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Abstract. We propose a new way of studying the Higgs potential at extremely high energies.
The Standard Model (SM) Higgs boson, as a light spectator field during inflation in the early
Universe, can acquire large field values from its quantum fluctuations which vary among
different causal (Hubble) patches. Such a space dependence of the Higgs after the end
of inflation leads to space-dependent SM particle masses and hence variable efficiency of
reheating, when the inflaton decays to Higgsed SM particles. Inhomogeneous reheating results
in (observable) temperature anisotropies. Further, the resulting temperature anisotropy
spectrum acquires a significant non-Gaussian component, which is constrained by Planck
observations of the Cosmic Microwave Background (CMB) and potentially detectable in
next-generation experiments. Constraints on this non-Gaussian signal largely exclude the
possibility of the observed temperature anisotropies arising primarily from Higgs effects.
Hence, in principle, observational searches for non-Gaussianity in the CMB can be used to
constrain the dynamics of the Higgs boson at very high (inflationary) energies.
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1 Introduction

Inflation, an early period of accelerated expansion, was proposed to explain the homogeneity,
isotropy, and flatness of the Universe [1–3]. A simple inflationary mechanism consists of
a scalar field, the inflaton, rolling down a nearly flat potential that dominates the energy
density of the Universe [4, 5]. Quantum fluctuations of the inflaton field give rise to density
perturbations that can seed the formation of large scale structures in the Universe including
galaxies and clusters. Temperature anisotropies in the Cosmic Microwave Background (CMB)
sourced by these density fluctuations provide among the strongest observational probes
of inflation.

After inflation, the Universe must transition into the radiation dominated era via a
reheating mechanism, during which the inflaton decays into light Standard Model (SM)
particles or an intermediate sector. These decays can either occur perturbatively [6, 7] or lead
to resonant particle production [8, 9]. If the reheating process is inhomogeneous, it provides
a second mechanism for generating density perturbations (in addition to those described
above); these can also seed the growth of structure and produce observable anisotropies in
the CMB [10–16].

The standard inflationary paradigm, in which a single inflaton field slowly rolls down
a flat potential, results in perturbations with a highly Gaussian probability distribution.
CMB observations to date are consistent with Gaussianity; indeed, the Planck satellite has
placed significant bounds on non-Gaussianity (NG) that already rule out many non-standard
models of inflation. A future detection of NG could challenge this paradigm and teach us
about the nature of inflation. Inflationary scenarios resulting in significant NG include those
with multiple fields [17], non-Bunch-Davies initial conditions [18, 19], non-canonical kinetic
terms [20], or non-linear growth of perturbations after inflation [21, 22]. Large NG can also
arise if reheating after inflation is inhomogeneous, varying from one causal (Hubble) region to
another — as studied in this work.

In this paper we study the NG caused by effects of the Higgs boson of the Standard
Model (SM) of particle physics during reheating [23–28]. Specifically, the Higgs boson can be
responsible for inhomogeneous reheating and the corresponding generation of (non-Gaussian)
density perturbations. Keeping our discussion as general as possible, we remain agnostic
as to the inflationary model, as long as it reheats via perturbative inflaton decay to SM
particles coupled to the Higgs boson. Our scenario is minimal since we do not introduce
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any new particles beyond the SM apart from the inflaton itself. Here the Higgs is not the
inflaton; instead it is a light spectator field with vastly subdominant energy density compared
to the inflaton.

We also assume that quantum fluctuations of the inflaton yield the nearly scale invariant
and highly Gaussian spectrum of density perturbations characteristic of the single field
slow-roll inflation paradigm and consistent with observations of the CMB. In addition to
perturbations associated with the quantum fluctuations of the inflaton, the effects of the
Higgs boson on reheating can induce a independent (i.e. uncorrelated) contribution to the
perturbation spectrum. We demonstrate that the density perturbations associated with
reheating can induce a large NG signal, even when the amplitude of the perturbations is much
smaller than that of perturbations associated with the quantum fluctuations of the inflaton.

The Higgs field acquires large quantum fluctuations during inflation. As a result, the
Higgs field has different values in parts of the Universe which become causally disconnected
from one another during inflation [10]. Since the Higgs imparts mass to SM particles, reheating
can be delayed until the SM masses become lower than the inflaton mass, as we showed
in ref. [29]. Further, spatial fluctuations in the Higgs values lead to spatial fluctuations in
particle masses, and the reheating process becomes inhomogeneous. Inhomogeneous reheating
caused by the probabilistic behavior of a light scalar field, in this case the Higgs boson, is
called modulated reheating.

In ref. [30] we computed the amplitude of Higgs-induced temperature anisotropies and
used CMB data to constrain model parameters. In this work, we show that the non-linearity of
Higgs-modulated reheating processes can be the cause of significant NG in the resulting density
perturbation spectrum. We find that CMB bounds on NG set by the Planck measurements [31]
provide even more powerful constraints than those obtained in ref. [30] and, thus, exclude
the possibility of perturbations from Higgs-modulated reheating providing the dominant
contribution to the observed power spectrum of temperature anisotropies. By connecting
primordial NG to SM parameters such as the Higgs self-coupling, we demonstrate that future
NG signals can be used to probe the evolution of the Higgs field during inflation, thereby
probing its potential over energies that are otherwise inaccessible.

Previous works have calculated the NG signal associated with modulated reheating
due to the particle masses induced by a light spectator SM Higgs boson [27, 28]. While a
detailed comparison is beyond the scope of this work, we note that previous calculations have
utilized the mean field approach when considering the stochastic dynamics of spectator Higgs
during inflation and the δN formalism for the associated spectrum of density perturbations.
Alternatively, we modify the approach of ref. [11] to track the growth of density perturbations
from the end of inflation on superhorizon scales in causally disconnected Hubble patches. To
set an initial condition for the post-inflationary evolution of the Higgs field in each Hubble
patch, we draw from the equilibrium distribution of field values associated with the stochastic
dynamics of light spectator fields during inflation. This patch-by-patch method typically
results in NG signals which yield constraints on Higgs-induced temperature anisotropies that
are significantly more stringent compared to previous calculations.

The rest of the paper is outlined as follows. In section 2, we describe our calculation
of the density perturbations associated with modulated reheating. We then describe the
corresponding temperature anisotropies in the CMB in section 3. In section 4, we conclude
with a brief discussion of our results.
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2 Calculation of density perturbations

2.1 Higgs field fluctuations

We fix the background value of the Higgs doublet and its potential as1

Φ = 1√
2

(0
h

)
, VH(h) = λ

4

(
Φ†Φ− ν2

2

)2

≈ λ

4 h
4 , (2.1)

where ν = 246GeV, λ is the Higgs self-coupling, and h is a real scalar field.
Due to quantum fluctuations of the Higgs field during inflation, super-horizon Higgs

modes follow a random walk during the final stages of inflation. As a result, the Probability
Density Function (PDF) describing the Higgs field at the end of inflation is [37]

geq(h)=
(

32π2λI
3

)1/4 1
Γ(1/4)HI

exp
(
−2π2λIh

4

3H4
I

)
, (2.2)

where Γ(1/4) ≈ 3.625 and λI , HI are the self-coupling and the Hubble rate at the end of
inflation, respectively.2 Although the method we outline can generally be applicable to any
inflationary model, we focus on models in which the Hubble scale at the start of reheating is
roughly equal to the inflaton mass, i.e. HI ' mφ, a choice typically made since it applies to
many single field models in which observables (e.g. the tensor-to-scalar ratio) are well within
reach of next-generation CMB experiments.

2.2 Patch-by-patch method

In our novel approach, we treat each Hubble patch as a homogeneous separate Universe [38],
where the energy densities in the i-th patch for the inflaton ρiφ and for radiation ρir evolve as

ρ̇iφ = −3H iρiφ − Γiφρiφ , (2.3)
ρ̇ir = −4H iρir + Γiφρiφ , (2.4)

H i =

√
8πG

3
(
ρiφ + ρir

)
. (2.5)

Here, H i is the Hubble scale in the i-th patch, G is Newton’s constant, and a dot denotes
a derivative with respect to cosmic time. The decay rate of the inflaton (matter) into SM
Higgsed fermions (radiation) is [29]

Γiφ = Γ0

(
1− 2y2(hi)2

m2
φ

)3/2

Θ
(
m2
φ − 2y2(hi)2

)
, (2.6)

1Assuming the central values of the top quark and Higgs masses, the SM Higgs potential becomes unstable
at inflation scales & 1011 GeV [32–35]. Various mechanisms have been proposed to stabilize the electroweak
(EW) vacuum at the inflation scale, including couplings between the Higgs and the inflaton (for example, see
ref. [36]). However, the SM Higgs potential can also maintain stability up to ∼ 1015GeV for a top quark mass
3σ below the central value. In order to emphasize the effects of the Higgs on the temperature fluctuations
observed in the CMB without direct couplings to the inflaton, we assume the latter scenario and will consider
the former in future work.

2We neglect the bare Higgs mass compared to the self-interaction term and consider a stabilized Higgs
potential λI > 0 during inflation.
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where Γ0 is the (unblocked) decay rate of the inflaton for hi → 0 and the second factor
corresponds to a Yukawa-like coupling3 between the inflaton and fermions. The fermion mass
in each Hubble patch is determined by the local value of the Higgs field hi as mi

f = y |hi|/
√

2,
where y is the associated SM Yukawa coupling. After inflation, the Higgs field in each Hubble
patch evolves as [35, 39]4

ḧi + 3H iḣi + λI
(
hi
)3

= 0 . (2.7)

Considering a representative sample of Np = 200 causally disconnected Hubble patches,
we numerically evolve eqs. (2.3)–(2.7) in each patch, randomly drawing the initial condition
for the Higgs field from the PDF in eq. (2.2). The distributions of the inflaton and radiation
energy densities are calculated at each time and the averages of the density distributions over
all patches are given by ρ̄s ≡

∑Np
i=1 pi ρ

i
s/N (s ∈ {φ, r}), where the weight pi is extracted from

geq(h) and N =
∑Np
i=1 p

i. Density perturbations are then defined as δis ≡ ρis/ρ̄s − 1. Since we
assume the Higgs PDF remains in equilibrium as all observable scales exit the horizon, the
spectrum of density perturbations is scale invariant in the pure de-Sitter limit.

The gauge-invariant Bardeen parameter [40] produced by Higgs effects in each patch,
ζiH, is obtained by solving [11, 30]

Φ̇i
H = −H iΦi

H −
4πG
3H i

(
ρ̄φδ

i
φ + ρ̄rδ

i
r

)
, (2.8)

ζiH = Φi
H −

ρ̄φδ
i
φ + ρ̄rδ

i
r

3ρ̄φ + 4ρ̄r
, (2.9)

where Φi
H is the gravitational potential perturbation. Figure 1 shows the PDF of the

Bardeen parameter g(ζH) at N = 1, 3, 8 e-folds after the end of inflation for y = 10−2,
Γ0 = 10−2mφ, and λI = 10−2. For visualisation, each PDF is divided by its maximum values
gmax(N = 1) ' 6.7× 105, gmax(N = 3) ' 6.0× 104, and gmax(N = 8) ' 2.6× 104. The PDF
initially broadens with increasing N , but no longer changes much once N & 8 (with only
percent level changes of the standard deviation

√
〈ζ2

H〉 at later times).
The (local) NG of the perturbation spectrum corresponding to the final Bardeen param-

eter in each Hubble patch, ζif , is quantified by the non-linearity parameter fNL, defined via

g(ζf ) = gG(ζf ) + 3
5fNL

[
g2
G(ζf )− 〈g2

G(ζf )〉
]
, (2.10)

where gG(ζf ) is a Gaussian PDF with mean 〈gG(ζf )〉 and variance 〈g2
G(ζf )〉, and 〈. . .〉 denotes

averaging across all patches. Given the (near) scale invariance of both perturbations arising
3Yukawa couplings of a SM singlet inflaton to SM fermions can be provided for by interactions involving

new degrees of freedom with dynamics that are only relevant at energies well above the inflation scale. For
instance, a dimension-5 effective operator of the form φSf̄f/Λ could be generated with a coupling to a scalar
field S, which carries the relevant SM quantum numbers to preserve gauge invariance. Rather than the SM
Higgs boson, S could be a particle with identical SM charges and a mass sufficiently heavy to suppress quantum
fluctuations during inflation. For a characteristic scale of the new dynamics Λ and a vacuum expectation value
〈S〉 above the inflation scale, the relevant Yukawa coupling would be yφ ∝ 〈S〉/Λ.

4We assume that the Higgs oscillates slowly relative to the Hubble rate and do not explore the case in
the opposite limit where the Higgs field oscillates more rapidly. In ref. [30], we show that the results for the
temperature fluctuation amplitude are nearly identical by assuming either slow or rapid Higgs oscillations. We
have verified that taking either limit for Higgs oscillations yields similar results for the NG and only present
one case for clarity.
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Figure 1. The PDF of the Bardeen parameter ζH at N = 1, 3, 8 e-folds after the end of inflation (blue,
red and green lines, respectively), for y = 10−2, Γ0 = 10−2 mφ, and λI = 10−2. Note that we only
consider density perturbations from Higgs-modulated reheating, as defined in eq. (2.9). For better
visualization, the PDFs are rescaled by their maximum value (and hence plotted with values between
0 and 1). The colored regions show the 1σ regimes for the three distributions and the associated root
mean squared values are shown in the legend. The step-like behavior is a numerical artifact arising
from the binning process.

from Higgs-modulation effects and those associated with the quantum fluctuations of the
inflaton, we can make an order of magnitude estimate for the non-linearity parameter [41]

fNL ≈
5
18
S
ζ4

rms
, (2.11)

where ζ2
rms ≡

〈
g2 (ζf )

〉
and the skewness of g(ζf ) is

S ≡
〈
g3 (ζf )

〉
= 1
N

Np∑
i=1

pi
[
ζif − ζ̄f

]3
. (2.12)

In principle, contributions to the non-linearity of the perturbation spectrum arising
from both the quantum fluctuations of the inflaton and inhomogeneous reheating should
be taken into account. However, in order to simplify our calculations and elucidate the
role of Higgs-modulated reheating on the generation of primordial NG, we assume that the
spectrum of perturbations from inflaton fluctuations is highly Gaussian, so that the NG signal
is dominated by the reheating dynamics. With this assumption, the skewness S in eq. (2.12)
is solely determined by the skewness of the Higgs-induced density perturbation distribution

– 5 –
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Figure 2. The skewness SH of the reheating-induced curvature-perturbation spectrum, as a function
of the Yukawa coupling y, for different values of the unblocked inflaton decay rate Γ0 (see eq. (2.6)).
The latter is expressed in units of the inflaton mass, which we take to be equal to the Hubble scale at
the end of inflation. Solid curves correspond to initial Higgs values drawn from the distribution of
eq. (2.2), while dashed curves correspond to a Gaussian initial PDF for the Higgs field.

SH. In figure 2, the solid curves show the skewness as a function of the Yukawa coupling y
and the unblocked inflaton decay rate Γ0, with the initial Higgs values sampled from the PDF
of eq. (2.2).

We can estimate the contribution to the skewness of the PDF of density perturbations
from Higgs-modulated reheating for the most relevant parameter space discussed in the next
section by fitting our numerical results for mφ = HI and λI = 10−2,

|SH| ' 625.0
(

Γ0
mφ

)2.9

y5.7 , (2.13)

which is valid over 10−3 ≤ y ≤ 1 and 10−7 ≤ Γ0/mφ ≤ 10−1. The skewness is enhanced for
inflaton couplings to SM fermions with larger Yukawa couplings and for larger perturbative
decay widths. As we discuss in detail in ref. [30], the effects of the Higgs on reheating are
more significant for the respective larger fermion masses in each Hubble patch and the faster
(unblocked) decay rate of the inflaton.

3 Constraints on temperature anisotropies

The PDF of temperature fluctuations g(T ) on the largest angular scales observed in the CMB
is derived from g(ζf ) using the relation between temperature fluctuations and the final value

– 6 –
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Figure 3. Parameter constraints from requiring that the amplitude [30] and NG of temperature
fluctuations from Higgs-modulated reheating do not exceed CMB observations. Γ0 is the unblocked
inflaton decay rate; y is the Yukawa coupling of SM particles to the Higgs; and TH ≡ ∆T/T |H is
the overall temperature fluctuation induced by the Higgs modulation of reheating [30]. We take the
Higgs self-coupling and the Hubble parameter at the end of inflation to be λI = 10−2 and HI = mφ,
respectively. The red region corresponds to Higgs-induced temperature inhomogeneities TH which
are larger than those observed in the CMB. The white and green regions satisfy TH . 10−5 and are
allowed by observations of the temperature fluctuation amplitude. The hatched region at TH . 10−7

indicates the regime in which Higgs effects cannot be observed, since the temperature fluctuations
TH are smaller than the ∼ 1% precision of Planck. The black line labeled “|fNL| = 5” represents the
contour of constant fNL corresponding to the lower limit set by the Planck satellite; i.e. the region to
the right of that black line has already been ruled out.

of the Bardeen parameter in the i-th Hubble patch after the end of reheating [42, 43]

T i ≡ ∆T
T

∣∣∣i =
ζif
5 . (3.1)

Similar to the PDF of density perturbations, the variance of the associated PDF of temperature
fluctuations is given by T 2

rms ≡
〈
g2 (T )

〉
In figure 3, we show the results for our calculations of the temperature fluctuations

arising from Higgs-modulated reheating while fixing λI = 10−2 and HI = mφ. The color
contours show the amplitude of temperature fluctuations (see ref. [30] for details) when
scanning over the parameters (y,Γ0). In the red region, the Higgs-induced perturbations are
larger than what is observed in the CMB, TH & TCMB, while in the green region TH . TCMB.
Hence, both white and green regions are allowed by the amplitude of temperature fluctuations
alone. The hatched region on the bottom left of figure 3 corresponds to TH . 10−7. Any
contribution of Higgs effects to the total temperature fluctuation spectrum associated with

– 7 –
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this hatched region will not be detectable, being below the O(1%) sensitivity of the Planck
satellite [44]. We focus our attention on the green region and take the total temperature
fluctuation amplitude at the largest angular scales to match the normalization of the observed
power spectrum, Trms = TCMB ∼ 10−5.

The region where TH . TCMB can nonetheless lead to a large NG signal. The black
line in figure 3 shows the parameter choices corresponding to |fNL| = 5, calculated using
eq. (2.11). The current limit on local-type NG from the Planck analysis reads |fNL| . 5 and,
thus, the region to the right of the line labeled “|fNL| = 5” is excluded. These results improve
over the bounds we obtained in ref. [30] from solely using the amplitude of temperature
fluctuations. For a given value of y, the bounds on Γ0 from NG are nearly two orders of
magnitude stronger than what is obtained from demanding TH . TCMB. Furthermore, the
constraints from the NG signal imply that the dominant contribution to the observed power
spectrum of temperature anisotropies cannot arise from Higgs-modulated reheating.

Here, we should note that our bound in figure 3 labeled “|fNL| = 5” is very close to
the limit below which Higgs effects on NG cannot be observed. In fact, regardless of its
primordial value, small NG of |fNL| . O(1) will always be amplified to O(1) by secondary
non-linear effects occurring before CMB decoupling [41]. The same effects make the primordial
NG produced by quantum fluctuations of the inflaton in the standard slow-roll paradigm
undetectable. As a result, a future detection of |fNL| ∼ O(1) alone cannot confirm whether a
NG signal has originated from inflation or reheating. At least for the scale invariant spectrum
of density perturbations considered in this work, the parameter space of interest for further
NG calculations and potential future observations of Higgs effects on NG is therefore limited.

Bounds on the combination of Γ0 and y from the NG of the temperature fluctuations
produced by Higgs-modulated reheating can be used to constrain the reheat temperature
for various SM decay channels of the inflaton. In general, lowering Γ0 for a given choice of
y suppresses the amount of NG, as shown in figure 3. However, Γ0 depends on the reheat
temperature as Treh ∝

√
Γ0 and cannot be arbitrarily lowered without clashing with other

early universe processes.
As an example, a fit for the dependence of fNL on the parameters when the inflaton

decays primarily to top quarks (y = 1) is

|fNL| ' 5
(

10−2

λI

)0.9 (
Treh

5× 1011 GeV

)5.3
(

1013 GeV
mφ

)2.7

. (3.2)

This fit is accurate at the 10% level for 1 . |fNL| . 100. For many inflation models, such
as natural inflation with a cosine potential [45], mφ typically lies in the range 1011−13 GeV.
Assuming λI = 10−2, the requirement that fNL ≤ 5 can translate into an upper bound on
the reheat temperature Treh ≤ O(1011) GeV, which can conflict with the lower bound on Treh
arising from models of thermal leptogenesis (see e.g. refs. [46, 47]). More generally, the reheat
temperature in similar inflationary models with mφ ' HI will become more constrained by
the NG arising from Higgs-modulated reheating as the scale of inflation becomes smaller.

Our model links the reheating temperature (through Γ0) and the Higgs potential (through
λI) for a given particle species (through y). If future CMB experiments measure fNL and
hint at the value of HI through a detection of tensor modes, the method we presented would
link the reheat temperature to the Higgs self-coupling for a given inflaton decay channel.
When we incorporate limits on the reheat temperature from other early universe processes,
like leptogenesis, a detection of fNL would lead to a lower bound on λI , since lowering the

– 8 –
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value of λI leads to both increased inhomogeneities ∆T/T and increased values of fNL. In
principle, this would even allow us to probe the Higgs potential at inflationary energies and
to constrain new physics in between the EW and inflation scales through the renormalization
group (RG) running of λ.5

3.1 Assumptions and parameter dependence

Given the constraints derived using the NG signal of Higgs-modulated reheating, it is natural
to ask whether the specific choice of the Higgs PDF in eq. (2.2) is crucial. We repeated
the computation by substituting eq. (2.2) by a Gaussian PDF with the same variance. The
dashed lines in figure 2 show the corresponding results. In fact, a Gaussian initial PDF results
in slightly higher skewness than the PDF given by eq. (2.2), all other parameters being equal.
Eq. (2.6) shows that Γiφ is a non-linear function of hi, which is the main contributor to the
skewness SH. Hence, eq. (2.13) is robust, up to small corrections, for initial PDFs that differ
in shape but have the same variance.

The PDF in eq. (2.2) has been derived under the assumption of a pure de-Sitter space,
which is only approximately true during inflation. A more realistic PDF for a light spectator
field could depend on the exact inflationary evolution, even resulting in much larger field
displacements than what found from eq. (2.2) [48]. Furthermore, the stochastic evolution
of the Higgs field during inflation is closer to a four-dimensional random walk than a one-
dimensional one, and as a result larger field values are expected [49]. Taking the exact
spectator evolution of the Higgs doublet into account would lead to tighter constraints for
wide classes of inflationary models. Since our current paper attempts to provide a generic,
conservative, and model-independent picture, we leave this analysis for future work.

4 Conclusions

In this paper, we show how to use CMB observations of primordial non-Gaussianity (NG) to
probe the SM Higgs dynamics during inflation. We have uncovered a generic phenomenon
that appears during reheating in any model of inflation where the inflaton decays directly to
SM particles. It could also be relevant for reheating into a similarly Higgsed sector of new
particles. During inflation, the Higgs boson obtains space dependent quantum fluctuations
that lead to inhomogeneous reheating. Both the amplitude (studied in our previous paper [30])
and NG of the associated temperature anisotropies are detectable in the CMB, with the
strongest constraints arising from NG, as shown in figure 3. Thus, perturbations from the
effects of the Higgs during reheating cannot provide for the dominant contribution to the
observed power spectrum of temperature anisotropies.

Our method allows for a number of generalizations and applications. Detailed information
from the Higgs PDF beyond the de-Sitter approximation could further improve the constraints.
Further progress can be also made by considering different shapes of the bispectrum generated
through Higgs-modulated reheating, as well as higher-order correlations functions, which can
be trivially computed in our formalism. Such improvements will allow us to use the full power
of the CMB data acquired by Planck and future experiments.

Our results depend on the details of the Higgs dynamics during inflation and can be used
to constrain unknown physics above the electroweak scale. This includes inferring the RG flow

5We assume that the SM Yukawa couplings do no evolve significantly due to the RG running between the
EW scale and inflation scale. On the other hand, the self-coupling of the SM Higgs λ evolves significantly with
scale and can receive relevant RG contributions from new physics above the EW scale.
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of the Higgs self-coupling at high energies and the presence of additional Planck-suppressed
operators and stabilizing terms in the Higgs potential (see, for example [50, 51]). Extending
our formalism to include scale information will allow us to detect scale-dependent features,
such as couplings of the Higgs to the inflaton, leading to a time-dependent effective Higgs
mass during inflation. In anticipation of next generation CMB experiments which are able
to better constrain primordial NG, the effects of Higgs-modulated reheating could provide a
radically new window into particle physics at the inflation scale.
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