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Abstract. All single-field inflationary models invoke varying degrees of tuning in order to
account for cosmological observations. Mechanisms that generate primordial black holes
(PBHs) from enhancement of primordial power at small scales posit inflationary potentials
that transiently break scale invariance and possibly adiabaticity over a range of modes. This
requires additional tuning on top of that required to account for observations at scales probed
by cosmic microwave background (CMB) anisotropies. In this paper we study the parametric
dependence of various single-field models of inflation that enhance power at small scales and
quantify the degree to which coefficients in the model construction have to be tuned in order
for certain observables to lie within specified ranges. We find significant tuning: changing the
parameters of the potentials by between one part in a hundred and one part in 108 (depending
on the model) is enough to change the power spectrum peak amplitude by an order one
factor. The fine-tuning of the PBH abundance is larger still by 1–2 orders of magnitude. We
highlight the challenges imposed by this tuning on any given model construction. Furthermore,
polynomial potentials appear to require significant additional fine-tuning to also match the
CMB observations.
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1 Preliminaries

Primordial black holes could have formed from the direct collapse of large amplitude density
perturbations, if the inflationary process generated a large peak in the power spectrum on small
scales [1–6]. It is straightforward to arbitrarily tune inflaton potentials to the degree required to
realise any desired field dynamics at the classical level. It is less straightforward to do so at the
quantum level. Given that it is necessarily the quantum effective potential that inflates and not
its classical counterpart that would eventually quantum correct to it, this tuning must be im-
posed on the former, and is typically accomplished by invoking an approximate shift symmetry.
As a corollary, correlation functions inherit only a weakly logarithmic scale dependence. If one
seeks to concoct dynamics that result in anything other than this logarithmic scale dependence
for correlation functions, additional tuning must be imposed on the effective potential.

It is well established that the classical (i.e. tree level) potential may bear little qualitative
resemblance to the quantum effective potential. This is because the former represents merely
the zeroth order in ~ bootstrap to the latter,1 from which all physical observables ultimately
derive.2 Paraphrased in the context of inflationary cosmology: it is straightforward to write
down potentials that can account for large scale cosmological observations at the classical level
with sufficiently tuned parameters. However, requiring inflation to last a sufficient number

1In practice, calculating the exact quantum effective action is neither possible nor necessary depending on
the quantities we’re interested in calculating, with most tractable applications demanding only local corrections
up to some finite order.

2This is vividly illustrated in the context of the Standard Model of particle physics, where the Higgs potential
looks like a quartic potential around the electroweak vacuum with a tree level quartic coupling λ ∼ 0.13.
Renormalisation group improving the effective potential to next to next to next to leading order, however,
results in a scale dependent quartic coupling that runs to negative values (λ < 0) at energy scales anywhere
between 1010 GeV up to 1018 GeV [7] rendering the potential unbounded from below (the range corresponds to
varying the top quark pole mass determined at low energies within its three sigma confidence interval).
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of e-folds requires that the inflaton undergo a sufficient excursion in field space, where the
flatness of the potential is approximately preserved over the entirety of the excursion. This is
much harder to arrange, and in the context of canonical single-field inflation, power counting
implies a sensitivity to Planck suppressed operators up to mass dimension six, otherwise
known as the eta problem (see e.g. [8] for a review).

Imposing additional demands on inflation beyond requiring that it account for observa-
tions at the largest scales necessarily requires further tuning, the significance of which should
not be dismissed. In the context of effectively single-field (although not necessarily single-clock)
inflation [9], models in which PBHs are formed by enhancements of small scale power over a
specified range of comoving scales typically invoke some mechanism that results in the second
parameter of the Hubble hierarchy, ηH ≡ ε̇H/(εHH) to be negative for a sufficiently sustained
period [10–17] where εH ≡ −Ḣ/H2. Rather than being a parameter whose time dependence
can be freely specified, εH is a ‘Wilson function’ in the effective theory of the fluctuations
(whether adiabatic or otherwise [18–21]). The latter is obtained by perturbing the effective
action for the background inflaton around a consistent solution: one that minimises the
background effective action. Given that the latter is the product of a parametrically controlled
derivative expansion, this translates into constraints on the time variation of the parameters
determining the evolution of the perturbations,3 which to leading order in the adiabatic context
can be taken as εH and the sound speed cs [21]. A straightforward corollary is that calculations
of correlation functions obtained via matching calculations between phases that jump between
different values of a given parameter (such as ηH) should be viewed with caution [22], as these
correspond to step function jumps in the time dependence of the parameter in question. Even
if one were to take such discrete jumps merely as the limiting case of a very rapid transition,
these cannot be made arbitrarily rapid without the introduction of additional hierarchies that
would be challenging to realise at the level of the effective action. Simply put, were one to write
down a tree level potential for the background that might effect a sudden transition, quantum
corrections will smooth this transition out,4 if not linearly interpolate completely in the
absence of other relevant degrees of freedom (cf. footnote 9). Similarly, in the context of phase
transitions, it is unnatural to posit that they can be made arbitrarily sudden, and typically last
an order of an e-fold.5 Moreover, one must take care to factor in the transient non-adiabaticity
that necessarily accompanies such transitions, typically neglected in single-field analyses.

In the context of single-field inflation, PBH formation via enhanced density perturbations
requires the background inflaton field to decelerate (ηH < 0), with onset of rapid growth
whenever one is no longer in the single-clock regime (ηH < −3).6 This is typically accomplished
by demanding that the potential approach either an inflection point, or have some other
feature that sufficiently decelerates the inflaton field roughly when the comoving scales of
interest are exiting the Hubble radius, which, moreover, has to be done in a manner that is
consistent with CMB constraints at large scales. Although one might envisage designing a
variety of potentials at the classical level to obtain a peak for the PBH mass function at any
given mass scale, doing so in the context of a realistic model construction imposes a variety
of restrictions or additional factors that must be accounted for.

3See for instance, the discussion in appendix C of [9] regarding the quickest possible end to inflation.
4Moreover, no matter how rapid one tries to transition in coordinate time by ignoring this caution and

introducing the required hierarchy, large gradients cost expansion, and therefore e-folds which is what imprints
on correlation functions (footnote 3 ibid.).

5A distinction that was not lost on the authors of [23] in the related context of preheating, where ‘instant’
means the order of an e-fold.

6For recent reviews of PBHs see e.g. [5, 6, 24–26].
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Since the publication of [9], where it was shown under certain assumptions that the
fastest the primordial power spectrum can grow as a function of comoving wavenumber is k4,
examples of inflationary potentials that enable the primordial power spectrum to grow even
faster have been found. In a followup investigation [22], it was shown that nevertheless, the
super-k4 growth does not translate to an effect on the distribution or abundance of primordial
black holes that will be produced, especially once unrealistic arbitrarily rapid transitions have
been smoothed. In this paper, we go on to quantify the degree of fine-tuning required in
order for a given inflationary potential to result in rapid growth of the power spectrum over a
range of comoving scales. The degree of fine-tuning required is significant in all of the cases
we examine, drawn from three representative classes of single-field inflationary models, each
having their own issues in addition to the fine-tuning. We find that either a feature must
be incorporated that is implausible to realise at the level of the effective potential without
considering additional relevant degrees of freedom, or, for more straightforward to realise
features, either large-scale constraints on the tensor-to-scalar ratio are difficult to satisfy
and/or the model acquires a pronounced sensitivity to initial conditions. We argue that
producing a large peak in the primordial power spectrum from a plausible model construction
of effectively single-field inflation obeying large-scale constraints on the tensor-to-scalar ratio
poses a significant model building challenge that has yet to be satisfactorily met.

The outline of the paper is as follows: first we detail the various representative classes
of single-field models that we focus on in this investigation and the reasons for choosing them.
After this, we quantify the amount of fine-tuning required in each case on top of the require-
ments of successful inflation that matches large-scale observations, propagating this on to the
parameters relevant for cosmological and astrophysical observations. For the purpose of quan-
tifying the notion of fine-tuning, we adopt a measure of tuning proposed by [27], taking care to
highlight the inevitable epistemological shortcomings of any particular choice of measure. See
e.g. [28–33] for studies of inflationary potential fine-tuning in the PBH context. We conclude by
discussing the ramifications of our findings in the context of realistic model constructions and
what new ingredients may be required. We defer various technical details to the appendices.

In what follows, we work in units where c = ~ = 1 and M2
Pl = 1/(8πG) = 1.

2 Prototype potentials

Instead of aiming for comprehensive coverage of the various models discussed in the literature,
we select four examples for the purposes of this investigation. These belong to three proto-
typical classes in which either a particular functional form for the potential, or a particular
field dynamic mechanism can be identified upon which other models represent variations
upon a theme. We list these representative models below and detail their advantages and
drawbacks from various perspectives before addressing the parametric tuning required in
each case. In restricting ourselves to the canonical single-field context, our investigation is by
no means exhaustive as an audit into fine-tuning issues for PBH production in inflation in
general.7 For instance, much work has recently been done on PBH production in multi-field
inflation [31, 32, 37–45], and it would be of interest to undertake a similar investigation in
that context.

7Moreover, even within the context of effectively single-field inflation, we do not audit models with varying
speeds of sound [34–36] where sufficiently rapid variations of cs generate PBHs through parametric resonance.
Premised as effectively single-field models, the variations required to enhance small scale power to produce
any significant amount of PBHs are of such rapidity as to violate the validity of the effectively single-field
description [20].

– 3 –
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• Deceleration via superposed feature. The model we focus on is that presented in Mishra
and Sahni [46] (although others including [47–49] invoke a similar dynamic) where the
required deceleration is obtained through overshooting the minimum of a Gaussian bump
in the potential that leads to ultra-slow-roll with single-clock slow roll on either side. The
period of single-clock slow roll prior to the feature is arranged so that large scale CMB
constraints are satisfied, whereas the period that follows is less constrained, although con-
straints on small scale power from other tracers are also satisfied [9, 50–52]. The localised
feature is added by hand on top of a potential that would otherwise sustain single-clock
slow roll. Tuning the shape and location of the feature allows one to match large scale
observations and generate a peak for the PBH mass function at any desired scale.8

Aside from the ad hoc nature of the added potential feature in this class of models, it can-
not be realised in isolation without having to account for additional ingredients in some
way — a caveat that is relevant to all the examples considered in this paper. The reason
for this is that the true vacuum effective potential is necessarily convex and cannot admit
a feature.9 The additional ingredients required to generate a feature could for example
take the form of non-adiabatic driving by some other classical source field, additional
degrees of freedom coupled to the inflaton that start to propagate at a particular energy
scale (and so affect the effective potential through threshold effects [56]), or even back-
ground moduli fields that are not heavy enough to permit truncation as will be the case for
most of the examples considered further. Accounting for these additional degrees of free-
dom even within the effectively single-field context places restrictions on the form of any
feature one would like to generate [21, 57], and more generally may necessitate accounting
for additional (isocurvature) interactions that could qualitatively alter one’s conclusions.

• Deceleration via polynomial potential feature. Inflection points are more naturally
realised at the level of the effective potential. They can arise for instance via renor-
malisation group improving the potential in an effective theory [58] when one matches
across thresholds corresponding to the mass of a particle that starts to propagate below
the threshold [56].10 They are efficient in enhancing power over a limited range of small
scales, however, inflection points in simple polynomial potentials struggle to produce
large scale spectra which match observations.
The example of a cubic potential has the advantage of being the “simplest” possible model,
having only one free parameter (the coefficient of the cubic term with suitable choice for
the origin in field space) in addition to the overall scaling which sets the amplitude of
the power spectrum on scales which exit long before reaching the inflection point. Unfor-

8However, depending on the desired peak for the PBH mass function, one does impact the CMB observables
by the lead in deceleration even if this scale corresponding to the peak exits the Hubble radius far beyond
CMB scales.

9Although the convexity of the effective potential is standard textbook physics (cf. chapter 11.3 of [53]), this
may come as a surprise to some readers used to seeing all manners of potentials in the cosmology literature.
Simple arguments as to why this is so can be found in [54] and [55] for the single-field and multi-field cases,
respectively.

10Inflection points can also arise from the behaviour of logarithmic factors that can be relevant when
considering RG running between any two thresholds. However this running derives from energy differences
alone, for which field values are only a proxy. Once renormalization conditions are fixed at the CMB pivot
scale, the effects of the logs can only be significant if one looks at modes which exit the horizon when the
potential energy has dropped significantly, which is not the case for the classes studied in our investigation.
This is in contrast with Higgs inflation, where renormalization conditions are imposed at the mass of the
Z-boson and run up to the scale of inflation — a running over many orders of magnitude (cf. footnote 12).

– 4 –
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tunately, we found this simple model generically suffers from several issues, including the
tensor-to-scalar ratio being far too large, the power spectrum peak being an extended
plateau, and inflation only ending very long after traversing the inflection point which
requires an additional ad hoc feature to be added in order to end inflation so that the
power spectrum peak occurs on scales smaller than those corresponding to CMB scales.
Hertzberg and Yamada [28] have found a way to flatten the potential on CMB scales
by tuning a quintic potential to have two flat sections, one of which generates the CMB
scales (with a small enough tensor-to-scalar ratio) and one with a local minimum and
maximum with tiny amplitudes, which generates the peak required for PBH production.
Apart from the additional fine-tuning this requires of the potential, their model also
requires the initial conditions to be fine-tuned such that the inflaton starts with zero
or very small kinetic energy in the flat regions which generates the CMB scales, and
fails when the initial conditions are outside a narrow range.

• Deceleration via non-polynomial potential feature. We consider here two examples of
potentials that flatten and have a feature induced through non-polynomial factors, see
also e.g. [59–61]. The first is drawn from the inflection-point model of Germani and
Prokopec [62], and is inspired from models of Higgs inflation where the non-minimal
coupling term for the Higgs L ∼ ξH†HR (where R is the Ricci scalar) is modelled
for the singlet sector as a scalar-tensor coupling of the form L ∼ ξφ2R, which upon
transforming to the Einstein frame rescales the original Jordan frame potential as11

V (φ)→ V (φ)/(1 + 2ξφ2)2. The second is grounded in a string-theoretic construction
presented in Cicoli et al. [63]. Here, the potential is given by sums of exponential
characters, which, moreover, are flattened via additional exponential factors arising
from field and frame redefinitions so that the inflaton and the graviton are canonically
normalised and have no kinetic mixing. Furthermore, the effective potential is itself
constructed to next to next to leading order in loop corrections, and is therefore arguably
the most parametrically under control. However, the authors of this work warn that
the spectral index is 2–3 sigma too low compared to the observed CMB value at the
pivot scale k = 0.05 Mpc−1. This model also has a very small amplitude local minimum
and maximum feature which is responsible for PBH generation.12

3 Parametric sensitivity of prototype potentials

In what follows, we present the power spectra for each of the prototypical potentials discussed
in the previous section, highlighting the parametric sensitivity of the power spectrum amplitude
to the potential parameters in each case. In the following section, we quantify the corresponding
degree of fine-tuning. For each of the examples presented below, we define φ0 as the initial
field value, and φCMB as the field value at the CMB pivot scale for a fiducial set of parameter
values, which is chosen in a unique way for each potential, as discussed in the following sections.

11Although one can certainly consider this rescaled potential on its own merits as was done in [62], the
conformal transformation would also rescale the kinetic term in any realistic model construction. Making a
field redefinition to canonically normalised field variables in this context will also result in a potential with
exponential characters, as per the second example studied in [63].

12On the other hand, the authors of [64] proposed a model that generated PBHs consistent with large scale
observations via an inflection point in the context of Higgs inflation, where significant RG running is induced
by large energy excursions without crossing any thresholds (see also [65, 66] in a more general context). A
more complete survey would certainly have to extend to this class of models.
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φ0 φCMB n M A σ φd

4 3 2 1/2 1.17× 10−3 1.59× 10−2 2.18812

Table 1. Fiducial parameters for the potential eq. (3.1). Recall that we have set MPl = 1.

The fiducial sets do not match those in the original references because we have chosen them
such that the peak in the power spectrum grows from the amplitude measured at the CMB
pivot scale to P ∼ 5× 10−3 in all cases [67], on a scale corresponding to asteroid-mass PBHs.
Choosing the same peak amplitude ensures a fairer comparison of the fine-tuning between
models. Each of the plots display the largest possible shift in the model’s most fine-tuned
parameter that doesn’t lead to the power spectrum becoming larger than unity (usually due
to the inflaton remaining too long in the flat section of the potential, or getting stuck there
forever). We shift the parameters in increments of 10−n for integer n relative to the fiducial
values. We also plot the power spectra for the same shift but with the opposite sign such that
the peak amplitude is decreased. Note that larger shifts in this direction aren’t disallowed
in the same way as an excessive growth of the power spectrum, but small power spectrum
peaks, P < O(10−3), will lead to negligible PBH production.

3.1 Deceleration via superposed feature

The potential presented in [46] is given by

V (φ) = V0
φn

φn +Mn

(
1 +A exp

[
−(φ− φd)2

2σ2

])
, (3.1)

with parameters A, φd and σ characterising the height, position and width of the Gaussian
bump added to an otherwise slow-roll inflationary potential described by the parameters
V0, M and n. Our choice of fiducial values for the potential that lead to a power spectrum
peak amplitude of approximately 5× 10−3 are given in table 1. For this potential, the value
φCMB = 3 is stated in [46].

We consider shifts in the three parameters of the Gaussian bump, A, σ, and φd. Of
these three, the most fine-tuned is the bump position φd. For this parameter, we show the
power spectrum in figure 1 for the fiducial value (orange), and for the largest shifts which do
not make the power spectrum grow larger than unity (blue), which are 1± 10−5. We take
note of the generic fact that the enhancement of the power spectrum is not symmetric for a
given perturbation of the fiducial value because of the non-linear nature of the map between
the parameter of the potential and the peak amplitude of the power spectrum.

3.2 Deceleration via polynomial potential feature

A priori, finite-order polynomial potentials might seem like the first place to look for a
mechanism to decelerate the background inflaton via one or more inflection points. Arranging
for an inflection point at a given point in field space to sufficiently enhance the primordial
power spectrum is straightforward enough with a locally cubic or higher-order polynomial
expansion. However, simultaneously satisfying large scale CMB constraints while the field is
higher up the potential is challenging to the point that the only example in the literature
known to us that accomplishes this in the Einstein frame also requires fine-tuning of the
inflaton initial conditions (although see e.g. [65] for a polynomial construction that becomes

– 6 –
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Figure 1. Power spectra for the potential eq. (3.1). Fiducial potential values correspond to the orange
line, blue lines correspond to variations of the parameter φd, which parametrises the position of the
Gaussian bump, by a factor of 1± 10−5.

φ0 φCMB Λ c0 c1 c2 c3 c4 c5

−|Λ3/c3| 5.51674× 10−4 0.3 1 (2π2Λ4)/(4225c3) 0 −0.52 1 −0.640725043

Table 2. Fiducial parameters for the potential eq. (3.2). Note that the sign difference in c3 with
respect to [28] is due to a typo in that paper.

non-polynomial in the Einstein frame). As presented in [28], this example uses a quintic
potential,

V (φ) = c0 + c1
Λ φ+ c2

2Λ2φ
2 + c3

3!Λ3φ
3 + c4

4!Λ4φ
4 + c5

5!Λ5φ
5, (3.2)

with our choice of fiducial coefficients ci of the fifth-order polynomial given in table 2. In this
model, φCMB is defined to be the field value 30 e-folds before the beginning of the USR phase.
For more details, see [28].

We consider variations in c3 and c5, and find that c3 is the most tuned, such that only
changes to this parameter by a factor of up to 1 ± 10−8 still allow for a large peak and
successful inflation. The fiducial power spectrum is shown in orange in figure 2, and the
shifted power spectra in blue. We note that [28] demonstrated the extreme sensitivity of
this model to variations in c5, but we have found the potential is slightly more sensitive to
variations in c3. Of all the prototypical potentials that we’ve studied, this naïvely represents
the largest parametric sensitivity. We note also that this particular potential has an additional
sensitivity to the initial conditions of the inflaton field value in order to satisfy constraints
on the tensor-to-scalar ratio on large scales. This is because this model is reliant on the
field starting on a very flat region of the potential such that it is off-attractor, and so its
trajectory, the duration of inflation, and the resulting power spectrum are all subject to
large changes if one instead chooses an initial field value much higher up in the potential.
This jeopardises one of the key merits of the inflationary paradigm, namely that a successful

– 7 –
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Figure 2. Power spectra for the potential eq. (3.2). Fiducial potential values correspond to the orange
line, blue lines correspond to variations of the parameter c3 by a factor of 1± 10−8.

period of inflation does not depend on a specific choice for the initial conditions, and must be
considered as a necessary extra cost of polynomial potentials that produce PBHs and respect
CMB constraints on large scales. Furthermore, the fact that ∆φ/Λ ∼ 4 over the field range of
interest implies that the truncation of eq. (3.2) to quintic order necessitates tuning an infinite
number of parameters including and beyond c6 to be very small or vanishing.13 This tuning
is aggravated by the fact that it has to satisfy renormalisation group running even if we were
to set them to zero at any particular scale.

3.3 Deceleration via non-polynomial potential feature

Here we consider two examples of potentials that achieve the requisite deceleration of the
inflaton field via field excursions that are large relative to the mass scale14 that would ordinarily
suppress higher-dimensional operators in the context of a polynomial expansion. That is, the
shape of the potential is deformed in a manner that is not adequately captured by a truncation
to a polynomial expansion. The first example accomplishes this with non-exponential factors
(see however footnote 11), whereas the second does this with exponential factors. See also
e.g. [68, 69].

3.3.1 Non-exponential character

The potential presented in [62] (adapted from [12]) is given by

V (φ) = λ

12φ
2v2 6− 4aφv + 3φ2

v2(
1 + bφ

2

v2

)2 , (3.3)

13Unless these are tamed by particular relations between all higher-order coefficients that permit their
resummation to finite and/or logarithmically running quantities, which is non-trivial to realize.

14Loosely, the cutoff.
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φ0 φCMB a b λ v

3 2.4719 1/
√

2 eq. (3.4) 1.86× 10−6 0.19669

Table 3. Fiducial parameters for the potential eq. (3.3).

Figure 3. Power spectra for the potential eq. (3.3). Fiducial potential values correspond to the orange
line, blue lines correspond to variations of the parameter v by a factor of 1± 10−3.

where an inflection point is generated for

b = 1− a2

3 + a2

3

( 9
2a2 − 1

) 2
3
. (3.4)

Our choice of fiducial parameter values is given in table 3. In this case, φCMB is defined to be
the field value 62 e-folds before the end of inflation.

We consider shifts in the parameters a and v. The parameter b is defined by a through
eq. (3.4), and λ sets the overall scale (and hence the CMB normalisation), so it has no impact
on relative changes in the power spectrum. We find that a is the most fine-tuned parameter,
for which we show the fiducial power spectrum in orange in figure 3, and the power spectra
for shifts in a of 1± 10−3 in blue. Of the potentials that we’ve studied, this example exhibits
the least parametric sensitivity in terms of the effect on the peak amplitude of the power
spectrum, although we note that a canonical field redefinition will increase the fine-tuning
analogously to the potential of eq. (3.5).

3.3.2 Exponential character

The potential presented in [63] is given by

V (φ) = V0

C1 − e
− 1√

3
φ̂

1− C6

1− C7e
− 1√

3
φ̂

+ C8e
2√
3
φ̂

(
1− C9

1 + C10e
√

3φ̂

) , (3.5)
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φ0 φCMB AW BW CW 〈τK3〉 GW/〈V〉 RW/〈V〉
12 9.33731 2/100 1 4/100 14.30 3.08054× 10−5 7.071067× 10−4

Table 4. Fiducial parameters for the potential eq. (3.5).

Figure 4. Power spectra for the potential eq. (3.5). Fiducial potential values correspond to the orange
line, blue lines correspond to variations of the parameter GW / 〈V〉 by a factor of 1± 10−6.

where the potential parameters relate to the parameters of the underlying string construction
that generates it as:

C6 = AW
CW

, C7 = BW

〈τK3〉
1/2 , C8 = 0,

C8C9 = GW
〈V〉
〈τK3〉

3/2

CW
, C10 = RW

〈V〉
〈τK3〉

3/2 ,

with C1 chosen such that Vmin = 0. The fiducial values that we use are given in table 4. Here,
φCMB is defined to be the field value approximately 53 e-folds before the end of inflation, as
shown in figure 3 of [63].

We consider variations in GW / 〈V〉 and RW / 〈V〉, and find that the first of these is the
most fine-tuned. The power spectrum produced by this potential and our choice of fiducial
values is shown by the orange line in figure 4 and the power spectra for shifts of 1± 10−6 are
shown in blue.

4 From potential fine-tuning to tuning of PBH abundances

Each of the potentials studied above are a means to an end: the production of primordial black
holes with a particular abundance and mass function. In this section we aim to quantify a
measure of how finely tuned the peak amplitude of the power spectrum and the mass fraction
of PBHs are relative to parameters of the underlying model construction that generated them.
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Fiducial εPpeak εfPBH ρ

A 1.17× 10−3 8.9× 103 2.0× 105 23
σ 1.59× 10−2 −8.1× 103 −1.9× 105 23
φd 2.18812 2.7× 104 6.2× 105 23

Table 5. Fiducial and fine-tuning parameters for the potential eq. (3.1).

Fiducial εPpeak εfPBH ρ

c3 −0.52 −1.8× 108 −4.7× 109 27
c5 −0.640725043 −1.7× 108 −4.7× 109 27

Table 6. Fiducial parameters and fine-tuning parameters for the potential eq. (3.2).

In order to do so, we have to choose a particular measure for this fine-tuning. No single choice
is definitive or completely free of implicit priors, however the measure we choose can still
be informative for the practical purpose of quantifying the degree of fine-tuning in a given
model construction, and particularly when it comes to gauging the relative amount of tuning
between any two examples. The measure we focus on was presented in [27], and corresponds
to taking the logarithmic derivative of a given observable O with respect to the logarithm of
any of the parameters p it depends on either explicitly, or implicitly through intermediate
quantities or convolutions,15

εO = d logO
d log p . (4.1)

For the superposed feature-overshoot potential eq. (3.1), we compute the fine-tuning
measures around the fiducial parameter values of the Gaussian bump as laid out in table 5.
We note that the fine-tuning only varies by a factor of 3 between the three parameters which
model the Gaussian bump. This demonstrates that growth of the power spectrum (due to the
duration of USR) is due to the combined height and width of the peak, and most importantly
in this case the position of the peak, which is related to the initial field velocity before USR
begins. Note that we define εfPBH and ρ later in eqs. (4.8) and (4.9). For the polynomial
feature potential eq. (3.2), we compute the fine-tuning of the coefficients of the cubic and
quintic terms in table 6.

For the non-polynomial non-exponential inflection point potential eq. (3.3), we show
the sensitivity around the fiducial value for the most finely-tuned parameter of the potential
eq. (3.3) in table 7.

Finally, we show the results for the two most finely tuned parameters for the exponential
feature potential eq. (3.5) in table 8.

Although it may seem that the exponential character model of [63] is much more finely
tuned than that of [62], we stress that this may turn out to be an artificial distinction in a
more realistic analysis, highlighting one of the caveats of conducting an audit with a particular

15An intuitive way to understand this fine-tuning is that if the parameter p varies by δ � 1 then

εPpeak '
ln(Ppeak(p(1 + δ))/Ppeak(p))

δ
.

Hence a fine-tuning value of 104 means that changing p by 0.01% leads to an order unity change in the
observable. We critique and examine the relative merits of this measure in appendix A.
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Fiducial εPpeak εfPBH ρ

a 1/
√

2 −6.0× 102 −2.2× 104 37
v 0.19669 4.4× 102 1.6× 104 37

Table 7. Fiducial and fine-tuning parameters for the potential eq. (3.3).

Fiducial εPpeak εfPBH ρ

GW/〈V〉 3.08054× 10−5 7.5× 105 2.2× 107 29
RW/〈V〉 7.071067× 10−4 −6.8× 105 −2.0× 107 29

Table 8. Fiducial and fine-tuning parameters for the potential eq. (3.5).

choice of measure. The reason for this (stressed in footnote 11) comes down to comparing
apples to apples: although one is entitled to take the potential eq. (3.3) on face value as being
accompanied by a canonically normalised kinetic term, such potentials typically arise when
one has made a conformal transformation from a frame where the scalar field in question was
non-minimally coupled to one where it is minimally coupled (as motivated in [62]). In the
minimally coupled frame, the field kinetic term will not be canonically normalised, and so a
non-linear field redefinition remains to be performed (as implemented in [63]). Consequently,
the parameters of the potential eq. (3.3) will also be subject to this non-linear transformation
(which is exponential in the context of Higgs inflation), and re-evaluating the fine-tuning
measure for the potential in the canonically normalised field basis will diminish the difference
naïvely inferred from tables 7 and 8.

The fine-tuning parameter εPpeak is a measure of the sensitivity of the peak amplitude
of the primordial power spectrum to small changes in various parameters of the potential.
Inferring the amplitude of the power spectrum from observations could be done via observing
the stochastic gravitational wave background, whose amplitude is set by the square of the power
spectrum amplitude [70]. Alternatively, (non-)observations of the abundance of PBHs could
also be used. In this case, which we will now focus on, the PBH abundance is exponentially
sensitive to the power spectrum amplitude, so there is an additional fine-tuning that we will
now quantify. For the simple asymptotic result where we approximate σ2

peak = Ppeak,

β ∼ e
− δ2

c
2Ppeak , (4.2)

where δc is the formation threshold for PBHs, the fine-tuning on the PBH collapse fraction β
can be straightforwardly determined analytically using the chain rule,

εβ = δ2
c

2Ppeak
εPpeak . (4.3)

For the typical value of δc ' 0.45 and a peak amplitude Ppeak ∼ 10−3–10−2 as required to
form PBHs, one has

εβ
εPpeak

= δ2
c

2Ppeak
' 10–100, (4.4)

hence the fine-tuning with respect to the PBH formation rate is 1–2 orders of magnitude
worse than the fine-tuning in terms of the peak amplitude of the power spectrum alone.
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The full PBH formation calculation is very complicated, and so we do not want to rely
on the simple analytical understanding from the asymptotic result above. Therefore, we
additionally carry out a detailed numerical study of PBH formation, following the procedure
in [67]. We include the effects of critical collapse, integrate over all scales in the power
spectrum, and additionally include the non-linear relation between R and δ [71–73]. For each
of the power spectra shown in section 3, we calculate the present-day fraction of dark matter
in PBHs, fPBH, given by

fPBH = 2
ΩCDM

∫
d(lnR) Req

R

∫ ∞
δc
R,l

dδR,l
m

MH
P (δR,l), (4.5)

where ΩCDM is the present-day dark matter density, Req is the horizon scale at matter-
radiation equality, δR,l is the linear density contrast smoothed on a scale R, and the ratio of
primordial black hole mass m to horizon mass MH follows the critical collapse formula,

m = KMH

(
δR,l −

3
8δ

2
R,l − δcR

)γ
, (4.6)

where K = 10, γ = 0.36, and the smoothed non-linear density contrast threshold is δcR = 0.25.
The PDF P (δR,l) is Gaussian, with a variance defined in terms of the curvature power
spectrum as

σ2(R) =
∫ ∞

0

dk
k

16
81(kR)4W (kR)PR(k), (4.7)

with a window function W (kR), taken as the modified Gaussian window function in [67].
Using this numerical technique, we define another fine-tuning parameter,

εfPBH = d log fPBH
d log p , (4.8)

and additionally evaluate the extra fine-tuning to go from the power spectrum amplitude to
fPBH,

ρ = εfPBH

εPpeak

. (4.9)

These quantities are displayed in tables 5–8, and show that the analytical calculation is robust
in the sense that the ratio ρ varies between 22 and 38 in the 4 models (and parameter choices)
we consider.

The fact that this is not “very” fine-tuned, e.g. compared to the 104–105 tuning we find
for the sensitivity of the peak of the power spectrum to variations of the parameters for the
potential eq. (3.1), shows that (perhaps surprisingly) the main reason why PBH production
is so fine-tuned is that the power spectrum amplitude is so sensitive to the duration of USR
(and e.g. the width of the flat part of the potential around the feature), rather than the fact
that the PBH production is exponentially sensitive to the amplitude. For example, the early
universe might not have been radiation dominated [26, 51, 74–80] and in an early matter
dominated era the PBH fraction may change to [75]

β ∝ P5/4
peak (4.10)

with
d ln β

d lnPpeak
= 5

4 . (4.11)
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This is 1–2 orders of magnitude less fine-tuned than the value in a radiation era (and
independent of the power spectrum amplitude), so the total fine-tuning of β based on the
superposed feature potential in eq. (3.1) will be 104–105 in matter domination vs 105–107 in
radiation domination.

A caveat to both the analytical and numerical calculations here is that they assume
the curvature perturbations follow a Gaussian distribution. It has been demonstrated that
non-Gaussianity, typically treated perturbatively, can have a significant impact on PBH
formation [81–86]. One source of non-Gaussianity that has gained recent interest is the
possible presence of quantum diffusion in USR inflationary models, which can be handled using
the stochastic formalism, typically resulting in non-Gaussian tails which must be treated non-
perturbatively [87–98]. The presence of primordial non-Gaussianity alters the amount of fine-
tuning between the power spectrum amplitude and fPBH, with fPBH ∝ e(δc/(

√
2σ))p [99, 100]

where p = 2 in the Gaussian case. However, even in the extreme (non-perturbative) limit of
χ-squared perturbations (p = 1) the fine-tuning would then only be reduced by a square root
and factor of two, so we conclude that even large non-Gaussianity is unlikely to significantly
ameliorate this fine-tuning. There is also the possibility that non-Gaussianity can reduce
the power spectrum amplitude required to generate a significant abundance of PBHs, which
could reduce the fine tuning. However, the only way to properly determine the fine-tuning for
PBH formation in models with quantum diffusion is to carry out a full calculation, which is
beyond the scope of this work. We also caution that local non-Gaussianity tends to generate
unacceptably large isocurvature perturbations unless |fPBH| � 1 [101–103].

5 Audit summary and concluding remarks

As we have quantified in the preceding sections, each class of single-field models that we
have examined require a high degree of parametric tuning to generate a significant number of
PBHs within a certain mass range whilst simultaneously satisfying large scale observational
constraints. The precise degree of tuning varies across the classes considered (the difference
between some classes being artificial to some extent cf. footnote 11), with the polynomial
class discussed in table 6 requiring an additional tuning of initial conditions. On top of this,
the fine-tuning of an infinite number of coefficients of the potential beyond quintic must also
be considered since the field range of interest in this example is such that ∆φ/Λ > 1, where
Λ would ordinarily suppress higher-dimensional operators at small-field values. Order one
changes in the peak amplitude of the primordial power spectrum require the precision of
potential parameters to range from one part in a few hundred to one part in a hundred million
depending on the potential class considered, as detailed in the previous section. However, it is
interesting to note that the level of fine-tuning is generally comparable amongst parameters
for a chosen model.

Given that the PBH abundance is exponentially sensitive to the amplitude of the
primordial power spectrum, it is no surprise that some fine-tuning is required to generate
an interesting abundance of PBHs (i.e. not fewer than one per Hubble volume today [77],
and not more than the observed dark matter density). This conclusion is well known and
was studied in detail in [29]. However, we quantify in this work that the fine-tuning is more
severe than concluded by [29], in part because the peak amplitude of the power spectrum
is itself exponentially sensitive to the duration of ultra-slow-roll inflation (see e.g. [28, 104]).
This implies that the PBH abundance is (at least) double-exponentially sensitive to the
inflationary parameters which determine the existence and duration of the USR phase. The
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Mishra and Sahni Hertzberg and Yamada Germani and Prokopec Cicoli et al.
ns 0.9648 0.9820 0.9567 0.9400
r 0.0026 4.8× 10−7 0.0063 0.018

Table 9. Values of spectral index and tensor-to-scalar ratio.

PBH abundance at any given scale is sensitive by two more orders of magnitude (with respect
to the power spectrum amplitude) to the parameters of the potentials assuming that the PBHs
form in radiation-domination. The larger contribution to the fine-tuning is from the sensitivity
of the power spectrum amplitude to the potential parameters, as opposed to from the power
spectrum to the PBH abundance. This means that generating an amplitude of secondary
stochastic gravitational waves [70] that might be observable with, for example, pulsar timing
arrays or future gravitational wave detectors such as LISA, requires significant fine-tuning.

Whether one views this tuning as acceptable or not is a matter of taste to some extent,
itself a manifestation of unspoken priors (cf. the discussion in appendix A). However, there are
two criteria that all of these potential classes must necessarily satisfy: whether they can be
realised at the level of the effective action and also respect tensor constraints on large scales.
Of the three classes of potentials that we study, deceleration via feature overshoot suffers
from the feature being artificially added ‘by hand’ and is problematic from the perspective
of being realisable at the level of the effective potential. Polynomial potentials are generally
considered realisable as effective potentials, but they produce tensor-to-scalar ratios that are
disallowed by large-scale CMB measurements, unless one sacrifices the desire for the model to
be insensitive to its initial field value, in which case this can be avoided by allowing inflation
to begin off-attractor. Finally non-polynomial feature potentials can be motivated by high
energy theories, but again struggle to obey CMB constraints on large scales.

Furthermore, the fact that the background effective potential, which is the zero mode of
the effective action, is necessarily convex [53–55] should give caution to designing any classical
function to produce the desired effect without accounting for additional degrees of freedom
that can allow for the desired non-convexity at the relevant scales. None of the potentials
considered are convex. Even before adding a feature to generate PBHs, CMB observations of
a red spectral index and small tensor-to-scalar ratio favour a (concave) potential with V ′′ < 0.
This is also in tension with a potential which expands to look like a monomial far away
from the feature, which leads to the many difficulties of designing a polynomial potential. In
general, producing light PBHs is likely to be easier because they exit on scales far removed
from those which generate the CMB and hence the addition of a feature such as an inflection
point on such scales is less likely to ruin the predictions on CMB scales. This was discussed
in e.g. [66, 105]. Of the potentials that we examine in this paper, only the Mishra and Sahni
potential (with our choice of fiducial parameter sets, see tables 1 and 3) are in good agreement
with observational data of the spectral index at the CMB pivot scale. We present in table 9
both the spectral index ns = −2εH − ηH + 1 and tensor-to-scalar ratio r = 16εH , calculated
at φCMB as defined in the main text for each potential. For reference, the Planck constraint
on the spectral index is ns = 0.9649± 0.0042 at the 68% confidence level [106] and the bound
on the tensor-to-scalar ratio including BICEP-Keck data is r < 0.032 at the 95% confidence
level [107]. All four potentials satisfy the tensor-to-scalar ratio bound.

We therefore conclude that in contrast to the “WIMP miracle” there is instead a
significant challenge to explain why the PBH abundance is not either zero or exponentially
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too large. Even the addition of perturbative non-Gaussianity would not significantly change
this conclusion, since the PBH abundance is still highly sensitive to the power spectrum
amplitude. However, our conclusions are specific to the formation of PBHs generated by
the direct collapse of large amplitude perturbations shortly after horizon entry following a
period of single-field inflation, and it would be interesting to determine whether alternative
inflationary scenarios e.g. [3, 34–37, 40, 42, 43, 45, 108–111] and/or alternative PBH formation
scenarios require less fine-tuning e.g. [33, 112, 113].
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A Fine-tuning criteria

It is not possible to decide upon a measure or a set of criteria for fine-tuning that is free from
ambiguities. Operationally, the question one is trying to determine is the degree of sensitivity
of certain observables to small changes in the parameters of a given model construction,
typically specified by parameters (Wilson coefficients) of some Lagrangian, itself supposed to
be understood as a mere bootstrap to the full quantum effective action. The problem here
already, is that Wilson coefficients by themselves do not correspond to physical observables.
In the context of particle physics where one can freely presume the existence of an S-matrix,
it is well understood that only on shell S-matrix elements are observable, and Lagrangians are
only a calculational means to obtain them.16 Specifically, the coefficients of a Lagrangian can
be freely redefined and mix into each other under field redefinitions whilst leaving observable
quantities invariant. In the context of coupling fields to gravity, one might seemingly have
the added subtlety of needing to specify the frame in which one considers certain Wilson
coefficients to be ‘naturally’ order unity. What is an order unity Wilson coefficient in the
Jordan frame, for instance, becomes exponentially suppressed in the Einstein frame for
non-minimal couplings of the form ξφ2R. However when it comes to estimating the degree

16This is the content of the so-called equivalence theorem [114]. Simply put, one is free to make arbitrary
(non-singular) field redefinitions to a given Lagrangian and still end up with the same on-shell S-matrix. The
canonical textbook example is to take a free scalar field theory L = − 1

2 (∂φ)2 − m2

2 φ2 and make an arbitrary
field redefinition φ = f(ψ) so that L = − 1

2f
′(ψ)2(∂ψ)2 − m2

2 f(ψ)2. For an arbitrary f(ψ), one potentially
ends up with a complicated interacting Lagrangian. Of course, all diagrams entering any given scattering
process sum to zero as they must for a free theory, which might seem like a remarkable series of cancellations
if one didn’t know better.
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of tuning of a parameter, standard power counting arguments direct one to work in the
Einstein frame.17

Even with this series of caveats in mind, one is still left with the intractable issue of
the underlying measure problem when trying to determine how ‘tuned’ a given parameter
is. Specifically, a flat prior for a given Wilson coefficient translates into a logarithmic prior
had we chosen to parameterise it as the exponential of some other parameter. Moreover, the
choice of a flat prior itself is presuming something about the ultra-violet completion of the
low energy theory. For instance, whether neutrino masses (determined by the coefficient of
the dimension five Weinberg operator in the Standard Model effective theory [116]) are to
be assigned a flat logarithmic prior, or some other prior when doing cosmological inference
with necessarily limited data can lead to conflicting conclusions for the hierarchy of neutrino
masses [117, 118].

This somewhat unsatisfactory state of affairs is of direct relevance to quantifying the
fine-tuning of the abundance and mass function of PBHs. Nevertheless, one is free to stick
to one choice for the restricted purpose of comparing between different model constructions,
which is the perspective we adopt in the paper. We comment here on an alternative fine-tuning
criterion in the literature, and discuss how this relates to the measures we primarily use in
section 4. Nakama and Wang [29] introduced the fine-tuning measure

εNW = xmax − xmin
(xmax + xmin)/2 (A.1)

which they apply to the amplitude of the primordial perturbations x = σ ∼
√
PR and the

minimum and maximum values are the limits required to generate a certain range of fPBH.
Similarly to eq. (4.1), this definition takes no account of the possible range of values which
the parameter x could take in principle. Defining the fine-tuning via eq. (A.1) is equivalent
to choosing a uniform prior from 0 to xmax > 0 and hence the fine-tuning to reach a power
spectrum amplitude between A/2 and A is independent of A, which makes no reference to
the observed amplitude on CMB scales. This means equal fine-tuning values are assigned
to the power spectrum being in the range 0.5× 10−9–10−9 or e.g. 0.5× 10−3–10−3 on some
arbitrary small scale, despite only the latter range requiring a special feature in the potential.

We instead use the fine-tuning definition of Azhar and Loeb [27] (see also [119] who
use the same definition in a related context) who considered fine-tuning in ‘evading’ the
fPBH constraints by fitting a lognormal mass function with two free parameters (the central
mass and width) to a set of constraints derived assuming a monochromatic mass spectrum.
If there is more than one important model parameter then the definition eq. (4.1) could
be extended to add the derivative of all parameters in quadrature. We also comment that
whilst we have typically found the fine-tuning amplitude to have the same order of magnitude
between all relevant parameters, that there are expected to be degeneracy directions in which
a particular combination of parameters leads to the same duration of USR and hence a
comparable peak height.

This definition does not depend on priors, but this does not imply that our interpretation
of the results should be prior independent. If you had a good reason to believe that a
parameter is tightly constrained then a large value of ε might not be concerning, but in
practise we normally do not have a theoretical motivation to take a very narrow prior.

17The reason for this is needing to work with canonically normalised fields when doing standard power
counting in effective field theory [115]. One is of course free to not normalise fields, but then the non-canonical
nature of the kinetic terms modifies the power counting in a complicated manner such that the final conclusions
expressed in terms of observable quantities will remain unchanged if everything is kept track of properly.
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B Analytic determination of the fine-tuning

In general the power spectrum has to be calculated numerically in models of inflation which
break slow roll. However, analytic formulae exist for the idealised case of a completely flat
potential, which generates “pure” ultra-slow-roll (USR) inflation, with

φ̇(N) = φ̇ie
−3N . (B.1)

From the equation of motion above one can derive the following relation between the width
of the flat section ∆φ and the duration NUSR (measured in e-folds),

∆φ = φ̇i
3H

(
1− e−3NUSR

)
=
√

2εH,i
3

(
1− e−3NUSR

)
, (B.2)

where φ̇, or εH ≡ −Ḣ/H2 = φ̇2/(2H2), should be evaluated as USR begins (denoted with a
subscript i). There is a maximum distance the inflaton can ever (classically) roll, which is

∆φmax ≡
∫ ∞

0

dφ
dN dN = φ̇i

H

∫ ∞
0

e−3NdN = φ̇i
3H =

√
2εH,i
3 , (B.3)

and we introduce the convenient small (positive) parameter which measures how close the
inflaton comes to rolling this maximum distance

f ≡ ∆φmax −∆φ
∆φmax

� 1. (B.4)

The increase in the power spectrum can be approximately determined using

Ppeak
As

' εH,i
εH,f

' e6NUSR , (B.5)

where As ' 2 × 10−9 is the amplitude of the power spectrum on CMB scales and εH,f is
evaluated at the end of USR, which in this model is the minimum value of εH . We can invert
eq. (B.2) to find the peak power spectrum amplitude is

Ppeak ' As

(
1− 3√

2εH,i
∆φ
)−2

= As
1
f2 . (B.6)

The fine-tuning of the peak amplitude in the high peak limit (f � 1) is given by

εPpeak = 2
f

∆φ
∆φmax

' 2
f
, (B.7)

which diverges in the limit f → 0 corresponding to an infinitely high peak. Using eq. (B.6)
one can determine the simple relation between the fine-tuning and peak height

εPpeak ' 2
√
Ppeak
As

' 3× 103

√
Ppeak

5× 10−3 . (B.8)

Hence we see that larger peaks require more fine-tuning, with the fine-tuning being proportional
to the square root of the peak amplitude. We have empirically found this relation to be
approximately true for all of the four potentials we studied numerically, with corrections
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typically of order 10% when varying the peak amplitude by two orders of magnitude. For
the peak height we have studied of 5 × 10−3, relevant for PBH formation, the fine-tuning
value is εPpeak ' 3× 103, which is towards the lower end of the range of values found for the
smooth potentials we have tested. We note that the fine-tuning amplitude is independent
of the position of the flat feature in the potential, which means it is independent of the
corresponding PBH mass.

We now consider a potential proposed by Starobinsky [120] which is continuous but has
a discontinuous first derivative, being V ′1 before the step and V ′2 ≡ V ′1/α afterwards, with the
steepness after the step being much less (corresponding to α� 1) and hence there being a
period of USR until the inflaton has lost sufficient kinetic energy to reach the SR attractor
value of φ̇2 = −V ′2/(3H). Before the step φ̇1 = −V ′1/(3H) and hence the duration of USR is

NUSR = 1
3 ln

(
V ′1
V ′2

)
= 1

3 ln(α), (B.9)

and this will lead to an associated boost of the power spectrum (albeit a plateau rather than
peak) by

e6NUSR =
(
V ′1
V ′2

)2
= ε1
ε2

= α2. (B.10)

The fine-tuning parameter is hence
εPpeak = 2 (B.11)

which is extremely small, and (uniquely amongst the models we considered) is independent of
the amplitude of the peak, at least in the high peak limit corresponding to α� 1.

We note that an analytic formula for the power spectrum exists [121] and using this
result would not change our conclusions. However, we comment that this model does not
work without modification since the power spectrum does not decrease again on small scales
and the instant transition in the derivative, apart from being unrealistic, also leads to large
oscillations. This model is also unique in having a zero second derivative of the potential
which is connected to the lack of a constant roll period after USR ends and the fact that the
power spectrum has more of a plateau than a peak.

C Power spectrum features from rapid changes in H

When plotting the power spectrum, it is common to use e-folds N rather than k, to connect
back to the inflationary evolution. However, in certain cases this can cause spurious features
to appear in the power spectrum plot that may mislead readers. One example of this is
the model discussed in [63], eq. (3.5). While it is typical for εH to grow before the USR
phase, in this model it gets very close to one, corresponding to a rapid drop in H (see
figure 5, top row). This results in a kink to the left of the peak of the power spectrum, as
can be seen in the bottom left panel of figure 5, which could be seen as a motivation for
features in observables such as the PBH mass distribution and scalar-induced stochastic
gravitational-wave background. However, when transforming to k = a(N)H(N) 6= exp(N),
there is a corresponding kink in the k(N) relation, meaning that the feature disappears from
the power spectrum when plotted over k. It should also be noted that the kink appears near
the peak of the power spectrum, despite the corresponding ε ' 1 phase appearing before the
onset of USR.
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Figure 5. Bottom left: demonstration of a bump in the peak of the power spectrum when plotted
over N , due to a rapid drop in H (or equivalently εH ' 1) where the N range is normalised to the
end of inflation. Bottom right: the feature disappears when the observable k is used as the plotting
variable. Top left: the corresponding first slow-roll parameter plotted as a function of N . Top right:
the corresponding value of H plotted as a function of N .
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