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Abstract. Decisions made in the early phases of ship design have a large influence on the capital and
operational expenses of a vessel. In order to support decision making in this phase, big data and ma-
chine learning techniques can be of great use. This work shows how Explainable Artificial Intelligence
(XAI) and Global Sensitivity Analysis (GSA) combined with Autonomous Identification System (AIS)
and static ship data can be used to find important design characteristics of ships. A data collection
framework is setup that collects AIS data over a five month time period. Static ship design data is used
to predict performance related target features that are calculated from AIS data. By applying XAI and
GSA methods to the regression models that predict these target features, insight can be gained on how
design features influence the performance of ships. Experiments showed that for most ship types, the
overall length is the most important design feature for speed related target features. Besides the overall
length, the draught also has a significant impact on the rotation capabilities.

Key words: Explainable Artificial Intelligence, AIS, Machine Learning, Global
Sensitivity Analysis

1. Introduction

Over the recent years the application of Artificial Intelligence (AI) in the maritime industry has seen
an increase [1]. Examples of recent applications range from fleet allocation to Estimated Time of Arrival
(ETA) prediction [2]. These applications have caused a reduction of CO2 emissions and a large increase in
efficiency and performance of vessels throughout the whole maritime industry [2]. A subsector of the mar-
itime industry that has only recently seen an increase in applications of AI, is the naval architect industry [3].
Applications of AI and data driven decision making can be of huge benefit for naval architects, as many
early phase design decisions previously relied on the experience of engineers or a handful of reference ves-
sels [4, 5]. Any wrong assumptions made in this phase can lead to higher production, or operational costs,
which highlights the importance of this phase [6]. In order to come up with more cost efficient and better
performing ships, engineers need a clear picture of a ship’s desired operational profile. Here, data driven
technologies can provide engineers a helping hand. Previous applications of AI systems in the naval archi-
tect industry mainly focused on data collected from a relatively small group of vessels. Examples of these
are Neural Network aided design of ship hull structures [7], and propulsion power optimum calculation via
genetic algorithms [8].

Together with an increase in applications of AI methods, the predictive capabilities of AI models has also
increased [9]. As the performance of these models increase, they also tend to become more complex and
their workings harder to understand. In order to understand the workings of complex black box predictive
models, Global Sensitivity Analysis (GSA) and Explainable AI (XAI) can help. These methods define
measures or visualisations of important input features of predictive black box models. In this research these
tools are combined with data collected from a large group of vessels in order to obtain a high level view on
what ship design parameters are distinctive for a vessel’s performance capabilities. The data used in this
work consists of Autonomous Identification System (AIS) data, for which a data collection framework is
created. Next to AIS data static ship data is provided by C-Job Naval Architects1. These data sources will
be combined with GSA and XAI techniques in order to quantify the influence of design parameters on the
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1C-Job Naval Architects, A sustainable maritime industry in one generation (2022), https://c-job.com/
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speed and rotation related capabilities of ships. The scientific contribution of this work is two-fold: (1) AI
and GSA method are applied to a Multi-Output regression model built by an Automated Machine Learning
Model. (2) AIS data is used to analyze the world fleet in order to find important design characteristics
for commercial ship types. The remaining of this work is structured as follows: Section 2. describes the
background, related work and methods used in this work. Hereafter, Section 3. explains how the data is
collected, processed, and stored. Section 4. then shows the experiments and results. Finally, Section 5.
discusses the results and concludes.

2. Related work

In the following subsections related AIS research, relevant background on automated machine learning
models, global sensitivity analysis, and explainable AI methods are described.

2.1. Related AIS research

The Autonomous Identification System (AIS) has mainly been developed as a system that can be used 
for collision avoidance and navigational safety for almost all ships in the commercial fleet. The system was 
initially developed in 2002, but had limited coverage over only the coastal area waters. In 2008 satellite 
AIS transponders were introduced which increased the coverage to almost all areas in the world. With the 
increase in coverage and data quality new applications for the AIS appeared. Examples of this are, ship 
trajectory extraction and prediction [10], ship activity tracking [11], tracking for environmental monitor-
ing [12], or tracking in restricted waters such as locks and canals [13]. Next to vessel tracking, AIS data 
can also be used to measure various port statistics such as the number of daily visiting ships, or waiting 
times [14]. To the best of the authors knowledge, AIS data has never been used to compare ship design 
characteristics of the commercial fleet on a worldwide scale. More on how AIS data is used in this research 
is explained in Section 2.1.

2.2. Automated Machine Learning

Automated machine learning (AutoML) automates the task of applying machine learning techniques 
to any real world problem. AutoML automates all tasks that one would typically perform manually when 
designing a machine learning pipeline. By introducing a high level of automation, AutoML allows non-
experts to design high performing machine learning models. The most common steps that are performed 
by AutoML frameworks are: Data preparation, Feature engineering, Model selection, Ensembling, and 
Hyperparameter tuning all under strict time and memory constraints [15]. An often used implementation 
of AutoML is the Autosklearn 2.0 framework [16]. This implementation has gained popularity due to it’s 
high performance on large datasets. The improvements of Autosklearn 2.0 on it’s precedor Autosklearn 1.0 
mainly lie in the model selection strategies, and candidate pipeline selection strategies. For an in depth 
explanation of the implementation of Autosklearn 2.0 [16] can be consulted.

2.3. Sobol indices

Sobol indices are a form of variance based GSA [17], and can be used to determine the importance 
of input features. This method decomposes the variance of the output of a machine learning model into 
fractions that can be attributed to features, or combinations of features. A function Y = f(X) can be 
decomposed as follows:

Y = f0 +
d∑

i=1

fi(Xi) +
d∑

i<j

fij(Xi, Xj) + · · ·+ f1,2,...,d(X1, X2, ..., Xd) (1)

With constant f0, and fi as function of Xi. The variance of Y can then be expressed as:

V (Y ) =

d∑
i=1

Vi +
d∑

i<j

Vij + · · ·+ V1,...,d, (2)
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speed and rotation related capabilities of ships. The scientific contribution of this work is two-fold: (1) AI
and GSA method are applied to a Multi-Output regression model built by an Automated Machine Learning
Model. (2) AIS data is used to analyze the world fleet in order to find important design characteristics
for commercial ship types. The remaining of this work is structured as follows: Section 2. describes the
background, related work and methods used in this work. Hereafter, Section 3. explains how the data is
collected, processed, and stored. Section 4. then shows the experiments and results. Finally, Section 5.
discusses the results and concludes.

2. Related work

In the following subsections related AIS research, relevant background on automated machine learning
models, global sensitivity analysis, and explainable AI methods are described.

2.1. Related AIS research

The Autonomous Identification System (AIS) has mainly been developed as a system that can be used 
for collision avoidance and navigational safety for almost all ships in the commercial fleet. The system was 
initially developed in 2002, but had limited coverage over only the coastal area waters. In 2008 satellite 
AIS transponders were introduced which increased the coverage to almost all areas in the world. With the 
increase in coverage and data quality new applications for the AIS appeared. Examples of this are, ship 
trajectory extraction and prediction [10], ship activity tracking [11], tracking for environmental monitor-
ing [12], or tracking in restricted waters such as locks and canals [13]. Next to vessel tracking, AIS data 
can also be used to measure various port statistics such as the number of daily visiting ships, or waiting 
times [14]. To the best of the authors knowledge, AIS data has never been used to compare ship design 
characteristics of the commercial fleet on a worldwide scale. More on how AIS data is used in this research 
is explained in Section 2.1.

2.2. Automated Machine Learning

Automated machine learning (AutoML) automates the task of applying machine learning techniques 
to any real world problem. AutoML automates all tasks that one would typically perform manually when 
designing a machine learning pipeline. By introducing a high level of automation, AutoML allows non-
experts to design high performing machine learning models. The most common steps that are performed 
by AutoML frameworks are: Data preparation, Feature engineering, Model selection, Ensembling, and 
Hyperparameter tuning all under strict time and memory constraints [15]. An often used implementation 
of AutoML is the Autosklearn 2.0 framework [16]. This implementation has gained popularity due to it’s 
high performance on large datasets. The improvements of Autosklearn 2.0 on it’s precedor Autosklearn 1.0 
mainly lie in the model selection strategies, and candidate pipeline selection strategies. For an in depth 
explanation of the implementation of Autosklearn 2.0 [16] can be consulted.

2.3. Sobol indices

Sobol indices are a form of variance based GSA [17], and can be used to determine the importance 
of input features. This method decomposes the variance of the output of a machine learning model into 
fractions that can be attributed to features, or combinations of features. A function Y = f(X) can be 
decomposed as follows:

Y = f0 +
d∑

i=1

fi(Xi) +
d∑

i<j

fij(Xi, Xj) + · · ·+ f1,2,...,d(X1, X2, ..., Xd) (1)

With constant f0, and fi as function of Xi. The variance of Y can then be expressed as:

V (Y ) =

d∑
i=1

Vi +
d∑

i<j

Vij + · · ·+ V1,...,d, (2)

where
Vi = V (E(Y |Xi)), (3)

Vij = V (E(Y | Xi, Xj))− Vi − Vj (4)

Here E(Y |Xi) stands for the expectation over Y given Xi, which can be calculated by taking the mean
over Y for all Xi. The first order Sobol index can then be calculated as a measure of sensitivity S of feature
i on model output Y as:

Si =
Vi

V (Y )
. (5)

The first order Sobol index measures the effect of alternating Xi alone averaged over variations of other
input features. By dividing it over the total variance it is measured as a fractional contribution. Higher or-
der indices can be calculated by dividing Vij , Vijk and so on over V (Y ). The first- and higher-order Sobol
indices quantify the importance of each feature, or combination of features with respect to the output vari-
ance. Evaluating all indices for a large number of features can be problematic as the number of evaluations
is quadratic with the number of input features. In practice the total-order Sobol index is often calculated to
overcome this problem. The total-order Sobol index is a measure of the contribution to the output variance
of the i-th feature including all variance caused by the interactions with other features. It can be calculated
as follows:

STi =
EX∼i(VXi

(Y | X∼i))

V (Y )
(6)

Here EX∼i(VXi (Y | X∼i)) stands for the expected variance in model output Y when all but the i-th feature 
are fixed.

2.4. Partial Dependence Plots

Once the importance of each input features has been determined with the Sobol indices, it is possible 
to visualise the type of relation between the input feature and the target feature. Partial Dependency Plots 
(PDP) [18] is an XAI method that can show whether the target variable and the input features have linear, 
monotonic, or more complex relationships. PDP’s show the outcome of a model at a value of a feature 
when this value is substituted for all samples in the training set. PDP’s divide the set of input features into 
to subsets: C and S, where S is the set of features that are investigated and C is the set of the remaining 
features. PDP’s marginalize the model output over the distribution of the features in set C, so that the plot 
shows the relation between the model output and the features in S. In practice the PD function is estimated 
by calculating the average output as displayed in the following Equation:

f̂s(xs) =
1

n

n∑
i=1

f(xs, x
(i)
C ) (7)

Here f is the trained machine learning model, n the total number of points in the training set, xs the feature
of interest, and x

(i)
C are the feature values from the training set of the features that are not investigated. The

output of this function expresses the average marginal effect of the feature s on the prediction of the model.

2.5. Accumulated Local Effect plots

Accumulated Local Effect (ALE) plots [19] are a faster alternative to PDP’s and in addition overcome 
the problem that PDP’s assume feature independence. Just as with PDP’s, ALE plots reduce the complex 
model function to a function that is dependent on only one or two features. The ALE plot, in contradiction 
to PDP’s, show the change in prediction of a model over only a small window z of a value of a feature. The 
difference in prediction can be seen as the effect of a feature on a single instance in a certain interval. The 
uncentered ALE function is defined as:

ˆ̃
fj,ALE(x) =

kj(x)∑
k=1

1

nj(k)

∑

i:x
(i)
j ∈Nj(k)

[f̂(zk,j , x
(i)
\j )− f̂(zk−1,j , x

(i)
\j )] (8)
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Here, f̂ is the machine learning model, k the number of neighbourhoods, and x\j all features except for
feature of interest j. The sum on the right side of the equation adds the effect of all samples within interval
or neighborhood Nj(k). This sum is then divided by the number of samples in the interval in order to obtain
the average difference of predictions in this interval. The left summation then accumulates all the averages
over all intervals. The following equation then centers the effect such that the mean effect is 0:

f̂j,ALE,centered(x) =
ˆ̃
fj,ALE(x)−

1

n

n∑
i=1

ˆ̃
fj,ALE(x

(i)
j ) (9)

The value of this function can be interpreted as the main effect of a feature at a certain value compared
to the average prediction of the data. When the ALE function has, for instance, an estimate of −4 at
xj = 2 it indicates that when the jth feature has as value 2 the prediction is lower by 4 compared to the
average prediction. The advantage of ALE plots is that they are not biased in a situation where features are
correlated.

3. Data Acquisition and Processing

This section describes the data used and combined in this research to train the Automated Machine
Learning Models with. The two sources used are; AIS data, explained in Section 3.1., and static ship data 
explained in Section 3.2.

3.1. AIS Data

AIS transceivers constantly transmit a vessel’s identity, location, sailing speed, and course along with 
additional information about the destination and identity of the vessel. Most vessels are equipped with a 
Very High Frequency (VHF) AIS transceiver that allows local AIS data to be received and plotted on a 
chart plotter. Simultaneously, the transceiver sends out AIS data to other nearby receivers. The range of 
VHF receivers is approximately between 10-20 nautical miles. Due to the relatively short range of VHF 
receivers it is not possible to capture all worldwide AIS data with just one receiver. In order to overcome 
this issue, many third party applications have been developed that collect the AIS data from multiple local 
transponders and combine them in order to come up with a wider coverage. In collaboration with the 
Transferring Operational Data into Design Information for Ships project (TODDIS) [20], it was decided 
to use the free AISHub [21] as a third party AIS provider. AIShub aims to connect as many local AIS 
transceivers in order to obtain the best possible coverage. All connected stations are on land, or within 
coastal areas, meaning that there is no coverage on open ocean. The total coverage of AIShub can be seen 
in Figure 1.. The map shows a strong coverage in Europe, East coast North-America, and South-East Asia.

FFiigguurree 11..: AISHub coverage
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Here, f̂ is the machine learning model, k the number of neighbourhoods, and x\j all features except for
feature of interest j. The sum on the right side of the equation adds the effect of all samples within interval
or neighborhood Nj(k). This sum is then divided by the number of samples in the interval in order to obtain
the average difference of predictions in this interval. The left summation then accumulates all the averages
over all intervals. The following equation then centers the effect such that the mean effect is 0:

f̂j,ALE,centered(x) =
ˆ̃
fj,ALE(x)−

1

n

n∑
i=1

ˆ̃
fj,ALE(x

(i)
j ) (9)

The value of this function can be interpreted as the main effect of a feature at a certain value compared
to the average prediction of the data. When the ALE function has, for instance, an estimate of −4 at
xj = 2 it indicates that when the jth feature has as value 2 the prediction is lower by 4 compared to the
average prediction. The advantage of ALE plots is that they are not biased in a situation where features are
correlated.

3. Data Acquisition and Processing

This section describes the data used and combined in this research to train the Automated Machine
Learning Models with. The two sources used are; AIS data, explained in Section 3.1., and static ship data 
explained in Section 3.2.

3.1. AIS Data

AIS transceivers constantly transmit a vessel’s identity, location, sailing speed, and course along with 
additional information about the destination and identity of the vessel. Most vessels are equipped with a 
Very High Frequency (VHF) AIS transceiver that allows local AIS data to be received and plotted on a 
chart plotter. Simultaneously, the transceiver sends out AIS data to other nearby receivers. The range of 
VHF receivers is approximately between 10-20 nautical miles. Due to the relatively short range of VHF 
receivers it is not possible to capture all worldwide AIS data with just one receiver. In order to overcome 
this issue, many third party applications have been developed that collect the AIS data from multiple local 
transponders and combine them in order to come up with a wider coverage. In collaboration with the 
Transferring Operational Data into Design Information for Ships project (TODDIS) [20], it was decided 
to use the free AISHub [21] as a third party AIS provider. AIShub aims to connect as many local AIS 
transceivers in order to obtain the best possible coverage. All connected stations are on land, or within 
coastal areas, meaning that there is no coverage on open ocean. The total coverage of AIShub can be seen 
in Figure 1.. The map shows a strong coverage in Europe, East coast North-America, and South-East Asia.

FFiigguurree 11..: AISHub coverage

The data collection process has started in September 2021 and is still going on at the moment of writing.
At the moment of writing the Google Bigquery database contains approximately 9.3 billion rows with a total
size of 1.5 TB. A schematic overview of the AIS data collection pipeline is given in Figure 2..

FFiigguurree 22..: Schematic overview of the AIS data collection pipeline

3.1.1. Data preprocessing

From this large set of raw AIS data, information can be extracted about a vessels operational perfor-
mance capabilities. The columns of interest are: TSTAMP, Latitude, Longitude, COG, SOG, Heading, 
Navstat, IMO, A, B, C, D and Draught. The definition of these columns are given in Table 1 .. Furthermore, 
a subset of the data is selected so that only ocean going vessels are considered. This is done by only select-
ing vessels with a length of more than 80 meters, as recommended by a domain expert. Next, the samples 
with feature values that lie outside the allowed ranges shown in Table 1. are filtered o u t. Examples of this 
are samples that have a value of 511 for heading, which means that the heading is unknown. Any further 
samples that have unrealistic feature values, such as an SOG > 40 knots, are also removed. Finally, the 
navigational status of a vessel is checked for each record, and removed if the navigational status is 1 (at 
anchor) or 5 (moored). The resulting subset contains data from October up to February.

Even though the dataset spans a five month time window, many vessels have a relatively limited number 
of records in the dataset as shown in Figure 3.. In order to get a good grasp of the maximum operational 
performance capabilities of a vessel, a minimum number of data points per vessel is needed. Furthermore, 
these data points need to be from a variety of days. Simply looking at the data from one day might give a

Table 1.: Definition of features in raw AIS data
Feature name Explanation Range
MMSI Maritime Mobile Service Identity N/A
TSTAMP Timestamp in UTC date/time format N/A
Longitude Geographical longitude in degrees [-180,180]
Latitude Geographical latitude in degrees [-90,90]
COG Course over ground [0,360]
SOG Speed over ground >0
Heading Current heading of vessel at time of last message [0,360]
Navstat Navigational status, indicates what operation the ship is performing [0,15]
IMO IMO ship identification number N/A
Name Ship name N/A
Type Vessel Type [1,99]
Callsign Vessel callsign N/A
A Distance from transceiver to bow in meters N/A
B Distance from transceiver to stern in meters N/A
C Distance from transceiver to port in meters N/A
D Distance from transceiver to starboard in meters N/A
DRAUGHT Draught of vessel in meters >0
DEST Vessel destination N/A
ETA Estimated time of arrival in UTC date/time format N/A
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biased view of a vessels performance as the conditions on that day might be especially dis- or advantageous.
By trial and error it is determined that vessels in the dataset that have transmitted less than 300 data points,
or on less than 4 unique days will be removed from the dataset. As only data points that have an AIS status
different from 1, or 5 are selected from the Bigquery database, it is guaranteed that these data points are not
from ships laying still in harbor.

FFiigguurree 33..: For many vessels the number of logged data points is relatively low. Similarly, for many 
vessels the logged data points have been transmitted over a small number of days.

3.1.2. Feature extraction
The resulting dataset is 9 GB, has 197644394 rows and 12 columns describing the behaviour of 35645 

unique vessels over a period of 5 months. The next step is to derive features from the AIS data that give in-
formation about the operational performance capabilities of a ship. This is done by calculating the following 
features for each vessel.

Max speed: The maximum SOG that a vessel has sailed. This feature is of interest to a naval architect
because it shows how fast a ship can potentially sail. As SOG is part of the AIS data string, it can be
simply extracted directly for each ship in the dataset.

Median cruising speed: This feature gives information about the median speed of a ship, and is thus less
dependant on whether the collected data points come from ships that are sailing at full power. The
median cruising speed is calculated by taking the median of all speed values that lie within the range

x · SOGmax < SOG < SOGmax with x ∈ {0.6, 0.7, 0.8, 0.9} (10)

This range is used in order to disregard data points that are recorded while ships are sailing in ports,
or other waters where their movements are restricted.

Max rotation: The maximum rotation in degrees that a vessel has made in a time window of one minute.
The feature is of interest for a naval architect because it is a quantification of the maneuverability of
a ship. Rotation is not part of the raw AIS data, and thus needs to be derived. The rotation per minute
can be calculated from AIS data by taking the difference in heading between two consecutive AIS
records, dividing the difference in heading by the difference in time in seconds and then multiplying
this by 60. An example edge case exists when the heading of the first record is 5, and the heading
of the second record is 355. The difference between these two records is 350, while the ship has
probably only rotated by 10 degrees. If the difference between the two records is larger than 180,
the difference in heading is subtracted from 360 to account for the edge cases where the heading of
two records are both close to 360 and 0. The formula used for calculating the rotation between two
records is:

∆t = TSTAMP2 − TSTAMP1 (11)

∆h =

{
360− |h1 − h2|, if |h1 − h2| > 180

|h1 − h2|, otherwise
(12)
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biased view of a vessels performance as the conditions on that day might be especially dis- or advantageous.
By trial and error it is determined that vessels in the dataset that have transmitted less than 300 data points,
or on less than 4 unique days will be removed from the dataset. As only data points that have an AIS status
different from 1, or 5 are selected from the Bigquery database, it is guaranteed that these data points are not
from ships laying still in harbor.

FFiigguurree 33..: For many vessels the number of logged data points is relatively low. Similarly, for many 
vessels the logged data points have been transmitted over a small number of days.

3.1.2. Feature extraction
The resulting dataset is 9 GB, has 197644394 rows and 12 columns describing the behaviour of 35645 

unique vessels over a period of 5 months. The next step is to derive features from the AIS data that give in-
formation about the operational performance capabilities of a ship. This is done by calculating the following 
features for each vessel.

Max speed: The maximum SOG that a vessel has sailed. This feature is of interest to a naval architect
because it shows how fast a ship can potentially sail. As SOG is part of the AIS data string, it can be
simply extracted directly for each ship in the dataset.

Median cruising speed: This feature gives information about the median speed of a ship, and is thus less
dependant on whether the collected data points come from ships that are sailing at full power. The
median cruising speed is calculated by taking the median of all speed values that lie within the range

x · SOGmax < SOG < SOGmax with x ∈ {0.6, 0.7, 0.8, 0.9} (10)

This range is used in order to disregard data points that are recorded while ships are sailing in ports,
or other waters where their movements are restricted.

Max rotation: The maximum rotation in degrees that a vessel has made in a time window of one minute.
The feature is of interest for a naval architect because it is a quantification of the maneuverability of
a ship. Rotation is not part of the raw AIS data, and thus needs to be derived. The rotation per minute
can be calculated from AIS data by taking the difference in heading between two consecutive AIS
records, dividing the difference in heading by the difference in time in seconds and then multiplying
this by 60. An example edge case exists when the heading of the first record is 5, and the heading
of the second record is 355. The difference between these two records is 350, while the ship has
probably only rotated by 10 degrees. If the difference between the two records is larger than 180,
the difference in heading is subtracted from 360 to account for the edge cases where the heading of
two records are both close to 360 and 0. The formula used for calculating the rotation between two
records is:

∆t = TSTAMP2 − TSTAMP1 (11)

∆h =

{
360− |h1 − h2|, if |h1 − h2| > 180

|h1 − h2|, otherwise
(12)

rotation =
∆h

∆t
× 60 (13)

Here ∆t stands for the difference in time, ∆h for the difference in heading, h1 for the heading of
record 1 and h2 for the heading of record 2. Using consecutive AIS record that are no further than
two minutes apart resulted in the best results.

Next to these target features, some additional input features are calculated from the AIS data. For each
target feature, the draught of the vessel at the moment that the vessel produced the target value is logged.
Furthermore, for each vessel the number of tugboats in the proximity is calculated at the moment the
maximum rotation value is logged. This value is calculated by using the latitude and longitude coordinates
in the AIS data to check within a radius of 600 meters, in a time interval of 1 minute before the max rotation
is logged, and 1 minute after the max rotation is logged if there are vessels present that transmit AIS data
with ship type 52, as this is the vessel code for tugboats.
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FFiigguurree 44..: Distributions of features calculated from AIS data. Taking the absolute maximum value seems 
more susceptible to outliers than taking the 0.999 quantile value.

The calculation of aforementioned target features can be influenced by missing values, or noise which 
is naturally present in AIS data [22]. In order to account for outliers that occur as a result of this, the 
0.999 quantile value for each feature is also calculated. Figure 4. shows the distributions of the target 
features for both the maximum value, and the 0.999 quantile value. As expected, most of the 0.999 quantile 
values seem to have a slightly lower value than the absolute maximum values. This suggests that using the 
absolute maximum value is more susceptible to outliers. In Section 4. the feature that yields the best result 
is determined.

33..22..  SSttaattiicc  ddaattaa

The second branch of data used in this research is static ship data. The dataset with static ship data comes 
from earlier work [5] where the data is provided by a reference database from C-Job Naval Architects. 
The dataset contains 230851 unique vessels, each described by 129 features. Examples of features are 
Length Overall (LOA), Depth (T), Breadth Overall (B), Dead Weight (DWT), Gross Tonnage (GT), Froude 
Number (Fn), but also more ship specific features l ike number of containers (TEU), or Bale cargo volume. 
Beause some features are more specific for certain ship types, not all features contain a value for each ship. 
After calculating the performance features from the AIS data as explained in Section 3.1., the instance 
is merged with additional information about the ship design from the reference database. Each instance 
in the resulting dataset now contains the features calculated from the AIS data, as well as the static ship 
information describing the ship’s design. As each row now describes the performance characteristics and 
design of a unique vessel, the dataset has reduced much in size, containing only 27343 rows.

33..33..  IImmppuuttiinngg  MMiissssiinngg  vvaalluueess

The reference database with static ship data, discussed in Section 3.2., contains many columns with 
missing values. A missing value can occur in two cases; if the feature is not applicable to a ship, the feature



15TH INTERNATIONAL SYMPOSIUM ON PRACTICAL DESIGN OF SHIPS AND OTHER FLOATING STRUCTURES - PRADS 2022

1520

 

29. TECHNICAL SESSIONS - ARTIFICIAL INTELLIGENCE, MACHINE LEARNING III

“number of lorries”for instance, is only applicable for vehicle carrier ships and not for other ship types. In
order to take account for this, for all ship types only the features that have a missing value percentage smaller
than a predetermined threshold are selected. After manually inspecting the number of missing values for
each ship type, the percentage is set to 30%. In almost all cases this percentage caused all features that are
applicable to a ship to be selected, without selecting inapplicable features.

The second case where missing values can occur is when the value is simply unknown. If a feature
value is unknown it can be derived from similar samples in the dataset. In order to impute the missing value
the k-Nearest Neighbour (KNN) imputing method [23] can be applied. This method assigns each sample
to k neighbours based on the Euclidean distance between the feature values and then fills in the missing
value as the mean feature value of the k neighbours. For categorical features, the feature values have been
transformed to numerical values.

4. Experiments & Results

In the experiments data from Container ships, General Cargo Ship Tween deck (GC ship tween deck),
Multi Purpose General Cargo Ship (MP general cargo ship), and Roll-on Roll-off cargo ships (Ro-Ro cargo 
ships) is analysed. Before the XAI and GSA techniques can be applied, a Multi-Output AutoML model 
is trained which is capable of predicting the speed and rotating target features. After training, in three 
experiments, XAI and GSA techniques are used to investigate which features have the most influence on 
the outcomes of the the machine learning models.

4.1. Multi-output AutoML model

A multi-output regressor is trained that predicts for one ship type all target features. The AutoML 
pipeline is implemented in Auto-sklearn 2.0 which requires the setting of only two hyperparameters; the 
time limit in seconds for finding appropriate models, and the per run time limit which is the time limit for a 
call to a single machine learning pipeline. The time limits are set as recommended in the documentation to 
respectively 7 hours, and 35 seconds. The dataset is split into a 70/30 train test split and the r2 scores on 
the test set are reported in Table 2.

Table 2.: r2 score of AutoML models on test set.
median cruising speed

0.6 0.7 0.8 0.9 max speed 0.999q max rot. max rot 0.999q
Container ship 0.52 0.67 0.72 0.68 0.67 0.52 0.56
GC ship tween deck 0.59 0.60 0.56 0.54 0.56 0.32 0.31
MP GC ship 0.52 0.47 0.39 0.32 0.34 0.27 0.26
Ro-Ro cargo 0.82 0.81 0.83 0.81 0.82 0.46 0.51

4.2. Sobol indices

The models described in Section 4.1. work in a black-box fashion, it accepts input and produces output, 
but it is not clear to the user how the model makes decisions in order to produce the output. In order to gain 
insight in which ship design parameters have influence on the performance of the entire fleet it is important 
to understand the working of the regression models. This subsection shows which input features explain 
the largest part of the variance of the model output, and thus which input features are most important for 
determining the value of the target features. For each ship type and target feature the first order, and total 
order Sobol index are calculated in order to gain insight in the effect of a feature with and without interaction 
with other features. As there exists very little difference between the resulting first order, and total order 
index, only the total order index is reported in Figure 5..
The plots show that for all target features for ship type Container ship the input feature length overall has the 
highest total order Sobol index. Although with lower index values than Container ships, GC ship tween
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“number of lorries”for instance, is only applicable for vehicle carrier ships and not for other ship types. In
order to take account for this, for all ship types only the features that have a missing value percentage smaller
than a predetermined threshold are selected. After manually inspecting the number of missing values for
each ship type, the percentage is set to 30%. In almost all cases this percentage caused all features that are
applicable to a ship to be selected, without selecting inapplicable features.

The second case where missing values can occur is when the value is simply unknown. If a feature
value is unknown it can be derived from similar samples in the dataset. In order to impute the missing value
the k-Nearest Neighbour (KNN) imputing method [23] can be applied. This method assigns each sample
to k neighbours based on the Euclidean distance between the feature values and then fills in the missing
value as the mean feature value of the k neighbours. For categorical features, the feature values have been
transformed to numerical values.

4. Experiments & Results

In the experiments data from Container ships, General Cargo Ship Tween deck (GC ship tween deck),
Multi Purpose General Cargo Ship (MP general cargo ship), and Roll-on Roll-off cargo ships (Ro-Ro cargo 
ships) is analysed. Before the XAI and GSA techniques can be applied, a Multi-Output AutoML model 
is trained which is capable of predicting the speed and rotating target features. After training, in three 
experiments, XAI and GSA techniques are used to investigate which features have the most influence on 
the outcomes of the the machine learning models.

4.1. Multi-output AutoML model

A multi-output regressor is trained that predicts for one ship type all target features. The AutoML 
pipeline is implemented in Auto-sklearn 2.0 which requires the setting of only two hyperparameters; the 
time limit in seconds for finding appropriate models, and the per run time limit which is the time limit for a 
call to a single machine learning pipeline. The time limits are set as recommended in the documentation to 
respectively 7 hours, and 35 seconds. The dataset is split into a 70/30 train test split and the r2 scores on 
the test set are reported in Table 2.

Table 2.: r2 score of AutoML models on test set.
median cruising speed

0.6 0.7 0.8 0.9 max speed 0.999q max rot. max rot 0.999q
Container ship 0.52 0.67 0.72 0.68 0.67 0.52 0.56
GC ship tween deck 0.59 0.60 0.56 0.54 0.56 0.32 0.31
MP GC ship 0.52 0.47 0.39 0.32 0.34 0.27 0.26
Ro-Ro cargo 0.82 0.81 0.83 0.81 0.82 0.46 0.51

4.2. Sobol indices

The models described in Section 4.1. work in a black-box fashion, it accepts input and produces output, 
but it is not clear to the user how the model makes decisions in order to produce the output. In order to gain 
insight in which ship design parameters have influence on the performance of the entire fleet it is important 
to understand the working of the regression models. This subsection shows which input features explain 
the largest part of the variance of the model output, and thus which input features are most important for 
determining the value of the target features. For each ship type and target feature the first order, and total 
order Sobol index are calculated in order to gain insight in the effect of a feature with and without interaction 
with other features. As there exists very little difference between the resulting first order, and total order 
index, only the total order index is reported in Figure 5..
The plots show that for all target features for ship type Container ship the input feature length overall has the 
highest total order Sobol index. Although with lower index values than Container ships, GC ship tween

decks has depth as the highest ranked Sobol index for most speed related target features. Furthermore, the
draught related features obtain the highest Sobol index values for the target features related to rotation for
this ship type. MP general cargo ships show a less clear picture of which features have the highest indices,
but in most cases length overall is the most important input feature for both speed and rotation related target
features. For Ro-Ro cargo ships, the Sobol indices show that length overall is the most important feature
for all speed related target features, while also being one of the most important for both rotation related
target features.
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(a) Container ship
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(b) GC ship tween deck
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(c) MP general cargo ship
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FFiigguurree 55..: Total order Sobol indices and confidence intervals for all ship types and target features. 
Sample size used for calculating the indices is 212.
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4.3. ALE plots

The Sobol indices give insights in which input features have the largest influence on the model output 
variance. In order to investigate in which way these features influence the model o utput, ALE plots are 
created for the feature with the highest ranked total order Sobol index. The plots show what kind of relation 
exists between changing the value of an input feature and the effect of the model prediction on the target 
feature. For all ship types and target features the influence of i nput parameters on t he prediction of the 
AutoML model created in Section 4.1. is visualised by creating ALE plots.
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FFiigguurree 66..: ALE plots for Container ships for input feature length overall. Shaded areas are the 95% 
confi-dence intervals calculated over the model predictions.

4 6 8 10 12 14 16 18 20

depth

0.2

0.0

0.2

0.4

E
f
f
e
c
t
 
o
n
 
p
r
e
d
i
c
t
i
o
n
 
(
S
O
G
)

median(0.6 *SOG

max

<SOG<SOG

max

)

median(0.7 *SOG

max

<SOG<SOG

max

)

median(0.8 *SOG

max

<SOG<SOG

max

)

median(0.9 *SOG

max

<SOG<SOG

max

)

SOG

max

2 3 4 5 6 7 8 9 10

DRAUGHT_at_max_rotation

10

8

6

4

2

0

2

E
f
f
e
c
t
 
o
n
 
p
r
e
d
i
c
t
i
o
n
 
(
R
o
t
.
 
d
e
g
r
e
e
/
m

i
n
)

max_rotation

max_rotation0.999q

FFiigguurree 77..: ALE plots for GC ship tween decksfor depth (left) and draught at max rotation (right). Shaded 
areas are the 95% confidence intervals calculated over the model predictions.

Figure 6. shows that there exists a positive trend between the overall length of container ships and the 
speed related target features. The plots show an oscillating line with a confidence i nterval, a s A LE plots 
calculate an average of the target feature over samples that lie in a small interval. What can also be noticed 
is that there exists little difference between the intercept of the ALE lines. This can be attributed to the fact 
that the y-axes for ALE plots show only the effect on prediction. The ALE plot for rotation related features 
shows that the predicted value of degrees of rotation per minute decreases when the overall length of a ship 
increases.

In Figure 7. the plots show that for GC ship tween decks there exists a positive trend between the 
predicted speed related target features and the depth of the ship, although the effect is very small as it 
ranges from −0.3 to 0.4 over the complete range of depth values. The ALE plot for rotation related target 
features shows little to no effect on the prediction for ships with a draught at max rotation between 2 and 6
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4.3. ALE plots

The Sobol indices give insights in which input features have the largest influence on the model output 
variance. In order to investigate in which way these features influence the model o utput, ALE plots are 
created for the feature with the highest ranked total order Sobol index. The plots show what kind of relation 
exists between changing the value of an input feature and the effect of the model prediction on the target 
feature. For all ship types and target features the influence of i nput parameters on t he prediction of the 
AutoML model created in Section 4.1. is visualised by creating ALE plots.
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FFiigguurree 66..: ALE plots for Container ships for input feature length overall. Shaded areas are the 95% 
confi-dence intervals calculated over the model predictions.
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FFiigguurree 77..: ALE plots for GC ship tween decksfor depth (left) and draught at max rotation (right). Shaded 
areas are the 95% confidence intervals calculated over the model predictions.

Figure 6. shows that there exists a positive trend between the overall length of container ships and the 
speed related target features. The plots show an oscillating line with a confidence i nterval, a s A LE plots 
calculate an average of the target feature over samples that lie in a small interval. What can also be noticed 
is that there exists little difference between the intercept of the ALE lines. This can be attributed to the fact 
that the y-axes for ALE plots show only the effect on prediction. The ALE plot for rotation related features 
shows that the predicted value of degrees of rotation per minute decreases when the overall length of a ship 
increases.

In Figure 7. the plots show that for GC ship tween decks there exists a positive trend between the 
predicted speed related target features and the depth of the ship, although the effect is very small as it 
ranges from −0.3 to 0.4 over the complete range of depth values. The ALE plot for rotation related target 
features shows little to no effect on the prediction for ships with a draught at max rotation between 2 and 6

meters. Between 6 and 8 meters there is a sharp drop in effect on predicted degrees of rotation per minute.
From 8 to 10 meters there is again little to no effect on the predicted target value.
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FFiigguurree 88..: ALE plots for MP general cargo ships with input feature length overall. Shaded areas are the 
95% confidence intervals calculated over the model predictions.
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FFiigguurree 99..: ALE plots for Ro-ro cargo ships for input feature length overall (left) and 
draught at max rotation (right). Shaded areas are the 95% confidence intervals calculated over the model 

predictions.

The ALE plots for Multi Purpose general cargo ships can be found in Figure 8.. Here the plots again 
show a positive trend between the overall length of a ship and the predicted target value for speed related 
target features. Furthermore, it can be noticed that for rotation related features the overall length of a 
ship has a negative effect on predicted degrees of rotation per minute. Left subfigure i n F igure 8 . shows 
a relatively large difference between ships with an overall length between 80 and 140 meters. For ships 
longer than 140 meters the plot shows that there is little to no difference in prediction.

Figure 9. shows the ALE plots for Ro-ro Cargo ships, where the left subfigure s hows a  p ositive trend 
between the overall length of the ships and the speed related target features, while the right subfigure shows 
a negative trend between the predicted degrees of rotation per minute and the draught at max rotation of a 
ship.

4.4. Partial dependence plots

The influence of input features on the model output can also be visualised with PDP’s. In contrast 
to ALE plots, PDP’s show the absolute predicted value on the y-axis instead of the effect on prediction. 
Figure 10. shows the PDP’s for container ships for both speed related and rotation related target features.
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The features plotted on the x-axis are the highest ranked total order Sobol indices as shown in Figure 5..
In the left subfigure of Figure 10. the PDP shows that there is a positive correlation between the overall
length of a vessel and the speed related target features, just as the ALE plots showed. Right subfigure of
Figure 10. shows a negative correlation between the overall length and rotational capabilities of a vessel,
which is also similar to what the ALE plots showed. In order to compare the influence of the overall length
on the maximum speed of all vessels simulatenously, the PDP plots are merged together in Figure 11. The
plot shows that GC ship tween deck, and MP cargo ship are shorter vessels and that their length has a lesser
impact on the SOGmax than Container ships and Ro-Ro cargo ships.
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FFiigguurree 1100..: PDP’s for container ships for input feature length overall for the speed related target features 
(left) and the rotation related target features (right).
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FFiigguurree 1111..: PDP for all investigated ship types showing the influence of the overall length of 
a vessel on the prediction of SOGmax.
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The features plotted on the x-axis are the highest ranked total order Sobol indices as shown in Figure 5..
In the left subfigure of Figure 10. the PDP shows that there is a positive correlation between the overall
length of a vessel and the speed related target features, just as the ALE plots showed. Right subfigure of
Figure 10. shows a negative correlation between the overall length and rotational capabilities of a vessel,
which is also similar to what the ALE plots showed. In order to compare the influence of the overall length
on the maximum speed of all vessels simulatenously, the PDP plots are merged together in Figure 11. The
plot shows that GC ship tween deck, and MP cargo ship are shorter vessels and that their length has a lesser
impact on the SOGmax than Container ships and Ro-Ro cargo ships.
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FFiigguurree 1100..: PDP’s for container ships for input feature length overall for the speed related target features 
(left) and the rotation related target features (right).
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FFiigguurree 1111..: PDP for all investigated ship types showing the influence of the overall length of 
a vessel on the prediction of SOGmax.

take account for this, the 0.999th quantile value is used. Analyzing the multi-output AutoML model with 
GSA and XAI techniques shows how the multiple targets change to a permutation of the input 
features. The Sobol indices for these models showed that for Container ships, the overall length of the 
ship is the most important input feature for both speed related and rotation related target features. For GC 
ship tween deck and Ro-ro cargo the results also show that the overall length is the most important 
input feature for the speed related target features. For MP general cargo ships the depth is the most 
important input feature for the speed related target feature, while the overall length is the most important 
feature for rotation. For GC ship tween deck, and Ro-ro cargo ships the Sobol indices showed that the 
draught at max rotation is the most important input feature.

The GSA and XAI methods used in Section 4., show how the input features influence the output of 
the model, and thus how the design parameters influence t  he s  peed a  nd r  otational c  apabilities o  f a  s h 
ip. The ALE plots and PDP’s showed a positive trend between the predicted speed capabilities and 
overall length of ships. An increase of the overall length of a ship often means that the breadth of the 
ship increases as well, but only up to a certain level, as ships often have to be narrow enough to fit t 
hrough l  ocks used in busy sailing routes. Increasing the width of a ship is associated with the largest 
increase in resistance called wave resistance. On the other hand, increasing the length of a ship is 
associated with a much smaller increase in resistance called boundary layer induced friction [24]. To 
account for the increase in resistance for longer and wider ships, these vessels are often installed with 
extra engine power. Even though the engine power was one of the input features, it is never selected 
as most important input feature. As the breadth of Container ships tend to max out around 60 meters, all 
extra engine power installed after this can be used to compensate for extra length of a ship. As the extra 
resistance as a result of a longer ship is much smaller than that of a wider ship, the results show that longer 
container ships exploit the extra engine power in a more efficient w  ay t  han s  horter o  r b  roader s h ips. 
T  he i  nfluence of th e ov  erall le ngth of a ve  ssel on the rotational capabilities of Container ships can be 
explained by the fact that a shorter ship has to displace less water when turning than a longer ship. These 
explanations of the importance of the overall length of a ship are confirmed by the ALE plots and PDP’s 
which show that there exists a negative t rend between the rotational capabilities of Container ships and 
the overall length.

A limiting factor in this research was that some important information, such as accurate weather data, 
or information about a ships engine settings was not available. Furthermore, the coverage of AIS hub 
is mainly focused on coastal waters, and does not cover the open oceans between the continents. In 
future work, using a source of AIS data that has more coverage might increase the quality of the data and 
thus the performance of the regression models.

5. Discussion & Conclusion

The experiments in Section 4.1. showed how for Container ships, MP cargo ships, GC ship tween deck,
and Ro-ro cargo ships regression models can be created for speed and rotation related target features. In 
some cases taking the absolute maximum value for a target feature was susceptible to outliers. In order to
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