−π
κ2dφ′

, (B11)
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�II = B1 χ−√
k1

cos

(
π

4
+

∫ φ

−φc

k1 dφ′
)

+ 2B2 χ−√
k1

sin

(
π

4
+

∫ φ

−φc

k1 dφ′
)

+ B3 χ+√
κ2

e− ∫ φ

−φc
κ2dφ′ + B4 χ+√

κ2
e+ ∫ φ

−φc
κ2dφ′

, (B12)

�III = C1 χ−√
κ1

e− ∫ φ

φc
κ1dφ′ + C2 χ−√

κ1
e+ ∫ φ

φc
κ1dφ′

+ C3 χ+√
κ2

e− ∫ φ

φc
κ2dφ′ + C4 χ+√

κ2
e+ ∫ φ

φc
κ2dφ′

, (B13)

�IV = D1 χ−√
κ1

e− ∫ φ

π
κ1dφ′ + D2 χ−√

κ1
e+ ∫ φ

π
κ1dφ′

+ D3 χ+√
κ2

e− ∫ φ

π
κ2dφ′ + D4 χ+√

κ2
e+ ∫ φ

π
κ2dφ′

. (B14)

For brevity, we have introduced the following wave vectors
[note that the notation differs slightly with that of Eq. (10) in
the main text]:

k1 =
√

E − (�A − EA)

4Ec
, (B15)

κ1 =
√

(�A − EA) − E

4Ec
, (B16)

κ2 =
√

(�A + EA) − E

4Ec
. (B17)

The sixteen complex coefficients A1, . . . D4 must be deter-
mined via appropriate matching conditions at the boundaries
between the different regions. The matching condition be-
tween regions IV and I will be determined via the boundary
condition (B5). The boundaries between regions I-II, II-III,
and III-IV are meant to be fuzzy, and one must make use
of appropriate connection formulas for the WKB solutions
by obtaining approximate solutions that are valid across the
boundaries. This is what we do next.

To connect solutions at the boundary between region I and
II, we can use the standard WKB connection formulas that
originate from linearizing the potential around the classical
turning point, and then solving the Airy equations. One ob-
tains

⎛
⎜⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

e+τ1 0 0 0
0 e−τ1 0 0
0 0 e+τ2 0
0 0 0 e−τ2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

B1

B2

B3

B4

⎞
⎟⎟⎟⎠ (B18)

with τ1 = ∫ π

φc
κ1 dφ′ and τ2 = ∫ π

φc
κ2 dφ′.

For the boundary between region II and III we can also
use the standard WKB connection formulas based on the Airy
equation, except that we must first take some care to rewrite
the wave function in region II so that it is expressed in terms
of integrals that have the boundary point φc as the upper end
of the integration domain.

After some trigonometric manipulations one obtains the
following connection matrix:⎛
⎜⎜⎜⎝

B1

B2

B3

B4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

2 cos σ − sin σ 0 0

sin σ 1
2 cos σ 0 0

0 0 e+ρ1 0
0 0 0 e−ρ1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎟⎠ (B19)

where ρ1 = ∫ φc

−φc
κ2dφ′.

Notice that so far the connections matrices (B18) and (B19)
leave the two branches of the Andreev spectrum decoupled.
This situation breaks down at the boundary between regions
III and IV at φ = π . This is the position where Andreev
levels cross at perfect transparency, and where they couple in
the presence of a small but finite back-scattering. When the
level crossing is narrowly avoided, the adiabatic spinors (B7)
vary rapidly with phase and the WKB ansatz, which relies
on a slow variation of the spinors with φ, breaks down. To
proceed we must linearize the potential around φ = π , giving
the equation

−4Ec�
′′ + Vπ � + �A� = 0, (B20)

where

Vπ = εrτx + 1
2�(φ − π )τz − δ�τy. (B21)

In Eq. (B20) we set E = 0 since the level crossing is at ener-
gies much higher than the bottom of the Josephson potential:
thus, the form of the solutions around φ ≈ π will not be
sensitive to the precise position of low-lying energy levels.
Inspired by the fact that we need to connect asymptotically to
the wave functions in region II, we try an ansatz of the form

� = �πeσκ (φ−π ) (B22)

with σ = ±1 and κ = √
�A/4Ec. Inserting the ansatz in

Eq. (B20) and neglecting the term ∝ � ′′
π results in the fol-

lowing equation for �π :

−σω0�
′
π + Vπ�π = 0 (B23)

with ω0 = 8Ecκ . Adopting the spinor notation �π = (u, d )T ,
we obtain the following coupled linear differential equa-
tion for u and d ,

−σ (ω0/�) u′ + r̃ d + 1
2 (φ − π ) u = 0, (B24)

−σ (ω0/�) d ′ + r̃∗ u − 1
2 (φ − π ) d = 0, (B25)

where we introduced a complex reflection coefficient r̃,

r̃ ≡ εr + iδ�

�
. (B26)

Note that this reflection coefficients differs from the one in-
troduced in the main text in Eq. (7) because of the presence
of � instead of �A in the denominator. The difference arises
because the linearized problem is not sensitive to the band-
width �A of the potential, but only to its slope � at φ = π .
The phase of r̃ is the same as that for r, and can be gauged
away from the linearized equations, by setting d → de−iδ/2

and u → ueiδ/2. Furthermore, it is also convenient to shift and
rescale the coordinate,

x =
√

�

ω0
(φ − π ). (B27)
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After these two steps we obtain

−σu′ +
√

λ d + 1
2 x u = 0, (B28)

−σd ′ +
√

λ u − 1
2 x d = 0, (B29)

where the prime now refer to differentiation with respect to x
and we have introduced

λ ≡ |r̃|2(�/ω0), (B30)

the same parameter introduced in Eq. (17) of the main text.
Proceeding by substitution we obtain the two equations (one
for each value of σ ),

u′′ +
(

−λ − σ

2
− x2

4

)
u = 0, (B31)

which must be considered separately and, combined, give
the four independent solutions we are looking for. They are
instances of the Weber differential equation and are solved
in terms of parabolic cylinder functions Dp(x), which satisfy
the differential equation D′′

p(z) + (p + 1
2 − z2/4)Dp(z) = 0.

In our case we are dealing with p = −λ when σ = −1 and
p = −λ − 1 when σ = +1.

Let us solve the two cases separately, beginning with
σ = −1. The general solution for u is the linear combination
u(x) = c1 D−λ(x) + c2

√
λDλ−1(ix). The corresponding solu-

tion for d (x) can be obtained using known recursion formulas
for parabolic cylinder functions, which read

D′
p(z) − pDp−1(z) + 1

2 zDp(z) = 0, (B32)

D′
p(z) + Dp+1(z) − 1

2 zDp(z) = 0. (B33)

Using these formulas we obtain d (x) = c1

√
λ D−λ−1(x) +

ic2Dλ(ix). Due to a symmetry of the problem, the solutions
for σ = +1 can be obtained from these by sending x → −x
and exchanging u and d , so that, overall, the general solution
is

�(x) = c1e−κ̃x

[
D−λ(x)√

λ D−λ−1(x)

]
+ c2e−κ̃x

[√
λDλ−1(ix)
iDλ(ix)

]

+c3e+κ̃x

[√
λD−λ−1(−x)
D−λ(−x)

]
+c4e+κ̃x

[
iDλ(−ix)√
λ Dλ−1(−ix)

]
.

(B34)

Here, κ̃ = κ
√

ω0/�. This solution captures the interval
around φ = π where diabatic effects not captured by the
WKB ansatz may occur. This region has a width ∼√

λ. Thus,
the solution has to be matched with �III from Eq. (B13) for
x � −√

λ and with �IV from Eq. (B14) for x � √
λ. For

the matching purposes, it is useful to derive the asymptotic
behavior of these WKB solutions. In the case of �III, to do so
we must first rewrite the WKB solution such that the integrals
run up to the level crossing. Thus, we rewrite Eq. (B13) as

�III = C1 χ−√
κ1

e−τ1 e+ ∫ π

φ
κ1dφ′ + C2 χ−√

κ1
e+τ1 e− ∫ π

φ
κ1dφ′

+ C3 χ+√
κ2

e−τ2 e+ ∫ π

φ
κ2dφ′ + C4 χ+√

κ2
e+τ2 e− ∫ π

φ
κ2dφ′

.

(B35)

Let us introduce the distance R from the level crossing, R =
|x|. When R � √

λ, the asymptotes for the adiabatic spinors
are

χ−(−R) ∼
[ −1√

λ/R

]
, (B36)

χ+(−R) ∼
[√

λ/R
1

]
, (B37)

χ−(R) ∼
[−√

λ/R
1

]
, (B38)

χ+(R) ∼
[

1√
λ/R

]
. (B39)

Note that χ±(−R) = ±τxχ±(R). Taking into account the fact
that, approaching the level crossing,

κ1,2 ≈ κ ∓ 1
2

√
4λ + R2

√
�

ω0
, (B40)

we obtain the following expressions for the WKB integrals:∫ π

φ

κ1 dφ′ = κ̃R − 1

4
R2 − 1

2
λ − λ log R + λ log

√
λ,

∫ π

φ

κ2 dφ′ = κ̃R + 1

4
R2 + 1

2
λ + λ log R − λ log

√
λ.

(B41)

Finally, when κ � R � √
λ, one has that

1√
κ1,2

≈ 1√
κ

. (B42)

The condition κ � R � √
λ is the necessary condition for the

existence of a range of coordinates where asymptotes can be
matched. In practice, it requires the transition region around
the level crossing at φ = π to be narrow enough to be far
away from the classical turning point at φ = φc. Note that
this condition is automatically satisfied since κ ∝ (�A/Ec)1/2

while
√

λ ∼ (�A/Ec)1/4.
With all that said, the expression approaching the level

crossing from region III is

�III ∼
(

C1√
κ

e−τ1 e−λ/2 λλ/2

)
eκ̃R e−R2/4 R−λ χ−(−R)

+
(

C2√
κ

e+τ1 e+λ/2 λ−λ/2

)
e−κ̃R eR2/4 Rλ χ−(−R)

+
(

C3√
κ

e−τ2 e+λ/2 λ−λ/2

)
eκ̃R eR2/4 Rλ χ+(−R)

+
(

C4√
κ

e+τ2 e−λ/2 λλ/2

)
e−κ̃R e−R2/4 R−λ χ+(−R)

(B43)

while the one for �IV, obtained from Eq. (B11), is

�IV ∼
(

D1√
κ

eλ/2 λ−λ/2

)
e−κ̃R eR2/4 Rλ χ−(R)

+
(

D2√
κ

e−λ/2 λλ/2

)
eκ̃R e−R2/4 R−λ χ−(R)
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+
(

D3√
κ

e−λ/2 λλ/2

)
e−κ̃R e−R2/4R−λ χ+(R)

+
(

D4√
κ

eλ/2 λ−λ/2

)
eκ̃R eR2/4 Rλ χ+(R). (B44)

These two expressions must now be compared to and
matched with the expansion of Eq. (B34). The matching pro-
cedure will yield us a connection matrix between the wave
function coefficients in regions III and IV. This connection
matrix will take the form⎛

⎜⎜⎝
C1

C2

C3

C4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

eτ1 0 0 0
0 e−τ1 0 0
0 0 eτ2 0
0 0 0 e−τ2

⎞
⎟⎟⎠M

⎛
⎜⎜⎝

D1

D2

D3

D4

⎞
⎟⎟⎠ (B45)

where M is a 4 × 4 matrix whose elements must be deter-
mined via the matching procedure. We expect half of the
matrix elements of M to be zero, because the exponentially
decaying sector is decoupled from the exponentially growing
sector, as assumed by the ansatz (B22). More in detail, the
matrix M will have the following structure:

M =

⎛
⎜⎜⎜⎝

m11 0 m12 0

0 m′
11 0 m′

12

m21 0 m22 0

0 m′
21 0 m′

22

⎞
⎟⎟⎟⎠ (B46)

with two interleaved 2 × 2 sub-blocks M+ and M−, which
separately connect exponentially decaying and growing solu-
tions on either side of the level crossing,

M− =
(

m11 m12

m21 m22

)
, (B47)

M+ =
(

m′
11 m′

12
m′

21 m′
22

)
. (B48)

To simplify the derivation of M, we will make use of two
useful identities that connect M+ and M− and thus allow to
shorten the calculation.

The first identity is

det M+ = det M−. (B49)

It follows from the fact that, given two spinors �1 = (u1, d1)T

and �2 = (u2, d2)T , which are solutions of Eq. (B28), one has
d

dx
det [�1|�2] = 0, (B50)

where [�1|�2] is the matrix obtained joining the two spinors,

[�1|�2] ≡
(

u1 u2

d1 d2

)
. (B51)

To verify this property one observes that

d

dx
det [�1|�2] = det[�′

1|�2] + det[�1|�′
2]

= σ det[O�1|�2] + σ det [�1|O�2],
(B52)

where σ = ±1 and O = 1
2 xτz + √

λτx. The last passage in the
equation above follows directly from Eq. (B28). To conclude
the argument, one notices that

det[O�1|�2] = det(O) det [�1|O−1�2]. (B53)

Furthermore, in our case, O−1 = − det−1(O) O. Thus,

det[O�1|�2] = − det[�1|O�2]. (B54)

The conclusion is that

det [�1|�2] = constant. (B55)

Let us apply it to the case in which �1 and �2 are the two
exponentially decaying solutions (σ = −1) of Eq. (B28) that
enter Eq. (B34) with coefficients c1 and c3. We observe that
the det[�1,�2] must remain constant also for the matched
asymptotic expansions of �1 and �2 on either side of the
crossing. A direct calculation gives

det[�1|�2] = −D1D3

κ̃
(B56)

for x � √
λ, and, using (B45)

det[�1|�2] = −D1D3

κ̃
det M− (B57)

for x � −√
λ. It follows that det M− = 1. The reasoning is

analogous for σ = 1, so det M+ = 1 too.
The second identity we will make use of is a pseudo-

inverse identity, which relates M+ and M−,

M+ = τz(M−)−1τz. (B58)

The idea behind this identity is that, as noticed earlier, there
is a reflection symmetry around the level crossing: namely, if
[u(x), d (x)]T is a solution of Eq. (B28), then [d (−x), u(−x)]T

is also a solution. This symmetry maps decaying solutions to
growing ones and thus it suggests that there must be a relation
between M+ and M−. Applying this symmetry argument to
the asymptotic solutions and observing that their spinors obey
χ±(−x) = ±τxχ±(x), one arrives at the identity (B58).

At this point we have to find the elements of M− by
looking at the asymptotic expansion of the parabolic cylinder
functions [58], which can be applied term by term to (B34)
and then compared to the WKB asymptotes in Eq. (B43) and
(B44). For instance, the last term in (B34) has the following
asymptotic behavior (recall that R = |x|):[√

λDλ−1(ix)
iDλ(ix)

]
∼ ie−iπλ/2 eR2/4 Rλ χ+(−R) (B59)

for x � −√
λ and[√

λDλ−1(ix)
iDλ(ix)

]
∼ ieiπλ/2 eR2/4 Rλ χ−(R) (B60)

for x � √
λ. Matching these asymptotes with Eqs. (B43) and

(B44) yields the matrix elements

m11 = 0, (B61)

m21 = e−iπλ. (B62)

The third term in (B34) has the asymptotic expansion[
D−λ(x)√
λD−λ−1(x)

]
∼ − eiπλe−R2/4 R−λ χ−(−R)

+
√

2π√
λ�(λ)

eR2/4 Rλ χ+(−R) (B63)
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for x � √
λ and[

D−λ(x)√
λD−λ−1(x)

]
∼ e−R2/4 R−λ χ+(R) (B64)

for x � √
λ. Again by comparison with (B43) and (B44), we

derive

m22 = w (B65)

where w is the same as defined in the main text Eq. (16). The
determinant identity for M− then yields

m12 = −eiπλ. (B66)

This completes the matrix M−. The matrix M+ can the be
derived using the pseudo-inverse identity, and both can be
combined into the final form for the connection matrix M
entering Eq. (B45),

M =

⎛
⎜⎜⎝

0 0 −eiπλ 0
0 w 0 −eiπλ

e−iπλ 0 w 0
0 e−iπλ 0 0

⎞
⎟⎟⎠. (B67)

The final step is to find the connection matrix at the bound-
ary between region IV and I. In order to do so, we impose
the twisted boundary conditions (B5) evaluated at the point at
φ = π + ε,

�IV(π + ε) = −τx e2π ing�I(−π + ε). (B68)

Using Eq. (B9), this leads to two equations

e−iδ (D1 + D2) = e2π ing (A3 + A4), (B69)

e+iδ (D1 + D2) = −e2π ing (D3 + D4), (B70)

where δ is the phase of εr − iδ�. We need two more equations,
which we can get from taking the derivative of Eq. (B5) at
φ = π + ε,

� ′
IV(π + ε) = −τx e2π ing� ′

I (−π + ε), (B71)

to be computed neglecting the change in the slow components
of the WKB wave functions. This leads to the following con-
nection matrix:⎛

⎜⎜⎜⎝
D1

D2

D3

D4

⎞
⎟⎟⎟⎠ = e2π ing

⎛
⎜⎜⎜⎝

eiδ 0 0 0
0 eiδ 0 0
0 0 −e−iδ 0
0 0 0 −e−iδ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎟⎠.

(B72)
Putting together Eqs. (B18), (B19), (B67), and (B72), we

obtain a linear system of equation that must be satisfied by the
coefficients in region I. After some matrix multiplication this
linear system takes the form

�A = e2π ing M1 M2 M3 �A (B73)

with �A = (A1, A2, A3, A4)T and

M1 =

⎛
⎜⎜⎝

2eτ cos σ − sin σ 0 0
sin σ 1

2 e−τ cos σ 0 0
0 0 eρ 0
0 0 0 e−ρ

⎞
⎟⎟⎠, (B74)

M2 =

⎛
⎜⎜⎝

0 0 −eiπλ 0
0 w 0 −eiπλ

e−iπλ 0 w 0
0 e−iπλ 0 0

⎞
⎟⎟⎠, (B75)

M3 =

⎛
⎜⎜⎝

eiδ 0 0 0
0 eiδ 0 0
0 0 −e−iδ 0
0 0 0 −e−iδ

⎞
⎟⎟⎠. (B76)

The WKB integrals that appear in these matrices are those
defined in the main text Eqs. (13)–(15). A nontrivial solution
occurs only if

det(1 − e2π ingM1M2M3) = 0. (B77)

This condition yields a transcendental equation for the energy
E , taking the form

cos σ = 4eρeτ [cos(4πng) + eρw cos(2πng + δ)]

1 + e2ρ (4e2τ + w2) + 2eρw cos(2πng − δ)
.

(B78)

Using the fact that e−ρ � 1 and we−τ � 1, we can simplify
the denominator on the right hand side as follows:

1 + e2ρ (4e2τ + w2) + 2eρw cos(2πng − δ) ≈ 4e2ρe2τ .

Thus, the transcendental equation takes the simpler form re-
ported as Eq. (12) in the main text,

cos σ = e−ρe−τ cos(4πng) + w e−τ cos(2πng + δ). (B79)

Note that the energy enters the bound state equation via the
WKB integrals σ, ρ, and τ , where it appears in both the
integrand and the limits of integration.

As observed in the main text, to solve this equation a good
starting point is to set the right-hand side to zero, since it
contains only exponentially small terms. The zeros of the left
hand side occur if

σ (En) = π
(
n + 1

2

)
. (B80)

When taking into account the right-hand side, some
corrections will come from the 4π−phase slip term
e−ρe−τ cos(4πng) and others will come from the 2π phase
slip term w e−τ cos(2πng + δ). We are not interested in the
corrections smaller than the corrections from 4π phase slips,
so the cross terms are neglected. For the rest, we can distin-
guish the following three situations:

(1) we−τ � e−ρ−τ : it only makes sense to keep the
leading-order corrections in we−τ to each of the harmonics
in the dispersion relation,

(2) we−τ ≈ e−ρ−τ : we keep the leading order we−τ cor-
rections and the first order e−ρ−τ –corrections,

(3) we−τ � e−ρ−τ : enough to keep only the first order in
e−ρ−τ .

We can conclude that in any situation it is enough to keep
the leading order in we−τ and the first order in e−ρ−τ for
the second harmonic, although having something of the order
of e−ρ−τ and ignoring higher-order corrections in we−τ may
look inconsistent when we−τ � e−ρ−τ .

Let us introduce the following notation:

E = En + δE (1) + δE (2) + �En + · · · (B81)
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Where δE (m) stand for mth-order corrections in we−τ (0th in
e−ρ−τ ) and �En for the first-order corrections in e−ρ−τ . By
solving Eq. (B79) with iterative expansions, we find

�En = (−1)n+1

σ ′
n

e−ρn e−τn cos(4πng), (B82)

δE (1)
n = (−1)n+1

σ ′
n

we−τn cos(2πng + δ). (B83)

δE (2)
n = −w2e−2τn cos2(2πng + δ)

(σ ′
n)2

(
τ ′

n + σ ′′
n

2σ ′
n

)
. (B84)

The corrections have quite intuitive meaning. The term with
τ ′ comes from the fact that after we consider the first order in
we−τ contribution, different energies see different heights of
the tunneling barrier. The term proportional to σ ′′

n /σ ′
n is due

to second-order corrections to σn when the splitting δE (1)
n is

included, and it vanishes in the harmonic limit. On the other
hand, as will be shown in the next Appendix, τ ′

n is logarith-
mically large when T �A � Ec and thus cannot be neglected.
This leads to the solution presented in the main text, Eq. (19).
Note that in the main text we have omitted the ng-independent
part of δE (2)

n , which does not affect the charge dispersion.

APPENDIX C: EVALUATION OF THE WKB INTEGRALS

In this Appendix we derive expressions (21)–(24) from the
main text. In doing so we assume that �AT � Ec and thus

only look at leading contributions in the ratio T �A/Ec to the
WKB integrals. In this limit, the Bohr-Sommerfeld condition
σ (En) = π (n + 1

2 ) can be evaluated by expanding the inte-
grand of σ (E ) around φ = 0, and adjusting the position of the
classical turning point accordingly. The result is

σ (E ) = πE

ωp
, (C1)

where ωp is the plasma frequency introduced in the main text.
The result above immediately yields Eq. (20) of the main text
as well as Eq. (23), σ ′(E ) = π/ωp.

With respect to the integral ρ(E ), one can see that the
coefficients c and d in Eq. (22) are given by the integrals

c(T ) = 1√
8

∫ π

−π

√
1 + u(φ) dφ, (C2)

d (T ) = 1√
8

∫ π

−π

dφ√
1 + u(φ)

, (C3)

where u(φ) = EA(φ)/�A. The only WKB integral, which is
relatively nontrivial to calculate is τn,

τn =
√

�A

Ec

∫ π

φn

√
1 − yn − u(φ) dφ, (C4)

where yn = En/�A and ±φn are the classical turning points for
En. It is convenient to split τn into three parts,

τn

√
EC

�A
≈

∫ π

ε

√
1 − u(φ) dφ − yn

2

∫ π

ε

1√
1 − u(φ)

dφ +
∫ ε

φn

√
1 − yn − u(φ)dφ. (C5)

Here, ε is small enough so that sin2 ε/2 � 1 but big enough such that
√

1 − yn − u can be expanded in yn. By splitting these
terms further, we may arrive at a representation in terms of elliptic functions,

I ≈
∫ π

0

√
1 − u(φ) dφ − lim

ψ→0

yn

2

∫ π

ψ

1√
1 − u(φ)

dφ −
∫ ε

0

√
1 − u(φ) dφ (C6)

+ lim
ψ→0

yn

2

∫ ε

ψ

1√
1 − u(φ)

dφ +
∫ ε

φn

√
1 − yn − u(φ) dφ = i1 − i2 + i3 + i4 + i5. (C7)

Since φn, ε � 1, i3 + i4 + i5 is quite straightforward to calculate and is equal to

i3 + i4 + i5 = −
√

T

2

sin2 φn

2

2
+ sin2 φn

2

2

√
T

2
ln

sin2 φn

2

ψ2
, ψ → 0. (C8)

For i1 we obtain the representation

i1 = −4|r|√
1 + |r|F (μ(0), k) + 8|r|√

1 + |r|�(μ(0), 1, k) (C9)

where F,� are elliptic integrals of the first and second kind, and

μ(φ) = arcsin

√
u(ϕ) − |r|
u(ϕ) + |r| , (C10)

k =
√

1 − |r|
1 + |r| . (C11)

Similarly, for i2 we obtain√
�A

EC
i2 = (2n + 1)

√
2|r|√

1 − |r|(1 + |r|) lim
ψ→0

(
2�

(
μ(ψ ),

1

k2
, k

)
− (1 − |r|)F (μ(0), k)

)
. (C12)
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Putting all the pieces together, we obtain Eq. (21) of the main text with the coefficients

b = lim
ψ→0

ψ e
√

2|r|√
1−|r|(1+|r|) (2�(μ(ψ ), 1

k2 ,k)−(1−|r|)F (μ(0),k))
, (C13)

a =
√

8|r|
(1 + |r|)√1 − |r| (−F (μ(0), k) + 2�(μ(0), 1, k)). (C14)

These coefficients were already reported in Ref. [39]. In a similar way, for τ ′(En) we find

τ ′
n = 1

ωp
ln

2En

�AT b2
. (C15)
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