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Casimir-Josephson force on a point contact between two superconductors
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We calculate the elongation or contraction force F on a point contact (length L) connecting two superconduc-
tors with a phase difference φ. When L is small compared with the superconducting coherence length ξ0, this
force is given by F = −(�0/πξ0) ln(ξ0/L) cos φ per spin-degenerate transverse mode. Quantum fluctuations in
states from the continuous spectrum outside the superconducting gap �0 give the dominant contribution to this
force, which may be understood as the superconducting counterpart of the electromagnetic Casimir force. We
compare with earlier work that only included contributions from the discrete spectrum of Andreev levels.
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I. INTRODUCTION

The free energy � of a Josephson junction, a weak link
between two superconductors, depends on the superconduct-
ing phase difference φ across the junction as well as on the
junction length L. The derivative of � with respect to φ

gives the supercurrent I = (2e/h̄)d�/dφ, and the derivative
with respect to L gives the elongation or contraction force
F = −d�/dL on the junction [1–5].

This force is the superconducting counterpart of the
electromagnetic Casimir force [6], as one can see from
the expression for a single-mode junction in the large-L
limit [1,7–9],

F = − gh̄vF

24πL2
(π2 − 3φ2), |φ| < π, (1)

with vF being the Fermi velocity and g being a factor that
counts spin and other degeneracies. For φ = 0, g = 1, vF = c
this is precisely the attractive Casimir force produced by vac-
uum fluctuations of a scalar one-dimensional wave between
perfectly reflecting metallic mirrors [10–13]. In the Josephson
junction the superconducting condensate at zero temperature
plays the role of the electromagnetic vacuum.

The result (1) holds if the junction is long compared
with the superconducting coherence length ξ0 = h̄vF/�0 (for
a superconducting gap �0 and assuming ballistic transport
through the junction). The short-junction regime L � ξ0 has
no electromagnetic analog. This regime is relevant for a point
contact Josephson junction (as in Fig. 1). In what follows we
will study that regime theoretically.

One might surmise that the point contact length L should
be replaced by an effective length L + ξ0, to estimate F �
h̄vF/ξ

2
0 in the short-junction regime. The pioneering work by

Krive et al. [1] arrived at this expression. As we shall see, a
more complete calculation introduces a logarithmic L depen-
dence ∝ ln(ξ0/L), due to φ-dependent contributions from the
continuous spectrum (neglected in Ref. [1]).

The insight that the continuous spectrum gives a nonana-
lytic contribution ∝ ln L to the Josephson free energy is not
new [15–17]. What is special about the Casimir-Josephson
force is that the ln L term is the leading contribution in the

short-junction limit—while for the supercurrent the leading
contribution is L independent.

The outline of this paper is as follows. In the next
section we summarize the scattering matrix representa-
tion [16,18] of the Josephson free energy �, which is a
convenient starting point because it treats the discrete spec-
trum and continuous spectrum on the same footing. We apply
this to a ballistic point contact in Sec. III, to calculate the
force F = −d�/dL for L � ξ0. The effect of a tunnel barrier
(transmission probability �) in the point contact is then treated
in Sec. IV. The results of these two sections differ from those
of Ref. [1] in two aspects, both attributable to the continuous
spectrum: an enhancement of the force by a factor ln(ξ0/L)
and a reduction of the force by a factor

√
�.

II. SCATTERING FORMULATION

The free energy of a Josephson junction at temperature T
is given by [19]

� = −gT
∫ ∞

0
dε ρ(ε) ln[2 cosh(ε/2T )]. (2)

(We set h̄ and Boltzmann’s constant kB equal to unity.) The
density of states ρ(ε) refers to the electron-hole symmetric
spectrum of the Bogoliubov–de Gennes Hamiltonian HBdG.
We ignore φ-independent contributions to the free energy
from the superconducting reservoirs [20].

The spectrum of HBdG consists of bound states (Andreev
levels) for ε < �0 and a continuous spectrum for ε > �0.
Scattering theory [18] includes both contributions in the de-
terminantal formula

ρ(ε) = − 1

π
Im

d

dε
ln det[1 − RA(ε + i0+)SN(ε + i0+)],

(3)
in terms of the Andreev reflection matrix RA and the scattering
matrix SN of the junction in the normal state.

The key physical ingredient in this representation of the
density of states is the separation of length scales between
Andreev reflection [21], the conversion of an electron into a
hole on the length scale of the coherence length ξ0, and normal
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FIG. 1. Dependence of the force on a Josephson junction on
the junction length L [computed from Eq. (10) for superconducting
phase difference φ = 0]. The force is negative, so it is a contrac-
tion force, crossing over to an elongation force for φ � π/2. The
plot refers to a single transverse mode. The inverse-square large-L
asymptotic is from Ref. [1]; the logarithmic small-L asymptotic is
obtained here.

scattering processes on the length scale of the Fermi wave-
length λF. The ratio λF/ξ0 � �0/EF � 1 in a superconductor.

The Andreev reflection matrix has the block structure

RA(ε) = α(ε)

(
0 rA

r∗
A 0

)
, rA =

(
eiφ/2 0

0 e−iφ/2

)
,

α(ε) = ε/�0 − i
√

1 − ε2/�2
0. (4)

The blocks r∗
A and rA describe Andreev reflection from elec-

tron to hole and from hole to electron, respectively. The
diagonal elements of the submatrix rA refer to Andreev reflec-
tion from the left and right superconductor, at a phase ±φ/2.
Andreev reflection happens with unit probability for ε <

�0; at larger energies, α(ε) = ε/�0 −
√

ε2/�2
0 − 1 decays to

zero. The normal scattering matrix SN is block diagonal,

SN(ε) =
(

s0(ε) 0

0 s∗
0(−ε)

)
, (5)

with electron scattering matrix s0 unitary at all energies.
Substitution of Eqs. (4) and (5) into Eq. (3) gives the

determinant [18]

ρ(ε) = − 1

π
Im

d

dε
ln det[1 − M(ε + i0+)],

M(ε) = α(ε)2r∗
As0(ε)rAs∗

0(−ε)]. (6)

As a final step, the slowly converging integration over
energies in Eq. (2) can be transformed into a more rapidly
converging sum over Matsubara frequencies. The resulting
free energy is given by [16]

� = −gT
∞∑

p=0

ln det[1 − M(iωp)], ωp = (2p + 1)πT .

(7)

In the zero-temperature limit the sum over p can be replaced
by an integral over ω,

lim
T →0

� = − g

2π

∫ ∞

0
dω ln det[1 − M(iω)]. (8)

III. BALLISTIC POINT CONTACT

For simplicity we consider an N-mode point contact which
does not mix the transverse modes. For each mode the scat-
tering matrix s0 is a 2 × 2 matrix of reflection amplitudes (on
the diagonal) and transmission amplitudes (off-diagonal).

In this section we assume ballistic transport, and so only
the transmission amplitudes are nonzero,

s0(ε) = eik(ε)L

(
0 1
1 0

)
. (9)

Here, k(ε) is the momentum of the nth electron mode in
the point contact region between the superconductors. For
ε � EF we may linearize its energy dependence, k(ε) = kF +
ε/vF, with kF and vF being the momentum and velocity of the
mode at the Fermi level.

The contribution of each mode to the free energy (8) then
takes the form

� = − g�0

2π

∫ ∞

0
dω ln[1 + β(ω)4e−4ωL/ξ0

+ 2β(ω)2e−2ωL/ξ0 cos φ]

= − g�0

π
Re

∫ ∞

0
dω ln[1 + β(ω)2eiφ−2ωL/ξ0 ], (10)

β(ω) = ω −
√

1 + ω2. (11)

We seek the force F = −d�/dL.
For L 	 ξ0 we may set the function β(ω) to unity in

Eq. (10), and we recover the known result (1) for the force
in the long-junction regime, since

Re
∫ ∞

0
dx ln(1 + eiφ−x ) = π2

12
− φ2

4
, |φ| < π. (12)

In the opposite short-junction regime L � ξ0 the L depen-
dence of the integral (10) is governed by the large-ω range,
where the integrand decays as ω−2e−2ωL/ξ0 . This gives a con-
tribution to the force integral which decays as ω−1e−2ωL/ξ0 ,
producing a logarithmic L dependence upon integration over
ω,

F = − g�0

2πξ0
[ln(ξ0/L) cos φ + O(1)], L � ξ0. (13)

A calculation to higher order in L/ξ0 in the Appendix gives

F = − g�0

2πξ0
[ln(ξ0/L) cos φ − γEuler cos φ

− 1

2
(1 − φ sin φ) + O(L)], |φ| < π. (14)

In Fig. 2 we compare the full expression (10) with the
small-L asymptotics (14) for the Casimir-Josephson force.
This is at zero temperature. The effect of a nonzero tempera-
ture T � �0 is shown in Fig. 3: It is predominantly a rounding
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FIG. 2. Dependence of the force on a Josephson junction on the
junction length L for φ = 0 (top plot, on a log-linear scale) and
dependence on the phase difference φ for L/ξ0 = 0.05 (bottom plot).
The red solid curves are computed from Eq. (10); the black dashed
curves are the small-L asymptotic (14). The values of the force refer
to a single transverse mode. The φ-dependent plot repeats with 2π

periodicity outside of the interval −π < φ < π . These are results at
zero temperature.

of the cusp in the φ dependence at φ = ±π . The scaling with
L is not significantly affected.

The logarithmic L dependence of the force is due to the
contribution from the continuous spectrum, the energy range
ε > �0 in the free-energy integral (2). To see this, note that
the discrete spectrum consists for L � ξ0 of a single excitation
energy ε0 > 0 per transverse mode, at [1]

ε0 = �0

(
cos(φ/2) − L

2ξ0
| sin φ| + O(L2)

)
, |φ| < π.

(15)

This contributes to the Casimir-Josephson force an L-
independent amount dε0/dL � �0/ξ0, without the ln(ξ0/L)
factor.

The integral over the continuous spectrum is cut off by
the bandwidth EF. This cutoff is ineffective if L > λF, but
for smaller junction lengths the ln(ξ0/L) increase saturates at
ln(ξ0/λF) ∝ ln(EF/�0).

A final remark is needed for this section: As one can see
by comparing Eqs. (13) and (15), the continuous spectrum
changes the φ dependence of the force from | sin φ| to cos φ.
The removal of the cusp singularity at φ = 0 changes how the
force responds to the presence of a tunnel barrier in the point
contact, as we shall see in the next section.

FIG. 3. Same as Fig. 2, but now at temperature T = �0, when
the integral over ω is replaced by the sum over ωp = (2p + 1)πT
in Eq. (7). The dashed curves are the zero-temperature result (14),
included for comparison.

IV. POINT CONTACT WITH A TUNNEL BARRIER

A tunnel barrier with transmission probability � ∈ (0, 1)
at the center of the point contact modifies the scattering ma-
trix (9) and zero-temperature free energy (8) as follows:

s0(ε) = ei(kF+ε/vF )L

(√
1 − �

√
�√

� −√
1 − �

)
, (16)

� = − g�0

2π

∫ ∞

0
dω ln[1 + β(ω)4e−4ωL/ξ0

+ 2β(ω)2e−2ωL/ξ0 (1 − 2� sin2(φ/2))]. (17)

So the expressions from the previous section can be used with
the substitution

cos φ �→ 1 − 2� sin2(φ/2). (18)

For � � 1 the φ dependence of the force on the Josephson
junction is reduced by a factor �. In particular, in the short-
junction regime L � ξ0 one has, in view of Eq. (13),

F = g�0

πξ0
ln(ξ0/L)� sin2(φ/2) + φ-independent terms.

(19)

Notice that the same substitution (18) would transform
| sin φ| into 2

√
�| sin(φ/2)| for � � 1. This explains why

Ref. [1] found that a tunnel barrier reduces the φ dependence
of the force by a factor

√
�, rather than by a factor �.
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V. CONCLUSION

In summary, we have calculated the Casimir-like force on
a point contact Josephson junction, focusing on the regime in
which the length L of the junction is short compared with the
superconducting coherence length ξ0. In the limit L/ξ0 → 0
the supercurrent through the junction is fully determined by
the discrete spectrum of Andreev levels, confined to the junc-
tion by the superconducting gap �0.

We have shown that the same does not apply to the elon-
gation or contraction force on the junction: The continuous
spectrum of states outside the gap qualitatively modifies the
dependence of the force on both the junction length L and
the superconducting phase difference φ: The L dependence
acquires a logarithmic factor ln(ξ0/L), and the φ dependence
becomes more sensitive to the presence of a tunnel barrier in
the point contact (decreasing ∝ � rather than ∝ √

� with the
tunnel probability �).

In a ballistic point contact (� = 1) with N spin-degenerate
transverse modes (g = 2) the difference δF between the
Casimir-Josephson force at φ = 0 and φ = π is given for
L � ξ0 by

δF = 2N�0

πξ0
ln(ξ0/L). (20)

The logarithmic enhancement factor saturates at ln(EF/�0)
for L � λF. This will be at best a factor of 10, and since
�0/ξ0 � 10−15 N one needs a large number of modes, N �
104, to reach a measurable force in the 0.1-nN range.

An additional complication, pointed out by Krive et al. [1],
is that N may itself be dependent on the length of the junction
(decreasing with increasing L if the junction is elongated at
constant volume). This will induce a φ-dependent contrac-
tion force �(dN/dL)�0 of a more mundane origin than the
Casimir-Josephson force originating from the L dependence
of the Andreev spectrum. A coupling between N and L would
thus need to be avoided. Other elastic forces, e.g., due to a
bending of the point contact, are φ independent and therefore
do not contribute to δF , but a successful measurement of the
Casimir-Josephson force remains challenging.

In closing we remark that our result (14) also implies a
nonanalytic finite-L correction to the supercurrent of a ballis-
tic point contact,

I = 2e

h̄

g�0

4
sin(φ/2)

− 2e

h̄

g�0

2π

L

ξ0

(
ln(ξ0/L) sin φ − 1

2
φ cos φ

)
, |φ| < π,

(21)

which complements the known result for a diffusive point
contact [17,22].
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APPENDIX: SHORT-JUNCTION LIMIT
OF THE FORCE INTEGRAL

In view of Eq. (10), the Casimir-Josephson force F =
−d�/dL on the Josephson junction at zero temperature is
given by the integral

F = −2g�0

πξ0
Re f (L/ξ0),

f (L) =
∫ ∞

0
dω

ωβ(ω)2eiφ−2ωL

1 + β(ω)2eiφ−2ωL
. (A1)

Note that ωβ(ω)2 → 1
4ω−1 for ω → ∞, and so a logarithmic

singularity prevents us from directly taking the short-junction
limit L/ξ0 → 0.

We isolate the logarithmic singularity by subtracting

h(L) =
∫ ∞

0
dω (1 + 4ω)−1eiφ−2ωL

= −1

4
Ei(−L/2)eL/2+iφ. (A2)

The difference has the short-junction limit (for |φ| < π )

lim
L→0

Re[ f (L) − h(L)] = − 1
8 (1 + (2 ln 2) cos φ − φ sin φ).

(A3)

Adding the small-L expansion of the exponential integral
function Ei(z) = − ∫ ∞

−z t−1e−t dt ,

Re h(L) = − 1
4 [ln(L/2) + γEuler] cos φ + O(L), (A4)

we arrive at

Re f (L) = − 1
4 (ln L + γEuler ) cos φ − 1

8 (1 − φ sin φ) + O(L).
(A5)

Substitution of the expansion (A5) into Eq. (A1) gives the
result (14) from the main text.

Equation (A5) should be repeated with 2π periodicity out-
side of the interval −π < φ < π . The L-independent φ sin φ

term then produces a cusp singularity at φ = ±π while the
term ∝ ln L is smooth at φ = ±π . This can be understood
because the cusp is due to states in the gap crossing the Fermi
level, while the ln L factor is due to states outside of the gap;
so the two types of singularities do not coexist in the same
term.
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