
Protein biomarkers and major cardiovascular events in older people
with advanced CKD: the European quality (EQUAL) study
Hayward, S.J.L.; Chesnaye, N.C.; Hole, B.; Aylward, R.; Meuleman, Y.; Torino, C.; ... ;
EQUAL Investigators

Citation
Hayward, S. J. L., Chesnaye, N. C., Hole, B., Aylward, R., Meuleman, Y., Torino, C., …
Caskey, F. J. (2023). Protein biomarkers and major cardiovascular events in older people
with advanced CKD: the European quality (EQUAL) study. Kidney Medicine, 6(1).
doi:10.1016/j.xkme.2023.100745
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3722173
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3722173


Original Research
Protein Biomarkers and Major Cardiovascular Events in

Older People With Advanced CKD: The European Quality

(EQUAL) Study

Samantha J.L. Hayward, Nicholas C. Chesnaye, Barnaby Hole, Ryan Aylward, Yvette Meuleman,
Claudia Torino, Gaetana Porto, Maciej Szymczak, Christiane Drechsler, Friedo W. Dekker,
Marie Evans, Kitty J. Jager, Christoph Wanner, and Fergus J. Caskey, MD, on behalf of the
EQUAL investigators
Complete author and article
information provided before
references.

Correspondence to
S.J.L. Hayward (Samantha.
Hayward@nhs.net)

Kidney Med. 6(1):100745.
Published online November
2, 2023.

doi: 10.1016/
j.xkme.2023.100745

© 2023 The Authors.
Published by Elsevier Inc.
on behalf of the National
Kidney Foundation, Inc. This
is an open access article
under the CC BY license
(http://creativecommons.
org/licenses/by/4.0/).
Rationale & Objective: Cardiovascular disease is
the leading cause of morbidity and mortality in
chronic kidney disease (CKD). We investigated
184 inflammatory and cardiovascular proteins to
determine their potential as biomarkers for major
cardiovascular events (MACEs).

Study Design: The European Quality (EQUAL) is
an observational cohort study that enrolled people
aged ≥65 years with an estimated glomerular
filtration rate ≤20 mL/min/1.73 m2.

Setting & Participants: Recruited participants
were split into the discovery (n = 611) and repli-
cation cohorts (n = 292).

Exposure: Levels of 184 blood proteins were
measured at the baseline visit, and each protein
was analyzed individually.

Outcome: MACE.

Analytical Approach: Cox proportional hazard
models adjusted for age, sex, estimated glomerular
filtration rate, previous MACE, and country were
used to determine the risk of MACE. Proteins with
false discovery rate adjusted P values of <0.05 in
the discovery cohort were tested in the replication
cohort. Sensitivity analyses were performed by
adjusting for traditional risk factors, CKD-specific
Kidney Med Vol 6 | Iss 1 | January 2024 | 100745
risk factors, and level of proteinuria and
segregating atherosclerotic and nonatherosclerotic
MACE.

Results: During a median follow-up of 2.9 years,
349 people (39%) experienced a MACE. Forty-
eight proteins were associated with MACE in the
discovery cohort; 9 of these were reproduced in
the replication cohort. Three of these proteins
maintained a strong association with MACE after
adjustment for traditional and CKD-specific risk
factors and proteinuria. Tenascin (TNC), fibroblast
growth factor-23 (FGF-23), and V-set and
immunoglobulin domain-containing protein 2
(VSIG2) were associated with both
atherosclerotic and nonatherosclerotic MACE. All
replicated proteins except carbonic anhydrase 1
and carbonic anhydrase 3 were associated with
nonatherosclerotic MACE.

Limitations: Single protein concentration mea-
surements and limited follow-up time.

Conclusions: Our findings corroborate previously
reported relationships between FGF-23, vascular
cell adhesion protein-1, TNC, and placental growth
factor with cardiovascular outcomes in CKD. We
identify 5 proteins not previously linked with MACE
in CKD that may be targets for future therapies.
People with chronic kidney disease (CKD) are at high
risk of cardiovascular disease, and this risk increases

both with age and CKD progression.1,2 Indeed, major
adverse cardiovascular events (MACEs) are the leading
cause of death for people with CKD, accounting for
approximately a third of deaths.3 Although traditional risk
factors remain relevant in people with CKD, additional
CKD-specific risk factors, such as anemia, calcium and
phosphate dysregulation, uremic toxins and chronic
inflammation may also contribute to the high risk of
MACE.4

Biomarkers for CKD-associated MACE could guide
prognostication, inform design of stratified clinical trials,
and highlight proteins involved in novel CKD-specific
MACE mechanisms. However, the identification of bio-
markers in advanced CKD is complicated by decreased
renal clearance affecting plasma protein concentrations.
For example, although brain natriuretic peptide, troponin,
and C-reactive protein are useful cardiovascular biomarkers
in the general population, all 3 can be persistently
increased in people with CKD, changing their relationship
with outcomes in such populations.5,6 The discovery of
clinically translatable biomarker results necessitates specific
MACE biomarker studies in people with advanced CKD.

Older people living with advanced CKD are often
excluded from biomarker studies or comprise too small a
proportion of the study cohort to elicit results that are
generalizable to this subgroup. This is an important
weakness of the current literature given the especially high
risk of cardiovascular disease experienced by older people
with CKD.7 We investigated the association between 184
cardiovascular and inflammatory proteins and the risk of
MACE in a cohort of older people with advanced CKD. In
addition, we explored whether the relationship between
these proteins and MACE risk was attenuated by traditional
risk factors, CKD-specific risk factors, or level of
1
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PLAIN-LANGUAGE SUMMARY
Kidney disease increases the risk of heart disease, stroke,
and other vascular conditions. Blood tests that predict
the likelihood of these problems may help to guide
treatment, but studies are needed in people with kidney
disease. We analyzed blood tests from older people with
kidney disease, looking for proteins associated with
higher risk of these conditions. Nine proteins were
identified, of which 3 showed a strong effect after all
other information was considered. This work supports
previous research regarding 4 of these proteins and
identifies 5 additional proteins that may be associated
with higher risk. Further work is needed to confirm our
findings and to determine whether these proteins can be
used to guide treatment.
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proteinuria and whether these proteins were associated
with atherosclerotic or nonatherosclerotic MACE.
METHODS

Study Cohort

The European Quality (EQUAL) Study is a prospective cohort
study of older people with advanced CKD recruited from 6
countries. Inclusion criteria were age ≥65 years and an inci-
dent estimated glomerular filtration rate (eGFR) of ≤20 mL/
min/1.73m2.8 Participants were excluded if the decrease in
eGFR was the result of an acute event or if they had received
kidney replacement therapy before study recruitment.9

Approval was obtained from the medical ethical commit-
tees or institutional review boards for all participating
countries, and written informed consent was obtained from
all participants in adherence to the Declaration of Helsinki.

Nine hundred twenty-one of the EQUAL participants
had serum samples available. The recruits were split a
priori into a discovery cohort (n = 618, recruited from the
United Kingdom, Germany, and Poland) and a replication
cohort (n = 303, recruited from Sweden).

Clinical Data

Demographic and clinical data were collected by research
nurses using a case report form completed in person and
corroborated against the patient’s medical notes. Follow-
up clinical data were collected in the same manner at 3-
6 monthly intervals. eGFR was calculated using the 2009
Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) equation.10 For patients who lacked urinary
albumin-creatinine ratio (uACR) data, uACR values were
estimated from urinary protein-creatinine ratios using the
equation described by Weaver et al.11

Protein Data

Peripheral blood samples were collected at the participants’
first study visit. The samples were collected following
2

standardized operating procedures and were stored
at −80 �C. The samples were tested for 184 different
proteins using the Olink Target 96 Cardiovascular II and
Cardiometabolic protein panels (www.Olink.com; full
protein list including abbreviations are available in
Table S1). The high throughput Olink panels detect pro-
tein abundance by proximity extension assay technology;
oligonucleotide-labelled antibody probe pairs bind to the
target protein and are amplified by polymerase chain re-
action and quantified.12 The protein data were transformed
on a log2 scale for analysis; therefore, all the reported
hazard ratios relate to a doubling of protein level.

Quality control of the protein data was performed using
3 intrasample controls and 8 plate controls. The internal
controls were added to every sample to assess each step of
the proximity extension assay process; 12 samples were
excluded from the Cardiovascular II panel and 3 from the
Cardiometabolic panel as the internal controls failed to
reach the expected values. In total, 11 proteins failed to
reach the limit of detection calculated from the plate
controls in >50% of the samples and were removed from
further analyses (Table S1). After quality control was
performed, data were available for 173 proteins for 611
participants in the discovery cohort and 292 participants in
the replication cohort.

Outcome Definition

A variety of MACE definitions are used in observational
research.13 For the primary analysis, a purposefully broad
composite MACE definition was used as follows: the first
episode during follow-up of cerebrovascular disease,
myocardial infarction (MI), angina, congestive heart fail-
ure (CHF), coronary artery disease, arrhythmia, or pe-
ripheral vascular disease (PVD) or death from
cerebrovascular accident, MI, CHF, or cardiac arrest during
study follow-up. More specific MACE definitions were
explored in the sensitivity analyses (see below).

Statistical Analysis

Univariable and multivariable Cox proportional hazards
models with mixed effects were used to investigate the risk
of MACE for each individual protein in a complete case
analysis. In the primary analysis, the multivariable models
were adjusted for the potential confounders of age, sex,
eGFR, previous MACE (fixed effects) and country (random
effect). The random effect of country was included for the
discovery cohort only, as this cohort included participants
from multiple countries. P values were adjusted for mul-
tiple comparisons using the Benjamini and Hochberg
method (false discovery rate [FDR]).14 Only proteins with
FDR-adjusted P values < 0.05 in the discovery cohort
models proceeded to testing in the replication cohort.
Functional annotation and enrichment analysis were per-
formed using the Protein Annotation Through Evolu-
tionary Relationship Pathways annotation data set
(pantherdb.org) and g:Profiler (biit.cs.ut.ee/
gprofiler).15,16 As only proteins with a role in
Kidney Med Vol 6 | Iss 1 | January 2024 | 100745

http://www.Olink.com
http://pantherdb.org
http://biit.cs.ut.ee/gprofiler
http://biit.cs.ut.ee/gprofiler


Table 1. Baseline Demographic and Clinical Characteristics of the Patient Cohorts

Characteristic
Discovery Cohort
N = 611

Replication Cohort
N = 292

Age (y) 77 (71, 82) 76 (70, 80)
Sex Male 374 (61%) 205 (70%)
Ethnicity White 573 (94%) 287 (98%)

Missing data 3 (<1%) 1 (<1%)
eGFR (mL/min/1.73 m2) 18 (14, 21) 18 (15, 20)
Primary renal diagnosis Hypertension 175 (29%) 127 (43%)

Diabetes 127 (21%) 63 (22%)
Kidney failure of uncertain cause 119 (19%) 12 (4%)
Glomerular 58 (9%) 32 (11%)
Tubulointerstitial 62 (10%) 25 (9%)
Missing data 3 (<1%) 2 (<1%)

Comorbid conditions Diabetes 256 (42%) 111 (38%)
Missing data 10 (2%) 1 (<1%)
Hypertension 496 (81%) 267 (91%)
Missing data 31 (5%) 1 (<1%)
Myocardial infarction 89 (15%) 51 (17%)
Missing data 9 (1%) 1 (<1%)
Cerebrovascular disease 81 (13%) 51 (17%)
Missing data 16 (3%) 1 (<1%)
Peripheral vascular disease 86 (14%) 35 (12%)
Missing data 25 (4%) 1 (<1%)

Medications Lipid modifying agents 409 (67%) 160 (55%)
Beta blockers 334 (55%) 179 (61%)
Renin-angiotensin inhibitors 279 (46%) 191 (65%)

Charlson comorbidity index 7 (6, 8) 7 (6, 8)
Missing data 10 (2%) 1 (<1%)

Body mass index (kg/m2) 29 (25, 33) 27 (24, 30)
Missing data 53 (9%) 1 (<1%)

Smoking status Ex-smoker 249 (41%) 153 (53%)
Nonsmoker 190 (31%) 111 (38%)
Smoker 36 (6%) 22 (8%)
Missing data 136 (22%) 6 (2%)

Blood pressure (mm/Hg) Systolic 144 (130, 160) 148 (131, 160)
Diastolic 73 (66, 80) 76 (67, 85)
Missing data 6 (1%) 0

Hemoglobin (mmol/L) 7.07 (6.45, 7.82) 7.32 (6.75, 7.88)
Missing data 16 (3%) 0

Cholesterol (mmol/L) 4.40 (3.60, 5.31) 4.60 (3.70, 5.50)
Missing data 213 (35%) 8 (3%)

Calcium (mmol/L) 2.29 (2.20, 2.38) 2.28 (2.19, 2.37)
Missing data 58 (9%) 3 (1%)

Phosphate (mmol/L) 1.26 (1.11, 1.44) 1.30 (1.10, 1.50)
Missing data 46 (8%) 0

Parathyroid hormone (pmol/L) 16 (9, 25) 15 (10, 22)
Missing data 164 (27%) 9 (3%)

Urine ACR (mg/mmol) 45 (6, 174) 39 (10, 169)
Missing data 375 (61%) 45 (15%)

Note: N (%), median (interquartile range).
Abbreviations: ACR, albumin:creatinine ratio; eGFR, estimated glomerular filtration rate.

Hayward et al
inflammation or cardiovascular disease were studied, the
g:Profiler scope selection domain was set to the 173 pro-
tein list rather than all known proteins to prevent selection
bias from influencing the results of the enrichment
Kidney Med Vol 6 | Iss 1 | January 2024 | 100745
analysis. Protein-protein interactions were determined
using the Search Tool for the Retrieval of Interacting
Genes/Proteins data set (STRING; string-db.org).17 R
version 4.1.2 was used for analysis.
3
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Table 2. Clinical Events Contributing to MACE Outcomes

First MACE Breakdown
Discovery Cohort
N = 611

Replication Cohort
N = 292

First MACE - all 219 (36%) 130 (45%)

Atherosclerotic MACE 135 (22%) 63 (22%)
Myocardial infarction 22 (4%) 10 (3%)
Angina 7 (1%) 6 (2%)
Coronary artery disease 17 (3%) 1 (<1%)
Cerebrovascular event 24 (4%) 14 (5%)
Peripheral vascular disease 47 (8%) 10 (3%)
Multiple simultaneous diagnoses including an
atherosclerotic MACE

4 (<1%) 12 (4%)

Atherosclerotic MACE death* 14 (2%) 10 (3%)
Nonatherosclerotic MACE 84 (14%) 67 (23%)
Heart failure 40 (7%) 21 (7%)
Arrhythmia 30 (5%) 25 (9%)
Multiple simultaneous non-atherosclerotic
MACE diagnoses

1 (<1%) 6 (2%)

Nonatherosclerotic MACE death 13 (2%) 15 (5%)
Note: N (%). This table lists a breakdown of first MACE. In total, 88 patients died of MACE; however, 36 of these had another MACE before their death.

Hayward et al
Sensitivity Analyses

Additional multivariable Cox proportional hazard ana-
lyses were performed on any replicated protein using
discovery cohort data only. The first sensitivity analyses
explored whether the association between the protein
and risk of MACE was independent of traditional car-
diovascular risk factors, CKD-specific risk factors, and
level of proteinuria. Traditional risk factors were defined
as history of hypertension or diabetes, smoking status,
blood pressure, body mass index and cholesterol at first
study visit; data were available for 275 participants.
CKD-specific risk factors were defined as hemoglobin,
calcium, phosphate, and parathyroid hormone concen-
trations at first study visit; data were available for 408
participants. The proteinuria sensitivity analysis adjusted
for uACR at the first study visit, and data were available
for 239 recruits.

In the second sensitivity analyses, the MACE outcome
was split into atherosclerotic MACE (defined as cerebro-
vascular disease, MI, angina, coronary artery disease or
PVD or death from cerebrovascular accident or MI) and
nonatherosclerotic MACE (defined as CHF, arrhythmia, or
death from CHF or cardiac arrest). If the cardiovascular
event consisted of concurrent pathologies (ie, MI and
CHF) or if any of the pathologies met the atherosclerotic
definition, the event was classed as an atherosclerotic
MACE. All the sensitivity analyses were also adjusted for
age, sex, eGFR, previous MACE (fixed effects) and country
(random effect).
RESULTS

The baseline demographic and clinical characteristics of the
discovery and replication cohorts are listed in Table 1.
There were a smaller proportion of males and a greater
proportion of kidney failure of uncertain cause in the
4

discovery cohort compared with the replication cohort.
More patients in the replication cohort had hypertension
and kidney failure due to hypertensive nephropathy. All
other clinical and demographic characteristics were
broadly similar across the 2 cohorts.

MACE Outcomes: Discovery and Replication

Cohorts

After a median follow-up of 2.9 years, 349 (39%) recruits
had experienced MACE, and 283 (31%) people had died.
Eighty-eight (31%) of these deaths were attributed to
MACE. There were marginally fewer MACE in the dis-
covery cohort; however, the median follow-up time was
slightly shorter (2.7 years compared with 3.5 years). The
proportional contribution of each type of clinical event to
the MACE outcome differed between the 2 cohorts, with
more PVD observed in the discovery cohort and more
arrhythmias, CHF, and nonatherosclerotic MACE deaths in
the replication cohort. A breakdown of the nature of first
MACE for each cohort is provided in Table 2.

Univariable and Multivariable Analyses: Discovery

Cohort

Out of the 173 proteins tested in the discovery cohort, 102
proteins reached the FDR-adjusted P value (PFDR) signifi-
cance threshold in the univariable analysis and 48 of these
proteins remained significant in the multivariable model
(Fig 1; full results of all analyses are available in Table S1).
In the multivariable analysis, the proteins with the stron-
gest evidence of an association with MACE were pentraxin-
related protein 3 (PTX3; hazard ratio [HR] = 1.84; 95%
confidence interval [CI], 1.46-2.30; PFDR = 2.58 × 10-5),
which is an acute phase protein; brain natriuretic peptide
(HR = 1.20; 95% CI, 1.12-1.29; PFDR = 8.70 × 10-5); and
Cathepsin L1 (CTSL1; HR = 1.87; 95% CI, 1.42-2.46; PFDR

4.62 × 10-4), which has a key role in intracellular protein
Kidney Med Vol 6 | Iss 1 | January 2024 | 100745



Figure 1. Associations between protein biomarkers and risk of MACE: discovery cohort. Some proteins have confidence intervals
that do not cross 1 yet remain nonsignificant (grey), reflecting adjustment for multiple comparisons using the Benjamini and Hoch-
berg false discovery rate method.14

Hayward et al
catabolism. Of the significant proteins, the greatest in-
crease in MACE risk was associated with polymeric
immunoglobulin receptor (PlgR; HR = 2.13; 95% CI,
1.36-3.34; PFDR 8.87 × 10-3), which is a receptor that
facilitates transcytosis of immunoglobulins; Spondin 2
(SPON2; HR = 2.08, 95% CI, 1.34-3.21; PFDR 8.87 × 10-3),
which is a cell adhesion protein; and hepatocyte growth
factor receptor (HR = 2.08; 95% CI, 1.34-3.24; PFDR

9.08 × 10-3), which is a multifunctional cytokine that
plays a role in angiogenesis, tumorigenesis, and tissue
regeneration.

Multivariable Analyses: Replication Cohort

The 48 proteins that were significant in the discovery
cohort multivariable analyses were tested in the repli-
cation cohort, and 9 proteins replicated (P value
threshold of <0.05; Table 3). Of these replicated pro-
teins, 2 proteins (carbonic anhydrase 1 [CA1], carbonic
Kidney Med Vol 6 | Iss 1 | January 2024 | 100745
anhydrase 3 [CA3]) had not previously been identified
as associated with cardiovascular outcomes in human
studies.

Sensitivity Analyses: Traditional Risk Factors, CKD-

Specific Risk Factors and Level of Proteinuria

After adjustment for traditional risk factors, the rela-
tionship between MACE and CA1, CA3, placental growth
factor (PGF) and V-set and immunoglobulin domain-
containing protein 2 (VSIG2) was mildly attenuated
(Fig 2, Table S1). Following adjustment for both
traditional and CKD-specific risk factors, the other 6
proteins retained similar effect sizes with MACE but
with wider 95% confidence intervals, as expected due to
the smaller number of patients in these sensitivity ana-
lyses compared with the original analysis (Fig 2,
Table S1). After adjustment for the level of proteinuria,
only 3 proteins, vascular cell adhesion protein 1
5



Table 3. Risk of MACE per Doubling of Protein Abundance: Replicated Proteins

Protein
Discovery Cohort
Hazard Ratio (95% CI)

Replication Cohort
Hazard Ratio (95% CI)

Replication Cohort
P Value

Vascular cell adhesion protein 1 1.64 (1.20-2.24) 1.69 (1.05-2.73) 0.03
Interleukin-27 1.61 (1.26-2.05) 1.43 (1.01-2.02) 0.04
Tenascin 1.45 (1.22-1.74) 1.28 (1.02-1.60) 0.03
Placental growth factor 1.43 (1.08-1.91) 1.68 (1.14-2.48) 0.008
Prointerleukin-16 1.38 (1.08-1.77) 1.45 (1.01-2.06) 0.04
V-set & Ig domain-containing protein 2 1.37 (1.13-1.66) 1.42 (1.01-1.99) 0.04
Carbonic anhydrase 3 1.30 (1.08-1.56) 1.50 (1.13-2.00) 0.006
Fibroblast growth factor 23 1.21 (1.1-1.33) 1.21 (1.07-1.35) 0.001
Carbonic anhydrase 1 1.20 (1.07-1.36) 1.19 (1.01-1.40) 0.04

Hayward et al
(VCAM1), tenascin (TNC) and interleukin-27 (IL-27),
retained a strong association with MACE (P < 0.05,
Fig 2, Table S1).

Sensitivity Analyses: Atherosclerotic and

Nonatherosclerotic MACE

When the MACE outcome was refined solely to
atherosclerotic MACE, CA1, CA3, TNC, FGF-23, and
VSIG2 retained a significant association with MACE
(P < 0.05, Fig 2). In the nonatherosclerotic MACE ana-
lyses, CA1 and CA3 were no longer associated with
MACE, but the remaining 7 of the 9 proteins maintained
their association.
Figure 2. Sensitivity analyses.

6

The 9 Replicated Proteins – Correlation, Functional

Annotation, Enrichment Analysis and Protein-

Protein Interactions

In our data, PGF and VSIG2 abundance as well as PGF and
IL16 levels were moderately correlated (correlation co-
efficients of 0.62 and 0.58, respectively; Fig S1). The 9
replicated proteins mapped to a variety of molecular
functions, biological mechanisms, and protein classes (Fig
S2). After taking into account the selection bias from using
specific panels of proteins, no protein class was over-
represented. Possible interactions between IL16, VCAM1,
and PGF as well as CA1 and CA3 were demonstrated in the
protein-protein interaction network (Fig S3).
Kidney Med Vol 6 | Iss 1 | January 2024 | 100745



Figure 3. Literature summary of the 9 replicated serum proteins.
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DISCUSSION

We identified associations between proteins and an
increased risk of MACE in older people with advanced
CKD. Nine proteins were identified in both the discovery
and replication cohorts and are proposed as potential
biomarkers for MACE amongst an older European CKD
population. Our findings corroborate previously reported
relationships between FGF-23, VCAM1, PGF, and TNC and
cardiovascular outcomes in people with CKD. We also
identified relationships between MACE and CA1 and CA3
that have not previously been demonstrated in human
studies (Fig 3).

FGF-23 has a key role in phosphate and calcium
metabolism and the development of CKD-mineral bone
disease. Our findings add further support to the breadth of
studies that have identified a relationship between
increased FGF-23 and cardiovascular outcomes or mor-
tality, both in the general population and people with
CKD.18,19 Interestingly, we found that FGF-23 was asso-
ciated with MACE, even after adjustment for calcium,
phosphate, and parathyroid levels. Despite extensive
research interest in FGF-23, debate remains over whether
the observed relationship with MACE is likely to be causal
or a result of unmeasured confounding factors, possibly
reflecting differences in kidney function, secondary hy-
perparathyroidism, or treatment for renal bone disease.20

Indeed, Mendelian randomization studies that used ge-
netic variants associated with FGF-23 as instrumental
variables demonstrate a noncausal association between
FGF-23 and MACE.21,22 However, whether FGF-23 sits in a
causal pathway may not affect its prognostic utility as a
MACE biomarker.

Our results contribute to emerging evidence from a
small number of studies linking PGF, TNC and VCAM1
with cardiovascular disease in people with CKD. PGF
Kidney Med Vol 6 | Iss 1 | January 2024 | 100745
contributes to atherogenesis, vascular inflammation and
plaque instability; is associated with mortality and other
cardiovascular events; and is not attenuated by age, sex,
traditional MACE risk factors or eGFR.23 TNC levels inde-
pendently predict cardiac mortality in dialysis recipients
and those with CKD stages G4-5.24,25 Higher VCAM1
levels are associated with elevated all cause and cardio-
vascular mortality amongst dialysis recipients and nega-
tively correlated with residual kidney function.26-28 We
have also shown the potential for 3 proteins associated
with cardiovascular endpoints in the general population to
be relevant to those with CKD (V-SIG2, IL-16, and
IL-27).29-32 Higher plasma levels of V-SIG2 are associated
with incident heart failure.32 IL-16 levels have been asso-
ciated with an unfavorable or cardiovascular risk profile
and higher risk of cardiac remodeling and dysfunction.29

IL-16 levels help to predict the likelihood of coronary ar-
tery events and appear to play a role in the inflammatory
and apoptosis pathways underlying incident heart fail-
ure.31,32 IL-27 levels are associated with acute MI risk and
elevated rates of cardiovascular death, an effect indepen-
dent of eGFR.30 We are the first to our knowledge to report
an association between increased serum CA1 and CA3
levels and increased risk of MACE in humans. CA1 and CA3
are isoenzymes that catalyze the reversible hydration of
carbon dioxide and are involved in calcification of bone
and soft tissue, including changes that occur in patholog-
ical states.33 Although it has been suggested that these
enzymes play a role in the calcification of blood vessels,
this has not been conclusively demonstrated.33 Over-
expression of carbonic anhydrase isoenzymes has also been
described in atheromatous plaque.34 Given that these
proteins were found to be associated with atherosclerotic
but not nonatherosclerotic MACE in the sensitivity analysis
may support this hypothesis.

Strengths of our study include the replication of our
results in a second cohort, the use of hard clinical end-
points as our MACE outcome, and the participants’ similar
levels of kidney function. The study of biomarkers is often
hampered by a failure to replicate previously reported
results. Not only have we replicated our findings, but 4 of
the proteins we identified have been shown to be associ-
ated with MACE in other studies. As we examined a cohort
of older individuals, the use of hard clinical endpoints was
particularly important as older individuals may not have
sufficient time to accrue the risk associated with surrogate
endpoints. All the recruits’ demonstrated similar kidney
function at the time of sample collection with an inter-
quartile range of only 7 mL/min/1.73 m2; this, alongside
adjusting our analysis for eGFR, supports the fact that the
differences we have found are not an artefact caused by
reduced renal clearance of serum proteins.

There were several limitations in our study. Only a
single measurement of the serum proteins was obtained
for each person; therefore, we were unable to assess
whether within-individual variability of protein levels
affect our observed associations with MACE. It is plausible
7
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that medication use may have confounded our analyses; for
example, in vitro work suggests that many cardiovascular
drugs can inhibit CA1.35 Also, the number of people
included in each of the sensitivity analyses was reduced due
to missing data, and CKD-specific risk factors, such as ure-
mic toxins, were not explored. We used a complete case
analysis despite missing data for uACR, representing a po-
tential source of bias in our findings. We used directed
acyclic graphs to assess the relationship between missing
uACR values, confounders, exposure proteins and the MACE
outcome. Using the rules of d-separation, we concluded
that uACR was likely to be missing not at random. However,
it is plausible that missingness is conditional upon other
factors, such as kidney function and medication. Imputing
missing data using auxiliary variables in the mechanism
explaining missingness may have led to different estimates.
We did not have sufficient numbers to investigate whether
effects were uniform across included subgroups, for
example, those with different primary kidney diseases.
Finally, our cohort is almost exclusively White European, so
our findings may not be generalizable to populations with
greater ethnic diversity.

Validation of the findings in independent cohorts is
required, and populations with a breadth of age, disease
stage, primary kidney disease, and other characteristics
should be sought. Potential validation cohorts with protein
biomarker data have been identified, but unfortunately
there is no overlap between the proteins examined by
these cohorts and those which we analyzed.36,37 There-
fore, validation would require new funding and data to be
generated. If validation work confirms the presence of
biomarkers that provide independent prognostic infor-
mation, then the use of these to guide clinical treatment
should be investigated in terms of directing treatment to-
wards those with the greatest potential to benefit and
identification of novel therapeutic targets.

To conclude, we identified a shortlist of 9 proteins with
potential as MACE biomarkers for older people with
advanced CKD. Our findings corroborate previously re-
ported relationships between FGF-23, VCAM1, TNC and
PGF and cardiovascular outcomes in people with CKD and
highlight 5 other proteins that have not previously been
linked with MACE in people with CKD. Furthermore, 3 of
these proteins (TNC, VCAM1 andIL-27) have an associa-
tion with MACE that is independent to known traditional
risk factors, CKD-specific risk factors, and level of pro-
teinuria. Further work to validate these proteins in an in-
dependent cohort is required.
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